• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecule opacity study on low-lying states of CS

    2022-10-26 09:46:04RuiLi李瑞JiqunSang桑紀群XiaoheLin林曉賀JianjunLi李建軍GuiyingLiang梁桂穎andYongWu吳勇
    Chinese Physics B 2022年10期
    關(guān)鍵詞:吳勇李瑞李建軍

    Rui Li(李瑞) Jiqun Sang(桑紀群) Xiaohe Lin(林曉賀) Jianjun Li(李建軍)Guiying Liang(梁桂穎) and Yong Wu(吳勇)

    1Department of Physics,College of Science,Qiqihar University,Qiqihar 161006,China

    2National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Faculty of Foundation,Space Engineering University,Beijing 101416,China

    4School of Data Science and Artificial Intelligence,Jilin Engineering Normal University,Changchun 130052,China

    5HEDPS,Center for Applied Physics and Technology,Peking University,Beijing 100084,China

    Keywords: CS,transition dipole moment,opacity,excited state

    1. Introduction

    The CS molecule is of great interest since it plays a key role in atmospheric and astrophysical circumstances, which draws great attention from researchers.[1–5]The molecule has been detected in the diffuse clouds, dense clouds, molecular clouds, interstellar clouds, comets, carbon-rich stars and other galaxies. In the atmospheric and astrophysical investigations, the opacity between low-lying states are used to determine species,isotopic abundances and number densities in the environment.Thereby,spectroscopic properties of CS provide worthwhile information to an extensive understanding for the intermediate processes occurred in the upper atmosphere.CS molecule and sulfur-containing molecules in the stratosphere are also related to formation of sulfate aerosols,which may lead to acid rain effect and global climate change.[6]Hence,electronic structure and transition properties of the CS molecule have been continually arising interest in the past several decades.

    The large numbers of astronomical detections of CS and the key role in the Earth’s atmosphere have motivated a great deal of experimental studies. In experiment, the wavelength region of CS ranges from the microwave to ultraviolet (UV).In 1934,the pioneer work of main A1Π–X1Σ+transition was performed by Crawfordet al.[7]Later,the rotational spectrum of CS was firstly detected by Mockler and Bird.[8]The rotational spectrum of CS was also photographed by Lovas and Krupenie, and dipole moments and rotational constants were fitted by experimental results.[9]The experimental spectrum in the millimeter region was observed by Bogeyet al.,[10,11]and the spectroscopic constants of the X1Σ+state were obtained.More recently, the investigation in the wide wavelength region was extensively studied by Kimet al.[12]and Gottliebet al.,[13]and the accurate frequencies of rotational transitions were provided in their studies.

    The first work in the infra-red wavelengths was carried out by Todd,[14]who detected theν=2–0 vibration–rotation band of the X1Σ+state of CS.Subsequently,the investigation of the infra-red region was extended by Winkelet al.[15]and Burkholderet al.,[16]and high resolution of theν=1–0 absorption band and theν=1–0“hot”band for the X1Σ+state were measured. On the basis of vibration–rotation and pure rotation spectrum in preceding experimental data, Conxon and Hajigeorgiou determined accurate spectroscopic potential energy curve (PEC). Then, the spectroscopic constant of the X1Σ+state was improved by Ramet al.,[17]who determined the spectroscopic constant from Δν=1 vibration–rotation bands up toν= 9–8. Recently, Ueharaet al.[2]measured Δν= 1 transitions of the X1Σ+state withν ≤7 to a better precision than Ramet al.Pauloseet al.[1]used the spectroscopically-determined PEC and dipole moment to present vibration–rotation line lists.

    A series of UV band (A1Π–X1Σ+, A′1Σ+–X1Σ+, a3Π–X1Σ+, and so on) were extensively studied by different research groups. Bergeman and Cossart[18,19]observed a number of spin-allowed (A1Π–X1Σ+) and spin-forbidden (a3Π–X1Σ+,d3Δ–X1Σ+,and e3Σ-–X1Σ+)transition bands,and the interaction between those low-lying excited states were discussed in detail. The A1Π–X1Σ+band system was recorded by Mahonet al.,[20]and electronic transition moment of the A1Π–X1Σ+transition were estimated by the corresponding experimental result. The emission spectrum of A′1Σ+–X1Σ+was photographed by Dornh¨oferet al.[21]employing timeresolved fluorescence technique,and the transition property of A′1Σ+–X1Σ+was analyzed.

    On the theoretical side, the electronic structure and transition properties of CS have been investigated by different theoretical method. Robbe and Schamps[22]used SCF-CI approach to calculated electronic structure, wavefunction and dipole moment of valence state of CS.Later,the PEC of X1Σ+state were determined by Wilson[23]by using diagrammatic many-body perturbation theory. Ornellas[24]determined accurate PECs of X1Σ+and A1Π states by utilizing MRCI method,and the transition dipole moment of the A1Π–X1Σ+transition were evaluated. The structures for triplet states (a3Π, d3Δ,a′3Σ+and e3Σ-)were studied by Hochlaf using CASSCF and MRCI method.[25]

    As discussed above, the CS molecule has been studied widely by different research group. However, the existing computations of CS molecule are dominantly concentrated on structures of several electronic states.Regarding the large state density and interaction of low-lying states,the accurate calculations of electronic structure and spectroscopic properties of CS still remain sparse. As far as we know,the only spectrum simulation is the vibration–rotation line lists computations of the X1Σ+state of CS by Pauloseet al.[1]In this work,we carry out high-level MRCI study on the low-lying states of CS.The PECs,dipole moments and transition dipole moments are evaluated at the MRCI level of theory,and then vibration–rotation line between low-lying states are calculated at different temperature conditions.

    2. Theoretical method

    In the present work,the MOLPRO package[26]is used to calculate the PECs of singlet and triplet states correlated with the lowest dissociation limit of CS molecule. All the calculations are done in theC2vgroup, which is subgroup ofC∞vpoint group for CS molecule. The corresponding relationship for the irreducible representations ofC2vandC∞vgroup are Σ+to A1,Σ-to A2,Π to B1+B2and Δ to A1+A2. For the C and S atoms,the contracted augmented correlation-consistent polarized quintuple zeta aug-cc-pwCV5Z-DK basis sets[27–29]is adopted. Within the internuclear distance range of 0.975–6.0 ?A,the molecular orbitals of the X1Σ+state are computed by the Hartree–Fock approach. In order to balance molecular orbitals applied in the subsequent calculations of electronic correlation, we utilize the state-averaged complete active space self-consistent field (SA-CASSCF)[30,31]approach to optimize the preceding Hartree–Fock molecular orbitals. In the SA-CASSCF calculations, all the 12 singlet and triplet Λ–S states, which are two1Σ+, one1Σ-, two1Π, one1Δ,two3Σ+, one3Σ-, two3Π and one3Δ, are taken into account simultaneously. The active space in the SA-CASSCF calculations is constructed by 8 molecular orbitals, which associates with C 2s2p and S 3s3p atomic orbitals. In theC2vgroup, the active space is denoted as (4,2,2,0), in which ten electrons are spread across 8 molecular orbitals. Subsequently, by employing the calculated CASSCF energies as reference values, the energies of the 12Λ–S states are determined by internally contracted multireference configuration interaction method[32,33](MRCI+Q) (including Davison size-extensivity correction).[34]The scalar relativistic effect is taken into account through third-order Douglas–Kroll and Hess integrals.[35,36]The PECs are presented by linking the energy points of Λ–S states via taking into account the noncrossing rule.

    Under the Born–Oppenheimer approximation condition,the electronic Schr¨odinger equation of diatomic molecules can be written as

    in which ?Heis Hamiltonian of theNelectrons of diatomic molecules,Ψe(r,R) andEe(R) are the eigen-function and eigen-energy,respectively.

    whereZaandZbare the charge number of nucleus A and B.

    On the basis of calculated energies of electronic states,the eigenvalues and wave functions of vibration–rotation states can be obtained by solution of radical nuclear Schr¨odinger equation

    whereν′andJ′are vibrational and rotational quantum numbers,αis fine-structure constant,ωυ′j′,υ′′j′′is transition frequency between different vibration–rotation levels,SJ′J′′is the line strength,D(R)is the transition dipole moment,andφJ′,J′′is H¨onl–London factor. The H¨onl–London factorφJ′J′′is defined as

    The expressions of formulas(1–6)can be found in Ref.[36].

    Molecular opacity is computed with integrated line strengths,[37]which is given by

    in which Einstein’s coefficientsAis obtained from Eq. (4),ΔE′′is the energy gap of the correlated two states,his the Plank constant,cis the speed of light in vacuum,kis the Boltzmann constant,EV′J′,00is the excitation energy of the lower state in cm-1,and the total internal partition functionQ(T)is defined by summing up concerned electronic state weighed by the Boltzmann factor utilizing

    whereTis temperature in environment andTiis the excitation energy of electronic stateiand become zero for the ground state(i=1).

    3. Result and discussion

    3.1. Potential energy curves, spectroscopic constants and vibrational levels

    The 12Λ–S states associated with the lowest dissociation limit(C(3P)+S(3P))of CS are evaluated at aug-cc-pwCV5ZDK/MRCI+Qlevel of theory. The PECs of the 12Λ–S states are presented in Fig.1. For the sake of visual clarity,we display the singlet Λ–S states and triplet Λ–S states in panels(a)and (b), respectively. And then, we use numerical method to calculate nuclear Schr¨odinger equations to determine spectroscopic constants. For the convenience of comparison, our calculated spectroscopic constants,including transition energyTe,vibrational frequencies(ωeandωexe),equilibrium distanceReand dissociation energyDe,are listed in Table 1,along with the data of previous experimental and theoretical investigations. The spectroscopic constants of electronic states can be served as an effective method to check the precision of electronic structure computation.

    As displayed in Fig.1,the Λ–S states 21Π,23Π and 33Σ+are qusibound states,and the A′1Σ+state has shallow potential well with a depth of 0.33 eV.The other 8 Λ–S states are typical bound states, which have potential well deeper than 2.40 eV.In Table 1, one can clearly see that our calculated spectroscopic constants of bound states are generally in good agreement with existing experimental results, as well as the previously available theoretical data. For the X1Σ+state, theωe,ωexe,BeandReare computed to be 1284.2 cm-1,6.35 cm-1,0.8179 cm-1and 1.5369 ?A, which differ from the latest experimental data by only 1 cm-1, 0.152 cm-1, 0.0021 cm-1and 0.0019 ?A.Our calculated dissociation energy of the X1Σ+state is 7.42 eV,which is only 0.01 eV smaller than experimental value of 7.43 eV.[36]Our calculated spectroscopic constant of the X1Σ+state has higher accuracy compared with the previously available theoretical results.[24,25]For the first excited state a3Π, our calculations present a deep well depthDeof 3.92 eV located at theReof 1.5724 ?A. The calculated value ofRe(1.5724 ?A) is more close to the experimental value of 1.5691 ?A, as compared with previous theoretical data. Our calculatedTeof a3Π (28328 cm-1) agrees well with existing theoretical work of 28173 cm-1,and our calculatedTeof a3Π differs by 1298 cm-1(5%) from previously available experimental data.[18]

    Fig.1. MRCI+Q potential energy curves for singlet and triplet states of CS along with internuclear distance R.

    Table 1. Spectroscopic constants of bound Λ–S states of CS.

    In addition,the previous experimental results in Refs.[18,36] exhibit a relative large difference (~600 cm-1), which may be caused by the experimental error originated from the perturbation of the nearby excited states (d3Δ, a′3Σ+and e3Σ-). Similar situations are found in excited states located at the excited energy range of 28000–40000 cm-1,which can also be explained by perturbation caused by a very high density of the excited states. Hence,more accurate spectral studies should be carried out to investigate the perturbations of the excited states. For the first singlet excited state A1Π,the dissociation energyDeis estimated to be 2.53 eV,which can hold 26 vibrational levels. Theωe,ωexeandBeare computed to be 1057.6 cm-1,10.2 cm-1and 0.7814 cm-1,which are in good accordance with the latest experimental data of 1077.23 cm-1,10.639 cm-1, and 0.7876 cm-1. TheReis evaluated to be 1.5725 ?A,which is more close to the latest experimental value of 1.566 ?A.[18]Our calculatedTediffer by less than 800 cm-1(2%)from the latest measurements.[18]For the second singlet excited state A′1Σ+,the well depth is computed to be 0.33 eV,which can only support 5 vibrational states. Good agreements are achieved for theωe,BeandRe. In our work, the calculated spectroscopic constants of A′1Σ+areωe=465.7 cm-1,Be=0.5016 cm-1andRe=1.9646 ?A, and the ones determined by Ref.[18]areωe=462.42 cm-1,Be=0.5114 cm-1andRe=1.944 ?A.Our MRCI+QcalculatedTeis 57245 cm-1,which differs by 1381 cm-1(2%) from most recent experimental value of 55864 cm-1.[18]Theωexeis calculated to be 8.70 cm-1,which is 1.242 cm-1larger than the experimental result of 7.458 cm-1.

    In the process of determining spectroscopic constants,the vibrational levels of the ground state and exited states are also obtained. In Tables 2 and 3, the vibrational energy gap between Δν=1 are presented for X1Σ+and A1Π/A′1Σ+states along with previously available theoretical and experimental data. For the the X1Σ+state, our calculated vibration levels gap forν ≤20 agree very well with the most recent experimental data,[2]the absolute differences are less than 2 cm-1(0.2%). In comparison with existing theoretical data,[38]our calculated accuracy of vibrational levels has obviously improvement,especially for theν ≥2 vibrational levels. For the A1Π state,the vibration levels gap forν ≤4 are computed to be 1037.6 cm-1, 1016.4 cm-1, 995.9 cm-1and 975.6 cm-1,which is only about~15 cm-1(2%) smaller than the latest experimental results.[20]In addition, our calculated vibration levels gap of A1Π state are closer to experimental data.

    Table 2. The vibrational energy gap(Eν-Eν-1)(in cm-1)for the X1Σ+ state of CS.

    Table 3. The vibrational energy gap(Eν-Eν-1)(in cm-1)for the A1Π state of CS.

    4. Dipole moments and transition dipole moments

    The dipole moments and transition dipole moments of low-lying Λ–S states are computed by employing MRCI wave functions. The dipole moments curves for the singlet Λ–S states and triplet Λ–S states are presented in Figs. 2(a) and 2(b), respectively. As is well known, the vibration of dipole moment reflects the change of electronic configuration for Λ–S state. As displayed in Fig. 2, the extent of variation of dipole moments for A′1Σ+,21Π,33Σ+and 23Π are obviously large than that of other 8 Λ–S states. This phenomenon could be explained by the sharp vibration of electronic configuration of A′1Σ+, 21Π, 33Σ+and 23Π. As shown in Fig. 1, the A′1Σ+,21Π,33Σ+and 23Π are located at high excitation energy range of≥5700 cm-1, which form crossing point with high excited states. The crossing point of A′1Σ+, 21Π, 33Σ+and 23Π cause the sharp change for electronic configurations of those states, hence, the dipole moment curves of A′1Σ+,21Π, 33Σ+and 23Π change dramatically as compared with that of the other 8 Λ–S states. At the equilibrium distance(Re=1.5369 ?A)of the X1Σ+,the dipole moment is computed to be 0.77 a.u., which agree very well with available experimental data of 0.7704 a.u.[42]Both theoretical and experimental studied indicate the Cδ-Sδ+polarity of the CS molecule.At the equilibrium distanceRe=1.5725 ?A,the dipole moment of A1Π is estimated to be 0.29 a.u. As shown in Fig. 2, the dipole moments of all the Λ–S states approach to zero at large internuclear distance, indicating the dissociation products are neutral C and S atoms.

    The transition dipole moments (TDMs) of spin-allowed singlet-singlet transition are given in Fig.3. For convenient of comparing, the previous TDM of A1Π–X1Σ+[24]determined by cc-PVQZ/MRSDCI level of theory are also displayed. As can be seen in Fig.3,the position of peak of TDM for A1Π–X1Σ+transition in our work and Ref.[24]are well consistent,which are both located atR=1.39 ?A.The peak value of TDM of A1Π–X1Σ+transition is 0.304 a.u., which is 0.028 a.u.larger than that in Ref.[24]. The maximum value(0.599 a.u.)of TDM of A′1Σ+–X1Σ+is located at 1.80 ?A.

    Fig.2. Dipole moment curves for singlet and triplet states of CS.

    Fig.3. Transition dipole moment curves of spin-allowed transition of CS.

    4.1. Opacity

    Fig.4. The total internal partition functions of CS along with the temperature T (in Kelvin).

    With the information of partition functions and vibration–rotation states,the molecular opacities for the X1Σ+,A1Π and A′1Σ+states are obtained from formula (7) at pressure of 100 atms for different temperatures. With the increasing of temperature and growing of density,the dissociation probability of molecule will be raised. However, the dissociation energy of X1Σ+(7.42 eV)is very large,so the dissociation probability of CS caused by thermal motion inT=4500 K is very small. In addition, the previous investigations also indicate that opacity and absorption spectrum in astrophysical field are mainly originated from molecule.[1,2]The calculated molecular opacities of X1Σ+, A1Π and A′1Σ+states of CS for the temperatures of 300 K,1000 K,1800 K,and 4500 K are displayed in Figs.5(a)–5(d),respectively. As presented in Fig.5,the spectra lie in a wide area of wavelengths,which range from UV to far-infrared. In the simulation of spectra, the spectral line is profiled utilizing a Lorentzian function with a width contributed from impact-broadening. As can be observed in Fig.5(a),there are three electronic bands attributed from three singlet states considered in this work, which associate with A′1Σ+–X1Σ+, A1Π–X1Σ+and X1Σ+–X1Σ+transitions from left to right,respectively.At low temperature of 300 K/1000 K and a pressure of 100 atms(see Figs.5(a)and 5(b)),different band systems are distinctly divided from each other. The band systems contributed from A′1Σ+–X1Σ+and A1Π–X1Σ+transitions appear at nearby 180 nm and 250 nm,which are located in wavelength range of short-wave UV.As for band system of X1Σ+–X1Σ+,there are two typical bands(fundamental vibrational transition and pure rotation transition), and the fundamental vibrational bands of Δν=1, 2 and 3 appear around 6.6 μm, 3.4 μm and 2.3 μm, while the pure rotation band of Δν=0 locates in wavelength of≥40 μm. It can be seen that the molecular opacities are very small in the 300–1500 nm wavelength range, which form a window area in the visible light(VIS)and near infrared(NIR)region. When the temperature increase(see Figs.5(c)and 5(d)),the cross section in the

    Fig.5. Opacity of CS generated by vibration–rotation transitions for a pressure of 100 atm and temperatures of T =300 K,1000 K,1800 K,and 4500 K.

    VIS and NIR window area is growing gradually,and the separation between different fundamental vibrational bands and different electronic bands become blurred, which are originated from the raised population on vibrational excited states and electronic excited state at high temperature. On the other hand, the cross section contributed from pure rotational transition decrease evidently because of the reduced populations on the X1Σ+, while the cross section originated from highly vibrational excited states are enhanced significantly.

    5. Conclusions

    In this work, accurate PECs of singlet and triplet states correlated with the lowest dissociation limit of CS molecule are computed with high-precision MRCI+Qlevel of theory.Based on calculated PECs, the spectroscopic constants and vibrational levels are evaluated by using accurate numerical method, which agree with the previous measurement. The opacities for the lowest three singlet states of CS are evaluated at a pressure of 100 atms for the temperatures of 300 K,1000 K,1800 K,and 4500 K.At the low temperatures of 300 K and 1000 K, the spectra contributed from electronic transitions (A′1Σ+–X1Σ+and A1Π–X1Σ+) are separated into distinct bands,and different vibrational bands caused by Δν=0,1, 2 and 3 of X1Σ+–X1Σ+transition are also found. With the increasing of the temperature, the populations on excited states are increased,which cause the superposition of different band transitions. Hence,the band boundaries of cross sections become blurred. This work provides accurate electronic structure and molecular opacity of CS.The present study will shed more light on the calculations of the high-precision molecular structures and opacity.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11934004 and 12203106),Fundamental Research Funds in Heilongjiang Province Universities,China (Grant No. 145109127), and the Scientific Research Plan Projects of Heilongjiang Education Department, China(Grant Nos.WNCGQJKF202103 and DWCGQKF202104).

    猜你喜歡
    吳勇李瑞李建軍
    椰子的身價
    木棍的長度
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書法作品
    李瑞
    Wimbledon Tennis
    Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling*
    等你
    當代音樂(2020年7期)2020-07-23 11:43:37
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    藝術(shù)百家:李瑞
    電影文學(2017年12期)2017-12-26 10:59:30
    最新中文字幕久久久久| 性少妇av在线| www.自偷自拍.com| 精品少妇内射三级| 日韩中字成人| 麻豆乱淫一区二区| 99热国产这里只有精品6| 一区二区日韩欧美中文字幕| 91在线精品国自产拍蜜月| 日本-黄色视频高清免费观看| 日韩在线高清观看一区二区三区| 久久 成人 亚洲| 永久网站在线| 成人免费观看视频高清| 在线观看美女被高潮喷水网站| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色av中文字幕| 国产精品欧美亚洲77777| 成人免费观看视频高清| 免费看av在线观看网站| 日韩大片免费观看网站| 国产黄频视频在线观看| 女性生殖器流出的白浆| 男女午夜视频在线观看| 最近中文字幕高清免费大全6| 日本av免费视频播放| 亚洲国产日韩一区二区| 成年av动漫网址| 亚洲综合精品二区| 电影成人av| 丝袜喷水一区| 亚洲精品av麻豆狂野| 天天躁夜夜躁狠狠久久av| 日韩熟女老妇一区二区性免费视频| 80岁老熟妇乱子伦牲交| 男人舔女人的私密视频| 亚洲国产色片| 国产片内射在线| 国产成人精品无人区| 熟妇人妻不卡中文字幕| 久久午夜综合久久蜜桃| 最近中文字幕2019免费版| 熟妇人妻不卡中文字幕| 激情五月婷婷亚洲| 高清黄色对白视频在线免费看| 韩国av在线不卡| 日韩精品有码人妻一区| 亚洲国产精品999| 不卡av一区二区三区| 综合色丁香网| 久久99一区二区三区| 美女中出高潮动态图| 欧美av亚洲av综合av国产av | 制服人妻中文乱码| 女人精品久久久久毛片| 国产精品三级大全| 啦啦啦在线观看免费高清www| 久久影院123| 各种免费的搞黄视频| 亚洲欧洲日产国产| 免费久久久久久久精品成人欧美视频| 亚洲天堂av无毛| 黄片小视频在线播放| 精品亚洲乱码少妇综合久久| 18禁动态无遮挡网站| 高清在线视频一区二区三区| 国产精品久久久久久精品古装| 啦啦啦视频在线资源免费观看| 日韩制服骚丝袜av| 欧美老熟妇乱子伦牲交| 人妻人人澡人人爽人人| 国产一区亚洲一区在线观看| 成人毛片60女人毛片免费| 成人免费观看视频高清| 国产福利在线免费观看视频| 视频区图区小说| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区国产| 韩国高清视频一区二区三区| 亚洲av综合色区一区| 秋霞伦理黄片| 国产成人精品在线电影| 亚洲熟女精品中文字幕| 国产男女内射视频| 欧美日韩国产mv在线观看视频| av女优亚洲男人天堂| 少妇 在线观看| 日日啪夜夜爽| 国产成人精品一,二区| 日韩,欧美,国产一区二区三区| 久久久久久久久久久免费av| 欧美+日韩+精品| 久久久久久久久久久免费av| 免费人妻精品一区二区三区视频| 免费看不卡的av| 国产xxxxx性猛交| 精品人妻一区二区三区麻豆| 精品视频人人做人人爽| 久久国产精品男人的天堂亚洲| 欧美97在线视频| 成年动漫av网址| 午夜免费观看性视频| 日韩不卡一区二区三区视频在线| 宅男免费午夜| 亚洲精品中文字幕在线视频| 99九九在线精品视频| 中文字幕色久视频| av片东京热男人的天堂| 一级毛片黄色毛片免费观看视频| 老女人水多毛片| 王馨瑶露胸无遮挡在线观看| 波多野结衣一区麻豆| 熟女av电影| 国产精品免费视频内射| 亚洲精品国产色婷婷电影| 欧美国产精品一级二级三级| 黄色怎么调成土黄色| 国产老妇伦熟女老妇高清| 国产成人欧美| 成年动漫av网址| 久久毛片免费看一区二区三区| 老汉色av国产亚洲站长工具| 国产成人午夜福利电影在线观看| 国产又色又爽无遮挡免| 欧美日韩亚洲高清精品| 侵犯人妻中文字幕一二三四区| 啦啦啦在线观看免费高清www| 欧美少妇被猛烈插入视频| 婷婷色综合www| 丝瓜视频免费看黄片| 国产在线视频一区二区| 最新的欧美精品一区二区| av网站在线播放免费| 中文字幕精品免费在线观看视频| 国产爽快片一区二区三区| 国产伦理片在线播放av一区| 久久久久久久久久久久大奶| 中文字幕色久视频| 久久精品国产综合久久久| 我要看黄色一级片免费的| 青春草国产在线视频| 精品一品国产午夜福利视频| 免费观看a级毛片全部| 精品卡一卡二卡四卡免费| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久久大奶| 国产免费视频播放在线视频| 日韩一区二区视频免费看| 只有这里有精品99| 日韩欧美精品免费久久| 午夜福利乱码中文字幕| 视频区图区小说| 亚洲av免费高清在线观看| 国产又色又爽无遮挡免| 桃花免费在线播放| 咕卡用的链子| 欧美亚洲日本最大视频资源| 在线免费观看不下载黄p国产| 国产精品一区二区在线不卡| 亚洲国产欧美在线一区| 欧美日韩一区二区视频在线观看视频在线| 精品国产一区二区三区四区第35| 欧美精品高潮呻吟av久久| 在线 av 中文字幕| 久久影院123| 9热在线视频观看99| 亚洲第一av免费看| 日本免费在线观看一区| 亚洲av男天堂| 一级毛片我不卡| av在线app专区| 亚洲伊人色综图| 日韩一区二区三区影片| 久久青草综合色| 免费不卡的大黄色大毛片视频在线观看| 日产精品乱码卡一卡2卡三| 亚洲第一青青草原| 人人妻人人澡人人爽人人夜夜| 国产免费福利视频在线观看| 精品国产一区二区久久| 亚洲情色 制服丝袜| 欧美成人午夜精品| 精品一品国产午夜福利视频| 五月开心婷婷网| 街头女战士在线观看网站| 国产精品亚洲av一区麻豆 | 久久久国产精品麻豆| 亚洲精华国产精华液的使用体验| 成年av动漫网址| 精品国产超薄肉色丝袜足j| 丝袜脚勾引网站| 人人澡人人妻人| 精品少妇内射三级| xxxhd国产人妻xxx| 久久热在线av| 国产日韩欧美视频二区| 免费看不卡的av| av在线观看视频网站免费| 久久ye,这里只有精品| 最近的中文字幕免费完整| 国产淫语在线视频| 国产深夜福利视频在线观看| 伊人久久大香线蕉亚洲五| 啦啦啦啦在线视频资源| 欧美国产精品va在线观看不卡| 免费观看无遮挡的男女| 日韩av不卡免费在线播放| 最新的欧美精品一区二区| 国产精品三级大全| 亚洲国产精品一区三区| 国产精品女同一区二区软件| 老汉色∧v一级毛片| 捣出白浆h1v1| 欧美精品一区二区免费开放| 2018国产大陆天天弄谢| 最近手机中文字幕大全| 亚洲伊人色综图| 久久亚洲国产成人精品v| 国产成人精品在线电影| 国产在线免费精品| 欧美精品一区二区免费开放| 午夜福利网站1000一区二区三区| 大话2 男鬼变身卡| 精品国产露脸久久av麻豆| 国产一区二区三区综合在线观看| 丝袜美腿诱惑在线| 最近最新中文字幕免费大全7| 老司机亚洲免费影院| 久久精品熟女亚洲av麻豆精品| 日韩av在线免费看完整版不卡| 久久午夜综合久久蜜桃| 丝袜在线中文字幕| 久久久国产精品麻豆| 天堂中文最新版在线下载| 在线看a的网站| 边亲边吃奶的免费视频| 交换朋友夫妻互换小说| 一级,二级,三级黄色视频| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线进入| a级片在线免费高清观看视频| 日韩在线高清观看一区二区三区| a级片在线免费高清观看视频| 亚洲男人天堂网一区| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| 国产精品熟女久久久久浪| 成人午夜精彩视频在线观看| 亚洲国产精品一区二区三区在线| 91aial.com中文字幕在线观看| 国产精品三级大全| 亚洲欧美清纯卡通| 国产成人欧美| 国产精品不卡视频一区二区| 亚洲成色77777| 边亲边吃奶的免费视频| 亚洲精品自拍成人| 黄片无遮挡物在线观看| 如日韩欧美国产精品一区二区三区| 亚洲av国产av综合av卡| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区久久| 女的被弄到高潮叫床怎么办| 老熟女久久久| 欧美最新免费一区二区三区| 69精品国产乱码久久久| 26uuu在线亚洲综合色| 国产一区亚洲一区在线观看| 9色porny在线观看| 99久久综合免费| 欧美 亚洲 国产 日韩一| 一级a爱视频在线免费观看| 18禁动态无遮挡网站| 免费少妇av软件| 国产一区二区激情短视频 | 汤姆久久久久久久影院中文字幕| 亚洲 欧美一区二区三区| 国产亚洲av片在线观看秒播厂| 国产黄色免费在线视频| 热re99久久国产66热| 欧美成人精品欧美一级黄| 久久久久久久久久人人人人人人| 日本wwww免费看| 精品国产国语对白av| 午夜影院在线不卡| 欧美最新免费一区二区三区| 精品午夜福利在线看| 看免费av毛片| 亚洲欧美精品综合一区二区三区 | 精品酒店卫生间| 久久99精品国语久久久| 熟女少妇亚洲综合色aaa.| 国产免费一区二区三区四区乱码| 另类精品久久| 国产午夜精品一二区理论片| 日本免费在线观看一区| 国产国语露脸激情在线看| 久久人人爽av亚洲精品天堂| 丝袜脚勾引网站| 少妇精品久久久久久久| av有码第一页| 亚洲美女黄色视频免费看| 欧美另类一区| 最近手机中文字幕大全| 九九爱精品视频在线观看| 91精品三级在线观看| 精品福利永久在线观看| 一本色道久久久久久精品综合| 一二三四中文在线观看免费高清| 性色av一级| 精品人妻在线不人妻| 寂寞人妻少妇视频99o| 桃花免费在线播放| 久久韩国三级中文字幕| 999精品在线视频| 蜜桃在线观看..| av网站免费在线观看视频| av又黄又爽大尺度在线免费看| 热re99久久国产66热| 女人被躁到高潮嗷嗷叫费观| 国产毛片在线视频| 亚洲精品久久久久久婷婷小说| 日本vs欧美在线观看视频| 国产精品 欧美亚洲| 多毛熟女@视频| 美女福利国产在线| 国产精品香港三级国产av潘金莲 | 国产精品蜜桃在线观看| 老汉色av国产亚洲站长工具| 精品久久久久久电影网| 国产精品久久久久久精品古装| 国产女主播在线喷水免费视频网站| 亚洲精品国产av成人精品| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区久久| 熟女电影av网| 99九九在线精品视频| 久久精品人人爽人人爽视色| 9191精品国产免费久久| 99国产综合亚洲精品| 午夜福利视频精品| 精品酒店卫生间| av国产精品久久久久影院| 欧美人与善性xxx| 成人18禁高潮啪啪吃奶动态图| 午夜免费男女啪啪视频观看| 久久久久人妻精品一区果冻| 国产毛片在线视频| 最近中文字幕高清免费大全6| 欧美+日韩+精品| 久久综合国产亚洲精品| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| 国产精品不卡视频一区二区| 在线观看美女被高潮喷水网站| 亚洲国产精品999| 在线观看国产h片| 赤兔流量卡办理| 欧美国产精品一级二级三级| 日韩在线高清观看一区二区三区| 天堂8中文在线网| 亚洲精品一二三| 久久久久人妻精品一区果冻| 亚洲,欧美,日韩| 青青草视频在线视频观看| 亚洲国产精品999| 国产一区二区 视频在线| a级片在线免费高清观看视频| 欧美精品av麻豆av| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 99国产精品免费福利视频| 久久热在线av| 深夜精品福利| 两个人看的免费小视频| 亚洲精品美女久久av网站| 久久精品久久精品一区二区三区| 久久久久久久久久久免费av| 一区二区三区乱码不卡18| 美女脱内裤让男人舔精品视频| 天天躁日日躁夜夜躁夜夜| 国产av码专区亚洲av| 高清欧美精品videossex| 天堂中文最新版在线下载| 老司机亚洲免费影院| 国产成人精品久久二区二区91 | 另类精品久久| 国产 一区精品| 国产成人欧美| 日韩伦理黄色片| 18禁观看日本| 亚洲欧洲国产日韩| 丝袜喷水一区| 国产男人的电影天堂91| 国产精品国产av在线观看| 国产人伦9x9x在线观看 | 精品久久久精品久久久| 最近最新中文字幕大全免费视频 | 我要看黄色一级片免费的| 丝袜美腿诱惑在线| 在现免费观看毛片| 国产黄色免费在线视频| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄| 韩国精品一区二区三区| 一级毛片 在线播放| 国产日韩欧美在线精品| 激情五月婷婷亚洲| 老汉色av国产亚洲站长工具| 9191精品国产免费久久| 亚洲av日韩在线播放| 在线 av 中文字幕| 亚洲人成电影观看| 欧美 日韩 精品 国产| 少妇人妻 视频| videos熟女内射| 在线观看三级黄色| 1024香蕉在线观看| 啦啦啦在线免费观看视频4| 久久精品人人爽人人爽视色| 亚洲四区av| 亚洲精品aⅴ在线观看| 女性被躁到高潮视频| 久久久亚洲精品成人影院| 一区二区三区激情视频| 免费播放大片免费观看视频在线观看| 波多野结衣av一区二区av| 一级片'在线观看视频| 日韩欧美一区视频在线观看| 在线观看美女被高潮喷水网站| 亚洲精品美女久久av网站| 99久久综合免费| 免费观看在线日韩| 亚洲精品成人av观看孕妇| 久久99蜜桃精品久久| 如何舔出高潮| 精品一区二区三区四区五区乱码 | 热re99久久国产66热| 丝袜美腿诱惑在线| 最近2019中文字幕mv第一页| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| 熟女少妇亚洲综合色aaa.| 1024香蕉在线观看| 中文字幕av电影在线播放| 久久国产精品大桥未久av| www日本在线高清视频| 午夜日本视频在线| 999久久久国产精品视频| 色吧在线观看| 亚洲第一av免费看| 亚洲国产精品一区三区| 婷婷色综合大香蕉| 999久久久国产精品视频| 性少妇av在线| 成年女人在线观看亚洲视频| 久久热在线av| 免费高清在线观看日韩| 国产老妇伦熟女老妇高清| 国产精品国产三级专区第一集| 欧美日韩亚洲高清精品| 中文字幕色久视频| 国产伦理片在线播放av一区| 亚洲成人手机| 男的添女的下面高潮视频| 久久久久久免费高清国产稀缺| 丝袜人妻中文字幕| 黄色视频在线播放观看不卡| 香蕉丝袜av| 国精品久久久久久国模美| 免费在线观看完整版高清| 777米奇影视久久| 一个人免费看片子| 中文天堂在线官网| 久久97久久精品| 久热这里只有精品99| 中文精品一卡2卡3卡4更新| av在线app专区| 亚洲欧洲国产日韩| 久久久久久人人人人人| av免费观看日本| 狂野欧美激情性bbbbbb| 制服丝袜香蕉在线| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| 中文字幕av电影在线播放| 亚洲精品美女久久av网站| 日韩成人av中文字幕在线观看| 尾随美女入室| 精品第一国产精品| 久久亚洲国产成人精品v| 国产精品一区二区在线不卡| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| 亚洲精品久久成人aⅴ小说| 国产男人的电影天堂91| 日韩视频在线欧美| 日韩三级伦理在线观看| av在线老鸭窝| 精品久久蜜臀av无| 国产日韩欧美在线精品| 在线观看三级黄色| 男人添女人高潮全过程视频| 777米奇影视久久| 国产麻豆69| 久久人人97超碰香蕉20202| 99热网站在线观看| 国产不卡av网站在线观看| 男男h啪啪无遮挡| 交换朋友夫妻互换小说| 久久久久久久大尺度免费视频| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频| 最近手机中文字幕大全| 国产精品偷伦视频观看了| 老熟女久久久| 国产亚洲午夜精品一区二区久久| 五月开心婷婷网| 亚洲欧美中文字幕日韩二区| 26uuu在线亚洲综合色| 久久狼人影院| 免费观看无遮挡的男女| 交换朋友夫妻互换小说| 成年av动漫网址| 色哟哟·www| 亚洲精品美女久久av网站| 在现免费观看毛片| 欧美日韩精品成人综合77777| 国产色婷婷99| 免费观看性生交大片5| 在线看a的网站| 国产精品久久久久久久久免| 国产亚洲欧美精品永久| 国产一区二区激情短视频 | freevideosex欧美| 国产乱人偷精品视频| 精品一区在线观看国产| 黑丝袜美女国产一区| 人妻系列 视频| 女人精品久久久久毛片| 人人妻人人爽人人添夜夜欢视频| 99久久精品国产国产毛片| 日本av免费视频播放| 天天影视国产精品| 久久97久久精品| 在线天堂最新版资源| 亚洲三区欧美一区| 爱豆传媒免费全集在线观看| 老汉色av国产亚洲站长工具| 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 涩涩av久久男人的天堂| 一边亲一边摸免费视频| 考比视频在线观看| 亚洲国产最新在线播放| 两性夫妻黄色片| 天天影视国产精品| 中文字幕av电影在线播放| 母亲3免费完整高清在线观看 | 欧美日韩成人在线一区二区| 极品少妇高潮喷水抽搐| 国产成人av激情在线播放| 满18在线观看网站| 国产爽快片一区二区三区| www.熟女人妻精品国产| 丝袜美腿诱惑在线| 国产一级毛片在线| 国产精品三级大全| 国产精品国产av在线观看| 亚洲成人手机| 在线观看免费日韩欧美大片| av在线老鸭窝| 国精品久久久久久国模美| 男女啪啪激烈高潮av片| 丁香六月天网| 最近中文字幕高清免费大全6| 成人毛片a级毛片在线播放| 18禁观看日本| 欧美另类一区| 欧美激情高清一区二区三区 | 亚洲,欧美,日韩| 中文乱码字字幕精品一区二区三区| 国产国语露脸激情在线看| 国产成人午夜福利电影在线观看| 婷婷色综合www| 最黄视频免费看| 欧美变态另类bdsm刘玥| 婷婷色综合www| 最黄视频免费看| 免费看不卡的av| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久小说| 午夜免费男女啪啪视频观看| 久久国内精品自在自线图片| 中文字幕人妻熟女乱码| 久久毛片免费看一区二区三区| 亚洲欧美清纯卡通| 精品国产乱码久久久久久小说| 18+在线观看网站| 99久国产av精品国产电影| 国产国语露脸激情在线看| 国产淫语在线视频| xxxhd国产人妻xxx| 亚洲精品自拍成人| videos熟女内射| 两个人看的免费小视频| 久久久久久久久久久免费av| 国产亚洲一区二区精品| 久久久久久伊人网av| 久久这里有精品视频免费| 一本久久精品| 26uuu在线亚洲综合色| 亚洲第一青青草原| 亚洲国产精品成人久久小说| 亚洲av.av天堂|