• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?

    2019-04-13 01:14:22JianJunLi李建軍PengChengDu杜鵬程JiQingFu伏吉慶XuTongWang王旭桐QingZhou周慶andRuQuanWang王如泉
    Chinese Physics B 2019年4期
    關(guān)鍵詞:吉慶李建軍鵬程

    Jian-Jun Li(李建軍),Peng-Cheng Du(杜鵬程),Ji-Qing Fu(伏吉慶),Xu-Tong Wang(王旭桐),Qing Zhou(周慶),and Ru-Quan Wang(王如泉)

    1Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3National Institute of Metrology,Beijing 100029,China

    4School of Physics and Astronomy,Yunnan University,Kunming 650091,China

    1.Introduction

    Precision measurement of weak magnetic fields has many important applications.[1]Different types of magnetometers,such as the fluxgate magnetometer,optically pumped magnetometer(OPM),and superconducting quantum interference device(SQUID),are widely used in geophysical mineral and oil exploration,[2,3]underwater ordinance detection,[4,5]nuclear magnetic resonance,[6,7]and biomagnetism.[8,9]

    Magnetocardiography(MCG)and magnetoencephalography(MEG)are two important biological applications which have attracted significant research and clinical effort in the past two decades.The mainstay technology for MCG and MEG is the low temperature SQUID magnetometer,which can reach a sensitivity of 1 fT/Hz1/2.[10,11]However,it has to be maintained in a liquid helium dewar,which is expensive to manufacture and difficult to service.The dewar also limits the distance between the superconducting quantum interference device(SQUID)sensor and the human brain,which compromises the spatial resolution of the measurement.Moreover,the boiling of liquid helium introduces mechanical noise to the MCG and MEG systems.

    The OPM,which uses optical interrogation of the spin of alkali atoms to detect magnetic fields,[12]is another type of ultrahigh sensitive magnetometer,although its sensitivity is limited by spin-exchange collisions. In recent years, a special type of spin-exchange relaxation free(SERF)OPM[13]has been developed,where this limitation is completely eliminated by operating at high density and zero magnetic field.[14,15]Theoretically,its sensitivity limit can be as low as 2 aT/Hz1/2in a 7-cm3cell.[16]The best sensitivity achieved so far is 0.16 fT/Hz1/2,in a gradiometer arrangement,[17]which surpasses that of SQUIDs.Exhibiting many desirable qualities such as low power consumption,low cost,and high reliability,the OPM has the potential to take the place of the SQUID for biological field applications.[18]The OPM system can offer sufficient sensitivity,[13]bandwidth,[19]and spatial resolution[20]for MEG and MCG measurements.[21–23]Even more importantly,the OPM sensor can be placed closer to the human head compared with an SQUID,which can significantly increase the MEG signal strength.

    For applications such as MEG and MCG,not only the sensitivity of the sensor,but also the size,weight,power requirements,and spatial resolution are crucial.With a microfabricated vapor cell,a sensitivity of 5 fT/Hz1/2can be reached in a measurement volume of 1 mm3.[24]A low-power,high sensitivity micromachined optical magnetometer, the volume of which is 0.36 cm3,has been demonstrated which runs on 140 mW of heating power and achieves a sensitivity bet-ter than 20 fT/Hz1/2.[25]More recently,atomic magnetometers of various designs have been fabricated,with multiple channels or sensor arrays for measuring the biological magnetic field.[9,26,27]For the detection of fields where the target distance is on the millimeter to centimeter scale,some microfabricated magnetic gradiometers with improved spatial information and common noise cancellation have also been reported.[28,29]High spatial and temporal resolution MEG is a direct means of measuring brain function,and has been applied in epilepsy surgery and pre-operative brain mapping.[30]

    In this work,we report a miniature quad-channel SERF magnetometer for MEG measurement.Miniaturization of the sensor is realized by using a single circular-polarized beam.The four channels of the magnetometer share a single beam which is detected by a quadrant photodiode,thus greatly simplifying the gradiometer measurement.The quad-channel sensor operates well as a gradiometer since the common mode noise due to the laser fluctuations is canceled effectively.As part of the design,we have developed a novel current-heating structure which reduces the magnetic field from the heating current at the vapor cell by several orders of magnitude.This type of cluster sensor is extremely suitable for image reconstruction in MEG systems.

    2.Experimental setup

    Our miniaturized quad-channel OPM operates with a single laser beam for both pumping and probing the atomic polarization.Its high sensitivity results from a combination of an SERF mechanism and zero- field level crossing resonance.The main components of such a sensor head are:an optical section,a potassium vapor cell,a photodetector with a low noise preamplifier,and a heater.Figure 1 shows an actual photo of the sensor,which has dimensions of 190 mm×40 mm×20 mm.All the structural components of the sensor module are fabricated out of polycarbonate plastic using a three-dimensional(3D)printer.

    Fig.1.Photo of the magnetometer sensor head.1:Five sets of Helmholtz coils;2:optical section;3:low noise preamplifier;4:heaters covered by Kapton tape;5:optical fiber;6:Farrow cables.

    The optical housing is of size 90 mm×20 mm×19 mm,and contains the fiber port,lens,polarizing beam splitter(PBS),reflecting prism,and quarter-wave plate.The optical layout is illustrated in Fig.2.The single laser beam at 770 nm used for the optical pumping is generated by an external cavity diode laser(ECDL,model#ECL801),and is sent to a small nonmagnetic fiber port through a 5-m long polarization maintaining fiber.The output beam is collimated to a diameter of 5.2 mm before passing through a PBS,reflecting prism,and quarter-wave plate.The circularly polarized pump beam is detected after the potassium vapor cell by a four-quadrant photodetector,each element of which has an active area of 4 mm×4 mm.

    The atomic polarization is given by Px=2hSxi,deduced from the Bloch equation,[31]where Sxis the electron spin polarization along the laser beam.When a magnetic field modulation of amplitude Bmand frequency wmperpendicular to the laser beam is applied in the dynamic regime,the polarization is given by[32,33]

    where,γeis the electron gyromagnetic ratio,q is the nuclear slowing-down factor,J0and J1are Bessel functions of the first kind,Rpis the pumping rate,Rrelis the spin relaxation rate,and B0is the offset field parallel to the modulation field direction.Thus,we can obtain the atomic polarization from the pump beam absorption as a result of the interaction between the light and atomic assemble.

    Fig.2. Schematic diagram of the optical paths inside the OPM sensor and the electrical signal connections(heating coils not shown).PM:polarization-maintaining optical fiber;F: fiber port;L:lens;PBS:polarizing beam splitter;P:reflecting prism;Q:quarter-wave plate;C:potassium vapor cell;H:heat insulation;PD:four-quadrant photodiode;TIA:transimpedance amplifier;Gen Out:function generator;DAQ:data acquisition;Lock-in:virtual lock-in amplifier.

    The core of the sensor head is the alkali vapor cell containing a small droplet of potassium metal in natural abundance. The cell is made from borosilicate glass,and its outer size is 10 mm×10 mm×10 mm with an interior size of 8 mm×8 mm×8 mm.The center of the cell is 10 mm away from the end of the sensor,and is filled with 750 Torr(1 Torr=1.33322×102Pa)of nitrogen gas.At high buffer gas pressure,the atoms experience diffusive motion,which increases their time to reach the cell wall.In addition,the nitrogen gas can assist in the pumping process by quenching the excited state.[34]

    The vapor cell operates at 160?C,which corresponds to a potassium density of 1013cm?3.The temperature is maintained through continuous electrical heating,as shown in Fig.3.Four ceramic coated heating coils,each 78-mm long and 4 mm in diameter,have a resistance of 12 k? and maximum rating of 20 W.The heating coils are connected in series such that their magnetic fields are opposite in direction.The heat generated is transferred effectively to the vapor cell by a 150-mm long highly efficient heat pipe.The four heaters and heat pipe are housed in an aluminum heatsink.For the cell and heat pipe enclosure,a boron nitride heatsink is used as its Johnson noise is very low,even better than aluminum.At the cell,the magnetic field due to the heaters has decayed by 1/r3to less than 1 nT,where r is the distance from the center of the coils.This remaining field can then be compensated by a set of Helmholtz coils.The entire heating structure and vapor cell are housed in aerogel insulation.

    The most important factors of the heater system are how to maintain the required temperature and how to minimize the power consumed,so we first perform a simulation by COMSOL Multiphysics.The experimental results agree well with the simulation.At thermal equilibrium,4.5 W of heater power is required. There is no detectable difference between the magnetic noise levels when the heating is turned on and off.

    Fig.3.Structure of the heater.

    The set of Helmholtz coils includes three pairs of square coils,plus two more pairs to provide a modulation field in the two perpendicular directions of propagation of the pump beam.Both of the two linearly independent components of the magnetic field can be adjusted in each magnetometer channel by simply changing the direction of the modulation.The coils are soldered to the printed circuit board to prevent instability resulting from the long cables.To realize miniaturization and to prevent interference from external electrical noise at the photodiode,the low noise preamplifier is also placed on the circuit board.A 5-m Farrow cable transfers the signals to a virtual lock-in amplifier,and another one provides the compensation and modulation fields.LabVIEW software is used to compose a program to implement the virtual lock-in ampliifer with a 24-bit data acquisition system.

    3.Measurement results

    The quad-channel sensor is tested inside a five-layer cylindrical magnetic shield made of high-permeability μ-metal,as shown in Fig.4.The geometry of the shield is optimized by both theoretical analysis and finite element numerical simulation.[35]The power and detuning of the pump beam are optimized for the best magnetic sensitivity.The laser power is approximately 0.4 mW per magnetometer channel,and the frequency is detuned by 5 GHz from the D1resonance line of potassium.No active control of the beam power and frequency is implemented in our laboratory environment,although we believe such control would be beneficial for improving the sensitivity of our sensor even further.

    Fig.4.Schematic diagram of magnetic sensitivity measurements.The sensor is placed in the center and parallel to the field of the Helmholtz coil that is wrapped around a slotted cylinder made of teflon.

    The background magnetic field at the vapor cell is compensated by three pairs of coils.An external magnetic field provided by a large cylindrical Helmholtz coil is applied perpendicular to the pump beam,and its amplitude is swept from negative to positive.Thus,the transparency of the potassium atomic assemble changes,and its maximum is observed when the magnetic field is extremely close to zero.The full width at half maximum of the zero- field magnetic resonance of channels A to D are 8.45 nT,8.51 nT,8.87 nT,and 11.61 nT,respectively.In Fig.5(a),we only show the channel B,and the others are similar to it.The difference is due to the inhomogeneous light intensity.To obtain the dispersive resonance line shape,a modulated transverse magnetic field with an amplitude of 80 nT and a frequency of 1 kHz is applied.Then the four-quadrant photodiode signal is extracted and demodulated by the virtual lock-in amplifier,by which means the technical 1/f noise in the electronics can be removed.

    Magnetic field measurements,which are based on the linear portion of the dispersive resonance line shape,are taken by zeroing the residual magnetic field.Sensitivity is determined by measuring the power spectral density of the magnetometer output and dividing it by the slope of the magnetic resonance.The slopes of the lock-in output signals around zero field value for channels A to D are 2.8 V/nT,2.1 V/nT,3.6 V/nT,and 5.6 V/nT,respectively.Figure 5(b)shows the frequency response of the magnetometer.The data for all channels is taken simultaneously,and we can see that the field sensitivity of the four channels are nearly identical,about 40 fT/Hz1/2over 10 Hz–100 Hz.

    Fig.5.(a)Magnetic resonance of channel B.The blue trace is the transmission of the pump beam through the vapor cell and the red trace is the demodulated output of the virtual lock-in amplifier.(b)Magnetic field sensitivity of the magnetometer.

    Fig.6.Plot of the gradient field sensitivities of the sensor.For the channel A–B(blue trace),A–D(red trace),and C–B(yellow trace)gradiometers,the inferred single-channel sensitivity is 4 fT/Hz1/2–6 fT/Hz1/2between 30 Hz and 100 Hz,and that of channel C–D(purple trace)is 3.5 fT/Hz1/2over 60 Hz–100 Hz.

    The first-order gradiometers,which include two directions,are formed by taking the difference between adjacent magnetometer channels,which cancels the common magnetic field noise.Supposing that the remaining noise is uncorrelated,the noise level is divided by 21/2to obtain the equivalent single-channel magnetometer sensitivity.Figure 6 shows the performance of the four synthetic gradiometers.Their noise levels are less than 6 fT/Hz1/2over 25 Hz–100 Hz,which is a great improvement over the single channel sensitivity of our detector.

    4.Conclusion

    We have developed a miniature quad-channel OPM with high sensitivity for the detection of biological fields,specifically for MEG.It operates in the SERF regime,requires only a single beam,is compact but can implement multi-channel measurement,and has enough spatial resolution for MEG measurement.A novel current-heating structure based on a heat pipe can eliminate both the magnetic field and noise from the heating coils.We have achieved gradiometric sensitivities better than 6 fT/Hz1/2,which is more than sufficient for the observation of MEG signals.Moreover,the MEG signal of steady-state visual evoked potentials response has been successfully observed from all four channels of this sensor.The compactness of our design will enable multiple sensors to be packed densely around the head in an array.The miniaturization and simultaneous detection of two gradient magnetic fields are most desirable features,and should have important application in the development of MEG worldwide.

    [1]Fitzgerald R 2003 Phys.Today 56 21

    [2]Foley C P,Tilbrook D L,Leslie K E,Binks R A,Donaldson G B,Du J,Lam S K,Schmidt P W and Clark D A 2001 IEEE Trans.Appl.Supercond.11 1375

    [3]Narkhov E D,Sapunov V A,Denisov A U and Savelyev D V 2014 Transactions on Ecology and the Environment,Vol.186(Southampton:WIT Press)p.649

    [4]Clem T R 1998 Nav.Eng.J.110 139

    [5]Hirota M,Nanaura K,Teranishi Y and Kishigami T 1997 IEEE Trans.Appl.Supercond.7 2327

    [6]Savukov I M and Romalis M V 2005 Phys.Rev.Lett.94 123001

    [7]Xu S,Yashchuk V V,Donaldson M H,Rochester S M,Budker D and Pines A 2006 Proc.Natl.Acad.Sci.USA 103 12668

    [8]Boto E,Meyer S S,Shah V,Alem O,Knappe S,Kruger P,Fromhold T M,Lim M,Glover P M,Morris P G,Bowtell R,Barnes G R and Brookes M J 2017 Neuroimage 149 404

    [9]Boto E,Holmes N,Leggett J,Roberts G,Shah V,Meyer S S,Mu?oz L D,Mullinger K J,Tierney T M,Bestmann S,Barnes G R,Bowtell R and Brookes M J 2018 Nature 555 657

    [10]Sternickel K and Braginski A I 2006 Supercond.Sci.Technol.19 S160

    [11]Fagaly R L 2006 Rev.Sci.Instrum.77 101101

    [12]Budker D and Kimball D F J 2013 Optical Magnetometry(New York:Cambridge University Press)pp.3–7

    [13]Kominis I K,Kornack T W,Allred J C and Romalis M V 2003 Nature 422 596

    [14]Happer W and Tang H 1973 Phys.Rev.Lett.31 273

    [15]Happer W and Tam A C 1977 Phys.Rev.A 16 1877

    [16]Allred J C,Lyman R N,Kornack T W and Romalis M V 2002 Phys.Rev.Lett.89 130801

    [17]Dang H B,Maloof A C and Romalis M V 2010 Appl.Phys.Lett.97 151110

    [18]Knappe S,Sander T and Trahms L 2014 Magnetoencephalography,2nd Edn.(New York:Springer)pp.993–999

    [19]Shah V,Vasilakis G and Romalis MV2010Phys.Rev.Lett.104013601

    [20]Acosta V M,Bauch E,Ledbetter M P,Santori C,Fu K M,Barclay P E,Beausoleil R G,Linget H,Roch J F,Treussart F,Chemerisov S,Gawlik W and Budker D 2009 Phys.Rev.B 80 115202

    [21]Zetter R, Iivanainen J, Stenroos M and Parkkonen L 2018 Brain Topogr.31 931

    [22]Wyllie R,Kauer M,Smetana G S,Wakai R T and Walker T G 2012 Phys.Med.Biol.57 2619

    [23]Li R J,Quan W,Fan W F,Xing L,Wang Z,Zhai Y Y and Fang J C 2017 Chin.Phys.B 26 120702

    [24]Griffith W C,Knappe S and Kitching J 2010 Opt.Express 18 27167

    [25]Mhaskar R,Knappe S and Kitching J 2012 Appl.Phys.Lett.101 241105

    [26]Johnson C N,Schwindt P D D and Weisend M 2013 Phys.Med.Biol.58 6065

    [27]Alem O,Sander T H,Mhaskar R,LeBlanc J,Eswaran H,Steinhoff U,Okada Y,Kitching J,Trahms L and Knappe S 2015 Phys.Med.Biol.60 4797

    [28]Sheng D,Perry A R,Krzyzewski S P,Geller S,Kitching J and Knappe S 2017 Appl.Phys.Lett.110 3

    [29]Colombo A P,Carter T R,Borna A,Jau Y Y,Johnson C N,Dagel A L and Schwindt P D 2016 Opt.Express 24 15403

    [30]Singh S P 2014 Ann.Indian Acad.Neurol.17 S107

    [31]Seltzer S J and Romalis M V 2004 Appl.Phys.Lett.85 4804

    [32]Shah V and Romalis M V 2009 Phys.Rev.A 80 013416

    [33]Cohen-Tannoudji C,DuPont-Roc J,Haroche S and Lalo¨e F 1970 Rev.Phys.Appl.5 95

    [34]Rosenberry M A,Reyes J P,Tupa D and Gay T J 2007 Phys.Rev.A 75 023401

    [35]Fu J Q,Du P C,Zhou Q and Wang R Q 2016 Chin.Phys.B 25 010302

    猜你喜歡
    吉慶李建軍鵬程
    木棍的長(zhǎng)度
    GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*
    晚秋
    寶藏(2021年5期)2021-12-01 10:15:58
    A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS?
    在傳統(tǒng)與創(chuàng)新中尋求制衡點(diǎn)
    THE CAUCHY PROBLEM FOR THE TWO LAYER VISOUS SHALLOW WATER EQUATIONS*
    富庶吉慶的鯉魚
    打火機(jī)引發(fā)的血案
    愛你(2019年29期)2019-11-07 06:10:54
    中國康復(fù)醫(yī)學(xué)發(fā)展的回顧與展望
    StePPing Control Method of Linear DisPlacement Mechanism Driven by TRUM Based on PSoC
    免费黄色在线免费观看| 久久久a久久爽久久v久久| 国产精品99久久久久久久久| 91久久精品电影网| 国产精品三级大全| 插阴视频在线观看视频| 欧美高清性xxxxhd video| 国产伦理片在线播放av一区| 一区二区三区精品91| 久久久国产一区二区| 最近手机中文字幕大全| 国产日韩欧美在线精品| 国产免费福利视频在线观看| 亚洲内射少妇av| 天天躁日日操中文字幕| 亚洲精品中文字幕在线视频 | 欧美成人精品欧美一级黄| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 国产一区二区在线观看日韩| 91精品国产国语对白视频| 建设人人有责人人尽责人人享有的 | 亚洲精华国产精华液的使用体验| 亚洲av国产av综合av卡| 亚洲国产精品一区三区| 蜜桃亚洲精品一区二区三区| 五月开心婷婷网| 欧美日韩在线观看h| 久久久久人妻精品一区果冻| a级毛色黄片| 国产伦精品一区二区三区四那| 国产精品一区二区在线观看99| 亚洲欧美精品自产自拍| 天天躁日日操中文字幕| 国产精品久久久久久av不卡| 国产亚洲91精品色在线| 色视频在线一区二区三区| 亚洲四区av| 99热这里只有精品一区| 国产69精品久久久久777片| 久热久热在线精品观看| 久久精品国产a三级三级三级| 国产精品久久久久成人av| 成人国产麻豆网| 亚洲av欧美aⅴ国产| 久久久成人免费电影| 欧美精品国产亚洲| 国产精品欧美亚洲77777| 精品人妻熟女av久视频| 国产片特级美女逼逼视频| 国产v大片淫在线免费观看| 久久久久久久亚洲中文字幕| 欧美老熟妇乱子伦牲交| 99视频精品全部免费 在线| 亚洲av国产av综合av卡| 亚洲欧美成人综合另类久久久| 久久久午夜欧美精品| 少妇精品久久久久久久| 亚洲人成网站在线观看播放| 在线观看免费高清a一片| 色婷婷av一区二区三区视频| 自拍偷自拍亚洲精品老妇| 欧美精品人与动牲交sv欧美| 婷婷色综合大香蕉| 3wmmmm亚洲av在线观看| 日韩不卡一区二区三区视频在线| 日本猛色少妇xxxxx猛交久久| 嫩草影院新地址| 国产在视频线精品| 极品教师在线视频| 赤兔流量卡办理| 国产在线视频一区二区| 国产成人午夜福利电影在线观看| 欧美变态另类bdsm刘玥| 国产在线视频一区二区| 九草在线视频观看| 午夜福利网站1000一区二区三区| 久久99精品国语久久久| 22中文网久久字幕| 男女啪啪激烈高潮av片| 国产精品偷伦视频观看了| 这个男人来自地球电影免费观看 | 日韩欧美一区视频在线观看 | 又黄又爽又刺激的免费视频.| 久久人人爽人人片av| 国产在线一区二区三区精| 人妻 亚洲 视频| av福利片在线观看| 只有这里有精品99| 亚洲欧美日韩卡通动漫| 少妇精品久久久久久久| 蜜臀久久99精品久久宅男| 国产精品一区二区在线不卡| 中文字幕免费在线视频6| 成人亚洲精品一区在线观看 | 亚洲av综合色区一区| 内射极品少妇av片p| 观看av在线不卡| 国产成人免费无遮挡视频| 老熟女久久久| 久久久亚洲精品成人影院| a级毛片免费高清观看在线播放| 亚洲精品成人av观看孕妇| 亚洲国产精品999| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 99热这里只有是精品50| 2022亚洲国产成人精品| 男男h啪啪无遮挡| 国产日韩欧美亚洲二区| 91久久精品电影网| 亚洲色图综合在线观看| 精品亚洲成国产av| freevideosex欧美| 欧美日韩视频高清一区二区三区二| 亚洲精品中文字幕在线视频 | 91久久精品电影网| 久久青草综合色| 九九爱精品视频在线观看| 老司机影院毛片| 中国三级夫妇交换| 在线免费观看不下载黄p国产| 人妻一区二区av| av国产免费在线观看| 美女福利国产在线 | 久久精品久久久久久噜噜老黄| 在线观看免费高清a一片| 久久久a久久爽久久v久久| 成人毛片a级毛片在线播放| 91久久精品国产一区二区三区| 久久久久性生活片| 欧美日韩综合久久久久久| 国产国拍精品亚洲av在线观看| 99热6这里只有精品| 日韩国内少妇激情av| 久久久成人免费电影| 亚洲av免费高清在线观看| 人人妻人人看人人澡| av免费观看日本| 欧美日韩国产mv在线观看视频 | 欧美一区二区亚洲| 老熟女久久久| freevideosex欧美| 丰满少妇做爰视频| 久久久精品免费免费高清| 国产精品成人在线| 最近手机中文字幕大全| 久久久久久久久久成人| 18禁裸乳无遮挡动漫免费视频| 欧美xxxx性猛交bbbb| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 熟女人妻精品中文字幕| 国产成人freesex在线| 精品一区二区免费观看| 国产黄色视频一区二区在线观看| 国产在线视频一区二区| 少妇的逼好多水| 免费看av在线观看网站| 成人毛片60女人毛片免费| 一级二级三级毛片免费看| 亚洲不卡免费看| 制服丝袜香蕉在线| 亚洲色图综合在线观看| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 男人爽女人下面视频在线观看| 中文资源天堂在线| 亚洲综合色惰| 久久99热6这里只有精品| 女人久久www免费人成看片| 久久久久久久久大av| 下体分泌物呈黄色| 性高湖久久久久久久久免费观看| 91久久精品国产一区二区三区| 女的被弄到高潮叫床怎么办| 国产黄色视频一区二区在线观看| 国产精品不卡视频一区二区| 一级毛片 在线播放| 水蜜桃什么品种好| 女性生殖器流出的白浆| 激情五月婷婷亚洲| 国产 一区 欧美 日韩| 这个男人来自地球电影免费观看 | av国产精品久久久久影院| 精品人妻一区二区三区麻豆| 亚洲熟女精品中文字幕| 国产老妇伦熟女老妇高清| 欧美激情国产日韩精品一区| 久久人人爽人人爽人人片va| 极品教师在线视频| 亚洲精品视频女| 国产精品久久久久久av不卡| 蜜桃在线观看..| 久久久久精品久久久久真实原创| 欧美精品亚洲一区二区| 精品少妇黑人巨大在线播放| 精品久久国产蜜桃| av在线app专区| freevideosex欧美| 老司机影院成人| 国产精品99久久久久久久久| 有码 亚洲区| 如何舔出高潮| 男女啪啪激烈高潮av片| 99久久精品国产国产毛片| 人人妻人人爽人人添夜夜欢视频 | 国产精品一区二区在线不卡| 欧美一级a爱片免费观看看| 成人黄色视频免费在线看| 日本一二三区视频观看| 亚洲欧美日韩东京热| 自拍欧美九色日韩亚洲蝌蚪91 | 黄色配什么色好看| 亚洲精品国产成人久久av| 国产在线一区二区三区精| 午夜日本视频在线| 久久国内精品自在自线图片| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 日韩av不卡免费在线播放| 卡戴珊不雅视频在线播放| 午夜视频国产福利| 日韩中文字幕视频在线看片 | 丰满人妻一区二区三区视频av| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 国产精品女同一区二区软件| 在线观看免费视频网站a站| 又大又黄又爽视频免费| 国产亚洲一区二区精品| 欧美精品人与动牲交sv欧美| 我要看黄色一级片免费的| 麻豆成人av视频| 日韩中文字幕视频在线看片 | 777米奇影视久久| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说| 国模一区二区三区四区视频| 国产精品一区二区三区四区免费观看| 国产精品一区二区在线不卡| 最近最新中文字幕大全电影3| 国产 一区精品| 免费观看的影片在线观看| 伦精品一区二区三区| 又粗又硬又长又爽又黄的视频| 国产爽快片一区二区三区| 国产精品一区二区性色av| 亚洲色图综合在线观看| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久精品精品| 久久久欧美国产精品| 一级毛片 在线播放| 免费看日本二区| 高清黄色对白视频在线免费看 | 亚洲图色成人| 亚洲精品日韩av片在线观看| 国产亚洲一区二区精品| 亚洲av中文av极速乱| 插阴视频在线观看视频| 亚洲色图av天堂| 国产视频首页在线观看| 精品久久久噜噜| 少妇人妻 视频| 久久久久性生活片| 交换朋友夫妻互换小说| 久久国内精品自在自线图片| 国产精品.久久久| 成人影院久久| 国产午夜精品一二区理论片| 日韩av免费高清视频| 久久久久久久久久久丰满| av播播在线观看一区| 下体分泌物呈黄色| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 三级经典国产精品| 啦啦啦中文免费视频观看日本| 久久这里有精品视频免费| 我的女老师完整版在线观看| 日日啪夜夜爽| 精品久久久久久电影网| 晚上一个人看的免费电影| 日日啪夜夜撸| 久久精品夜色国产| 日韩av不卡免费在线播放| av不卡在线播放| 一个人看的www免费观看视频| 观看美女的网站| 久久这里有精品视频免费| 中国三级夫妇交换| 国产大屁股一区二区在线视频| 日韩伦理黄色片| 久久99热6这里只有精品| av网站免费在线观看视频| 一本久久精品| 久久久久久久久久人人人人人人| av卡一久久| 在线精品无人区一区二区三 | 大香蕉久久网| 精品少妇久久久久久888优播| 久久久精品免费免费高清| 五月玫瑰六月丁香| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 狠狠精品人妻久久久久久综合| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 高清午夜精品一区二区三区| videossex国产| 人妻制服诱惑在线中文字幕| 日韩成人av中文字幕在线观看| 国产又色又爽无遮挡免| 久久久精品94久久精品| 久久毛片免费看一区二区三区| 777米奇影视久久| 在线观看人妻少妇| 中国三级夫妇交换| 久久久久久久亚洲中文字幕| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 免费看日本二区| 国产精品偷伦视频观看了| 免费黄色在线免费观看| 亚洲精品久久久久久婷婷小说| 黄色视频在线播放观看不卡| 午夜福利高清视频| 97精品久久久久久久久久精品| 制服丝袜香蕉在线| 国产淫片久久久久久久久| 在线天堂最新版资源| 嫩草影院入口| 欧美最新免费一区二区三区| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 伦理电影免费视频| 三级经典国产精品| 国产免费视频播放在线视频| h日本视频在线播放| 免费观看性生交大片5| 亚洲性久久影院| 国产精品精品国产色婷婷| 另类亚洲欧美激情| 在线观看国产h片| 97超碰精品成人国产| 亚洲国产欧美人成| 国产成人午夜福利电影在线观看| 一级二级三级毛片免费看| 亚洲欧美成人精品一区二区| 在线观看国产h片| 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 男女无遮挡免费网站观看| 大码成人一级视频| 久久这里有精品视频免费| 日本猛色少妇xxxxx猛交久久| 中文字幕久久专区| 免费不卡的大黄色大毛片视频在线观看| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 亚洲美女搞黄在线观看| 精品久久久久久电影网| tube8黄色片| 成人国产av品久久久| 国产精品99久久99久久久不卡 | 久久人妻熟女aⅴ| 精品久久久精品久久久| 寂寞人妻少妇视频99o| 国产亚洲精品久久久com| 亚洲电影在线观看av| 性色avwww在线观看| 国产熟女欧美一区二区| 久久久色成人| 天天躁夜夜躁狠狠久久av| 最近2019中文字幕mv第一页| 久久99精品国语久久久| 如何舔出高潮| 亚洲伊人久久精品综合| 久久久久久久亚洲中文字幕| 有码 亚洲区| av视频免费观看在线观看| 狂野欧美激情性xxxx在线观看| 国产精品国产av在线观看| 精品久久国产蜜桃| 欧美老熟妇乱子伦牲交| 91在线精品国自产拍蜜月| 久久久久国产网址| 欧美zozozo另类| 久久婷婷青草| 爱豆传媒免费全集在线观看| h视频一区二区三区| 中国三级夫妇交换| 九九爱精品视频在线观看| 免费观看a级毛片全部| 如何舔出高潮| 美女国产视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产男人的电影天堂91| 午夜视频国产福利| 午夜免费鲁丝| 久久久久久久久久久免费av| 亚洲va在线va天堂va国产| 日本免费在线观看一区| 中文乱码字字幕精品一区二区三区| av在线蜜桃| 国产精品一区www在线观看| 午夜日本视频在线| 香蕉精品网在线| 黄片wwwwww| 亚洲av在线观看美女高潮| 高清日韩中文字幕在线| 在线观看免费视频网站a站| 国产视频首页在线观看| 亚洲最大成人中文| 性色avwww在线观看| 日本黄大片高清| 亚洲欧美一区二区三区国产| 欧美精品一区二区免费开放| 高清毛片免费看| 日日撸夜夜添| 秋霞伦理黄片| 黄色怎么调成土黄色| 免费大片黄手机在线观看| 在线观看免费高清a一片| 欧美区成人在线视频| 国产精品熟女久久久久浪| 欧美精品人与动牲交sv欧美| 性色av一级| 在线观看一区二区三区| 亚洲av成人精品一区久久| 国产精品三级大全| 一个人看视频在线观看www免费| 美女福利国产在线 | 男男h啪啪无遮挡| 全区人妻精品视频| 久久久久国产精品人妻一区二区| av免费观看日本| 日日啪夜夜爽| 男女边吃奶边做爰视频| 人人妻人人爽人人添夜夜欢视频 | av女优亚洲男人天堂| 国内少妇人妻偷人精品xxx网站| 久久久久性生活片| 亚洲欧洲国产日韩| 久久99热这里只有精品18| 97在线人人人人妻| 日本猛色少妇xxxxx猛交久久| 亚洲欧美成人精品一区二区| 少妇猛男粗大的猛烈进出视频| 夜夜看夜夜爽夜夜摸| 欧美精品亚洲一区二区| 观看av在线不卡| av黄色大香蕉| 精品久久国产蜜桃| 日本黄色日本黄色录像| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 久久久久久久国产电影| 亚洲精品乱久久久久久| 久久久欧美国产精品| av在线播放精品| 亚洲成人av在线免费| 国产片特级美女逼逼视频| 只有这里有精品99| 久久久久久久久久久丰满| 国产成人精品婷婷| 在线精品无人区一区二区三 | 男女啪啪激烈高潮av片| 亚洲国产成人一精品久久久| 精品午夜福利在线看| 亚洲精华国产精华液的使用体验| 久久 成人 亚洲| 欧美日韩一区二区视频在线观看视频在线| 精品人妻熟女av久视频| 最黄视频免费看| 国产 一区 欧美 日韩| 欧美少妇被猛烈插入视频| 亚洲在久久综合| 一区二区三区乱码不卡18| 国内少妇人妻偷人精品xxx网站| 亚洲精品中文字幕在线视频 | 国产精品一区二区在线不卡| 国产黄片美女视频| 乱系列少妇在线播放| 亚洲成人中文字幕在线播放| 国产成人精品一,二区| 在线观看国产h片| 人人妻人人澡人人爽人人夜夜| 中文乱码字字幕精品一区二区三区| 久久99蜜桃精品久久| 97在线人人人人妻| 狂野欧美激情性xxxx在线观看| 亚洲中文av在线| 国产亚洲精品久久久com| 国产精品国产三级专区第一集| 亚洲精品国产av蜜桃| 国产男人的电影天堂91| 精品少妇黑人巨大在线播放| 毛片女人毛片| 国产午夜精品久久久久久一区二区三区| 国产乱人偷精品视频| 一边亲一边摸免费视频| 黄色配什么色好看| 国产精品久久久久久精品电影小说 | 亚洲,一卡二卡三卡| 欧美xxⅹ黑人| 国产精品伦人一区二区| 最近最新中文字幕免费大全7| 午夜免费观看性视频| 久久99热这里只频精品6学生| 日本免费在线观看一区| 干丝袜人妻中文字幕| 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 精品久久久久久久末码| 男的添女的下面高潮视频| 嘟嘟电影网在线观看| 丰满人妻一区二区三区视频av| 日韩在线高清观看一区二区三区| 嫩草影院入口| 婷婷色麻豆天堂久久| 久久久久久久久久久丰满| 精品一区在线观看国产| 成人亚洲欧美一区二区av| 免费黄色在线免费观看| 国产成人91sexporn| 国产精品人妻久久久久久| 国产免费一区二区三区四区乱码| 国产黄色免费在线视频| 97在线人人人人妻| 搡老乐熟女国产| 波野结衣二区三区在线| 狂野欧美白嫩少妇大欣赏| 亚洲美女视频黄频| 80岁老熟妇乱子伦牲交| 欧美xxxx黑人xx丫x性爽| 午夜日本视频在线| 国产日韩欧美亚洲二区| 国产精品女同一区二区软件| 成年美女黄网站色视频大全免费 | 国产美女午夜福利| 日韩精品有码人妻一区| 小蜜桃在线观看免费完整版高清| 美女内射精品一级片tv| 日产精品乱码卡一卡2卡三| videos熟女内射| 国产精品一区二区在线不卡| 高清午夜精品一区二区三区| 国产无遮挡羞羞视频在线观看| 国产精品国产三级国产av玫瑰| 91狼人影院| 美女cb高潮喷水在线观看| 男女啪啪激烈高潮av片| 精品人妻一区二区三区麻豆| 免费大片18禁| 国产免费一级a男人的天堂| 女的被弄到高潮叫床怎么办| 国产亚洲午夜精品一区二区久久| av福利片在线观看| 韩国高清视频一区二区三区| 一本色道久久久久久精品综合| 欧美激情国产日韩精品一区| 中文乱码字字幕精品一区二区三区| 国产一区二区在线观看日韩| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡免费网站照片| 欧美日韩在线观看h| 大又大粗又爽又黄少妇毛片口| 国产成人免费无遮挡视频| 亚洲一区二区三区欧美精品| 99热这里只有精品一区| 有码 亚洲区| 久久国产精品大桥未久av | 人妻一区二区av| 国产老妇伦熟女老妇高清| 视频区图区小说| 国产成人午夜福利电影在线观看| 春色校园在线视频观看| 观看av在线不卡| 午夜视频国产福利| 一本久久精品| 欧美日韩精品成人综合77777| 亚洲av中文字字幕乱码综合| 一区二区三区乱码不卡18| 国产 一区精品| 国产伦精品一区二区三区四那| 丰满少妇做爰视频| 亚洲熟女精品中文字幕| 日韩欧美一区视频在线观看 | 亚洲人成网站高清观看| 欧美zozozo另类| 2022亚洲国产成人精品| 日本欧美视频一区| 天天躁日日操中文字幕| 街头女战士在线观看网站| 国产淫语在线视频| 成人无遮挡网站| 黄片无遮挡物在线观看| av专区在线播放| 18禁裸乳无遮挡免费网站照片| 亚洲成人中文字幕在线播放| 久久毛片免费看一区二区三区| 高清欧美精品videossex| 99热国产这里只有精品6| 熟女av电影| 久久久久精品性色| 九九久久精品国产亚洲av麻豆| 亚洲性久久影院| 水蜜桃什么品种好| 亚洲精品乱久久久久久| 国产黄片美女视频|