• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths

    2022-04-12 03:48:48YuhaoZhu朱宇豪RuiJin金銳YongWu吳勇andJianguoWang王建國(guó)
    Chinese Physics B 2022年4期
    關(guān)鍵詞:吳勇王建國(guó)

    Yuhao Zhu(朱宇豪) Rui Jin(金銳) Yong Wu(吳勇) and Jianguo Wang(王建國(guó))

    1Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2Center for Free-Electron Laser Science,DESY,Hamburg 22607,Germany

    3HEDPS,Center for Applied Physics and Technology,Peking University,Beijing 100084,China

    Keywords: eigenchannel R-matrix,oscillator strengths

    1. Introduction

    Atomic energy levels and optical oscillator strengths,particularly for Rydberg states, are crucial physical parameters in many physics fields, e.g., astrophysical spectroscopy,[1-3]diagnostic analysis of plasma,[4,5]quantum information processing[6-8]and so on. Specifically speaking,optical oscillator strengths between energy states are important for the understanding of energy balance and the rate of radiative decay in various types of astrophysical and laboratory plasma.[9-11]With the determination of line intensity ratios, the electron temperature, electron density and elemental abundances in plasma are indicated. In some special plasma environments,the radiation of Rydberg states cannot be neglected, e.g., the hot dense plasma.[12,13]Higher requirements are put forward for the richness of atomic energy levels and optical oscillator strengths. Although experimental measurements in spectroscopy have already made large promotion, they still cannot completely avoid absolute discrepancies. Therefore, precise theoretical calculations need play an indispensable role in atomic energy levels and optical oscillator strengths.

    While traditional atomic structure calculation methods,such as the configuration interaction[14](CI) method and many-body perturbation theory[15](MBPT),are generally believed that the computational costs are too expensive for Rydberg states. Fortunately, there is a correlative relationship between the atomic energy levels and corresponding electronion collision processes in terms of the analytical continuation property of the short-range scattering matrices.[16-18]Depending on this property, the eigenchannel based on a relativistic R-matrix(R-R-Eigen)[19-21]could provide the required atomic data mentioned above with adequate precision. In the scenario of an R-R-Eigen,a half-collision model where it could be regarded as an ion in low-lying excited states combined with an incident electron in the bound orbital or the continuum orbital composes the atomic system.Whatever in the bound or continuum energy regions,the short-range scattering matrices for the multi-channel process can be calculated accurately. One can extract the needed physical parameters in multi-channel quantum defect theory(MQDT)[22-26]from the scattering matrices,i.e.,the eigenchannel phase and transformation matrix. Due to the analytical continuation of the scattering matrices, MQDT parameters vary smoothly as a function of energy. It is sufficient for us to calculate the scattering matrices with a minority of energy points in order to obtain good MQDT parameters for the entire energy of interest. By employing the MQDT,all energy level positions in discrete energy regions will be predicted without missing anyone. Furthermore,various electron dynamics processes in atomic systems can be calculated using MQDT parameters (i.e., scattering matrices) checked by precise spectroscopy measurements, such as those of scatter,optical absorption,and radiation.

    Nitrogen is one of the most abundant elements found both on Earth and in the atmospheres of stars with huge demand for spectral line diagnosis. As an open-shell element, nitrogen also is extremely useful for plasma modeling. Previous research works[27-33]on the nitrogen atom have mainly studied the electronic structures and transitions for low-lying energy states because of the correlation effect of electrons. However, we are able to stretch the energy region to the extent of high Rydberg states with high precision and less computational costs using R-R-Eigen. In this work,the nitrogen atom has been investigated for the specific partial waveJπ=1.5+(+represents even parity). The present paper is organized as follows.The MQDT parameters of the selected physical channels are obtained in Subsection 2.1. The discrete energy levels of the major Rydberg series are calculated in Subsection 2.2.In Subsection 2.3,we calculate the optical oscillator strengths for the transition between the ground state and parts of the Rydberg series. The partial theoretical energy levels and corresponding optical oscillator strengths are exhibited in detail.Finally,the paper ends with a short summary.

    Table 1. Physical channels with corresponding eigenchannels for N system with Jπ =1.5+ symmetry.

    2. Theoretical methods and calculation results

    2.1. Calculation of the MQDT parameters

    The construction of the nitrogen atom system is from the model of an electron collision with a nitrogen cation. The wavefunction of the N+1 system (i.e., ion with an electron)is solved by a method that seems like a traditional relativistic R-matrix.[34-37]In the inner region, the scattering system is treated as the bound state, i.e., the CI expansion of the internal wavefunction,since there is a strong exchange and correlation effects between the scattering electron and the target electrons. On the other hand, the incident electron is in the long-range multipole potential field of the target in the outer region. We can obtain the exact wavefunction of the electrons by neglecting the exchange and correlation effects. The inner and outer wavefunctions are connected by the R matrix to construct the total wavefunction of the N+1 system.Thus,we can derive the reaction matrices (K matrices) from the N+1 electron wavefunction defined on a certain boundary in the reaction zone. The electron wavefunction in the R-R-Eigen is as follows:

    wherenpandncare the number of physical and computational channels, andΘjis the corresponding radial wavefunctions of the N+1 electron system. Note that the definitions of the channels are different from the traditional R-matrix.[38]For theithphysical channel,the regular and irregular Coulomb wavefunctions,fi(rN+1,E)and gj(rN+1,E),modified by the appropriate long-range polarization interactions,cover the entire set of the one-electron orbitals, with both negative and positive energy.[23]The scattering matricesSijare extracted from the reaction matricesKij. We transform the wavefunction into an eigenchannel representation and the short-range scatter matrices with a specific total angular momentum and parityJπare diagonalized as follows:

    where the eigenchannel phaseμαandnp×nporthogonal transformation matrixUiαare the main parameters in MQDT.The transformation matrix between the eigenchannels and physical channelsUiαcan usually be characterized as Eulertype angles[16,22]θk,k=1,...,np(np-1)/2.

    We take account of 12 physical channels in the scattering matrices calculation of N withJπ= 1.5+symmetry.As the scattering energy varies from the bound-state energy region to the continuum-state energy region, the number of physical channels increases gradually rises from the mathematical properties of the Coulomb wavefunctions,[39]i.e., 2,5, 8, and 12 channels are in the four different energy regions, respectively. More specifically, in the energy region of-0.225 Ry to-0.125 Ry, there are two physical channels,namely,N+(3P1)s1/2and N+(3P2)s1/2. In the energy of-0.125 Ry to-0.06 Ry,there are five physical channels with three additional channels,namely,N+(3P0)d3/2,N+(3P1)d3/2,N+(3P1)d5/2. Three extra channels in the eight physical channels energy region of-0.06 Ry to 0.08 Ry are N+(3P2)d3/2,N+(3P2)d5/2, N+(3P2)g7/2, respectively. The 12 physical channels with four additional channels, i.e., N+(1D2)s1/2,N+(1D2)d3/2,N+(1D2)d5/2,N+(1D2)g7/2,are in the final energy region of 0.08 Ry to 0.18 Ry. For better identification of physical channels, we list all 12 physical channels(JJnotation) with their corresponding eigenchannels (LSnotation)in Table 1. Due to the number of physical channels equal to the eigenchannels in each independent energy region,there are four transformation matricesUiαwith the same dimension as the number of eigenchannels,which are represented by 1,10,28, 66 Euler-type angles in the four energy regions respectively.

    The MQDT parametersUiαandμαvarying via the energy are shown in Fig. 1(a) and 1(b), respectively. As we see, the MQDT parametersμαandUiαvary as functions of the energy smoothly over the whole energy region, which substantially reflects the analytical continuation property of the scattering matrices. Evidently,all of the connections between the identical channels in the adjacent energy regions belong to the type-I connection with weak interchannel interactions.[20]Based on the analytical continuation property of scattering matrices,all discrete energy levels can be obtained without missing anyone in the framework of the MQDT in the next section.

    Fig. 1. Eigen-quantum defects μα, Euler angles θk for Uiα matrix in the Jπ =1.5+ symmetry of N.The dashed red lines indicate the connection position of different channel regions. The zero energy of abscissa represents the first ionization threshold of 3P0 and all the ionization thresholds of N are plotted with the dashed blue lines. Note that the labels of channels on the right are only for eigen-quantum defectsμα.

    2.2. Calculation of the discrete energy levels

    In order to obtain the discrete energy levels,we briefly introduce the MQDT. The energy eigenfunctions are expressed as the linear combination of eigenchannel wavefunctions,i.e.,

    whereCiαis the cofactor of the elementFiαof the determinant|Fiα|, and the choice of indexiis arbitrary. The solutions to Eqs.(5)and(6), i.e., discrete sets of the numbersνi, provide discrete energy levels of the perturbed Rydberg series.

    Utilizing the smooth MQDT parameters, we can solve Eqs. (5) and (6) to obtain the energy levels that can be compared with the precision spectroscopic measurements to correct scattering matrices. In our case of the nitrogen atom withJπ=1.5+,three thresholds are involved in the interested energy region leading to three principal quantum numbersν3P0,ν3P1,ν3P2.For the atomic system with more than two ionization thresholds,one can adopt a projected high dimensional quantum-defect graph (symmetrized), i.e., JHANGZ plot, to show the results of the graphic method. More precisely, we use the energy constraint from Eq.(5)to project the problem of three-dimensional solution of Eq. (6) (i.e., three unknown variables) to an advisable two-dimensional subspace through selecting arbitrary two of the three principal quantum numbers(ν3P0,ν3P1,ν3P2) as known variables. In this calculation, it is appropriate to select a two-dimensional plot withν3P0versus-ν3P1as a way of physical understanding. Thus, theν3P1is the known variables with unknown variablesν3P0,ν3P2to scan the energy ofν3P1. Effective principal quantum numbers are projected out in Eq.(6)with the following energy constraint:

    whereqis the target charge andIis the ionization threshold.

    In Fig.2(JHANGZ plot),one can see that the seven differently colored branch curves determined by mixing coefficientAαof the eigenchannel wavefunction represent the different eigenchannel effective phase shifts solved by Eq. (6).There are four quasi-horizontal differently colored branch curves, including black, red, orange and purple, which represent channels with3P0d3/2(4F),3P1s1/2(4P),3P2d3/2(4P),3P2d5/2(2P),respectively. On the other hand,three quasiperiodic resonant colored branch curves,blue,pink and green,represent channels with3P1d3/2(4D),3P1d5/2(2D),3P2s1/2(2P),respectively.The dashed lines are the Rydberg relationship between the projected ionization thresholds3P0and3P1.What is more,the crossing points between the dashed lines of the Rydberg relationship and solid curves of the seven colored branch curves are the theoretical energy level positions for the relevant eigenchannel.We have labeled the theoretical energy levels with various symbols, i.e., black circle, red triangle, blue five-pointed star,pink pentagon,green square,orange inverted triangle and purple rhombus, representing each eigenchannel determined by the corresponding color, respectively. The abscissa is the principal quantum number identified by Eq. (5)for the different eigenchannel. It is noted that discrepancies of tunnel depth in the multi-electronic system result in diverseνof s wave and d wave channels(decided by the different types of the incident continuous electron). For the condition of N withJπ=1.5+symmetry, the 65 experimental values in the NIST[40]and corresponding existing theoretical values under these projection thresholds are labeled in Fig. 2. Compared with available experimental data, the precision of the shortrange scattering matrices is estimated to be within 2%. In this framework, one can systematically obtain all energy levels without missing anyone by employing the MQDT, rather than calculating energy levels one by one like in traditional methods.

    Fig.2. Projected high-dimensional quantum-defect graph. Quantum-defect-ν3P0 (mod 1)versus ν3P1 plot of N Jπ =1.5+ partial wave. The dashed cyan lines are the Rydberg relationship between the two ionizations of 3P0 and 3P1. The differently colored solid curves indicate F=0,i.e., Eq.(6). The crossing points between the solid curves and dashed lines are the positions of theoretical energy levels. The corresponding energy level positions are labeled with different types of symbols. i.e.,black circles are d wave4F,red triangles are s wave4P,blue five-pointed stars are d wave 4D,pink pentagons are d wave 2D,green squares are s wave 2P,orange inverted triangles are d wave 4P and purple rhombuses are d wave 2P. All theoretical energies results are indicated as solid symbols, and available experimental energies are presented by the open symbols for comparison. Note that the energy grid at the top is not equidistant,but increasingly dense.

    2.3. Optical oscillator strengths

    After obtaining the exact eigenchannel wavefunction,optical absorption and radiation of atomic systems can be investigated. The optical oscillator strengths (OOSs) ofn-th state could be derived from the mixing coefficient for the different channel via

    We calculate the OOS of N for the transition between the ground state and a portion of the Rydberg series which have the sameLSnotation. It is noted that computational costs of the energy levels and OOSs for highly excited states are considerably less than for conventional methods.[14,15]In Table 2,the calculation results are listed,including the principal quantum number of the projected ionization thresholdν3P1, theoretical energy levels,experiments energy levels from NIST[40]and the length and velocity values of the oscillator strengths for the transition between the ground state4So3/2and Rydberg series with the terms4P3/2and2P3/2. The theoretical energy levels generally coincide with the experiments with a precision of better than one percent. To our knowledge, we only found calculations[27,28,31]that reported OOS for relevant fine structures with the configurations 2s22p23s and 2s22p23d in the transition conditions of4So3/2-4P3/2and4So3/2-2P3/2. As we see, the discrepancies between our theoretical results and others[28,31]in the condition of configuration 2s22p23s with transition of4So3/2-4P3/2are within 10%. However,the conditions of the configurations 2s22p23s and 2s22p23d with transition of4So3/2-2P3/2are more than 10%,which may result from the different expansions of wavefunctions. Precisely,the basis sets in our method are a group of scattering channel wavefunctions, others[28,31]have usually employed the traditional atomic orbital basis sets. We also found that there are few experimental and other theoretical results in highly excited states for comparison. As a matter of fact, it is an enormous challenge for experiments and traditional methods to study the optical oscillator strengths of the Rydberg states near the ionization threshold. Further experimental and theoretical studies on the OOSs of Rydberg states are necessary. As for the scenario of R-R-Eigen, a specific N+1 system channel can be ascertained in advance based on the principle of scattering. We can accurately obtain a series of bound states of this channel and corresponding dynamics conveniently through energy determination. Namely,the complete basis of the total electronic wavefunction is formed by the wavefunctions of different scattering channels.

    Table 2. Energy levels and the length(L)and velocity(V)values of OOS for the transitions of 4So3/2-4P3/2 and 4So3/2-2P3/2 are listed. The ν3P1 is the principal quantum number for the state of corresponding Rydberg series.

    3. Summary

    With employing the R-R-Eigen method, we calculate the short-range scattering matrices of the e+N+system forJπ=1.5+symmetry which provided good MQDT parameters(μα,Uiα) in the energy region from-0.225 Ry to 0.18 Ry.The smoothness of the MQDT parameters(i.e.,the analytical continuation of scattering matrices)is guaranteed by selecting the appropriate physical channels in different energy regions.Additionally, the accuracy of our calculated MQDT parameters is determined to be within 2%. All the connections of the MQDT parameters in different energy regions belong to the type-I connection, which has weaker eigenchannels interactions compared with the type-II connection.[20]In the condition for multi-thresholds of the atomic system, we propose the JHANGZ plot to perform the final result of solving the MQDT equations in the discrete energy region. The JHANGZ plot shows theoretical energy level positions and experimental values for each channel systematically. The theoretical energy levels in the current work are within one percent discrepancy compared to the values of the NIST. According to the precise spectroscopy measurements,we could review the MQDT parameters to obtain more accurate results. Namely, given the analytical continuation property of scattering matrices,the smoothness of MQDT parameters in all energy regions is necessary. Thus,in order to ensure the smoothness of the MQDT parameters, the slope of the MQDT parameters varying with energy will not be distorted,only a small translation of the parameters as a whole. In this way,we shall improve the numerical accuracy of the results without destroying the analytical continuation property of scattering matrices.

    In our work, the relevant physical channels dipole matrix elementsDαand the mixing coefficient of the eigenchannel wavefunction are calculated to obtain the optical oscillator strengths. The optical oscillator strengths for the transitions between the ground state and Rydberg series with terms4P3/2and2P3/2are exhibited thoroughly. There is good agreement between other theoretical calculations and ours in the condition of the configurations 2s22p23s and 2s22p23d. The optical oscillator strengths could supply abundant information about the optical transition of highly excited states to help us understand the influence of the radiation on the energy balance of high energy levels in hot dense plasma. Moreover, we look forward to more experiments and theoretical calculations in further studies on the optical oscillator strengths of the Rydberg states.

    Acknowledgments

    Project supported by the Science Challenge Project(Grant No. TZ2016005), the National Key Research and Development Program of China (Grant Nos. 2017YFA0403200 and 2017YFA0402300), and the CAEP Foundation (Grant No. CX2019022). We thank the Institute of Applied Physics and Computational Mathematics for the supercomputing source.

    猜你喜歡
    吳勇王建國(guó)
    椰子的身價(jià)
    Electron excitation processes in low energy collisions of hydrogen–helium atoms
    例談初中數(shù)學(xué)幾何圖形求證中輔助線的添加與使用
    吳勇書(shū)法作品
    M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤Z ≤94
    王建國(guó):除開(kāi)諧音梗,還有點(diǎn)東西
    等你
    Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy
    城里·城外——王建國(guó)油畫(huà)作品展
    柯川、吳勇中國(guó)畫(huà)作品
    在线永久观看黄色视频| 色尼玛亚洲综合影院| 亚洲男人的天堂狠狠| 九色国产91popny在线| 啦啦啦观看免费观看视频高清| 久久久久久久久中文| 香蕉久久夜色| 亚洲国产精品sss在线观看| 久久久精品欧美日韩精品| 久久午夜亚洲精品久久| 窝窝影院91人妻| 久久久久久免费高清国产稀缺| 午夜免费观看网址| 亚洲成av人片免费观看| 日日爽夜夜爽网站| 神马国产精品三级电影在线观看 | 一级毛片高清免费大全| 欧美激情久久久久久爽电影| 日本熟妇午夜| 亚洲国产精品合色在线| 亚洲专区国产一区二区| 国产精品98久久久久久宅男小说| 亚洲熟女毛片儿| 人妻夜夜爽99麻豆av| 每晚都被弄得嗷嗷叫到高潮| 国产精品影院久久| 亚洲国产看品久久| 男女床上黄色一级片免费看| 欧美日韩中文字幕国产精品一区二区三区| a级毛片a级免费在线| 日日干狠狠操夜夜爽| 男插女下体视频免费在线播放| 黄色片一级片一级黄色片| 国产成人欧美在线观看| 91大片在线观看| 国产成人av激情在线播放| 99国产精品99久久久久| 亚洲va日本ⅴa欧美va伊人久久| 一夜夜www| 国产三级黄色录像| 91av网站免费观看| 午夜福利在线观看吧| av福利片在线| 色综合欧美亚洲国产小说| 国模一区二区三区四区视频 | 国产精品亚洲一级av第二区| 大型黄色视频在线免费观看| 日本 av在线| 亚洲18禁久久av| 叶爱在线成人免费视频播放| 桃红色精品国产亚洲av| 老司机午夜十八禁免费视频| 午夜久久久久精精品| 黑人操中国人逼视频| 在线观看免费视频日本深夜| 国产精品久久久久久亚洲av鲁大| 国产蜜桃级精品一区二区三区| 久久久国产精品麻豆| 母亲3免费完整高清在线观看| 亚洲人成伊人成综合网2020| 亚洲男人的天堂狠狠| 99久久精品国产亚洲精品| 少妇的丰满在线观看| 中出人妻视频一区二区| 99热这里只有是精品50| 午夜日韩欧美国产| 999精品在线视频| 啦啦啦免费观看视频1| 免费电影在线观看免费观看| 久久香蕉国产精品| 色播亚洲综合网| 欧美色视频一区免费| 久久久久国产一级毛片高清牌| 国产人伦9x9x在线观看| 9191精品国产免费久久| 在线观看免费视频日本深夜| av中文乱码字幕在线| 国产精品一及| 18禁美女被吸乳视频| 在线观看日韩欧美| 少妇的丰满在线观看| 一夜夜www| 午夜精品在线福利| 午夜久久久久精精品| 成人国产综合亚洲| 午夜免费成人在线视频| 一a级毛片在线观看| 国产午夜精品久久久久久| 性色av乱码一区二区三区2| 女警被强在线播放| 久久久久九九精品影院| 很黄的视频免费| 欧美中文日本在线观看视频| 久久久精品大字幕| 777久久人妻少妇嫩草av网站| 三级国产精品欧美在线观看 | 99久久99久久久精品蜜桃| 亚洲中文字幕日韩| 亚洲国产精品999在线| 在线免费观看的www视频| 国产精品av视频在线免费观看| e午夜精品久久久久久久| 午夜福利免费观看在线| 91av网站免费观看| 听说在线观看完整版免费高清| 人成视频在线观看免费观看| 少妇裸体淫交视频免费看高清 | av视频在线观看入口| 香蕉国产在线看| 很黄的视频免费| 熟女少妇亚洲综合色aaa.| 淫妇啪啪啪对白视频| 欧美日韩国产亚洲二区| 国产一区二区三区视频了| 亚洲美女视频黄频| 五月玫瑰六月丁香| 叶爱在线成人免费视频播放| 一夜夜www| 香蕉国产在线看| 好男人在线观看高清免费视频| 久久人人精品亚洲av| 免费看a级黄色片| 亚洲av成人不卡在线观看播放网| 美女大奶头视频| av国产免费在线观看| 日韩 欧美 亚洲 中文字幕| 久久精品国产亚洲av香蕉五月| 99热只有精品国产| 成在线人永久免费视频| 1024手机看黄色片| 国产精品久久电影中文字幕| 午夜成年电影在线免费观看| 观看免费一级毛片| 国产av麻豆久久久久久久| 亚洲av成人一区二区三| 免费在线观看视频国产中文字幕亚洲| 欧美日韩精品网址| 亚洲真实伦在线观看| 国产欧美日韩一区二区三| 国产av不卡久久| 免费搜索国产男女视频| 亚洲一区高清亚洲精品| 99热这里只有是精品50| 精品国产超薄肉色丝袜足j| 午夜福利欧美成人| 亚洲18禁久久av| 一级片免费观看大全| 麻豆国产av国片精品| 三级毛片av免费| 特大巨黑吊av在线直播| 午夜福利成人在线免费观看| 最新美女视频免费是黄的| 看片在线看免费视频| 亚洲最大成人中文| 熟女电影av网| 亚洲精品中文字幕在线视频| 免费av毛片视频| 精品久久久久久久毛片微露脸| 日本免费a在线| 日本一二三区视频观看| 亚洲欧美激情综合另类| 九色国产91popny在线| 国产亚洲精品一区二区www| 国产一区二区三区视频了| 亚洲片人在线观看| av有码第一页| 久久久精品欧美日韩精品| 制服诱惑二区| 国产av一区在线观看免费| 国内精品一区二区在线观看| 国产亚洲精品第一综合不卡| a级毛片a级免费在线| 国产成人影院久久av| 校园春色视频在线观看| 亚洲欧美日韩东京热| 久久欧美精品欧美久久欧美| 精品乱码久久久久久99久播| 国产成人精品久久二区二区91| 亚洲一区高清亚洲精品| 日日摸夜夜添夜夜添小说| 国产乱人伦免费视频| 亚洲国产精品sss在线观看| АⅤ资源中文在线天堂| 99riav亚洲国产免费| 亚洲avbb在线观看| 亚洲国产精品合色在线| 亚洲国产精品sss在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久国产成人免费| 日韩大尺度精品在线看网址| 日本黄大片高清| www.999成人在线观看| 青草久久国产| 亚洲在线自拍视频| 日本黄大片高清| 老汉色av国产亚洲站长工具| 真人一进一出gif抽搐免费| 亚洲欧美日韩高清在线视频| 国产99白浆流出| 亚洲熟妇中文字幕五十中出| 成年人黄色毛片网站| 日日夜夜操网爽| 成人国产一区最新在线观看| 成在线人永久免费视频| 久久久久性生活片| 香蕉久久夜色| 丁香欧美五月| 人成视频在线观看免费观看| 国产精品 欧美亚洲| 精品不卡国产一区二区三区| 国产91精品成人一区二区三区| 久久性视频一级片| 怎么达到女性高潮| 老熟妇仑乱视频hdxx| a级毛片a级免费在线| 夜夜夜夜夜久久久久| 女人爽到高潮嗷嗷叫在线视频| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 成人亚洲精品av一区二区| 国产精品98久久久久久宅男小说| 国产av一区二区精品久久| 久久久久国内视频| 久久久久久久久免费视频了| 久久香蕉精品热| 亚洲男人天堂网一区| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区激情短视频| 99久久国产精品久久久| 麻豆一二三区av精品| 动漫黄色视频在线观看| 久久中文看片网| 好男人在线观看高清免费视频| 国产1区2区3区精品| 最好的美女福利视频网| 18禁美女被吸乳视频| 国产久久久一区二区三区| 一级黄色大片毛片| 亚洲精品色激情综合| 午夜精品久久久久久毛片777| 人妻丰满熟妇av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 在线观看一区二区三区| 久久伊人香网站| 亚洲午夜理论影院| 村上凉子中文字幕在线| 欧美日韩亚洲综合一区二区三区_| e午夜精品久久久久久久| 国产成+人综合+亚洲专区| 亚洲自拍偷在线| 国产亚洲欧美在线一区二区| 亚洲人与动物交配视频| netflix在线观看网站| 女人高潮潮喷娇喘18禁视频| 久久精品综合一区二区三区| 黄色片一级片一级黄色片| 欧美高清成人免费视频www| 村上凉子中文字幕在线| 亚洲一码二码三码区别大吗| 美女扒开内裤让男人捅视频| 日韩精品中文字幕看吧| 久久这里只有精品中国| 精品国产乱码久久久久久男人| 欧美中文日本在线观看视频| 熟妇人妻久久中文字幕3abv| 日韩 欧美 亚洲 中文字幕| 精品免费久久久久久久清纯| 亚洲国产精品久久男人天堂| 国产精品一区二区精品视频观看| 99久久精品热视频| 99久久无色码亚洲精品果冻| 高清在线国产一区| 日韩中文字幕欧美一区二区| 亚洲精品色激情综合| 一级片免费观看大全| 男女那种视频在线观看| 男人舔女人的私密视频| av在线天堂中文字幕| 精品久久蜜臀av无| 成人国产综合亚洲| 亚洲国产看品久久| 啪啪无遮挡十八禁网站| 丰满人妻熟妇乱又伦精品不卡| 在线观看66精品国产| 亚洲av美国av| 黄色片一级片一级黄色片| 日韩精品中文字幕看吧| 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线观看二区| 午夜福利视频1000在线观看| 在线观看舔阴道视频| 五月玫瑰六月丁香| www.精华液| 亚洲国产高清在线一区二区三| 制服丝袜大香蕉在线| 亚洲中文日韩欧美视频| 麻豆国产97在线/欧美 | 少妇粗大呻吟视频| 青草久久国产| 亚洲精品一卡2卡三卡4卡5卡| 一夜夜www| 国产亚洲精品av在线| 女生性感内裤真人,穿戴方法视频| 91大片在线观看| 国产高清激情床上av| 国产成人欧美在线观看| 在线视频色国产色| 狂野欧美激情性xxxx| 久久欧美精品欧美久久欧美| 一边摸一边抽搐一进一小说| 成人欧美大片| 村上凉子中文字幕在线| 午夜精品在线福利| 国产精品亚洲美女久久久| 黄色女人牲交| 亚洲成人久久爱视频| 亚洲一区中文字幕在线| 亚洲av美国av| 桃色一区二区三区在线观看| 一级黄色大片毛片| 亚洲国产欧美人成| 一卡2卡三卡四卡精品乱码亚洲| 我的老师免费观看完整版| 久久中文字幕一级| 亚洲国产精品久久男人天堂| 日本免费一区二区三区高清不卡| 成人午夜高清在线视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人精品中文字幕电影| 18禁裸乳无遮挡免费网站照片| 久久 成人 亚洲| av在线播放免费不卡| 精品欧美国产一区二区三| 搞女人的毛片| www.999成人在线观看| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 国产精品av久久久久免费| 中文字幕最新亚洲高清| 久久欧美精品欧美久久欧美| 亚洲精华国产精华精| 国产亚洲精品一区二区www| 黄片小视频在线播放| av片东京热男人的天堂| 又紧又爽又黄一区二区| a级毛片a级免费在线| √禁漫天堂资源中文www| 男人舔女人的私密视频| 免费人成视频x8x8入口观看| 一级毛片精品| 黄色女人牲交| 国产亚洲欧美98| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久中文| 久久精品国产清高在天天线| 亚洲一区高清亚洲精品| 我的老师免费观看完整版| 免费搜索国产男女视频| 午夜日韩欧美国产| 久久中文看片网| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 69av精品久久久久久| 日韩欧美国产在线观看| 一边摸一边做爽爽视频免费| 久久人妻福利社区极品人妻图片| 91麻豆av在线| 亚洲色图av天堂| or卡值多少钱| 久久久久久久久免费视频了| 巨乳人妻的诱惑在线观看| 久久性视频一级片| 成人高潮视频无遮挡免费网站| 欧美黄色片欧美黄色片| 在线观看日韩欧美| www日本在线高清视频| 欧美黄色片欧美黄色片| 国产单亲对白刺激| 麻豆久久精品国产亚洲av| 欧美zozozo另类| 亚洲 欧美一区二区三区| avwww免费| 午夜激情福利司机影院| 亚洲人成网站在线播放欧美日韩| 床上黄色一级片| 中出人妻视频一区二区| 日本成人三级电影网站| 90打野战视频偷拍视频| 欧美国产日韩亚洲一区| 免费看a级黄色片| 久久久国产成人免费| 婷婷精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区| av福利片在线| 久久国产精品影院| 床上黄色一级片| 可以免费在线观看a视频的电影网站| 动漫黄色视频在线观看| 搡老妇女老女人老熟妇| 欧美国产日韩亚洲一区| 免费在线观看影片大全网站| 欧美黑人巨大hd| 久热爱精品视频在线9| 日韩大码丰满熟妇| 成人av一区二区三区在线看| 亚洲欧美激情综合另类| www日本黄色视频网| 精品日产1卡2卡| 婷婷六月久久综合丁香| 国产成人av激情在线播放| 国产黄a三级三级三级人| 看黄色毛片网站| 久久中文字幕人妻熟女| 白带黄色成豆腐渣| 国产精华一区二区三区| 999久久久国产精品视频| x7x7x7水蜜桃| 五月伊人婷婷丁香| 国产精品永久免费网站| АⅤ资源中文在线天堂| 在线观看舔阴道视频| 亚洲七黄色美女视频| 国产精品99久久99久久久不卡| 国产成人影院久久av| 999精品在线视频| 国产麻豆成人av免费视频| 女人高潮潮喷娇喘18禁视频| 午夜福利成人在线免费观看| 免费在线观看完整版高清| 啦啦啦韩国在线观看视频| 九九热线精品视视频播放| 国产精品亚洲美女久久久| 日韩av在线大香蕉| 精品国产亚洲在线| 久久这里只有精品19| 亚洲国产精品sss在线观看| 欧美中文综合在线视频| 亚洲国产欧洲综合997久久,| 久久精品国产综合久久久| 亚洲av成人av| 日本在线视频免费播放| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 欧美精品啪啪一区二区三区| 亚洲性夜色夜夜综合| 成人精品一区二区免费| 性色av乱码一区二区三区2| 婷婷精品国产亚洲av| 香蕉国产在线看| 此物有八面人人有两片| 成熟少妇高潮喷水视频| 亚洲精品色激情综合| 一区二区三区国产精品乱码| 久久久久久大精品| www.熟女人妻精品国产| 五月伊人婷婷丁香| av片东京热男人的天堂| 大型黄色视频在线免费观看| 午夜精品在线福利| 国产精品亚洲一级av第二区| 一级片免费观看大全| www日本在线高清视频| 国内毛片毛片毛片毛片毛片| 日韩欧美在线乱码| 亚洲精品国产精品久久久不卡| 黑人欧美特级aaaaaa片| 99久久精品热视频| 校园春色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 一进一出抽搐gif免费好疼| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 中国美女看黄片| 国产精品98久久久久久宅男小说| 亚洲av熟女| 亚洲欧美日韩东京热| 黄色视频,在线免费观看| 成人精品一区二区免费| 麻豆国产97在线/欧美 | 在线观看www视频免费| 18美女黄网站色大片免费观看| 精品不卡国产一区二区三区| 国产麻豆成人av免费视频| 巨乳人妻的诱惑在线观看| 最新美女视频免费是黄的| 91成年电影在线观看| 婷婷亚洲欧美| 午夜精品久久久久久毛片777| 久久久久亚洲av毛片大全| bbb黄色大片| 亚洲欧美精品综合一区二区三区| 男人舔女人的私密视频| 成年人黄色毛片网站| 午夜激情av网站| 国产高清有码在线观看视频 | 免费在线观看视频国产中文字幕亚洲| 床上黄色一级片| 欧美一级a爱片免费观看看 | 亚洲av成人精品一区久久| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 在线免费观看的www视频| 亚洲av成人精品一区久久| 欧美黄色片欧美黄色片| 午夜日韩欧美国产| 国产精品久久视频播放| 日韩精品青青久久久久久| 国产精品久久电影中文字幕| 麻豆国产97在线/欧美 | 在线观看美女被高潮喷水网站 | 免费在线观看亚洲国产| 久热爱精品视频在线9| 久久精品成人免费网站| 亚洲中文字幕日韩| 午夜福利视频1000在线观看| 一级黄色大片毛片| 丝袜人妻中文字幕| 麻豆成人av在线观看| www.www免费av| 亚洲中文字幕日韩| 欧美乱妇无乱码| 老司机靠b影院| 麻豆成人午夜福利视频| ponron亚洲| 99热6这里只有精品| 男女午夜视频在线观看| 成人国语在线视频| 18禁黄网站禁片免费观看直播| 色av中文字幕| 99久久精品热视频| 久久午夜综合久久蜜桃| 亚洲,欧美精品.| 国内精品久久久久精免费| 国产黄a三级三级三级人| 看片在线看免费视频| 国产一区二区三区在线臀色熟女| 在线观看舔阴道视频| 一个人免费在线观看电影 | 国产精品久久久久久久电影 | 国产av一区二区精品久久| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜一区二区| 一级毛片女人18水好多| 视频区欧美日本亚洲| 国产午夜精品论理片| 国产伦人伦偷精品视频| 欧美不卡视频在线免费观看 | 国产午夜福利久久久久久| 免费在线观看黄色视频的| 免费在线观看影片大全网站| 免费在线观看成人毛片| 搡老岳熟女国产| 成人18禁在线播放| 亚洲,欧美精品.| 窝窝影院91人妻| 最近视频中文字幕2019在线8| 国产熟女xx| 18禁美女被吸乳视频| av免费在线观看网站| 男插女下体视频免费在线播放| 欧美一区二区精品小视频在线| 国产日本99.免费观看| 欧美av亚洲av综合av国产av| 91麻豆av在线| 久久精品国产亚洲av香蕉五月| 日本三级黄在线观看| 美女高潮喷水抽搐中文字幕| 欧美最黄视频在线播放免费| 亚洲精品粉嫩美女一区| 国产爱豆传媒在线观看 | 亚洲欧美精品综合一区二区三区| 色精品久久人妻99蜜桃| 亚洲人成网站在线播放欧美日韩| 国产亚洲av嫩草精品影院| 日本免费一区二区三区高清不卡| 国产97色在线日韩免费| 久久欧美精品欧美久久欧美| 精品久久蜜臀av无| 亚洲激情在线av| 成人一区二区视频在线观看| 黄色视频,在线免费观看| 曰老女人黄片| 欧美乱妇无乱码| 女人高潮潮喷娇喘18禁视频| 午夜成年电影在线免费观看| 久久中文看片网| 精品久久久久久久人妻蜜臀av| 久久中文字幕一级| 婷婷精品国产亚洲av| 好男人在线观看高清免费视频| 久久人人精品亚洲av| 日本三级黄在线观看| 亚洲熟妇中文字幕五十中出| 欧美日本视频| 亚洲五月天丁香| 国内少妇人妻偷人精品xxx网站 | 欧美大码av| 亚洲国产欧美人成| 99国产精品一区二区三区| 18美女黄网站色大片免费观看| 国产一区二区三区视频了| 久久久久性生活片| 国产精品av视频在线免费观看| 高潮久久久久久久久久久不卡| 国产精品精品国产色婷婷| 国产精品99久久99久久久不卡| 国产av又大| 美女大奶头视频| 观看免费一级毛片| 欧美日韩中文字幕国产精品一区二区三区| 欧美绝顶高潮抽搐喷水|