• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤Z ≤94

    2022-01-23 06:34:32JuMeng孟舉WenXianLi李文顯JiGuangLi李冀光ZeQingWu吳澤清JunYan顏君YongWu吳勇andJianGuoWang王建國
    Chinese Physics B 2022年1期
    關(guān)鍵詞:吳勇王建國

    Ju Meng(孟舉) Wen-Xian Li(李文顯) Ji-Guang Li(李冀光) Ze-Qing Wu(吳澤清)Jun Yan(顏君) Yong Wu(吳勇) and Jian-Guo Wang(王建國)

    1National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2Key Laboratory of Solar Activity,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100012,China

    3HEDPS,Center for Applied Physics and Technology,and College of Engineering,Peking University,Beijing 100871,China

    Keywords: Ag-like ions,magnetic dipole transition,fine-structure splitting

    1. Introduction

    Tungsten (W) is selected as a plasma-facing material for the International Thermonuclear Experimental Reactor(ITER),a magnetic confinement fusion device,because of its favorable physical, chemical and thermal properties, that is,the high energy threshold of sputtering, low sputtering yield,high re-deposition efficiency, and low tritium retention.[1-4]The W ions including Ag-like W27+, however, cause power loss by radiative emission and then may quench the fusion reactions, if entering into the edge region of plasma.[5]Therefore,the spectroscopic diagnostics of these W ions are critical for the operation of the fusion plasmas. On the other hand,accurate atomic data of these W ions are also essential to acquire the state of the fusion plasma such as electron densities and temperatures. Moreover, Ag-like ions, e.g., Nd13+and Sm15+,have been proposed as candidates for the development of the next generation atomic clocks due to their long-lived metastable states,transition wavelengths in optical range,and sensitivity to variation of the fine-structure constant.[6-8]In addition,theoretical investigation on the simple ground states of Ag-like ions can also be useful to test the quantum electrodynamics(QED)effects.

    Measurements and theoretical calculations have been performed on the magnetic dipole (M1) transition energies and rates in the ground configuration 4d104f of Ag-like ions.Sugar and Kaufman[9]obtained the excitation energies of Ag-like ions(Z=58-67,74)with a high-voltage-triggered spark and photographed on the NBS 10.7 m grazing incidence spectrograph in the early 1980s. Over the past decades, most of the experiments were carried out by using the electron beam ion traps (EBITs), through which one could directly measure the fine-structure splittings in the ground configuration. For instance, Feiet al.[10]observed the M1 transition of Ag-like W (Z=74) using the Shanghai permanent magnet electron beam ion trap (SH-PermEBIT). Subsequently, Zhaoet al.[11]reported the wavelength for the M1 transition of Ag-like Yb(Z=70)with the same experimental facility. Murataet al.[12]identified the M1 lines of Ag-like Ho (Z=67), Er (Z=68)and Tm (Z= 69) ions by employing the compact electron beam ion trap (CoBIT) in Tokyo-EBIT laboratory.[13]In theory, Safronovaet al.[14]calculated the fine-structure splitting of the 4f2Foterm for certain Ag-like ions at the neutral end using the relativistic many-body perturbation theory(RMBPT).Ivanova[15,16]reported the energy separations in Ag-like ions with 50≤Z ≤86 based on the relativistic perturbation theory with a model potential(RPTMP).In the framework of the multi-configuration Dirac-Hartree-Fock (MCDHF) method,Dinget al.[17]gave the M1 transition energies along the Aglike isoelectronic sequence, in which only the core-valence(CV) correlation related to electrons in the 4d core subshell was included. Subsequently,Grumeret al.[18]reevaluated the wavelengths and calculated the corresponding transition rates in Ag-like ions with 50≤Z ≤94 based on the large-scale multiconfiguration Dirac-Hartee-Fock(MCDHF)calculations.In particular, they considered the effect of the CV correlation withn=4 andn=3 shells and pointed out the importance of these deep-core-valence correlations. Besides the systematic calculations for Ag-like ions along the isoelectronic sequence, there are also some investigations for a few individual ions.[6-8,19,20]Dzubaet al.[8]and Safronovaet al.[6,7]used the correlation potential method and the relativistic linearized coupled-cluster method with inclusion of all single, double,and partial triple excitations(SDpT),respectively,to obtain the transition energies for Ag-like Nd13+and Sm15+.Safronovaet al.[19,20]also made a detailed study on the atomic parameters of Ag-like W(Z=74)ion employing the RMBPT method.

    As mentioned above, the calculated M1 transition energies in the ground configuration of Ag-like ions are mainly obtained with the MCDHF and RMBPT methods. These two methods are based on different theoretical approximations,that is, the variational principle and perturbation theory, respectively. Comparison of these two results can provide a reliable evaluation of accuracy for the atomic data of Ag-like ions. However, the difference in the fine-structure splittings is obvious for the low-Zions between the MCDHF[18]and the RMBPT[14]calculations,although the agreement becomes better at the high-Zend of the sequence. Therefore,it is necessary to carry out a new calculation,especially for the low-Zions in the Ag-like isoelectronic sequence, to provide more reliable and accurate atomic data.

    In the present work,we have performed systematic calculations on the M1 transition energies and rates in the ground configuration 4d104f of Ag-like ions betweenZ=62 and 94 using the second-order RMBPT implemented in the Flexible Atomic Code(FAC).[21]In order to evaluate the reliability of the present RMBPT results,extensive comparisons have been made with the available experimental data,as well as with the previous theoretical results. The data in the present work is useful for the spectral simulation and plasma diagnostics.

    2. Theoretical method

    In the present work,the second-order RMBPT is adopted to perform the calculations. This method was implemented within the FAC package by Gu[22-25]and has been widely used in atomic structure calculations. The details of the RMBPT method can be found elsewhere.[26-30]Here, we only give a brief description.

    The Hamiltonian of a many-electron atomic system withNelectrons is written in the Dirac-Coulomb-Breit (DCB)approximation[31]as

    wherehd(i)is the one-electron Dirac Hamiltonian in which the electron kinetic energy,the resting energy,and the coulomb interaction between electrons and the nuclei are included,Bijis the frequency-independent Breit interaction,

    From Eq.(6),we know that the eigenvalues and eigenfunctions ofHeffare the exact energies and the model functions,respectively. This means that the true energies of the system can be obtained by solving the eigenvalue problem of an effective HamiltonianHeffin the model spaceM. The wave operatorΩsatisfies the operator relation

    in terms of matrix elements in the model spaceM.

    By solving Eq.(6),we can obtain the total energy of the system as follows:

    The Dirac-Fock-Slater approximation is employed to produce the function basis{Φr}. This means that the central potentialU(r)in Eq.(3)is a modified Dirac-Fock-Slater potential including the spherically averaged potential due to bound electrons, and the local approximations to the exchange interactions excluding the self-interaction term. Furthermore, one-electron radial orbitals can be obtained by the self-consistent field procedures.

    In the present work, theMspace includes the states belonging to 4d104f, while theNspace consists of all possible configurations generated by single and double excitation from each occupied orbital of the configurations in theMspace.For one-electron excitation, the maximum principal quantum numbernvalues is set to 170, and for double excitation, the maximumnvalues to 65. In addition, the maximum orbital angular quantum number is set tol=30. The extrapolation beyond the maximumnvalues is carried out for building the effective Hamiltonian. In addition, several small higher order QED effects are also taken into account in the present calculations, including the vacuum polarization and self-energy.In order to evaluate the accuracy of our calculations, we also investigated the convergence of atomic parameters concerned by increasing theNspace as discussed in Ref. [30]. For example,we performed an additional calculation for Ag-like Sm(Z=62)and Ag-like Eu(Z=63),in which we set the maximalnvalues for single and double excitations up to be 225 and 80,respectively. We found a good agreement between these two calculations and the difference is less than 0.01%.

    3. Result and discussion

    3.1. Fine-structure energy levels

    The resulting M1 transition energies from the present RMBPT calculations for ions in Ag-like isoelectronic sequence with 62≤Z ≤94 are shown in Fig. 1. It is clear that the fine-structure energy separations increase rapidly and smoothly along the isoelectronic sequence. This confirms the argument by Grumeret al.in Ref.[18].

    In Table 1, we present our RMBPT results of the finestructure energy separations for the isoelectronic sequence as well as other available theoretical and experimental data.The ExptDIRrepresents energy separations measured directly by the observation of the 4f2Fo7/2→2Fo5/2M1 transition lines.[10-12]These experiments were performed by using the EBIT facilities, including the CoBIT[13]in Tokyo-EBIT laboratory and SH-Perm EBIT[33]at the Shanghai EBIT laboratory. The ExptINDstands for the indirect measurements, that is, the transition energies are deduced from the other transitions involving the higher excited levels.[9]The values in the brackets are based on the interpolated values of 4f2Fo7/2.[9]The available theoretical works for Ag-like ions, that is, the MCDHF calculations (hereafter referred to as MCDHF1) by Grumerat al.,[18]the RMBPT calculations (RMBPT2) by Safronovaet al.,[14]the MCDHF calculations(MCDHF2)by Dinget al.,[17]and Ivanova’s results based on RPTMP,[15,16]are also displayed for comparison. In Fig.2,we illustratively show the differences of the fine-structure separation obtained by the present RMBPT calculations from other theoretical and experimental data. It is clear that our results are in excellent agreement with the direct measurements; the relative deviations between our results and the direct experiments are-0.16%,-0.13%,-0.11%,-0.06% and-0.03%, respectively, for the ions withZ=67, 68, 69, 70, and 74. The deviations decrease with increase ofZalong the isoelectronic sequence. It should be stressed that these direct measurements were performed only for the Ag-like ions with highZ.As point out in Ref. [11], for the ions with lowerZ, the M1 transition lines lie in the infrared range and the corresponding transition probabilities are very small, which may make the direct measurement of the M1 transitions more difficult.Compared with the indirect measurements[9]for the lower-ZAg-like ions, the deviations between our results and indirect experimental values become larger than those in high-Zions from the direct experiments. Moreover,we find that these indirect experimental data show an irregular trend along with the isoelectronic sequence. Therefore,we argue that the larger deviations may arise from the experimental errors,but it requires further measurements with higher precision.

    Fig. 1. Energies of the 4d104f 2Fo fine-structure separation along the Ag-like isoelectronic sequence as a function of nuclear charge Z.

    Table 1. Comparisons of the present 4f 2Fo5/2,7/2 fine-structure splitting with the experimental data and previous theoretical data from different methods MCDHF1,[18] RMBPT2,[14] MCDHF2,[17] RPTMP.[15,16] The ExptDIR and ExptIND are directly and indirectly measured fine-structure energies,respectively. In the column of ExptIND,the values in the brackets are based on the interpolated values of 4f 2Fo7/2. All energies are given in cm-1.

    On the theoretical side, we compare our RMBPT calculations with the two existing MCDHF results[17,18]and the previous RMBPT2 calculations.[14]As shown in Fig. 2,our RMBPT calculations are in excellent agreement with MCDHF1 and RMBPT2 calculations for heavy Ag-like ions.For ions withZ ≥78, the relative deviations between these three results are less than 0.1%. As the nuclear chargeZdecreases, our RMBPT results and the MCDHF1 calculation still agree very well, and the largest difference is about 0.13% for Ag-like Sm (Z=62). However, the RMBPT2 results deviate from those by MCDHF1 and the present RMBPT results with decreasingZalong the isoelectronic sequence.Recently, Safronovaet al.[6,7]performed a new calculation for Ag-like Sm15+by employing the relativistic linearized coupled-cluster (CC) method and including all single, double, and partial triple excitations (SDpT). The relative difference between the present RMBPT calculations and their SDpT CC calculations for Ag-like Sm15+reduces to 0.43%,which is much smaller than that of the RMBPT2 results. From Fig. 2 we also observe that the discrepancies between the present and the MCDHF2 results are much larger than that from the MCDHF1 results and the latter has an irregular isoelectronic behavior. This may be due to the fact that only the CV correlation with 4dsubshell is included in the MCDHF2 calculations while the MCDHF1 and the present calculations consider the CV correlation withn=3, 4 shells. On the other hand,the deep-core-valence correlation contributes greatly to the final energy separations.[18]As discussed above, we believe that our RMBPT values and MCDHF1 values are more accurate compared with the MCDHF2 and RMBPT2 results,especially for the lower-ZAg-like ions. Finally, we compare our RMBPT calculations with the ones obtained with the RPTMP method.[15,16]calculations and other theoretical values.The inexplicable disagreement may arise from the inappropriate choice of the experimental reference values for the empirical model potentials used in the RPTMP calculations. Based on the above discussions,we suggest that the transition energies from the present calculations and MCDHF1 should be used as a reference.

    Fig.2. Percentage differences between the present and other theoretical and experimental fine-structure splittings of the Ag-like isoelectronic sequence as a function of atomic number Z. The ExptDIR and ExptIND represent directly and indirectly measured energy separations, respectively. Error bars of the direct experimental data points are available and included in the plot. The MCDHF1,[18] RMBPT2,[14] MCDHF2[17] and RPTMP[15,16] are earlier calculations.

    3.2. Wavelengths and transition probabilities

    In Table 2, we present the calculated (vacuum) wavelengths, transition rates and weighted oscillator strengths for M1 transitions between fine-structure energy levels in the 4d104f ground configurations of Ag-like ions along the isoelectronic sequence. The MCDHF1 calculations[18]are also given for comparation. In Fig.3,we compared theAvalues of the M1 transition obtained from the present RMBPT and those from the MCDHF1 method along the isoelectronic sequence.The differences of these two calculations decrease smoothly along the sequence,from 12.4%forZ=62 to 5.4%forZ=94.As shown in Table 2,the M1 transition rates are rather small,especially for the low-Zions. For such weak transitions, the agreement between the two independent calculations is satisfactory.

    As shown in Fig. 2, the isoelectronic trend of RPTMP results[15,16]exhibits a significant deviation from our RMBPT

    Table 2. Wavelength λ (?A),transition rates A(s-1)and oscillator strength gf of the M1 transition between 4f 2Fo5/2 and 2Fo7/2 in Ag-like ions with 62 ≤Z ≤94,the MCDHF1 results[18] are also listed for comparison.

    Fig. 3. Comparisons of the present calculated rates with those of the MCDHF1 calculations for the M1 4f 2F5o/ 2-2F7o/2 transition along the Ag-like isoelectronic sequence. The top panel shows the present Avalues and those from MCDHF1 and the bottom one is the differences between these two calculations.

    4. Conclusions

    In summary, we have calculated the M1 transition energies and rates in the ground configuration 4d104f of Aglike ions betweenZ=62 andZ=94 using the second-order RMBPT approach implemented in the FAC code. The present RMBPT energy separations show a smoothZ-dependence,and agree very well with the direct experimental data obtained from EBIT devices. The relative differences are less than 0.08%for Ag-like Yb23+and W27+,within 0.17%for Ag-like Ho20+,Er21+and Tm22+.Extensive comparisons of our wavelengths and rates for the M1 transition with the most recent large-scale MCDHF1 results[18]show that these two results are in good agreement with each other. For the fine-structure splittings, the maximum deviation between our RMBPT and the MCDHF1 results is less than 0.13%. For the transition rates, the relative discrepancies are less than~13% for all Ag-like ions concerned. We also demonstrate that for the ions at the beginning of the Ag-like isoelectronic sequence, our RMBPT and MCDHF1 results are more accurate than other theoretical values. Therefore,we believe that these two independent theoretical calculations can be used as the benchmark for the atomic data of Ag-like ions and will be useful for the line identifications of experimental spectra, as well as for the plasma spectra modeling and diagnostics in the fusion-plasma community.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 11874090, 11934004,11404180, 11604052, and 11774037), and the National Key Research and Development Program of China (Grant No.2017YFA0402300).

    猜你喜歡
    吳勇王建國
    椰子的身價(jià)
    Electron excitation processes in low energy collisions of hydrogen–helium atoms
    例談初中數(shù)學(xué)幾何圖形求證中輔助線的添加與使用
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書法作品
    王建國:除開諧音梗,還有點(diǎn)東西
    等你
    Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy
    城里·城外——王建國油畫作品展
    常懷關(guān)愛心 山里幫窮娃:記陽城縣董封鄉(xiāng)關(guān)工委常務(wù)副主任王建國
    中國火炬(2014年10期)2014-07-25 10:36:44
    伦理电影免费视频| 国产成人午夜福利电影在线观看| 日本91视频免费播放| 大又大粗又爽又黄少妇毛片口| 精品一区二区三卡| av在线app专区| 久久久国产欧美日韩av| 亚洲精品一二三| 免费少妇av软件| 99热这里只有是精品50| 精品少妇黑人巨大在线播放| 美女脱内裤让男人舔精品视频| 欧美最新免费一区二区三区| 欧美日韩综合久久久久久| 国产极品天堂在线| av免费在线看不卡| 国产av国产精品国产| 能在线免费看毛片的网站| 大香蕉97超碰在线| 六月丁香七月| 在线 av 中文字幕| 女性被躁到高潮视频| 99热这里只有是精品在线观看| 日韩一区二区三区影片| 亚洲精品中文字幕在线视频 | 香蕉精品网在线| a级毛色黄片| 纯流量卡能插随身wifi吗| 妹子高潮喷水视频| 亚洲av成人精品一区久久| 人妻一区二区av| 免费观看av网站的网址| 国产熟女午夜一区二区三区 | 美女主播在线视频| 18禁裸乳无遮挡动漫免费视频| 99热6这里只有精品| 精品亚洲成a人片在线观看| 性高湖久久久久久久久免费观看| 亚洲美女黄色视频免费看| 狂野欧美激情性xxxx在线观看| 99久久综合免费| 国产精品久久久久久久久免| 亚洲欧美日韩东京热| 免费人妻精品一区二区三区视频| 久久久久人妻精品一区果冻| 国产淫片久久久久久久久| 久久久久久久亚洲中文字幕| 成年美女黄网站色视频大全免费 | 国产av国产精品国产| 久热久热在线精品观看| 亚洲欧美日韩东京热| 日本午夜av视频| 天堂8中文在线网| 麻豆精品久久久久久蜜桃| 久久毛片免费看一区二区三区| 永久免费av网站大全| 精品午夜福利在线看| 中文字幕精品免费在线观看视频 | 狠狠精品人妻久久久久久综合| 亚洲在久久综合| 欧美精品一区二区免费开放| 日韩成人av中文字幕在线观看| 99热这里只有是精品在线观看| 中文资源天堂在线| 亚洲欧美精品专区久久| 偷拍熟女少妇极品色| a级毛色黄片| 亚洲性久久影院| 国产亚洲5aaaaa淫片| 搡老乐熟女国产| 51国产日韩欧美| 99久久精品一区二区三区| 亚洲精品aⅴ在线观看| 亚洲精品乱久久久久久| 男人和女人高潮做爰伦理| 亚洲av成人精品一区久久| 日本黄大片高清| 亚州av有码| 欧美日韩国产mv在线观看视频| av线在线观看网站| 国产av码专区亚洲av| 色吧在线观看| 春色校园在线视频观看| 日韩视频在线欧美| a级毛片在线看网站| 狂野欧美激情性xxxx在线观看| 三级国产精品片| 久久亚洲国产成人精品v| 国产精品国产三级专区第一集| 18禁在线播放成人免费| 香蕉精品网在线| 久久久久久久久久久免费av| 十分钟在线观看高清视频www | 日韩熟女老妇一区二区性免费视频| 精品久久久久久久久亚洲| 日本av手机在线免费观看| 婷婷色av中文字幕| 十八禁网站网址无遮挡 | 性色av一级| 国产成人一区二区在线| 3wmmmm亚洲av在线观看| 好男人视频免费观看在线| av黄色大香蕉| 亚洲国产精品一区二区三区在线| 免费av中文字幕在线| 简卡轻食公司| 亚洲久久久国产精品| 午夜av观看不卡| 国产高清有码在线观看视频| 久久精品国产鲁丝片午夜精品| 色网站视频免费| 久久久久久久久大av| 在现免费观看毛片| 午夜免费男女啪啪视频观看| 亚洲精品,欧美精品| 久久97久久精品| 亚洲精品乱码久久久v下载方式| 久久久久久久久久人人人人人人| 色婷婷av一区二区三区视频| 一区二区三区免费毛片| 午夜精品国产一区二区电影| 人体艺术视频欧美日本| 2018国产大陆天天弄谢| 韩国高清视频一区二区三区| 女人久久www免费人成看片| 九九久久精品国产亚洲av麻豆| 一级毛片我不卡| 亚洲av成人精品一区久久| 天天躁夜夜躁狠狠久久av| 久久久久人妻精品一区果冻| 欧美成人午夜免费资源| 亚洲国产精品一区二区三区在线| 一级二级三级毛片免费看| 午夜精品国产一区二区电影| 亚洲电影在线观看av| 亚洲内射少妇av| 99热全是精品| 人人妻人人澡人人爽人人夜夜| 99久久中文字幕三级久久日本| 国产精品嫩草影院av在线观看| 国产欧美日韩精品一区二区| 如日韩欧美国产精品一区二区三区 | 日韩不卡一区二区三区视频在线| 亚洲国产最新在线播放| 久热这里只有精品99| 在线观看免费日韩欧美大片 | 久久精品国产a三级三级三级| 大陆偷拍与自拍| xxx大片免费视频| 三级国产精品片| 国产成人精品福利久久| 爱豆传媒免费全集在线观看| 国产日韩欧美视频二区| 黄色一级大片看看| 777米奇影视久久| 国产精品一区www在线观看| 色5月婷婷丁香| 视频区图区小说| 最近手机中文字幕大全| 日韩欧美一区视频在线观看 | 亚洲人成网站在线播| 日本-黄色视频高清免费观看| 2018国产大陆天天弄谢| 亚洲av不卡在线观看| 最近中文字幕2019免费版| 亚洲美女搞黄在线观看| 边亲边吃奶的免费视频| 日日摸夜夜添夜夜爱| 丁香六月天网| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区成人| 九九爱精品视频在线观看| 成人毛片60女人毛片免费| 亚洲av电影在线观看一区二区三区| 亚洲美女搞黄在线观看| 亚洲激情五月婷婷啪啪| videossex国产| 青春草视频在线免费观看| 久久99精品国语久久久| 一本大道久久a久久精品| 日韩在线高清观看一区二区三区| 亚洲av男天堂| 97精品久久久久久久久久精品| 欧美激情国产日韩精品一区| 亚洲国产欧美在线一区| 国产精品久久久久久精品古装| 久久女婷五月综合色啪小说| 高清av免费在线| 亚洲av综合色区一区| 久久久久久久久久人人人人人人| 在线观看国产h片| 精品99又大又爽又粗少妇毛片| 久久人妻熟女aⅴ| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 亚洲国产精品国产精品| 这个男人来自地球电影免费观看 | 中文在线观看免费www的网站| 永久免费av网站大全| 在线观看美女被高潮喷水网站| 亚洲精品一区蜜桃| 这个男人来自地球电影免费观看 | 久久精品国产a三级三级三级| 22中文网久久字幕| 毛片一级片免费看久久久久| 成人午夜精彩视频在线观看| 三级国产精品欧美在线观看| av在线播放精品| videos熟女内射| 久久久久久久久久久久大奶| 中文字幕av电影在线播放| 国产日韩欧美在线精品| 3wmmmm亚洲av在线观看| 国产成人aa在线观看| 久久久久久久久久成人| 午夜久久久在线观看| 一级av片app| 久久久国产精品麻豆| 久久久国产一区二区| 欧美丝袜亚洲另类| 亚洲欧美一区二区三区黑人 | 国产白丝娇喘喷水9色精品| 色哟哟·www| 亚洲图色成人| 欧美日韩在线观看h| 午夜福利影视在线免费观看| 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片| 免费在线观看成人毛片| 免费观看在线日韩| 久久韩国三级中文字幕| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 丝瓜视频免费看黄片| 久久免费观看电影| 人妻人人澡人人爽人人| 人妻制服诱惑在线中文字幕| 午夜激情久久久久久久| 亚洲精品乱码久久久v下载方式| 男人舔奶头视频| 好男人视频免费观看在线| 中国美白少妇内射xxxbb| 一级毛片 在线播放| 亚洲精品中文字幕在线视频 | 午夜福利影视在线免费观看| 九草在线视频观看| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 一区在线观看完整版| 成年人午夜在线观看视频| 黄色配什么色好看| av天堂久久9| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 在线 av 中文字幕| 大陆偷拍与自拍| 观看美女的网站| 精品一区二区三卡| 亚洲av.av天堂| 色视频www国产| 永久网站在线| av卡一久久| 国产又色又爽无遮挡免| 丰满人妻一区二区三区视频av| 另类精品久久| 2022亚洲国产成人精品| 亚洲av免费高清在线观看| 大香蕉久久网| 免费大片18禁| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 久久精品国产鲁丝片午夜精品| 欧美精品一区二区免费开放| 一级黄片播放器| 三级国产精品欧美在线观看| 国产在视频线精品| .国产精品久久| 一级毛片久久久久久久久女| 免费看不卡的av| 18禁裸乳无遮挡动漫免费视频| 在线亚洲精品国产二区图片欧美 | 亚洲欧洲精品一区二区精品久久久 | 久久久久久久国产电影| 亚洲欧美精品专区久久| 日韩一区二区三区影片| 日韩av在线免费看完整版不卡| 国产亚洲精品久久久com| 国产黄片美女视频| 青春草亚洲视频在线观看| 成年女人在线观看亚洲视频| 18禁裸乳无遮挡动漫免费视频| 亚洲人成网站在线播| 久久99蜜桃精品久久| 国产 精品1| 夜夜看夜夜爽夜夜摸| 毛片一级片免费看久久久久| 精品酒店卫生间| 青春草亚洲视频在线观看| 久久婷婷青草| 2018国产大陆天天弄谢| 国产色婷婷99| 爱豆传媒免费全集在线观看| 丝袜喷水一区| 一区二区av电影网| 内地一区二区视频在线| 国产真实伦视频高清在线观看| 狂野欧美白嫩少妇大欣赏| 在线看a的网站| 精品卡一卡二卡四卡免费| 国产伦理片在线播放av一区| 青春草亚洲视频在线观看| 久久这里有精品视频免费| 大码成人一级视频| 日本91视频免费播放| 国产精品秋霞免费鲁丝片| 天堂俺去俺来也www色官网| 日韩一本色道免费dvd| 99久久精品国产国产毛片| 九草在线视频观看| 日日爽夜夜爽网站| 岛国毛片在线播放| 黄色怎么调成土黄色| 国产又色又爽无遮挡免| 成人影院久久| 尾随美女入室| 国产精品女同一区二区软件| 另类亚洲欧美激情| 国产成人精品婷婷| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 晚上一个人看的免费电影| 亚洲精品亚洲一区二区| 人妻少妇偷人精品九色| 天天操日日干夜夜撸| 91精品伊人久久大香线蕉| 黄色配什么色好看| 国产精品久久久久久av不卡| 久久鲁丝午夜福利片| 在线观看美女被高潮喷水网站| 97超碰精品成人国产| a级毛片免费高清观看在线播放| 精品一区二区三卡| 国产精品三级大全| 久久久欧美国产精品| 多毛熟女@视频| 成年女人在线观看亚洲视频| 免费久久久久久久精品成人欧美视频 | 夫妻午夜视频| 人人妻人人看人人澡| 一级a做视频免费观看| 精品久久久噜噜| 日韩中文字幕视频在线看片| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 99热这里只有是精品50| 免费久久久久久久精品成人欧美视频 | 亚洲自偷自拍三级| 一个人免费看片子| 国产欧美另类精品又又久久亚洲欧美| 极品少妇高潮喷水抽搐| 免费播放大片免费观看视频在线观看| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 久久久久精品性色| 国产女主播在线喷水免费视频网站| 春色校园在线视频观看| 午夜福利在线观看免费完整高清在| 欧美日韩国产mv在线观看视频| 夫妻性生交免费视频一级片| 国产在视频线精品| 两个人的视频大全免费| 国产精品一区www在线观看| 国产成人精品久久久久久| 欧美日韩国产mv在线观看视频| 成人亚洲欧美一区二区av| 久久99热这里只频精品6学生| 国产伦理片在线播放av一区| 日韩成人av中文字幕在线观看| 亚洲人成网站在线观看播放| 一级毛片电影观看| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 欧美日本中文国产一区发布| 精品少妇内射三级| 肉色欧美久久久久久久蜜桃| 大香蕉97超碰在线| 美女大奶头黄色视频| 亚洲精品日本国产第一区| 亚洲国产精品一区二区三区在线| 亚洲欧美中文字幕日韩二区| 亚洲av欧美aⅴ国产| 下体分泌物呈黄色| 只有这里有精品99| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 亚洲图色成人| 亚洲自偷自拍三级| 人妻 亚洲 视频| 国产欧美另类精品又又久久亚洲欧美| 青春草视频在线免费观看| √禁漫天堂资源中文www| 一级毛片aaaaaa免费看小| 成人特级av手机在线观看| 欧美老熟妇乱子伦牲交| 日本av手机在线免费观看| 国产在线免费精品| 久久午夜福利片| 亚洲电影在线观看av| 热99国产精品久久久久久7| av.在线天堂| 99九九在线精品视频 | 国产av国产精品国产| 成人免费观看视频高清| 精品久久久精品久久久| 国产熟女欧美一区二区| 亚洲四区av| 我的老师免费观看完整版| 曰老女人黄片| 一区二区三区精品91| 免费在线观看成人毛片| 欧美日韩在线观看h| 如何舔出高潮| 桃花免费在线播放| 99久久人妻综合| 人人妻人人澡人人看| 亚洲国产精品国产精品| 高清av免费在线| kizo精华| 卡戴珊不雅视频在线播放| av福利片在线观看| 亚洲国产色片| 亚洲真实伦在线观看| 秋霞在线观看毛片| 精品国产乱码久久久久久小说| 热re99久久精品国产66热6| 少妇被粗大猛烈的视频| 涩涩av久久男人的天堂| 国产亚洲午夜精品一区二区久久| 国产精品人妻久久久久久| 校园人妻丝袜中文字幕| 人体艺术视频欧美日本| 老司机亚洲免费影院| 久久99一区二区三区| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 亚洲综合色惰| 80岁老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 国产在线免费精品| 亚洲四区av| 亚洲精品日韩在线中文字幕| 国产精品成人在线| 国产中年淑女户外野战色| av免费观看日本| av黄色大香蕉| 一级毛片电影观看| www.av在线官网国产| 王馨瑶露胸无遮挡在线观看| av网站免费在线观看视频| 麻豆乱淫一区二区| 亚洲熟女精品中文字幕| 亚洲av在线观看美女高潮| 又粗又硬又长又爽又黄的视频| 久久久精品免费免费高清| 观看美女的网站| 国产高清不卡午夜福利| 国产老妇伦熟女老妇高清| 在线观看免费日韩欧美大片 | 女性生殖器流出的白浆| 女性被躁到高潮视频| av在线观看视频网站免费| 亚洲国产成人一精品久久久| 五月玫瑰六月丁香| 国产成人一区二区在线| 人妻人人澡人人爽人人| freevideosex欧美| 久久久久久久大尺度免费视频| 少妇人妻久久综合中文| 赤兔流量卡办理| 天美传媒精品一区二区| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 久久精品久久久久久噜噜老黄| 又爽又黄a免费视频| 夫妻午夜视频| 亚洲中文av在线| 五月天丁香电影| freevideosex欧美| 99久久人妻综合| 国产精品三级大全| 大香蕉久久网| 亚洲国产精品成人久久小说| 国产精品无大码| 国产在线一区二区三区精| 大码成人一级视频| 内射极品少妇av片p| 国产在视频线精品| 在线观看免费日韩欧美大片 | 欧美日韩一区二区视频在线观看视频在线| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 免费少妇av软件| 国产综合精华液| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区国产| 又大又黄又爽视频免费| 99久久精品一区二区三区| 国产av国产精品国产| 一级a做视频免费观看| 免费看光身美女| 精品久久久精品久久久| 一区二区三区精品91| 国产日韩欧美亚洲二区| 亚洲av电影在线观看一区二区三区| av福利片在线观看| 99热全是精品| 七月丁香在线播放| 亚洲国产精品999| 国产av国产精品国产| 人妻夜夜爽99麻豆av| 妹子高潮喷水视频| 久久久久视频综合| 亚洲在久久综合| 99久国产av精品国产电影| 欧美亚洲 丝袜 人妻 在线| 久久久久久久国产电影| 国产亚洲午夜精品一区二区久久| 日韩熟女老妇一区二区性免费视频| 亚洲欧美中文字幕日韩二区| 国产欧美日韩综合在线一区二区 | www.色视频.com| 国产又色又爽无遮挡免| 最后的刺客免费高清国语| 蜜臀久久99精品久久宅男| 国产日韩欧美亚洲二区| 偷拍熟女少妇极品色| 夜夜看夜夜爽夜夜摸| 欧美3d第一页| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲四区av| 日本色播在线视频| 久久国产精品男人的天堂亚洲 | 91久久精品国产一区二区三区| av有码第一页| 久久精品夜色国产| 99热网站在线观看| 在线播放无遮挡| 99九九在线精品视频 | 极品少妇高潮喷水抽搐| 成人18禁高潮啪啪吃奶动态图 | 国产黄频视频在线观看| 国产亚洲av片在线观看秒播厂| 美女xxoo啪啪120秒动态图| 欧美三级亚洲精品| 亚洲国产欧美日韩在线播放 | 久久久久国产网址| 成年人午夜在线观看视频| 日韩伦理黄色片| 亚洲丝袜综合中文字幕| 国产成人免费无遮挡视频| 日韩av不卡免费在线播放| 欧美成人午夜免费资源| 久久午夜综合久久蜜桃| 中文字幕人妻丝袜制服| 欧美 日韩 精品 国产| 午夜久久久在线观看| 黄色日韩在线| 99热这里只有是精品在线观看| 久久久久视频综合| www.av在线官网国产| 狂野欧美白嫩少妇大欣赏| 亚洲av.av天堂| 精品少妇黑人巨大在线播放| 国产精品久久久久久精品电影小说| 日韩不卡一区二区三区视频在线| 蜜桃在线观看..| 国产精品久久久久成人av| 欧美日韩精品成人综合77777| 久热这里只有精品99| 精品久久久精品久久久| 亚洲熟女精品中文字幕| 日韩一区二区视频免费看| 国产成人a∨麻豆精品| 汤姆久久久久久久影院中文字幕| 久久久久久久亚洲中文字幕| 日日摸夜夜添夜夜爱| 2022亚洲国产成人精品| 国产成人精品一,二区| 国产免费视频播放在线视频| 国产极品天堂在线| 国产日韩欧美在线精品| 男男h啪啪无遮挡| 国产精品福利在线免费观看| 国产淫语在线视频| 成人无遮挡网站| 国产精品福利在线免费观看| 日韩电影二区| 国产精品久久久久久av不卡| 国产精品福利在线免费观看| 男女无遮挡免费网站观看| 午夜福利视频精品| 自拍偷自拍亚洲精品老妇| 日韩电影二区| 一级毛片我不卡| av福利片在线| 成年女人在线观看亚洲视频| 丰满少妇做爰视频| 国产一区二区三区av在线| 久久狼人影院| 国产黄片视频在线免费观看| 免费观看在线日韩| a级毛色黄片|