• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecule opacity study on low-lying states of CS

    2022-10-26 09:46:04RuiLi李瑞JiqunSang桑紀群XiaoheLin林曉賀JianjunLi李建軍GuiyingLiang梁桂穎andYongWu吳勇
    Chinese Physics B 2022年10期
    關(guān)鍵詞:吳勇李瑞李建軍

    Rui Li(李瑞) Jiqun Sang(桑紀群) Xiaohe Lin(林曉賀) Jianjun Li(李建軍)Guiying Liang(梁桂穎) and Yong Wu(吳勇)

    1Department of Physics,College of Science,Qiqihar University,Qiqihar 161006,China

    2National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Faculty of Foundation,Space Engineering University,Beijing 101416,China

    4School of Data Science and Artificial Intelligence,Jilin Engineering Normal University,Changchun 130052,China

    5HEDPS,Center for Applied Physics and Technology,Peking University,Beijing 100084,China

    Keywords: CS,transition dipole moment,opacity,excited state

    1. Introduction

    The CS molecule is of great interest since it plays a key role in atmospheric and astrophysical circumstances, which draws great attention from researchers.[1–5]The molecule has been detected in the diffuse clouds, dense clouds, molecular clouds, interstellar clouds, comets, carbon-rich stars and other galaxies. In the atmospheric and astrophysical investigations, the opacity between low-lying states are used to determine species,isotopic abundances and number densities in the environment.Thereby,spectroscopic properties of CS provide worthwhile information to an extensive understanding for the intermediate processes occurred in the upper atmosphere.CS molecule and sulfur-containing molecules in the stratosphere are also related to formation of sulfate aerosols,which may lead to acid rain effect and global climate change.[6]Hence,electronic structure and transition properties of the CS molecule have been continually arising interest in the past several decades.

    The large numbers of astronomical detections of CS and the key role in the Earth’s atmosphere have motivated a great deal of experimental studies. In experiment, the wavelength region of CS ranges from the microwave to ultraviolet (UV).In 1934,the pioneer work of main A1Π–X1Σ+transition was performed by Crawfordet al.[7]Later,the rotational spectrum of CS was firstly detected by Mockler and Bird.[8]The rotational spectrum of CS was also photographed by Lovas and Krupenie, and dipole moments and rotational constants were fitted by experimental results.[9]The experimental spectrum in the millimeter region was observed by Bogeyet al.,[10,11]and the spectroscopic constants of the X1Σ+state were obtained.More recently, the investigation in the wide wavelength region was extensively studied by Kimet al.[12]and Gottliebet al.,[13]and the accurate frequencies of rotational transitions were provided in their studies.

    The first work in the infra-red wavelengths was carried out by Todd,[14]who detected theν=2–0 vibration–rotation band of the X1Σ+state of CS.Subsequently,the investigation of the infra-red region was extended by Winkelet al.[15]and Burkholderet al.,[16]and high resolution of theν=1–0 absorption band and theν=1–0“hot”band for the X1Σ+state were measured. On the basis of vibration–rotation and pure rotation spectrum in preceding experimental data, Conxon and Hajigeorgiou determined accurate spectroscopic potential energy curve (PEC). Then, the spectroscopic constant of the X1Σ+state was improved by Ramet al.,[17]who determined the spectroscopic constant from Δν=1 vibration–rotation bands up toν= 9–8. Recently, Ueharaet al.[2]measured Δν= 1 transitions of the X1Σ+state withν ≤7 to a better precision than Ramet al.Pauloseet al.[1]used the spectroscopically-determined PEC and dipole moment to present vibration–rotation line lists.

    A series of UV band (A1Π–X1Σ+, A′1Σ+–X1Σ+, a3Π–X1Σ+, and so on) were extensively studied by different research groups. Bergeman and Cossart[18,19]observed a number of spin-allowed (A1Π–X1Σ+) and spin-forbidden (a3Π–X1Σ+,d3Δ–X1Σ+,and e3Σ-–X1Σ+)transition bands,and the interaction between those low-lying excited states were discussed in detail. The A1Π–X1Σ+band system was recorded by Mahonet al.,[20]and electronic transition moment of the A1Π–X1Σ+transition were estimated by the corresponding experimental result. The emission spectrum of A′1Σ+–X1Σ+was photographed by Dornh¨oferet al.[21]employing timeresolved fluorescence technique,and the transition property of A′1Σ+–X1Σ+was analyzed.

    On the theoretical side, the electronic structure and transition properties of CS have been investigated by different theoretical method. Robbe and Schamps[22]used SCF-CI approach to calculated electronic structure, wavefunction and dipole moment of valence state of CS.Later,the PEC of X1Σ+state were determined by Wilson[23]by using diagrammatic many-body perturbation theory. Ornellas[24]determined accurate PECs of X1Σ+and A1Π states by utilizing MRCI method,and the transition dipole moment of the A1Π–X1Σ+transition were evaluated. The structures for triplet states (a3Π, d3Δ,a′3Σ+and e3Σ-)were studied by Hochlaf using CASSCF and MRCI method.[25]

    As discussed above, the CS molecule has been studied widely by different research group. However, the existing computations of CS molecule are dominantly concentrated on structures of several electronic states.Regarding the large state density and interaction of low-lying states,the accurate calculations of electronic structure and spectroscopic properties of CS still remain sparse. As far as we know,the only spectrum simulation is the vibration–rotation line lists computations of the X1Σ+state of CS by Pauloseet al.[1]In this work,we carry out high-level MRCI study on the low-lying states of CS.The PECs,dipole moments and transition dipole moments are evaluated at the MRCI level of theory,and then vibration–rotation line between low-lying states are calculated at different temperature conditions.

    2. Theoretical method

    In the present work,the MOLPRO package[26]is used to calculate the PECs of singlet and triplet states correlated with the lowest dissociation limit of CS molecule. All the calculations are done in theC2vgroup, which is subgroup ofC∞vpoint group for CS molecule. The corresponding relationship for the irreducible representations ofC2vandC∞vgroup are Σ+to A1,Σ-to A2,Π to B1+B2and Δ to A1+A2. For the C and S atoms,the contracted augmented correlation-consistent polarized quintuple zeta aug-cc-pwCV5Z-DK basis sets[27–29]is adopted. Within the internuclear distance range of 0.975–6.0 ?A,the molecular orbitals of the X1Σ+state are computed by the Hartree–Fock approach. In order to balance molecular orbitals applied in the subsequent calculations of electronic correlation, we utilize the state-averaged complete active space self-consistent field (SA-CASSCF)[30,31]approach to optimize the preceding Hartree–Fock molecular orbitals. In the SA-CASSCF calculations, all the 12 singlet and triplet Λ–S states, which are two1Σ+, one1Σ-, two1Π, one1Δ,two3Σ+, one3Σ-, two3Π and one3Δ, are taken into account simultaneously. The active space in the SA-CASSCF calculations is constructed by 8 molecular orbitals, which associates with C 2s2p and S 3s3p atomic orbitals. In theC2vgroup, the active space is denoted as (4,2,2,0), in which ten electrons are spread across 8 molecular orbitals. Subsequently, by employing the calculated CASSCF energies as reference values, the energies of the 12Λ–S states are determined by internally contracted multireference configuration interaction method[32,33](MRCI+Q) (including Davison size-extensivity correction).[34]The scalar relativistic effect is taken into account through third-order Douglas–Kroll and Hess integrals.[35,36]The PECs are presented by linking the energy points of Λ–S states via taking into account the noncrossing rule.

    Under the Born–Oppenheimer approximation condition,the electronic Schr¨odinger equation of diatomic molecules can be written as

    in which ?Heis Hamiltonian of theNelectrons of diatomic molecules,Ψe(r,R) andEe(R) are the eigen-function and eigen-energy,respectively.

    whereZaandZbare the charge number of nucleus A and B.

    On the basis of calculated energies of electronic states,the eigenvalues and wave functions of vibration–rotation states can be obtained by solution of radical nuclear Schr¨odinger equation

    whereν′andJ′are vibrational and rotational quantum numbers,αis fine-structure constant,ωυ′j′,υ′′j′′is transition frequency between different vibration–rotation levels,SJ′J′′is the line strength,D(R)is the transition dipole moment,andφJ′,J′′is H¨onl–London factor. The H¨onl–London factorφJ′J′′is defined as

    The expressions of formulas(1–6)can be found in Ref.[36].

    Molecular opacity is computed with integrated line strengths,[37]which is given by

    in which Einstein’s coefficientsAis obtained from Eq. (4),ΔE′′is the energy gap of the correlated two states,his the Plank constant,cis the speed of light in vacuum,kis the Boltzmann constant,EV′J′,00is the excitation energy of the lower state in cm-1,and the total internal partition functionQ(T)is defined by summing up concerned electronic state weighed by the Boltzmann factor utilizing

    whereTis temperature in environment andTiis the excitation energy of electronic stateiand become zero for the ground state(i=1).

    3. Result and discussion

    3.1. Potential energy curves, spectroscopic constants and vibrational levels

    The 12Λ–S states associated with the lowest dissociation limit(C(3P)+S(3P))of CS are evaluated at aug-cc-pwCV5ZDK/MRCI+Qlevel of theory. The PECs of the 12Λ–S states are presented in Fig.1. For the sake of visual clarity,we display the singlet Λ–S states and triplet Λ–S states in panels(a)and (b), respectively. And then, we use numerical method to calculate nuclear Schr¨odinger equations to determine spectroscopic constants. For the convenience of comparison, our calculated spectroscopic constants,including transition energyTe,vibrational frequencies(ωeandωexe),equilibrium distanceReand dissociation energyDe,are listed in Table 1,along with the data of previous experimental and theoretical investigations. The spectroscopic constants of electronic states can be served as an effective method to check the precision of electronic structure computation.

    As displayed in Fig.1,the Λ–S states 21Π,23Π and 33Σ+are qusibound states,and the A′1Σ+state has shallow potential well with a depth of 0.33 eV.The other 8 Λ–S states are typical bound states, which have potential well deeper than 2.40 eV.In Table 1, one can clearly see that our calculated spectroscopic constants of bound states are generally in good agreement with existing experimental results, as well as the previously available theoretical data. For the X1Σ+state, theωe,ωexe,BeandReare computed to be 1284.2 cm-1,6.35 cm-1,0.8179 cm-1and 1.5369 ?A, which differ from the latest experimental data by only 1 cm-1, 0.152 cm-1, 0.0021 cm-1and 0.0019 ?A.Our calculated dissociation energy of the X1Σ+state is 7.42 eV,which is only 0.01 eV smaller than experimental value of 7.43 eV.[36]Our calculated spectroscopic constant of the X1Σ+state has higher accuracy compared with the previously available theoretical results.[24,25]For the first excited state a3Π, our calculations present a deep well depthDeof 3.92 eV located at theReof 1.5724 ?A. The calculated value ofRe(1.5724 ?A) is more close to the experimental value of 1.5691 ?A, as compared with previous theoretical data. Our calculatedTeof a3Π (28328 cm-1) agrees well with existing theoretical work of 28173 cm-1,and our calculatedTeof a3Π differs by 1298 cm-1(5%) from previously available experimental data.[18]

    Fig.1. MRCI+Q potential energy curves for singlet and triplet states of CS along with internuclear distance R.

    Table 1. Spectroscopic constants of bound Λ–S states of CS.

    In addition,the previous experimental results in Refs.[18,36] exhibit a relative large difference (~600 cm-1), which may be caused by the experimental error originated from the perturbation of the nearby excited states (d3Δ, a′3Σ+and e3Σ-). Similar situations are found in excited states located at the excited energy range of 28000–40000 cm-1,which can also be explained by perturbation caused by a very high density of the excited states. Hence,more accurate spectral studies should be carried out to investigate the perturbations of the excited states. For the first singlet excited state A1Π,the dissociation energyDeis estimated to be 2.53 eV,which can hold 26 vibrational levels. Theωe,ωexeandBeare computed to be 1057.6 cm-1,10.2 cm-1and 0.7814 cm-1,which are in good accordance with the latest experimental data of 1077.23 cm-1,10.639 cm-1, and 0.7876 cm-1. TheReis evaluated to be 1.5725 ?A,which is more close to the latest experimental value of 1.566 ?A.[18]Our calculatedTediffer by less than 800 cm-1(2%)from the latest measurements.[18]For the second singlet excited state A′1Σ+,the well depth is computed to be 0.33 eV,which can only support 5 vibrational states. Good agreements are achieved for theωe,BeandRe. In our work, the calculated spectroscopic constants of A′1Σ+areωe=465.7 cm-1,Be=0.5016 cm-1andRe=1.9646 ?A, and the ones determined by Ref.[18]areωe=462.42 cm-1,Be=0.5114 cm-1andRe=1.944 ?A.Our MRCI+QcalculatedTeis 57245 cm-1,which differs by 1381 cm-1(2%) from most recent experimental value of 55864 cm-1.[18]Theωexeis calculated to be 8.70 cm-1,which is 1.242 cm-1larger than the experimental result of 7.458 cm-1.

    In the process of determining spectroscopic constants,the vibrational levels of the ground state and exited states are also obtained. In Tables 2 and 3, the vibrational energy gap between Δν=1 are presented for X1Σ+and A1Π/A′1Σ+states along with previously available theoretical and experimental data. For the the X1Σ+state, our calculated vibration levels gap forν ≤20 agree very well with the most recent experimental data,[2]the absolute differences are less than 2 cm-1(0.2%). In comparison with existing theoretical data,[38]our calculated accuracy of vibrational levels has obviously improvement,especially for theν ≥2 vibrational levels. For the A1Π state,the vibration levels gap forν ≤4 are computed to be 1037.6 cm-1, 1016.4 cm-1, 995.9 cm-1and 975.6 cm-1,which is only about~15 cm-1(2%) smaller than the latest experimental results.[20]In addition, our calculated vibration levels gap of A1Π state are closer to experimental data.

    Table 2. The vibrational energy gap(Eν-Eν-1)(in cm-1)for the X1Σ+ state of CS.

    Table 3. The vibrational energy gap(Eν-Eν-1)(in cm-1)for the A1Π state of CS.

    4. Dipole moments and transition dipole moments

    The dipole moments and transition dipole moments of low-lying Λ–S states are computed by employing MRCI wave functions. The dipole moments curves for the singlet Λ–S states and triplet Λ–S states are presented in Figs. 2(a) and 2(b), respectively. As is well known, the vibration of dipole moment reflects the change of electronic configuration for Λ–S state. As displayed in Fig. 2, the extent of variation of dipole moments for A′1Σ+,21Π,33Σ+and 23Π are obviously large than that of other 8 Λ–S states. This phenomenon could be explained by the sharp vibration of electronic configuration of A′1Σ+, 21Π, 33Σ+and 23Π. As shown in Fig. 1, the A′1Σ+,21Π,33Σ+and 23Π are located at high excitation energy range of≥5700 cm-1, which form crossing point with high excited states. The crossing point of A′1Σ+, 21Π, 33Σ+and 23Π cause the sharp change for electronic configurations of those states, hence, the dipole moment curves of A′1Σ+,21Π, 33Σ+and 23Π change dramatically as compared with that of the other 8 Λ–S states. At the equilibrium distance(Re=1.5369 ?A)of the X1Σ+,the dipole moment is computed to be 0.77 a.u., which agree very well with available experimental data of 0.7704 a.u.[42]Both theoretical and experimental studied indicate the Cδ-Sδ+polarity of the CS molecule.At the equilibrium distanceRe=1.5725 ?A,the dipole moment of A1Π is estimated to be 0.29 a.u. As shown in Fig. 2, the dipole moments of all the Λ–S states approach to zero at large internuclear distance, indicating the dissociation products are neutral C and S atoms.

    The transition dipole moments (TDMs) of spin-allowed singlet-singlet transition are given in Fig.3. For convenient of comparing, the previous TDM of A1Π–X1Σ+[24]determined by cc-PVQZ/MRSDCI level of theory are also displayed. As can be seen in Fig.3,the position of peak of TDM for A1Π–X1Σ+transition in our work and Ref.[24]are well consistent,which are both located atR=1.39 ?A.The peak value of TDM of A1Π–X1Σ+transition is 0.304 a.u., which is 0.028 a.u.larger than that in Ref.[24]. The maximum value(0.599 a.u.)of TDM of A′1Σ+–X1Σ+is located at 1.80 ?A.

    Fig.2. Dipole moment curves for singlet and triplet states of CS.

    Fig.3. Transition dipole moment curves of spin-allowed transition of CS.

    4.1. Opacity

    Fig.4. The total internal partition functions of CS along with the temperature T (in Kelvin).

    With the information of partition functions and vibration–rotation states,the molecular opacities for the X1Σ+,A1Π and A′1Σ+states are obtained from formula (7) at pressure of 100 atms for different temperatures. With the increasing of temperature and growing of density,the dissociation probability of molecule will be raised. However, the dissociation energy of X1Σ+(7.42 eV)is very large,so the dissociation probability of CS caused by thermal motion inT=4500 K is very small. In addition, the previous investigations also indicate that opacity and absorption spectrum in astrophysical field are mainly originated from molecule.[1,2]The calculated molecular opacities of X1Σ+, A1Π and A′1Σ+states of CS for the temperatures of 300 K,1000 K,1800 K,and 4500 K are displayed in Figs.5(a)–5(d),respectively. As presented in Fig.5,the spectra lie in a wide area of wavelengths,which range from UV to far-infrared. In the simulation of spectra, the spectral line is profiled utilizing a Lorentzian function with a width contributed from impact-broadening. As can be observed in Fig.5(a),there are three electronic bands attributed from three singlet states considered in this work, which associate with A′1Σ+–X1Σ+, A1Π–X1Σ+and X1Σ+–X1Σ+transitions from left to right,respectively.At low temperature of 300 K/1000 K and a pressure of 100 atms(see Figs.5(a)and 5(b)),different band systems are distinctly divided from each other. The band systems contributed from A′1Σ+–X1Σ+and A1Π–X1Σ+transitions appear at nearby 180 nm and 250 nm,which are located in wavelength range of short-wave UV.As for band system of X1Σ+–X1Σ+,there are two typical bands(fundamental vibrational transition and pure rotation transition), and the fundamental vibrational bands of Δν=1, 2 and 3 appear around 6.6 μm, 3.4 μm and 2.3 μm, while the pure rotation band of Δν=0 locates in wavelength of≥40 μm. It can be seen that the molecular opacities are very small in the 300–1500 nm wavelength range, which form a window area in the visible light(VIS)and near infrared(NIR)region. When the temperature increase(see Figs.5(c)and 5(d)),the cross section in the

    Fig.5. Opacity of CS generated by vibration–rotation transitions for a pressure of 100 atm and temperatures of T =300 K,1000 K,1800 K,and 4500 K.

    VIS and NIR window area is growing gradually,and the separation between different fundamental vibrational bands and different electronic bands become blurred, which are originated from the raised population on vibrational excited states and electronic excited state at high temperature. On the other hand, the cross section contributed from pure rotational transition decrease evidently because of the reduced populations on the X1Σ+, while the cross section originated from highly vibrational excited states are enhanced significantly.

    5. Conclusions

    In this work, accurate PECs of singlet and triplet states correlated with the lowest dissociation limit of CS molecule are computed with high-precision MRCI+Qlevel of theory.Based on calculated PECs, the spectroscopic constants and vibrational levels are evaluated by using accurate numerical method, which agree with the previous measurement. The opacities for the lowest three singlet states of CS are evaluated at a pressure of 100 atms for the temperatures of 300 K,1000 K,1800 K,and 4500 K.At the low temperatures of 300 K and 1000 K, the spectra contributed from electronic transitions (A′1Σ+–X1Σ+and A1Π–X1Σ+) are separated into distinct bands,and different vibrational bands caused by Δν=0,1, 2 and 3 of X1Σ+–X1Σ+transition are also found. With the increasing of the temperature, the populations on excited states are increased,which cause the superposition of different band transitions. Hence,the band boundaries of cross sections become blurred. This work provides accurate electronic structure and molecular opacity of CS.The present study will shed more light on the calculations of the high-precision molecular structures and opacity.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11934004 and 12203106),Fundamental Research Funds in Heilongjiang Province Universities,China (Grant No. 145109127), and the Scientific Research Plan Projects of Heilongjiang Education Department, China(Grant Nos.WNCGQJKF202103 and DWCGQKF202104).

    猜你喜歡
    吳勇李瑞李建軍
    椰子的身價
    木棍的長度
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書法作品
    李瑞
    Wimbledon Tennis
    Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling*
    等你
    當代音樂(2020年7期)2020-07-23 11:43:37
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    藝術(shù)百家:李瑞
    電影文學(2017年12期)2017-12-26 10:59:30
    22中文网久久字幕| 中文资源天堂在线| 免费av观看视频| 看片在线看免费视频| 成人一区二区视频在线观看| 日日摸夜夜添夜夜添小说| 国产精品野战在线观看| 日日摸夜夜添夜夜添av毛片 | 自拍偷自拍亚洲精品老妇| 成人三级黄色视频| 一区福利在线观看| 亚洲av.av天堂| 国产国拍精品亚洲av在线观看| 亚洲无线在线观看| а√天堂www在线а√下载| 亚洲精品影视一区二区三区av| 18禁裸乳无遮挡免费网站照片| 好男人在线观看高清免费视频| 在线免费观看不下载黄p国产 | 色在线成人网| 国产一区二区在线观看日韩| 他把我摸到了高潮在线观看| 国产黄a三级三级三级人| 欧美性感艳星| 久久亚洲真实| 男人和女人高潮做爰伦理| 午夜激情欧美在线| 国产精品乱码一区二三区的特点| 色综合色国产| 日韩中文字幕欧美一区二区| 又粗又爽又猛毛片免费看| 午夜福利18| 日韩欧美一区二区三区在线观看| 国产男人的电影天堂91| 国产精品自产拍在线观看55亚洲| 精品免费久久久久久久清纯| a在线观看视频网站| 18禁黄网站禁片午夜丰满| 91麻豆av在线| 久久草成人影院| 中文字幕免费在线视频6| 乱系列少妇在线播放| 精品一区二区三区视频在线| 很黄的视频免费| 国产69精品久久久久777片| 国产亚洲欧美98| 亚洲男人的天堂狠狠| 黄色欧美视频在线观看| 亚洲午夜理论影院| .国产精品久久| 日韩欧美国产一区二区入口| 国产精品无大码| 午夜影院日韩av| 国产一区二区在线观看日韩| 日韩欧美三级三区| 国内毛片毛片毛片毛片毛片| 一个人观看的视频www高清免费观看| 婷婷丁香在线五月| 又紧又爽又黄一区二区| 九色成人免费人妻av| 午夜精品久久久久久毛片777| 天堂网av新在线| 欧美日韩黄片免| 97超视频在线观看视频| 人妻少妇偷人精品九色| 国产精品99久久久久久久久| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放| 国产单亲对白刺激| 日韩精品中文字幕看吧| 国产私拍福利视频在线观看| 最后的刺客免费高清国语| 日韩欧美国产在线观看| 精品一区二区三区人妻视频| 91久久精品国产一区二区三区| 麻豆国产av国片精品| 精品久久久噜噜| 国产精品一区二区性色av| 亚洲熟妇中文字幕五十中出| 成年人黄色毛片网站| 人妻丰满熟妇av一区二区三区| 欧美日韩黄片免| 99在线人妻在线中文字幕| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 我的老师免费观看完整版| 亚洲熟妇熟女久久| 国内精品久久久久久久电影| 久久久久国产精品人妻aⅴ院| 男女下面进入的视频免费午夜| 少妇猛男粗大的猛烈进出视频 | 午夜老司机福利剧场| 国产aⅴ精品一区二区三区波| 小说图片视频综合网站| 深夜a级毛片| 亚洲精品在线观看二区| 中出人妻视频一区二区| 日韩欧美国产在线观看| 一级黄色大片毛片| 一级a爱片免费观看的视频| 麻豆国产97在线/欧美| 国产黄色小视频在线观看| 一个人观看的视频www高清免费观看| 国产成人影院久久av| 免费看日本二区| 天堂影院成人在线观看| 欧美一级a爱片免费观看看| 国产免费男女视频| 国产一区二区三区视频了| 天堂动漫精品| 校园人妻丝袜中文字幕| aaaaa片日本免费| 天天躁日日操中文字幕| 69av精品久久久久久| 一级黄片播放器| 可以在线观看毛片的网站| 在线观看66精品国产| 国产精品,欧美在线| 国产精品嫩草影院av在线观看 | 大型黄色视频在线免费观看| 91在线精品国自产拍蜜月| 成人二区视频| 国产亚洲精品av在线| 非洲黑人性xxxx精品又粗又长| 国产欧美日韩一区二区精品| 亚洲成a人片在线一区二区| 亚洲国产精品久久男人天堂| 国产色婷婷99| 老熟妇乱子伦视频在线观看| 美女大奶头视频| 偷拍熟女少妇极品色| 日韩亚洲欧美综合| 淫妇啪啪啪对白视频| 国语自产精品视频在线第100页| 欧美+亚洲+日韩+国产| 亚洲一级一片aⅴ在线观看| 国产伦人伦偷精品视频| 五月玫瑰六月丁香| 嫩草影院精品99| 成人性生交大片免费视频hd| 美女被艹到高潮喷水动态| 色哟哟哟哟哟哟| 国产精品人妻久久久影院| 99riav亚洲国产免费| 啦啦啦啦在线视频资源| 麻豆一二三区av精品| 亚洲中文字幕一区二区三区有码在线看| 91久久精品电影网| av国产免费在线观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久久性生活片| 国产亚洲精品av在线| 亚洲精品成人久久久久久| 午夜老司机福利剧场| 久久人妻av系列| 在线观看66精品国产| 成人二区视频| 亚洲avbb在线观看| 国产欧美日韩精品一区二区| 在线天堂最新版资源| 精品久久久久久久久av| 久久草成人影院| 熟女电影av网| 制服丝袜大香蕉在线| 99久久成人亚洲精品观看| 国产高潮美女av| 乱人视频在线观看| 国产 一区 欧美 日韩| 97碰自拍视频| 俺也久久电影网| 亚洲av中文字字幕乱码综合| 草草在线视频免费看| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| 亚洲熟妇熟女久久| 久久精品国产鲁丝片午夜精品 | 免费观看的影片在线观看| 精品久久久久久久人妻蜜臀av| www日本黄色视频网| 美女cb高潮喷水在线观看| 色综合婷婷激情| 男人舔女人下体高潮全视频| 一级黄片播放器| 一个人看的www免费观看视频| 久久精品影院6| 又爽又黄无遮挡网站| 夜夜看夜夜爽夜夜摸| 亚洲性夜色夜夜综合| 久久久久久久久久久丰满 | 精品久久久久久久末码| 伦精品一区二区三区| 免费电影在线观看免费观看| 女的被弄到高潮叫床怎么办 | 免费看av在线观看网站| 老熟妇仑乱视频hdxx| 69人妻影院| 精品久久久噜噜| 精品人妻视频免费看| 国产亚洲精品久久久com| 国产伦一二天堂av在线观看| 变态另类丝袜制服| 亚洲第一电影网av| 97人妻精品一区二区三区麻豆| 毛片女人毛片| 亚洲av五月六月丁香网| 嫩草影院精品99| 黄色丝袜av网址大全| 亚洲 国产 在线| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜添小说| 久久精品久久久久久噜噜老黄 | 搡老岳熟女国产| 一本一本综合久久| 老司机深夜福利视频在线观看| 亚洲18禁久久av| 成人二区视频| 此物有八面人人有两片| 成年人黄色毛片网站| 不卡视频在线观看欧美| 久久久久久大精品| 大又大粗又爽又黄少妇毛片口| av国产免费在线观看| 在线免费十八禁| 黄色配什么色好看| 免费看美女性在线毛片视频| 国产精品野战在线观看| 美女高潮喷水抽搐中文字幕| 99热这里只有精品一区| 亚洲乱码一区二区免费版| 毛片女人毛片| 欧美日韩瑟瑟在线播放| 久久精品综合一区二区三区| 免费黄网站久久成人精品| 22中文网久久字幕| 亚洲av免费高清在线观看| 日韩国内少妇激情av| 九色成人免费人妻av| 欧洲精品卡2卡3卡4卡5卡区| 国产 一区精品| 在现免费观看毛片| 亚洲人成网站在线播放欧美日韩| 91久久精品国产一区二区成人| 国产探花在线观看一区二区| 99国产极品粉嫩在线观看| 少妇裸体淫交视频免费看高清| 18禁黄网站禁片午夜丰满| 国产精品三级大全| 色视频www国产| 欧美激情国产日韩精品一区| 波多野结衣高清无吗| 欧美性猛交╳xxx乱大交人| 国产日本99.免费观看| 麻豆一二三区av精品| 午夜福利在线在线| 亚洲性夜色夜夜综合| 在线看三级毛片| 尾随美女入室| 日本色播在线视频| 久久亚洲真实| 老师上课跳d突然被开到最大视频| 成人特级黄色片久久久久久久| 国产欧美日韩精品亚洲av| 51国产日韩欧美| av在线亚洲专区| 免费高清视频大片| 国产大屁股一区二区在线视频| 精品久久久久久,| 国产人妻一区二区三区在| 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 波多野结衣巨乳人妻| 在线免费观看的www视频| 久久久久久久久大av| 热99re8久久精品国产| 三级男女做爰猛烈吃奶摸视频| 日本免费a在线| 久久久久久久亚洲中文字幕| 亚洲一区二区三区色噜噜| 久久精品91蜜桃| 国内精品美女久久久久久| 深夜精品福利| 乱系列少妇在线播放| 99久久九九国产精品国产免费| 国产一区二区三区在线臀色熟女| 亚洲三级黄色毛片| 亚洲av美国av| 男女那种视频在线观看| 色吧在线观看| 国产av一区在线观看免费| 日本色播在线视频| 国产单亲对白刺激| 亚洲自拍偷在线| 热99re8久久精品国产| 全区人妻精品视频| 久久久久国内视频| 国内精品一区二区在线观看| 日本a在线网址| 午夜免费男女啪啪视频观看 | 听说在线观看完整版免费高清| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品夜夜夜夜夜久久蜜豆| 色视频www国产| 久久精品人妻少妇| 无人区码免费观看不卡| 国产乱人视频| 欧美xxxx黑人xx丫x性爽| 国产精品野战在线观看| 亚洲精品乱码久久久v下载方式| 啦啦啦观看免费观看视频高清| 欧美三级亚洲精品| 一个人免费在线观看电影| 少妇的逼水好多| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆 | 久久精品国产亚洲av涩爱 | 少妇猛男粗大的猛烈进出视频 | 少妇被粗大猛烈的视频| 亚洲av熟女| 免费人成在线观看视频色| ponron亚洲| 岛国在线免费视频观看| 中文字幕久久专区| 日本色播在线视频| 夜夜爽天天搞| 亚洲欧美日韩高清在线视频| 久久人人精品亚洲av| 久久久久国内视频| 中文字幕高清在线视频| 亚洲专区中文字幕在线| 性插视频无遮挡在线免费观看| 久久久久久久久中文| 久久人人精品亚洲av| 美女cb高潮喷水在线观看| 日韩大尺度精品在线看网址| 18禁黄网站禁片免费观看直播| 美女 人体艺术 gogo| 国产欧美日韩精品一区二区| www日本黄色视频网| 禁无遮挡网站| 级片在线观看| 午夜福利高清视频| 亚洲欧美日韩卡通动漫| 啦啦啦观看免费观看视频高清| 无遮挡黄片免费观看| 春色校园在线视频观看| 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 在线观看午夜福利视频| 欧美日本视频| 国产精品国产三级国产av玫瑰| 国产亚洲欧美98| 动漫黄色视频在线观看| 最近中文字幕高清免费大全6 | 精品人妻偷拍中文字幕| 日本免费a在线| 啦啦啦韩国在线观看视频| 在线观看av片永久免费下载| 一本久久中文字幕| 色综合色国产| 亚洲熟妇中文字幕五十中出| 色av中文字幕| 大型黄色视频在线免费观看| 中亚洲国语对白在线视频| 国产精品野战在线观看| 国产高清激情床上av| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看| a级毛片免费高清观看在线播放| 直男gayav资源| 久久热精品热| 日本一二三区视频观看| 国产伦在线观看视频一区| 久久久久久久午夜电影| 久久久久精品国产欧美久久久| 婷婷精品国产亚洲av在线| 99精品久久久久人妻精品| 国产白丝娇喘喷水9色精品| 长腿黑丝高跟| 欧美丝袜亚洲另类 | 高清毛片免费观看视频网站| 午夜精品一区二区三区免费看| 精品久久久久久久久亚洲 | 老熟妇仑乱视频hdxx| 亚洲精华国产精华精| 人妻丰满熟妇av一区二区三区| 久久久久久伊人网av| 啦啦啦啦在线视频资源| 91久久精品电影网| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 国产精品人妻久久久影院| 老司机午夜福利在线观看视频| 22中文网久久字幕| videossex国产| 国内精品一区二区在线观看| 淫秽高清视频在线观看| 国产大屁股一区二区在线视频| 五月伊人婷婷丁香| 国产美女午夜福利| 日本成人三级电影网站| 欧美在线一区亚洲| 免费人成在线观看视频色| 国产91精品成人一区二区三区| 麻豆精品久久久久久蜜桃| 在线天堂最新版资源| 亚洲aⅴ乱码一区二区在线播放| 伊人久久精品亚洲午夜| 国产成人福利小说| 中文字幕人妻熟人妻熟丝袜美| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 韩国av一区二区三区四区| 欧美黑人欧美精品刺激| 九色国产91popny在线| 免费高清视频大片| 91在线观看av| 91久久精品国产一区二区成人| 亚洲专区国产一区二区| 精品欧美国产一区二区三| 永久网站在线| 99热6这里只有精品| 精品免费久久久久久久清纯| 亚洲av二区三区四区| 国产成人影院久久av| 日本成人三级电影网站| 日日干狠狠操夜夜爽| 日韩欧美在线二视频| 内地一区二区视频在线| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 日本熟妇午夜| 久久久久国内视频| 熟女电影av网| 亚洲国产色片| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色| 一a级毛片在线观看| 天堂影院成人在线观看| 成年女人永久免费观看视频| 欧美绝顶高潮抽搐喷水| 日韩欧美精品免费久久| 在线观看av片永久免费下载| 久久草成人影院| 草草在线视频免费看| 直男gayav资源| 亚洲18禁久久av| 午夜免费男女啪啪视频观看 | 亚洲最大成人手机在线| 久久久午夜欧美精品| 欧美成人免费av一区二区三区| 美女免费视频网站| 老师上课跳d突然被开到最大视频| 亚洲av成人av| 国产亚洲精品av在线| 久久6这里有精品| 九九在线视频观看精品| 成人性生交大片免费视频hd| 国产 一区精品| 黄色丝袜av网址大全| 国产av不卡久久| 搡老熟女国产l中国老女人| 丝袜美腿在线中文| 精品一区二区三区视频在线观看免费| 无人区码免费观看不卡| 色噜噜av男人的天堂激情| 老女人水多毛片| 色综合站精品国产| 国产精品乱码一区二三区的特点| 一本久久中文字幕| 欧美又色又爽又黄视频| 欧美高清性xxxxhd video| 亚洲av美国av| 中国美白少妇内射xxxbb| 久久亚洲真实| 一区二区三区高清视频在线| 美女高潮的动态| 黄色女人牲交| 日日摸夜夜添夜夜添小说| 观看美女的网站| 一级黄色大片毛片| 狂野欧美白嫩少妇大欣赏| 亚洲成人中文字幕在线播放| 国产色爽女视频免费观看| 久久久久久大精品| 国产乱人伦免费视频| 国产欧美日韩一区二区精品| 精品人妻视频免费看| 中文字幕人妻熟人妻熟丝袜美| 国产精品日韩av在线免费观看| 少妇熟女aⅴ在线视频| 日本一二三区视频观看| 亚洲精品在线观看二区| 欧美高清性xxxxhd video| 久久精品影院6| 伦精品一区二区三区| 日韩欧美精品免费久久| 欧美又色又爽又黄视频| 久久久久久久久久久丰满 | 观看免费一级毛片| 国产精品精品国产色婷婷| 国产黄片美女视频| 国产美女午夜福利| 日韩精品有码人妻一区| 可以在线观看毛片的网站| 69人妻影院| 国产午夜福利久久久久久| 夜夜夜夜夜久久久久| 久久久成人免费电影| 中文字幕久久专区| 69人妻影院| 国产午夜福利久久久久久| 成年免费大片在线观看| 99久久中文字幕三级久久日本| 在线国产一区二区在线| 亚洲精品影视一区二区三区av| 午夜福利高清视频| 免费黄网站久久成人精品| 麻豆国产97在线/欧美| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久com| 国产男靠女视频免费网站| 尤物成人国产欧美一区二区三区| 日韩强制内射视频| 精品不卡国产一区二区三区| 国内精品久久久久久久电影| 丰满的人妻完整版| 国产精品不卡视频一区二区| 性色avwww在线观看| 日本五十路高清| 级片在线观看| av在线天堂中文字幕| 在线观看免费视频日本深夜| 免费在线观看成人毛片| 婷婷六月久久综合丁香| 亚洲av中文字字幕乱码综合| 亚洲精华国产精华精| 嫩草影视91久久| 欧美国产日韩亚洲一区| 舔av片在线| 中文亚洲av片在线观看爽| 99热这里只有是精品在线观看| 日日撸夜夜添| 欧美人与善性xxx| 国内精品宾馆在线| 亚洲精品成人久久久久久| 免费在线观看日本一区| 欧美激情在线99| 亚洲专区中文字幕在线| 日本在线视频免费播放| 最近视频中文字幕2019在线8| 三级男女做爰猛烈吃奶摸视频| 很黄的视频免费| 国产私拍福利视频在线观看| 伦精品一区二区三区| 久久午夜亚洲精品久久| www日本黄色视频网| 窝窝影院91人妻| 国产精品久久久久久av不卡| 男人舔奶头视频| 国产av一区在线观看免费| 乱人视频在线观看| 亚洲电影在线观看av| 中出人妻视频一区二区| 国产一区二区在线av高清观看| 国产白丝娇喘喷水9色精品| 午夜激情欧美在线| 高清日韩中文字幕在线| 欧美绝顶高潮抽搐喷水| 别揉我奶头~嗯~啊~动态视频| avwww免费| 在线国产一区二区在线| 美女cb高潮喷水在线观看| 亚洲成人中文字幕在线播放| 可以在线观看毛片的网站| 亚洲五月天丁香| 人人妻人人澡欧美一区二区| 久久久久久久亚洲中文字幕| 国产高清有码在线观看视频| 亚洲专区中文字幕在线| 一本精品99久久精品77| 观看美女的网站| 国产高清视频在线播放一区| 久久精品国产鲁丝片午夜精品 | 久久香蕉精品热| 亚洲精品456在线播放app | 少妇熟女aⅴ在线视频| 亚洲成人久久爱视频| 香蕉av资源在线| 内射极品少妇av片p| 久99久视频精品免费| 亚洲av.av天堂| 天天一区二区日本电影三级| 亚洲成人久久爱视频| 一进一出好大好爽视频| 两性午夜刺激爽爽歪歪视频在线观看| 可以在线观看的亚洲视频| 久久久久久久久大av| 伊人久久精品亚洲午夜| 51国产日韩欧美| 日韩欧美三级三区| 人妻制服诱惑在线中文字幕| 在线免费观看不下载黄p国产 | 色5月婷婷丁香| 精品一区二区三区视频在线| 99久久精品热视频| 欧美人与善性xxx| 亚洲成人久久爱视频| 美女黄网站色视频| 国产毛片a区久久久久| 国产中年淑女户外野战色| 97超视频在线观看视频| 久久久久国产精品人妻aⅴ院| 亚洲欧美激情综合另类|