• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecule opacity study on low-lying states of CS

    2022-10-26 09:46:04RuiLi李瑞JiqunSang桑紀群XiaoheLin林曉賀JianjunLi李建軍GuiyingLiang梁桂穎andYongWu吳勇
    Chinese Physics B 2022年10期
    關(guān)鍵詞:吳勇李瑞李建軍

    Rui Li(李瑞) Jiqun Sang(桑紀群) Xiaohe Lin(林曉賀) Jianjun Li(李建軍)Guiying Liang(梁桂穎) and Yong Wu(吳勇)

    1Department of Physics,College of Science,Qiqihar University,Qiqihar 161006,China

    2National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Faculty of Foundation,Space Engineering University,Beijing 101416,China

    4School of Data Science and Artificial Intelligence,Jilin Engineering Normal University,Changchun 130052,China

    5HEDPS,Center for Applied Physics and Technology,Peking University,Beijing 100084,China

    Keywords: CS,transition dipole moment,opacity,excited state

    1. Introduction

    The CS molecule is of great interest since it plays a key role in atmospheric and astrophysical circumstances, which draws great attention from researchers.[1–5]The molecule has been detected in the diffuse clouds, dense clouds, molecular clouds, interstellar clouds, comets, carbon-rich stars and other galaxies. In the atmospheric and astrophysical investigations, the opacity between low-lying states are used to determine species,isotopic abundances and number densities in the environment.Thereby,spectroscopic properties of CS provide worthwhile information to an extensive understanding for the intermediate processes occurred in the upper atmosphere.CS molecule and sulfur-containing molecules in the stratosphere are also related to formation of sulfate aerosols,which may lead to acid rain effect and global climate change.[6]Hence,electronic structure and transition properties of the CS molecule have been continually arising interest in the past several decades.

    The large numbers of astronomical detections of CS and the key role in the Earth’s atmosphere have motivated a great deal of experimental studies. In experiment, the wavelength region of CS ranges from the microwave to ultraviolet (UV).In 1934,the pioneer work of main A1Π–X1Σ+transition was performed by Crawfordet al.[7]Later,the rotational spectrum of CS was firstly detected by Mockler and Bird.[8]The rotational spectrum of CS was also photographed by Lovas and Krupenie, and dipole moments and rotational constants were fitted by experimental results.[9]The experimental spectrum in the millimeter region was observed by Bogeyet al.,[10,11]and the spectroscopic constants of the X1Σ+state were obtained.More recently, the investigation in the wide wavelength region was extensively studied by Kimet al.[12]and Gottliebet al.,[13]and the accurate frequencies of rotational transitions were provided in their studies.

    The first work in the infra-red wavelengths was carried out by Todd,[14]who detected theν=2–0 vibration–rotation band of the X1Σ+state of CS.Subsequently,the investigation of the infra-red region was extended by Winkelet al.[15]and Burkholderet al.,[16]and high resolution of theν=1–0 absorption band and theν=1–0“hot”band for the X1Σ+state were measured. On the basis of vibration–rotation and pure rotation spectrum in preceding experimental data, Conxon and Hajigeorgiou determined accurate spectroscopic potential energy curve (PEC). Then, the spectroscopic constant of the X1Σ+state was improved by Ramet al.,[17]who determined the spectroscopic constant from Δν=1 vibration–rotation bands up toν= 9–8. Recently, Ueharaet al.[2]measured Δν= 1 transitions of the X1Σ+state withν ≤7 to a better precision than Ramet al.Pauloseet al.[1]used the spectroscopically-determined PEC and dipole moment to present vibration–rotation line lists.

    A series of UV band (A1Π–X1Σ+, A′1Σ+–X1Σ+, a3Π–X1Σ+, and so on) were extensively studied by different research groups. Bergeman and Cossart[18,19]observed a number of spin-allowed (A1Π–X1Σ+) and spin-forbidden (a3Π–X1Σ+,d3Δ–X1Σ+,and e3Σ-–X1Σ+)transition bands,and the interaction between those low-lying excited states were discussed in detail. The A1Π–X1Σ+band system was recorded by Mahonet al.,[20]and electronic transition moment of the A1Π–X1Σ+transition were estimated by the corresponding experimental result. The emission spectrum of A′1Σ+–X1Σ+was photographed by Dornh¨oferet al.[21]employing timeresolved fluorescence technique,and the transition property of A′1Σ+–X1Σ+was analyzed.

    On the theoretical side, the electronic structure and transition properties of CS have been investigated by different theoretical method. Robbe and Schamps[22]used SCF-CI approach to calculated electronic structure, wavefunction and dipole moment of valence state of CS.Later,the PEC of X1Σ+state were determined by Wilson[23]by using diagrammatic many-body perturbation theory. Ornellas[24]determined accurate PECs of X1Σ+and A1Π states by utilizing MRCI method,and the transition dipole moment of the A1Π–X1Σ+transition were evaluated. The structures for triplet states (a3Π, d3Δ,a′3Σ+and e3Σ-)were studied by Hochlaf using CASSCF and MRCI method.[25]

    As discussed above, the CS molecule has been studied widely by different research group. However, the existing computations of CS molecule are dominantly concentrated on structures of several electronic states.Regarding the large state density and interaction of low-lying states,the accurate calculations of electronic structure and spectroscopic properties of CS still remain sparse. As far as we know,the only spectrum simulation is the vibration–rotation line lists computations of the X1Σ+state of CS by Pauloseet al.[1]In this work,we carry out high-level MRCI study on the low-lying states of CS.The PECs,dipole moments and transition dipole moments are evaluated at the MRCI level of theory,and then vibration–rotation line between low-lying states are calculated at different temperature conditions.

    2. Theoretical method

    In the present work,the MOLPRO package[26]is used to calculate the PECs of singlet and triplet states correlated with the lowest dissociation limit of CS molecule. All the calculations are done in theC2vgroup, which is subgroup ofC∞vpoint group for CS molecule. The corresponding relationship for the irreducible representations ofC2vandC∞vgroup are Σ+to A1,Σ-to A2,Π to B1+B2and Δ to A1+A2. For the C and S atoms,the contracted augmented correlation-consistent polarized quintuple zeta aug-cc-pwCV5Z-DK basis sets[27–29]is adopted. Within the internuclear distance range of 0.975–6.0 ?A,the molecular orbitals of the X1Σ+state are computed by the Hartree–Fock approach. In order to balance molecular orbitals applied in the subsequent calculations of electronic correlation, we utilize the state-averaged complete active space self-consistent field (SA-CASSCF)[30,31]approach to optimize the preceding Hartree–Fock molecular orbitals. In the SA-CASSCF calculations, all the 12 singlet and triplet Λ–S states, which are two1Σ+, one1Σ-, two1Π, one1Δ,two3Σ+, one3Σ-, two3Π and one3Δ, are taken into account simultaneously. The active space in the SA-CASSCF calculations is constructed by 8 molecular orbitals, which associates with C 2s2p and S 3s3p atomic orbitals. In theC2vgroup, the active space is denoted as (4,2,2,0), in which ten electrons are spread across 8 molecular orbitals. Subsequently, by employing the calculated CASSCF energies as reference values, the energies of the 12Λ–S states are determined by internally contracted multireference configuration interaction method[32,33](MRCI+Q) (including Davison size-extensivity correction).[34]The scalar relativistic effect is taken into account through third-order Douglas–Kroll and Hess integrals.[35,36]The PECs are presented by linking the energy points of Λ–S states via taking into account the noncrossing rule.

    Under the Born–Oppenheimer approximation condition,the electronic Schr¨odinger equation of diatomic molecules can be written as

    in which ?Heis Hamiltonian of theNelectrons of diatomic molecules,Ψe(r,R) andEe(R) are the eigen-function and eigen-energy,respectively.

    whereZaandZbare the charge number of nucleus A and B.

    On the basis of calculated energies of electronic states,the eigenvalues and wave functions of vibration–rotation states can be obtained by solution of radical nuclear Schr¨odinger equation

    whereν′andJ′are vibrational and rotational quantum numbers,αis fine-structure constant,ωυ′j′,υ′′j′′is transition frequency between different vibration–rotation levels,SJ′J′′is the line strength,D(R)is the transition dipole moment,andφJ′,J′′is H¨onl–London factor. The H¨onl–London factorφJ′J′′is defined as

    The expressions of formulas(1–6)can be found in Ref.[36].

    Molecular opacity is computed with integrated line strengths,[37]which is given by

    in which Einstein’s coefficientsAis obtained from Eq. (4),ΔE′′is the energy gap of the correlated two states,his the Plank constant,cis the speed of light in vacuum,kis the Boltzmann constant,EV′J′,00is the excitation energy of the lower state in cm-1,and the total internal partition functionQ(T)is defined by summing up concerned electronic state weighed by the Boltzmann factor utilizing

    whereTis temperature in environment andTiis the excitation energy of electronic stateiand become zero for the ground state(i=1).

    3. Result and discussion

    3.1. Potential energy curves, spectroscopic constants and vibrational levels

    The 12Λ–S states associated with the lowest dissociation limit(C(3P)+S(3P))of CS are evaluated at aug-cc-pwCV5ZDK/MRCI+Qlevel of theory. The PECs of the 12Λ–S states are presented in Fig.1. For the sake of visual clarity,we display the singlet Λ–S states and triplet Λ–S states in panels(a)and (b), respectively. And then, we use numerical method to calculate nuclear Schr¨odinger equations to determine spectroscopic constants. For the convenience of comparison, our calculated spectroscopic constants,including transition energyTe,vibrational frequencies(ωeandωexe),equilibrium distanceReand dissociation energyDe,are listed in Table 1,along with the data of previous experimental and theoretical investigations. The spectroscopic constants of electronic states can be served as an effective method to check the precision of electronic structure computation.

    As displayed in Fig.1,the Λ–S states 21Π,23Π and 33Σ+are qusibound states,and the A′1Σ+state has shallow potential well with a depth of 0.33 eV.The other 8 Λ–S states are typical bound states, which have potential well deeper than 2.40 eV.In Table 1, one can clearly see that our calculated spectroscopic constants of bound states are generally in good agreement with existing experimental results, as well as the previously available theoretical data. For the X1Σ+state, theωe,ωexe,BeandReare computed to be 1284.2 cm-1,6.35 cm-1,0.8179 cm-1and 1.5369 ?A, which differ from the latest experimental data by only 1 cm-1, 0.152 cm-1, 0.0021 cm-1and 0.0019 ?A.Our calculated dissociation energy of the X1Σ+state is 7.42 eV,which is only 0.01 eV smaller than experimental value of 7.43 eV.[36]Our calculated spectroscopic constant of the X1Σ+state has higher accuracy compared with the previously available theoretical results.[24,25]For the first excited state a3Π, our calculations present a deep well depthDeof 3.92 eV located at theReof 1.5724 ?A. The calculated value ofRe(1.5724 ?A) is more close to the experimental value of 1.5691 ?A, as compared with previous theoretical data. Our calculatedTeof a3Π (28328 cm-1) agrees well with existing theoretical work of 28173 cm-1,and our calculatedTeof a3Π differs by 1298 cm-1(5%) from previously available experimental data.[18]

    Fig.1. MRCI+Q potential energy curves for singlet and triplet states of CS along with internuclear distance R.

    Table 1. Spectroscopic constants of bound Λ–S states of CS.

    In addition,the previous experimental results in Refs.[18,36] exhibit a relative large difference (~600 cm-1), which may be caused by the experimental error originated from the perturbation of the nearby excited states (d3Δ, a′3Σ+and e3Σ-). Similar situations are found in excited states located at the excited energy range of 28000–40000 cm-1,which can also be explained by perturbation caused by a very high density of the excited states. Hence,more accurate spectral studies should be carried out to investigate the perturbations of the excited states. For the first singlet excited state A1Π,the dissociation energyDeis estimated to be 2.53 eV,which can hold 26 vibrational levels. Theωe,ωexeandBeare computed to be 1057.6 cm-1,10.2 cm-1and 0.7814 cm-1,which are in good accordance with the latest experimental data of 1077.23 cm-1,10.639 cm-1, and 0.7876 cm-1. TheReis evaluated to be 1.5725 ?A,which is more close to the latest experimental value of 1.566 ?A.[18]Our calculatedTediffer by less than 800 cm-1(2%)from the latest measurements.[18]For the second singlet excited state A′1Σ+,the well depth is computed to be 0.33 eV,which can only support 5 vibrational states. Good agreements are achieved for theωe,BeandRe. In our work, the calculated spectroscopic constants of A′1Σ+areωe=465.7 cm-1,Be=0.5016 cm-1andRe=1.9646 ?A, and the ones determined by Ref.[18]areωe=462.42 cm-1,Be=0.5114 cm-1andRe=1.944 ?A.Our MRCI+QcalculatedTeis 57245 cm-1,which differs by 1381 cm-1(2%) from most recent experimental value of 55864 cm-1.[18]Theωexeis calculated to be 8.70 cm-1,which is 1.242 cm-1larger than the experimental result of 7.458 cm-1.

    In the process of determining spectroscopic constants,the vibrational levels of the ground state and exited states are also obtained. In Tables 2 and 3, the vibrational energy gap between Δν=1 are presented for X1Σ+and A1Π/A′1Σ+states along with previously available theoretical and experimental data. For the the X1Σ+state, our calculated vibration levels gap forν ≤20 agree very well with the most recent experimental data,[2]the absolute differences are less than 2 cm-1(0.2%). In comparison with existing theoretical data,[38]our calculated accuracy of vibrational levels has obviously improvement,especially for theν ≥2 vibrational levels. For the A1Π state,the vibration levels gap forν ≤4 are computed to be 1037.6 cm-1, 1016.4 cm-1, 995.9 cm-1and 975.6 cm-1,which is only about~15 cm-1(2%) smaller than the latest experimental results.[20]In addition, our calculated vibration levels gap of A1Π state are closer to experimental data.

    Table 2. The vibrational energy gap(Eν-Eν-1)(in cm-1)for the X1Σ+ state of CS.

    Table 3. The vibrational energy gap(Eν-Eν-1)(in cm-1)for the A1Π state of CS.

    4. Dipole moments and transition dipole moments

    The dipole moments and transition dipole moments of low-lying Λ–S states are computed by employing MRCI wave functions. The dipole moments curves for the singlet Λ–S states and triplet Λ–S states are presented in Figs. 2(a) and 2(b), respectively. As is well known, the vibration of dipole moment reflects the change of electronic configuration for Λ–S state. As displayed in Fig. 2, the extent of variation of dipole moments for A′1Σ+,21Π,33Σ+and 23Π are obviously large than that of other 8 Λ–S states. This phenomenon could be explained by the sharp vibration of electronic configuration of A′1Σ+, 21Π, 33Σ+and 23Π. As shown in Fig. 1, the A′1Σ+,21Π,33Σ+and 23Π are located at high excitation energy range of≥5700 cm-1, which form crossing point with high excited states. The crossing point of A′1Σ+, 21Π, 33Σ+and 23Π cause the sharp change for electronic configurations of those states, hence, the dipole moment curves of A′1Σ+,21Π, 33Σ+and 23Π change dramatically as compared with that of the other 8 Λ–S states. At the equilibrium distance(Re=1.5369 ?A)of the X1Σ+,the dipole moment is computed to be 0.77 a.u., which agree very well with available experimental data of 0.7704 a.u.[42]Both theoretical and experimental studied indicate the Cδ-Sδ+polarity of the CS molecule.At the equilibrium distanceRe=1.5725 ?A,the dipole moment of A1Π is estimated to be 0.29 a.u. As shown in Fig. 2, the dipole moments of all the Λ–S states approach to zero at large internuclear distance, indicating the dissociation products are neutral C and S atoms.

    The transition dipole moments (TDMs) of spin-allowed singlet-singlet transition are given in Fig.3. For convenient of comparing, the previous TDM of A1Π–X1Σ+[24]determined by cc-PVQZ/MRSDCI level of theory are also displayed. As can be seen in Fig.3,the position of peak of TDM for A1Π–X1Σ+transition in our work and Ref.[24]are well consistent,which are both located atR=1.39 ?A.The peak value of TDM of A1Π–X1Σ+transition is 0.304 a.u., which is 0.028 a.u.larger than that in Ref.[24]. The maximum value(0.599 a.u.)of TDM of A′1Σ+–X1Σ+is located at 1.80 ?A.

    Fig.2. Dipole moment curves for singlet and triplet states of CS.

    Fig.3. Transition dipole moment curves of spin-allowed transition of CS.

    4.1. Opacity

    Fig.4. The total internal partition functions of CS along with the temperature T (in Kelvin).

    With the information of partition functions and vibration–rotation states,the molecular opacities for the X1Σ+,A1Π and A′1Σ+states are obtained from formula (7) at pressure of 100 atms for different temperatures. With the increasing of temperature and growing of density,the dissociation probability of molecule will be raised. However, the dissociation energy of X1Σ+(7.42 eV)is very large,so the dissociation probability of CS caused by thermal motion inT=4500 K is very small. In addition, the previous investigations also indicate that opacity and absorption spectrum in astrophysical field are mainly originated from molecule.[1,2]The calculated molecular opacities of X1Σ+, A1Π and A′1Σ+states of CS for the temperatures of 300 K,1000 K,1800 K,and 4500 K are displayed in Figs.5(a)–5(d),respectively. As presented in Fig.5,the spectra lie in a wide area of wavelengths,which range from UV to far-infrared. In the simulation of spectra, the spectral line is profiled utilizing a Lorentzian function with a width contributed from impact-broadening. As can be observed in Fig.5(a),there are three electronic bands attributed from three singlet states considered in this work, which associate with A′1Σ+–X1Σ+, A1Π–X1Σ+and X1Σ+–X1Σ+transitions from left to right,respectively.At low temperature of 300 K/1000 K and a pressure of 100 atms(see Figs.5(a)and 5(b)),different band systems are distinctly divided from each other. The band systems contributed from A′1Σ+–X1Σ+and A1Π–X1Σ+transitions appear at nearby 180 nm and 250 nm,which are located in wavelength range of short-wave UV.As for band system of X1Σ+–X1Σ+,there are two typical bands(fundamental vibrational transition and pure rotation transition), and the fundamental vibrational bands of Δν=1, 2 and 3 appear around 6.6 μm, 3.4 μm and 2.3 μm, while the pure rotation band of Δν=0 locates in wavelength of≥40 μm. It can be seen that the molecular opacities are very small in the 300–1500 nm wavelength range, which form a window area in the visible light(VIS)and near infrared(NIR)region. When the temperature increase(see Figs.5(c)and 5(d)),the cross section in the

    Fig.5. Opacity of CS generated by vibration–rotation transitions for a pressure of 100 atm and temperatures of T =300 K,1000 K,1800 K,and 4500 K.

    VIS and NIR window area is growing gradually,and the separation between different fundamental vibrational bands and different electronic bands become blurred, which are originated from the raised population on vibrational excited states and electronic excited state at high temperature. On the other hand, the cross section contributed from pure rotational transition decrease evidently because of the reduced populations on the X1Σ+, while the cross section originated from highly vibrational excited states are enhanced significantly.

    5. Conclusions

    In this work, accurate PECs of singlet and triplet states correlated with the lowest dissociation limit of CS molecule are computed with high-precision MRCI+Qlevel of theory.Based on calculated PECs, the spectroscopic constants and vibrational levels are evaluated by using accurate numerical method, which agree with the previous measurement. The opacities for the lowest three singlet states of CS are evaluated at a pressure of 100 atms for the temperatures of 300 K,1000 K,1800 K,and 4500 K.At the low temperatures of 300 K and 1000 K, the spectra contributed from electronic transitions (A′1Σ+–X1Σ+and A1Π–X1Σ+) are separated into distinct bands,and different vibrational bands caused by Δν=0,1, 2 and 3 of X1Σ+–X1Σ+transition are also found. With the increasing of the temperature, the populations on excited states are increased,which cause the superposition of different band transitions. Hence,the band boundaries of cross sections become blurred. This work provides accurate electronic structure and molecular opacity of CS.The present study will shed more light on the calculations of the high-precision molecular structures and opacity.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11934004 and 12203106),Fundamental Research Funds in Heilongjiang Province Universities,China (Grant No. 145109127), and the Scientific Research Plan Projects of Heilongjiang Education Department, China(Grant Nos.WNCGQJKF202103 and DWCGQKF202104).

    猜你喜歡
    吳勇李瑞李建軍
    椰子的身價
    木棍的長度
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書法作品
    李瑞
    Wimbledon Tennis
    Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling*
    等你
    當代音樂(2020年7期)2020-07-23 11:43:37
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    藝術(shù)百家:李瑞
    電影文學(2017年12期)2017-12-26 10:59:30
    色综合欧美亚洲国产小说| 国产不卡一卡二| 午夜福利免费观看在线| 最后的刺客免费高清国语| 极品教师在线视频| 欧美日本视频| 亚洲精品在线观看二区| 淫秽高清视频在线观看| 在线看三级毛片| 久久国产精品人妻蜜桃| 黄色日韩在线| 高清日韩中文字幕在线| 午夜免费激情av| 国产v大片淫在线免费观看| 在线观看舔阴道视频| 国产午夜福利久久久久久| 丰满的人妻完整版| 一区二区三区免费毛片| 国内久久婷婷六月综合欲色啪| 99国产精品一区二区三区| 神马国产精品三级电影在线观看| a级毛片免费高清观看在线播放| 欧美乱妇无乱码| 亚洲天堂国产精品一区在线| 999久久久精品免费观看国产| 国产伦精品一区二区三区视频9| 超碰av人人做人人爽久久| 别揉我奶头~嗯~啊~动态视频| av在线老鸭窝| 亚洲一区二区三区色噜噜| 国产欧美日韩一区二区三| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 成人精品一区二区免费| 国产三级在线视频| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费| 人人妻,人人澡人人爽秒播| 免费观看人在逋| 欧美色欧美亚洲另类二区| 国产伦精品一区二区三区四那| 麻豆久久精品国产亚洲av| 亚洲av免费在线观看| 俺也久久电影网| 内地一区二区视频在线| 欧美最新免费一区二区三区 | 欧美xxxx性猛交bbbb| 啦啦啦韩国在线观看视频| 亚洲一区二区三区色噜噜| 欧美黑人欧美精品刺激| 美女cb高潮喷水在线观看| 亚洲天堂国产精品一区在线| 一进一出抽搐gif免费好疼| 波多野结衣高清作品| 国产亚洲精品久久久com| 久久久久精品国产欧美久久久| .国产精品久久| 国产伦精品一区二区三区视频9| 日本 欧美在线| 精品久久久久久成人av| 亚洲av二区三区四区| 久久这里只有精品中国| 亚洲精华国产精华精| 亚洲不卡免费看| 国产黄片美女视频| 国产主播在线观看一区二区| 亚洲欧美清纯卡通| 日韩大尺度精品在线看网址| 神马国产精品三级电影在线观看| 听说在线观看完整版免费高清| 一级黄片播放器| 在线国产一区二区在线| 97人妻精品一区二区三区麻豆| 性色av乱码一区二区三区2| 国产精品伦人一区二区| 免费av不卡在线播放| 99久久精品热视频| 男人和女人高潮做爰伦理| 天堂网av新在线| 国产一级毛片七仙女欲春2| 亚洲18禁久久av| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 国产精品伦人一区二区| 99视频精品全部免费 在线| 高清日韩中文字幕在线| 国产精品美女特级片免费视频播放器| 成人永久免费在线观看视频| 久久婷婷人人爽人人干人人爱| 欧美xxxx黑人xx丫x性爽| 亚洲天堂国产精品一区在线| 日韩免费av在线播放| 在线免费观看的www视频| 亚洲成av人片免费观看| 人人妻人人看人人澡| 2021天堂中文幕一二区在线观| 嫩草影院新地址| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 欧美黄色片欧美黄色片| 一级黄片播放器| 国产精品亚洲美女久久久| 97人妻精品一区二区三区麻豆| 亚洲一区二区三区色噜噜| 麻豆国产97在线/欧美| 欧美xxxx性猛交bbbb| 91狼人影院| 91av网一区二区| 丝袜美腿在线中文| 日韩大尺度精品在线看网址| 亚洲自拍偷在线| 夜夜爽天天搞| 免费人成在线观看视频色| 国产三级中文精品| 免费搜索国产男女视频| 人妻丰满熟妇av一区二区三区| 精品人妻熟女av久视频| 亚洲av第一区精品v没综合| 色综合欧美亚洲国产小说| av天堂中文字幕网| 成人特级av手机在线观看| 国产亚洲欧美98| 成年版毛片免费区| 国产成人福利小说| 精品日产1卡2卡| 波野结衣二区三区在线| 国产三级黄色录像| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 综合色av麻豆| 久久精品国产亚洲av天美| 午夜福利在线观看免费完整高清在 | 日本熟妇午夜| 亚洲自偷自拍三级| 性欧美人与动物交配| 白带黄色成豆腐渣| 亚洲精品粉嫩美女一区| 久久久久性生活片| netflix在线观看网站| 精品久久久久久久久亚洲 | 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 黄色视频,在线免费观看| 国产v大片淫在线免费观看| 日本成人三级电影网站| 露出奶头的视频| 婷婷丁香在线五月| 午夜福利高清视频| 亚洲黑人精品在线| 成人欧美大片| 久久婷婷人人爽人人干人人爱| 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 国产主播在线观看一区二区| 99热6这里只有精品| 国产探花极品一区二区| 九色成人免费人妻av| 亚洲成a人片在线一区二区| 日韩精品中文字幕看吧| 国产精品免费一区二区三区在线| 国产成人欧美在线观看| av在线蜜桃| 亚洲性夜色夜夜综合| 亚洲在线自拍视频| 久久久久久九九精品二区国产| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美| 国产真实伦视频高清在线观看 | 级片在线观看| 日韩成人在线观看一区二区三区| 99在线视频只有这里精品首页| 欧美日本视频| 亚洲激情在线av| 精品人妻熟女av久视频| 日本成人三级电影网站| 我要搜黄色片| 脱女人内裤的视频| 亚洲美女视频黄频| 简卡轻食公司| 在线a可以看的网站| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清| 丰满人妻熟妇乱又伦精品不卡| 国产精品综合久久久久久久免费| 亚洲精华国产精华精| a级一级毛片免费在线观看| 成人三级黄色视频| av女优亚洲男人天堂| 一个人看视频在线观看www免费| 欧美黄色片欧美黄色片| 亚洲男人的天堂狠狠| 1000部很黄的大片| 亚洲精华国产精华精| 国产精品野战在线观看| 香蕉av资源在线| 日本撒尿小便嘘嘘汇集6| av福利片在线观看| 免费观看人在逋| 精品久久久久久久久久免费视频| 国产高清激情床上av| 亚洲人成电影免费在线| 亚洲va日本ⅴa欧美va伊人久久| 在线免费观看的www视频| 久久99热6这里只有精品| 精品福利观看| 超碰av人人做人人爽久久| 国产高清三级在线| 久久这里只有精品中国| x7x7x7水蜜桃| 国产一区二区三区视频了| 俄罗斯特黄特色一大片| 成人美女网站在线观看视频| 99久久精品热视频| 极品教师在线视频| 99久久久亚洲精品蜜臀av| 免费人成视频x8x8入口观看| 欧美高清成人免费视频www| 亚洲av.av天堂| xxxwww97欧美| 国产乱人视频| 国产亚洲av嫩草精品影院| 91狼人影院| 深夜精品福利| 亚洲av不卡在线观看| 身体一侧抽搐| 毛片一级片免费看久久久久 | 99久久九九国产精品国产免费| 长腿黑丝高跟| 中文字幕免费在线视频6| 91久久精品电影网| 高清毛片免费观看视频网站| 国产精品一区二区三区四区免费观看 | 国产毛片a区久久久久| 久久人人爽人人爽人人片va | 日本五十路高清| 男插女下体视频免费在线播放| 亚洲一区二区三区不卡视频| 午夜福利免费观看在线| 免费人成在线观看视频色| 热99在线观看视频| 国产中年淑女户外野战色| 全区人妻精品视频| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 一二三四社区在线视频社区8| 欧美另类亚洲清纯唯美| 国产乱人伦免费视频| 美女黄网站色视频| 亚洲国产色片| 欧美日韩国产亚洲二区| 国产91精品成人一区二区三区| 最近在线观看免费完整版| 国产精品野战在线观看| 久久热精品热| 亚洲av第一区精品v没综合| 亚洲第一电影网av| 男人舔奶头视频| 日日干狠狠操夜夜爽| 中文字幕久久专区| 91av网一区二区| 男人和女人高潮做爰伦理| 色综合婷婷激情| 精品久久久久久久久亚洲 | 久久九九热精品免费| 亚洲av中文字字幕乱码综合| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 麻豆成人av在线观看| 97超视频在线观看视频| 亚洲人成电影免费在线| 91在线观看av| 精华霜和精华液先用哪个| 高清毛片免费观看视频网站| 亚洲三级黄色毛片| 波多野结衣高清无吗| 两个人视频免费观看高清| 国产色爽女视频免费观看| 婷婷精品国产亚洲av在线| 69人妻影院| 国产又黄又爽又无遮挡在线| 成年女人看的毛片在线观看| 亚洲av日韩精品久久久久久密| 性欧美人与动物交配| 又紧又爽又黄一区二区| 亚洲熟妇熟女久久| 在线看三级毛片| 99久久九九国产精品国产免费| 天堂动漫精品| 老司机午夜福利在线观看视频| 麻豆成人av在线观看| 国产一区二区三区在线臀色熟女| 欧美极品一区二区三区四区| 日本与韩国留学比较| 可以在线观看的亚洲视频| 熟女电影av网| 在线观看午夜福利视频| 黄色一级大片看看| 午夜亚洲福利在线播放| 一本综合久久免费| 免费看美女性在线毛片视频| 国产亚洲精品av在线| 女生性感内裤真人,穿戴方法视频| 男女那种视频在线观看| 欧美午夜高清在线| 久久久久精品国产欧美久久久| 精品久久久久久久久亚洲 | 特级一级黄色大片| 欧美一区二区亚洲| 91九色精品人成在线观看| 亚洲国产欧美人成| 真人做人爱边吃奶动态| 国产成人福利小说| 天堂av国产一区二区熟女人妻| 我的女老师完整版在线观看| 国产在视频线在精品| 男女下面进入的视频免费午夜| 亚洲国产精品久久男人天堂| 国内揄拍国产精品人妻在线| 日韩欧美在线二视频| 美女大奶头视频| 国产美女午夜福利| 此物有八面人人有两片| 精品欧美国产一区二区三| 黄色日韩在线| 国模一区二区三区四区视频| 九九在线视频观看精品| 午夜老司机福利剧场| 免费无遮挡裸体视频| 两个人视频免费观看高清| 欧美激情国产日韩精品一区| 天美传媒精品一区二区| 欧美日韩瑟瑟在线播放| 欧美zozozo另类| 国产探花极品一区二区| 久久6这里有精品| 两性午夜刺激爽爽歪歪视频在线观看| 一个人免费在线观看电影| 好看av亚洲va欧美ⅴa在| 国产精品爽爽va在线观看网站| av专区在线播放| 亚洲av成人av| a级一级毛片免费在线观看| 亚洲内射少妇av| 午夜精品一区二区三区免费看| 亚洲av美国av| 中文字幕久久专区| 国产亚洲欧美在线一区二区| 看黄色毛片网站| 精品久久国产蜜桃| 欧美高清成人免费视频www| 午夜福利免费观看在线| 搡老熟女国产l中国老女人| 最近视频中文字幕2019在线8| 看片在线看免费视频| 国产三级黄色录像| 亚洲成av人片在线播放无| 露出奶头的视频| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 国产亚洲精品综合一区在线观看| 欧美性猛交╳xxx乱大交人| 亚洲午夜理论影院| 日本免费a在线| 一本综合久久免费| 欧美激情在线99| 伦理电影大哥的女人| 欧美在线一区亚洲| 在线观看66精品国产| 午夜老司机福利剧场| 九九在线视频观看精品| 真人一进一出gif抽搐免费| 三级国产精品欧美在线观看| 熟女人妻精品中文字幕| 人人妻,人人澡人人爽秒播| 国产日本99.免费观看| 国产三级中文精品| 又爽又黄无遮挡网站| 美女大奶头视频| 婷婷丁香在线五月| www.色视频.com| www.熟女人妻精品国产| 在线免费观看的www视频| 国产成人a区在线观看| 波多野结衣高清作品| 精品国内亚洲2022精品成人| 亚洲最大成人av| 国产亚洲精品av在线| 我要搜黄色片| 精品福利观看| 久久性视频一级片| 日本免费一区二区三区高清不卡| 中文字幕精品亚洲无线码一区| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| 亚洲成人精品中文字幕电影| 欧美日韩亚洲国产一区二区在线观看| 色综合亚洲欧美另类图片| 99久久成人亚洲精品观看| 国产91精品成人一区二区三区| 国产高清三级在线| 琪琪午夜伦伦电影理论片6080| 在线播放无遮挡| 午夜亚洲福利在线播放| 婷婷精品国产亚洲av| 国产成人影院久久av| 国产一区二区三区视频了| 国产精品美女特级片免费视频播放器| 午夜影院日韩av| 如何舔出高潮| 国产欧美日韩一区二区三| av在线老鸭窝| 色综合站精品国产| 国产探花极品一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲电影在线观看av| 别揉我奶头~嗯~啊~动态视频| 日韩精品青青久久久久久| 日本黄色片子视频| 亚洲片人在线观看| 亚洲在线自拍视频| 国产精品爽爽va在线观看网站| 久久久久久久久久成人| 99久久无色码亚洲精品果冻| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线| 国产精品影院久久| 99久国产av精品| 草草在线视频免费看| 尤物成人国产欧美一区二区三区| 十八禁网站免费在线| 丁香六月欧美| 一夜夜www| 欧美最新免费一区二区三区 | av天堂中文字幕网| 麻豆成人午夜福利视频| 午夜福利在线在线| 欧美另类亚洲清纯唯美| 日本精品一区二区三区蜜桃| 看黄色毛片网站| 性色av乱码一区二区三区2| 一个人看的www免费观看视频| 一本久久中文字幕| 国产乱人视频| 人妻久久中文字幕网| 国产91精品成人一区二区三区| 99精品在免费线老司机午夜| 少妇的逼水好多| a级毛片a级免费在线| 成人永久免费在线观看视频| 国产伦人伦偷精品视频| 女同久久另类99精品国产91| 国产精品嫩草影院av在线观看 | 国产不卡一卡二| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区久久| 午夜日韩欧美国产| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播放欧美日韩| 简卡轻食公司| 亚洲成人中文字幕在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产亚洲av嫩草精品影院| 中文字幕av成人在线电影| 国产精品伦人一区二区| 国产精品一及| 国产精品人妻久久久久久| 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 别揉我奶头~嗯~啊~动态视频| 欧美日本亚洲视频在线播放| 国产久久久一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲成av人片在线播放无| 69av精品久久久久久| 精品一区二区三区视频在线观看免费| 很黄的视频免费| 久久精品国产自在天天线| 国产在线精品亚洲第一网站| or卡值多少钱| 亚洲av二区三区四区| 一级作爱视频免费观看| 精华霜和精华液先用哪个| 国产aⅴ精品一区二区三区波| 欧美日韩中文字幕国产精品一区二区三区| 色5月婷婷丁香| 欧美成人一区二区免费高清观看| 日本免费一区二区三区高清不卡| 色av中文字幕| www.999成人在线观看| 免费av观看视频| 久久亚洲真实| 亚洲专区中文字幕在线| 人妻久久中文字幕网| 精品午夜福利在线看| 国产熟女xx| 成人无遮挡网站| 又粗又爽又猛毛片免费看| 一级av片app| 精品乱码久久久久久99久播| 亚洲国产日韩欧美精品在线观看| 久久午夜福利片| 午夜福利高清视频| 亚洲人成网站在线播| 99在线人妻在线中文字幕| 国产探花极品一区二区| 男人和女人高潮做爰伦理| 国产午夜精品久久久久久一区二区三区 | 亚洲精品成人久久久久久| 国产在线精品亚洲第一网站| 偷拍熟女少妇极品色| av福利片在线观看| 非洲黑人性xxxx精品又粗又长| 国产主播在线观看一区二区| 日日摸夜夜添夜夜添小说| 国产伦人伦偷精品视频| 好看av亚洲va欧美ⅴa在| 最后的刺客免费高清国语| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品久久男人天堂| 欧美性猛交黑人性爽| 看十八女毛片水多多多| 狂野欧美白嫩少妇大欣赏| 精品国产三级普通话版| 国产在线男女| 日本 欧美在线| 91午夜精品亚洲一区二区三区 | 欧美日韩综合久久久久久 | 国内久久婷婷六月综合欲色啪| 天堂√8在线中文| 757午夜福利合集在线观看| 最近在线观看免费完整版| 精品久久久久久久久亚洲 | 嫩草影视91久久| 日韩欧美在线二视频| 亚洲av日韩精品久久久久久密| 亚洲av二区三区四区| 美女 人体艺术 gogo| 他把我摸到了高潮在线观看| 91九色精品人成在线观看| 男插女下体视频免费在线播放| 亚洲美女黄片视频| 天堂网av新在线| 成人午夜高清在线视频| 日韩欧美 国产精品| 性欧美人与动物交配| 波多野结衣高清作品| 久久久久国产精品人妻aⅴ院| 成人av在线播放网站| 日本 av在线| 成人精品一区二区免费| 最近最新免费中文字幕在线| 12—13女人毛片做爰片一| 亚洲人成网站在线播| 成人特级av手机在线观看| 三级男女做爰猛烈吃奶摸视频| 一级黄片播放器| 国产精品免费一区二区三区在线| 内射极品少妇av片p| 亚洲国产色片| 九九久久精品国产亚洲av麻豆| 亚洲午夜理论影院| 美女cb高潮喷水在线观看| 国产精品影院久久| 国产 一区 欧美 日韩| 男女之事视频高清在线观看| 成人毛片a级毛片在线播放| 日本三级黄在线观看| 亚洲最大成人av| 国产精品久久久久久久电影| 亚洲第一欧美日韩一区二区三区| 亚洲熟妇熟女久久| 亚洲av二区三区四区| 99热这里只有是精品在线观看 | 好看av亚洲va欧美ⅴa在| 一本一本综合久久| av国产免费在线观看| 国产精品野战在线观看| 国产精品久久视频播放| 波多野结衣高清无吗| 日本一本二区三区精品| 99国产精品一区二区蜜桃av| 欧美又色又爽又黄视频| 国产成人a区在线观看| 亚洲aⅴ乱码一区二区在线播放| 此物有八面人人有两片| 国产在线精品亚洲第一网站| 亚洲av熟女| 人人妻,人人澡人人爽秒播| 精品久久久久久久久久免费视频| 丝袜美腿在线中文| 午夜免费成人在线视频| 亚洲在线自拍视频| 啪啪无遮挡十八禁网站| 婷婷精品国产亚洲av在线| 亚洲在线观看片| 欧美成人a在线观看| 久久人人精品亚洲av| 国产色婷婷99| 久久午夜福利片| 成人三级黄色视频| 波多野结衣巨乳人妻| 青草久久国产| 国产不卡一卡二| 中文资源天堂在线| 好男人在线观看高清免费视频| 99久久精品热视频| 国产免费男女视频| 51国产日韩欧美| 精品午夜福利在线看|