• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes

    2022-04-12 03:48:42XiuBoChen陳秀波LiYunZhao趙立云GangXu徐剛XingBoPan潘興博SiYiChen陳思怡ZhenWenCheng程振文andYiXianYang楊義先
    Chinese Physics B 2022年4期
    關(guān)鍵詞:徐剛

    Xiu-Bo Chen(陳秀波) Li-Yun Zhao(趙立云) Gang Xu(徐剛) Xing-Bo Pan(潘興博)Si-Yi Chen(陳思怡) Zhen-Wen Cheng(程振文) and Yi-Xian Yang(楊義先)

    1Information Security Center,State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2School of Information Science and Technology,North China University of Technology,Beijing 100144,China

    3Advanced Cryptography and System Security Key Laboratory of Sichuan Province,Chengdu 610025,China

    Keywords: fault-tolerant error correction,quantum stabilizer code,gate fault,quantum circuit

    1. Introduction

    Since quantum information is affected by noise during channel transmission, a technique is needed that can correct the noise in the channel and ensure the correct transmission of the information. Shor[1]first proposed that errors in quantum information can be correctly corrected by a quantum error-correcting code (QECC). At the same time, he designed the code [[9,1,3]], which requires nine qubits to encode a logical qubit and corrects any single-qubit error. Subsequently,through the classical error correction code,Calderbank, Shor, and Steane[2,3]proposed a new QECC scheme CSS (Calderbank-Shor-Steane) code, such as [[7,1,3]] code.However, the decoding process of CSS code is inefficient,since it cannot obtain the results of phase error and bit error in one step of measurement. Gottesman and Calderbank[2,4]proposed stabilizer formalism and formed a theory of stabilizer code to assemble a more available and further efficient quantum error correction code. The minor stabilizer code currently in existence is [[5,1,3]] code,[5]which can correct any single-qubit error using only five qubits. However,the abovementioned error correction codes can correct errors based on the condition that the error detection and error recovery operations can be performed entirely correctly without other errors.Detecting measurements and error recovery operations are complex quantum computations,and the hardware involved in the quantum computing process may be defective. Therefore errors may be introduced into the quantum information when the hardware fails.

    A relatively straightforward route to achieving reliable computing is reducing the basic error rate of hardware during computing. However,a quantum system’s basic error rate is determined by the quantum computer hardware’s manufacturing quality and technical level,the interaction between the system and the environment,and the physical means of operation. Extraordinary experimental efforts in recent years have reduced the effect of the fundamental error rate on quantum systems in Refs.[6-9]. Using a QECC,Chouet al.[10]made the fidelity of teleported gate achieve 79%. Teleported gates have implications for fault-tolerant quantum computation. In addition to QECC, entanglement-assisted quantum error correction codes (EAQECC) have also been further investigated in Refs. [11,12], which improve the error correction capability of QECC.Then Joneset al.[13]asserted that a logical qubit must have four characteristics to be extensible, in addition to the DiVincenzo criteria for a quantum computer. Implementing a QECC scheme not only demands reducing the basic error rate but also should be fault-tolerant.

    The superiority of QECC in fault-tolerant quantum computing was first introduced in Ref. [14]. It allows the correct quantum information to be recovered even if some errors occur during error detection and error recovery. Besides detection, the beginning application of QECC lies in protecting quantum information while performing calculations dynamically and in completing efficient quantum state transmission,[15,16]even by adopting defective logic gates during computation.Three representative FTEC schemes were introduced by Shor,[17]Steane[18]and Knill.[19,20]Salaset al.[21]made improvements such as“step”optimization,significantly reducing fault-tolerant syndrome extraction time and resource consumption. These methods have accomplished the control of the spreading error of the syndrome extraction circuit. Nevertheless, to achieve fault-tolerant syndrome extraction, it is essential to determine whether the syndrome qubits have introduced errors during the preparation process since otherwise,the errors could be propagated to the coding block.

    Until 2017, Yoder and Kim[22]first proposed extracting fault-tolerant syndrome using flag qubits, which greatly reduced the consumption of ancillary qubits resources. After that,Chaoet al.[23-27]further introduced the“flag paradigm”,which works well for catching the correlated errors caused by quantum gate failures. Only two ancillary qubits are needed for various distance-three codes and≤d+1 ancillary qubits for any distance-dstabilizer code. Shortly after, the flag paradigm has been given for several code families: Hamming codes,[23]rotated surface and Reed-Muller codes,[28]color codes,[28-32]cyclic CSS codes,[33,34]heavy-hexagon code and heavy-square code.[35]In addition to the above mentioned abundant quantum codes, the flag paradigm can also be instrumental in preparing specific quantum states,such as magic state.[36,37]

    Concerning the problem of two distinct sources of errors,noisy channels and defective hardware, ancillary qubits are added to distinguish between the two sources of errors. In actuality,the ancillary qubits overhead can complicate the device and make it difficult to operate. Therefore,this paper proposes a low-overhead FTEC scheme for quantum stabilizer codes by applying the flag paradigm to the syndrome extraction circuit.In this scheme,the Bell state is used as syndrome ancillas for measuring the coding block to achieve error correction performance; in contrast, flags are added to verify the CNOT gate and perform error tolerance performance. This scheme reduces the overhead of ancillary qubits and the overhead of circuit depth,and the probability of storage errors occurring.

    Following the introduction,Section 2 begins with the review of the action the error propagation through the CNOT gate. Then Section 3 concentrates on our FTEC scheme in error detection and fault detection. We take Hamming code[5,1,3] as an example to describe our fault-tolerance scheme in Section 4. The conclusion of this paper is given in Section 5,and analytical results are presented to demonstrate the fault-tolerant performance of the proposed FTEC scheme.

    2. Preliminaries

    In quantum information,the quantum state is a vector in(C2)?n, and the error is a unitary linear transformation. According to the simplified model of Shor and Steane,any single quantum state error can be expressed as a combination of theX,Y,andZerrors. We only need to consider the three typical errors,X,Y,Z,where

    A stabilizer code is a common eigenspace of a set of commuting products of Pauli operators. A generator in stabilizer may beX-type (consisting of only PauliXandIoperators)operator,Z-type(only PauliZandI)operator, or mixed-type(any other combination of Pauli operators).

    Fig.1.(a)An X error can be propagated from the control qubit into the target qubit through the CNOT gate.(b)On the contrary,a Z error propagates from the target to the control qubit. (c)and(d)At the same time,a Y error will evolve into an X or Z error.

    Fig.2. The circuits of measurement of the Pauli X,Z and Y operators. (a)The circuit on the left of the equal sign uses the Z-basis to measurement,and the right uses the X-basis(|+〉,|-〉). (b)The equivalent circuit of CNOT gate and control-Z gate, finally measured with the Z-basis(|0〉,|1〉).(c)A control-Y gate can be divided into CNOT gate and control-Z gate provided that the global phase factor is ignored.The symbol“Bell”indicates a Bell basis(as in Eq.(2))measurement. Provided an X or a Z error in the data,the measurement result will be|β10〉. While a Y error occurs,|β00〉will be given.

    A general error of a single qubit can be expressed as a sum of Pauli operators taken from the setP={I,X,Z,Y= iXZ},whereIis the identity(corresponding to no error). Errors can be propagated between the target and the control qubits of a CNOT gate in Fig.1.

    Using the error transmission nature of CNOT gates to implement parity checking of a stabilizer code, extract the syndromes,locate the error type and error location,and complete error detection and correction. The error syndrome extraction is a critical step in errors detection and errors correction. The equivalent circuits of the CNOT, control-Zand control-Yare shown in Fig.2.

    The four Bell states are

    The error transmission nature of the CNOT gate raises the possibility of error propagation, allowing severe errors to occur in the coding block, exceeding the error correction capability of the error correction code itself and producing a permanent error code. Therefore the syndrome extraction circuit needs to be fault-tolerant.

    3. Flag-FTEC scheme

    A delicately designed circuit can not only correct errors introduced in the noisy channel but also tolerate faults by itself. The difference between fault and error is as follows:[38]Fault is a location in a circuit where a gate or storage error occurs while error is associated with a qudit in a block that deviates from the ideal state. Fault happens at fixed points in the circuit but error may happen when the qudit is in fly. The circuit is referred to as a fault-tolerant circuit, i.e., the faults produced and propagated by the quantum gates in such a circuit are correctable. Next, we will introduce a low-overhead FTEC scheme, which not only reduces the error propagation path but also corrects the correlated errors on data.

    3.1. Error detection-split each stabilizer generator into X-type and Z-type for classification measurement

    When Alice sends an encoded quantum state|φ〉to Bob through a noisy channel, the encoded quantum state|φ〉is transformed into a noisy data|φ〉=ε|φ〉, whereεis a channel noise operator. In order to correct the errorε, Bob starts to prepare Bell states|β00〉as syndrome qubits and uses all stabilizer generators to measure|φ〉. Each stabilizer generator is divided intoX-type andZ-type operators. The termX-type(orZ-type) operator includesX(orZ) operator only. A stabilizer generatorg=XZZXI=X14Z23I5illustrates this point clearly. Let lettersA,B,andCdenote,respectively,the set of subscripts of Pauli operatorsX,ZandI,then the stabilizer generatorg=XZZXI=X14Z23I5can be depicted asg=XAZBIC(usually denoted asg=XAZB). The circuit of extracting generatorg=XAZBsyndrome is illustrated in Fig.3.In particular,if there is noYPauli operator in the generator,A ∩B= /0 andA∩B/= /0 otherwise.

    Fig.3. Diagram for a syndrome extraction circuit that detects channel noise.A noisy data is ε|φ〉=|φ〉A(chǔ)BC and syndrome ancillas are|β00〉. Time moves from left to right,with wires used to represent the passage of time where the states are single or multiple. |Ψ1〉, |Ψ2〉, |Ψ3〉, |Ψ4〉, |Ψ5〉are evolution of all quantum states.

    According to Fig.3,the quantum states|Ψ1〉,|Ψ2〉,|Ψ3〉,|Ψ4〉,|Ψ5〉can be achieved followed by the operation of the circuit goes as follows,with the steps applied in order:

    Through the above error detection process, we can find that it also works when the syndrome ancillas here is initialized into|β10〉. Conversely, when the syndrome ancillas collapses into|β00〉,then the noise operator must exist and satisfygε=-εg.

    It can be viewed from the above quantum circuit that the final syndrome ancillas measurement not only did not cause the collapse of the qubits in the coding block (data) but also copied the error in the coding block to the syndrome ancillas.Subsequently, this circuit diagram can be invoked as the circuit of syndrome extraction for data. LetS=(s1,...,sr)∈Fr2denote error syndrome of all stabilizer generatorsg1,...,gr.Prepare syndrome ancillas in|β00〉to measure theith generator followed by measuring with Bell base. If the result is|β00〉(|β10〉), then the corresponding elementsi=0 (si=1). We can find that it also works when the syndrome ancillas here is initialized into|β10〉. Conversely, when syndrome ancillas collapses into|β00〉,the noise operatorεmust exist and satisfygε=-εg.

    Above measurements must also be fault tolerant. If not,error accumulation would rapidly destroy the coherence of the states in the computer.

    3.2. Fault detection - flag particles |0〉 and |+〉 are used to detect X and Z faults simultaneously

    In the following subsection,we will put forward a procedure based on adding“flags”qubits to catch the quantum gate faults that can lead to correlated errors on coding block.

    At first, syndrome ancillas|β00〉are equipped with two flags ancillas|0〉and|+〉with the view to increasing faulttolerance performance as in Fig. 4. The syndrome ancillas detects errors in the coding block,and the two flags qubits can be used as a verification block. The verification block is significantly different from Shor state[17]and Steane state[18]in an essential respect that the verification block herein is not to verify whether the syndrome ancillas is prepared correctly,but to catch the faults that can lead to correlated errors on the data.

    Fig.4. Fault detection. (a)If an X or Y error is introduced to the first qubit of|β00〉state,the Z-basis(|0〉,|1〉)measurement will always give|1〉. Otherwise,|0〉. (b)If a Z or Y error occurs,the X-basis(|+〉,|-〉)measurement will show|-〉;otherwise,|+〉.

    Then extract syndrome for stabilizer generatorg=XAZBis shown in Fig.5. LetXAi(orYAi)denote as anXfault(or aYfault)which comes from theith CNOT gate corresponding to setAon the control qubit, wherei=1,2,...,|A|. And again,we can defineXBj(orYBj) as anXfault (or aYfault) which comes from thejth CNOT gate corresponding to setBon the target qubit, wherej=1,2,...,|B|. In fact, the CNOT gate corresponding to the setA(B)may also introduce faults in the target(control)qubit,but the faults are not propagated to other quantum bits and therefore do not cause error multiplication.

    ? If there is no channel noise error(the channel noise error may commute with the generatorg=XAZB)and no quantum gate fault, the measurement results are shown in column 2 of Table 1.

    ? If the coding block is only affected by channel noiseε, all measurements are shown in column 3 of Table 1 when the generatorg=XAZBanticommutes withε.

    ? If anXAiorYAifault is introduced,the following CNOT gates will propagate the fault inAto the coding block and flag-1,causing the weight of coding block error≥1 and the flag-1 raised.

    - WhenA ∩B= /0, if anX(orY) fault occurs, the measurements of syndromes ancillas is|β01〉(or|β11〉).

    - WhenA ∩B/= /0, based on the quantum circuits in Fig. 2, a control-Ygate in quantum circuit can be represented as shown in Fig. 6. If anX(orY)fault occurs,theXerror is propagated through the CNOT gate in the direction of the red arrow and the measurements of syndromes ancillas is|β11〉(or|β01〉).It is notable for its inability to distinguish between theXAiandYAifaults by the results of Bell measurements of syndrome qubits as shown in columns 4 and 6 of Table 1. Fortunately,theXandYfaults result in the same error in the coding block regardless of whether the intersection ofAandBis the empty set.

    ? If anXBjorYBjfault is introduced,the following CNOT gates will propagate the fault inBto the coding block and flag-2,causing the weight of coding block error≥1 and the flag-2 raised. TheXBjorYBjfault also can be identified by the results of Bell measurements of syndrome qubits. Therefore, the measurements ofXBjorYBjfault are shown in columns 5 and 7 of Table 1.

    Fig.5. Flagged syndrome extraction for stabilizer generator g=XAZB.

    Fig.7. The quantum measurement circuit to extract syndromes of all generators g1,g2,...,gr in turn. The syndrome ancillas and flags are respectively initialized to |β00〉, |0〉 and |+〉, then used to measure the generator g1.|βa1b1〉,|c1〉, are the quantum states after the measurement of g1. Output the measurement results a1,b1,c1,d1 and reset by Za1,Xb1,Zc1 and Xd1 operators for g2. Similarly,the measurement of generator gr is preceded by resetting |βar-1br-1〉,|cr-1〉, through Zar-1, Xbr-1,Zcr-1 and Xdr-1 operators.

    Fig. 6. Propagation of an X or Y fault through two CNOT gates acting on the same qubit. The red arrow indicates the propagation path of an X error.

    Table 1. The relationship between measurement results and CNOT gates faults.

    Through the measurement results in Table 1,we can correct the errors as follows:

    ? If the coding block immunizes to the channel noise(or channel noiseεcommutes with all generatorsg1,g2,...,gr) and the CNOT gate introduces no-fault,the measurement results of all ancillary quits are trivial.Therefore,the syndromesS=(s1,...,sr)=0.

    ? If the coding block is affected only by the noise channel,the measurement results of party generators are presented in the third column,the remaining are in the second column,and the quantum syndrome isS/=0.Finish by applying the corresponding correction.

    ? If flags measurement outcomes remain non-trivial,it indicates that a single CNOT gate introduces a fault propagated to the coding block. By practising“flag”ancilla,the fault type(X,YorZ)and range(CNOT gate corresponding to setAorB)can be determined. Measure all generators with unflagged circuits (perfect) once again to figure out the position of the gate fault. If two coding block errors are affected by the failure of CNOT gates in the same setAorB, the coding block error can be corrected when the syndromes corresponding to these two errors are different.

    Through the above analysis, we summarize the whole program by a flowchart as shown in Fig. 8. Using Fig. 7 to initialize the ancillary qubits, record the measurement results based on Table 1.

    Fig. 8. A flowchart for summarizing the flag paradigm idea to realize the fault-tolerant error-correction.

    Let us point out that,in our above scheme,multiple measurements are required to measure the reliability of the results,and the majority decision method is adopted to determine the ultimate result.

    4. Fault-tolerance scheme for[[5,1,3]]code

    The most insignificant error-correcting stabilizer code[[5,1,3]] can correct up to one error at any qubit[5]with stabilizer generatorsg1=XZZXI,g2=IXZZX,g3=XIXZZ,g4=ZXIXZ. Before the error-correction procedure, we assume that the data error weight is≤1.The syndrome ofg1can be extracted by the circuit in Fig. 9, presented by Ref. [23],where a flag can “catch” aZfault introduced by the CNOT gate. It allows one to examine the[[5,1,3]]code,single-error correcting stabilizer code, adopting two extra qubits barely.Were we to use the error-correction procedure in Fig. 9, although the quantum circuit reduces the cost of ancillary qubits,it increases the cost of circuit depth. For example, the circuit depth is 8 in Fig.9.Besides,theZfault will propagate through the subsequent gates and become anX-type fault. For example,provided that the gatecintroduces anIZfault,theIZfault will be propagated through the next gate,followed by becoming anIIIXIerror to the data.To resolve the problem of circuit depth overhead,we practice the circuit in Fig.9 to extract the syndrome forg1. The flag-1 (flag-2) ancilla can “catch” theX(Z) fault simultaneously. The principal criterion between Figs.9 and 10 lies in the syndrome ancillas and flag qubits,an essential part of fault-tolerance schemes. Figure 10 shows that the circuit depth for extracting the syndrome ofg1is 6,which is due to the fact thata,bandc,dcan run in parallel.

    Fig.9. (a) Flagged syndrome extraction for g1 =XZZXI in [[5,1,3]]code put forward by Chao et al. (b) The equivalent circuit of a and d quantum gates in(a).

    Fig.10. Flagged syndrome extraction for[[5,1,3]]code. The circuit to extract the syndrome of the stabilizer g1 =X14Z23 with |β00〉 state and two flag-qubits which are prepared in the |0〉 and |+〉 states. The symbols a,b (or c, d) stand for CNOT gate which correspond to sets A={1,4} (or B={2,3}),respectively. The syndrome ancillas and flags are measured at the end of the circuit by Bell basis,X-basis and Z-basis.

    If the data has no errors then the Bell-basis,X-basis andZ-basis measurements will always give|β00〉,|0〉and|+〉,respectively.

    If the CNOT gateaorbfails and introduces anX(orY)fault on control qibit, this fault will lead|β00〉and flag-1 ancilla to become|β01〉(or|β11〉)and|1〉. Here,the 1st and 4th qubits may be suffer from errors in Table 2, where the first(second)error operator stands for the CNOT gate fault on the control(target)qubit. Use unflagged circuits to extract all four syndromes ofg1,g2,g3,g4again. It is surprised to find that the syndromes of these errors are different. Therefore, when the flag-1 ancilla is raised, the correlated errors on data are correctable by applying the corresponding correction.

    In the same way, if aZ(orY) fault stems from the controlled qubit ofcordgate the measurements will be|β10〉(or|β11〉),|0〉and|-〉. The data errors can be corrected perfectly according to data errors and syndromes in Table 2.

    Table 2. The correlated errors and their corresponding syndromes.

    Similarly, apply the flagged circuit to extractg2,g3,g4and followed by correcting errors based on the measurement of syndromes and flags.

    5. Discussion

    Both Shor’s[17]and Steane’s[18]FTEC schemes practice transverse fault-tolerant technology to prevent errors to cross propagation. A common feature of both schemes is the possibility of measuring all operators in a generator in parallel,but this is based on the overhead of the ancillary qubits. On the one hand, for an [[n,k,d]] CSS code, the ancillary qubits costs in the above Steane’s and Shor’s schemes are≥2(n+1)and≥2ω-1 (orω+1), respectively, whereωis the maximum weight of all stabilizer generators. On the other hand,the ancilla in Shor’s scheme is prepared in “cat state”, while the ancilla in Steane’s scheme is prepared in a superposition of all states satisfying the parity checks ofH,where each row ofHis interpreted as a single 2n-bit parity check. Consequently,their schemes require the preparation of syndrome ancillas into complex specific quantum states and increase circuit depth for the preparation of ancillary qubits. For example,if the Shor’s and Steane’s schemes are used on the[[5,1,3]]code,the circuit depths for preparing the syndrome ancillas are 5 and 6,respectively.If the verification fails,the syndrome ancillas need to be re-prepared,so the overhead in the circuit depth for preparing the syndrome ancillas is 5tand 6t',wheretandt'are the times of preparing the syndrome ancillas. Considering that the measurement generators can be parallelized,the total overheads of circuit depth areTcat>5tandTSteane>6t',respectively.

    In the “flag” fault-tolerant scheme proposed by Chaoet al., only one syndrome qubit is used in the syndrome ancillas. Although the overhead of the ancillary qubits is reduced,it is at the cost of increasing the circuit depth. If measure the generatorg=XAZBin Chaoet al.’s scheme,the circuit depth overhead is max{|A|+|B|}(ignore the Hadamard gate). The merits of our scheme are reflected in [[5,1,3]] code as in Table 3.

    Table 3. The comparison of circuit depth between our scheme and Shor’s,Steane’s,Chao et al.’s schemes in[[5,1,3]].

    In our scheme,the required ancillary qubits are independent of the weight and quantity of the stabilizer generator,and the ancillary states do not need to be verified as it is prepared correctly before deciding whether it can be used in the syndrome extraction circuit.Compared with Chaoet al.’s scheme,our scheme uses the Bell state as the syndrome ancillas. The advantages of the Bell state as the syndrome ancillas are apparent,which can reduce the circuit depth and the influence of memory errors on the coding block and reduce errors propagation path. Most importantly, the scheme can be applied to any general stabilizer code provided that the errors on data can be detectable and distinguishable. It is not difficult to find that our scheme is suitable for general stabilizer codes in addition to CSS codes.

    Based on the above analysis,we can see that our scheme has the following characteristics:

    ? The overhead of the ancillary quantum state is only 4,which is independent of the number and weight of the stabilizer generators.

    ? With the application of Bell states as syndrome qubits,the overhead of circuit depth for generatorg=XAZBis reduced to max{|A|,|B|}.

    ? Ancillary states are simplistic to prepare and can be reused by various generators through resetting the ancillary states when to measure coding blocks.

    ? Our FTEC scheme is broadly practised and is not confined to CSS codes but can further be implemented to general quantum stabilizer codes.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61671087 and 61962009),the Fundamental Research Funds for the Central Universities, China (Grant No. 2019XD-A02), Huawei Technologies Co. Ltd (Grant No. YBN2020085019), the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No.2018BDKFJJ018).

    猜你喜歡
    徐剛
    殺人者徐剛(短篇小說)
    飛天(2025年1期)2025-01-28 00:00:00
    徐剛書法作品選登
    共青城市蘇家垱鄉(xiāng):共繪美麗鄉(xiāng)村新畫卷
    Quantum multicast communication over the butterfly network
    Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme*
    一瞬即永恒
    冬夜
    冬夜
    愿他永遠(yuǎn)是少年
    南方文壇(2016年1期)2016-03-23 13:44:43
    冬夜
    小小說月刊(2016年2期)2016-02-16 12:28:37
    波多野结衣高清无吗| 欧美极品一区二区三区四区| 国产日本99.免费观看| 99热只有精品国产| 久久这里只有精品中国| 国产乱人视频| av福利片在线观看| 三级男女做爰猛烈吃奶摸视频| 成人高潮视频无遮挡免费网站| 国产免费男女视频| 国产毛片a区久久久久| 亚洲国产精品合色在线| 亚洲色图av天堂| 久久久久国产精品人妻aⅴ院| 天天一区二区日本电影三级| 日日摸夜夜添夜夜添av毛片 | 18禁黄网站禁片免费观看直播| 久久久久亚洲av毛片大全| 最好的美女福利视频网| 中文字幕av成人在线电影| av在线蜜桃| 亚洲电影在线观看av| 亚洲精品在线美女| 永久网站在线| 麻豆久久精品国产亚洲av| 中文亚洲av片在线观看爽| 国产极品精品免费视频能看的| 一区二区三区高清视频在线| 国产一级毛片七仙女欲春2| 亚洲人成网站在线播放欧美日韩| 国产黄片美女视频| 亚洲精品一卡2卡三卡4卡5卡| 婷婷亚洲欧美| 国产精品一区二区三区四区免费观看 | 午夜亚洲福利在线播放| 听说在线观看完整版免费高清| av在线天堂中文字幕| 欧美性猛交╳xxx乱大交人| 18禁在线播放成人免费| 色播亚洲综合网| 欧美成人一区二区免费高清观看| 久久久久久久精品吃奶| 在线观看美女被高潮喷水网站 | 99精品久久久久人妻精品| 国产欧美日韩一区二区精品| 美女 人体艺术 gogo| 18禁黄网站禁片午夜丰满| 一级黄片播放器| 首页视频小说图片口味搜索| 免费黄网站久久成人精品 | 色在线成人网| 国产精品影院久久| 色在线成人网| 我的女老师完整版在线观看| 久久久久久久久久黄片| 宅男免费午夜| 国产精品爽爽va在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 国产成人影院久久av| 欧美成狂野欧美在线观看| 日本黄色片子视频| 直男gayav资源| 日韩大尺度精品在线看网址| 少妇熟女aⅴ在线视频| 午夜两性在线视频| 亚洲国产精品sss在线观看| 久久精品国产自在天天线| 国产av不卡久久| 嫩草影院新地址| 给我免费播放毛片高清在线观看| x7x7x7水蜜桃| 日韩欧美在线二视频| 波多野结衣巨乳人妻| 婷婷亚洲欧美| 日韩欧美国产一区二区入口| 亚洲综合色惰| 久久久久久大精品| 日韩av在线大香蕉| 少妇裸体淫交视频免费看高清| 国产精品久久视频播放| 国产人妻一区二区三区在| 中文字幕免费在线视频6| 国产精品永久免费网站| 99精品在免费线老司机午夜| 国产熟女xx| 看十八女毛片水多多多| 久久热精品热| 久久精品久久久久久噜噜老黄 | 亚洲av成人精品一区久久| 国产精品野战在线观看| 国产成人a区在线观看| 亚洲欧美日韩高清在线视频| 免费看光身美女| 9191精品国产免费久久| 亚洲无线观看免费| 成人精品一区二区免费| 亚洲无线观看免费| 在线观看免费视频日本深夜| 成人av一区二区三区在线看| 国产乱人视频| 国产真实伦视频高清在线观看 | 日韩欧美一区二区三区在线观看| 久久中文看片网| 欧美黑人欧美精品刺激| 一个人免费在线观看的高清视频| 亚洲狠狠婷婷综合久久图片| 欧美性猛交╳xxx乱大交人| 天天躁日日操中文字幕| 久久午夜福利片| 亚洲欧美清纯卡通| 欧美日韩福利视频一区二区| 18禁黄网站禁片午夜丰满| 亚洲精品456在线播放app | 中文字幕人妻熟人妻熟丝袜美| 国产综合懂色| 国产精品电影一区二区三区| 午夜免费男女啪啪视频观看 | 久久6这里有精品| 欧美成人a在线观看| 久久性视频一级片| 久久精品国产99精品国产亚洲性色| 亚洲久久久久久中文字幕| 亚洲人成网站高清观看| 日韩大尺度精品在线看网址| 欧美+日韩+精品| 国产极品精品免费视频能看的| 好男人电影高清在线观看| 精品人妻视频免费看| 中文字幕人成人乱码亚洲影| 在线免费观看的www视频| 亚洲av成人av| 国产黄a三级三级三级人| 成人特级av手机在线观看| 日日干狠狠操夜夜爽| 最近在线观看免费完整版| 日韩 亚洲 欧美在线| 亚洲精品456在线播放app | 免费黄网站久久成人精品 | 色在线成人网| 香蕉av资源在线| 亚洲国产欧美人成| 黄色视频,在线免费观看| 狠狠狠狠99中文字幕| 亚洲五月婷婷丁香| 国产中年淑女户外野战色| 99热这里只有精品一区| 日日夜夜操网爽| 一个人看视频在线观看www免费| 亚洲av二区三区四区| 成人毛片a级毛片在线播放| 村上凉子中文字幕在线| 国产精品一及| 69人妻影院| 国产麻豆成人av免费视频| aaaaa片日本免费| 国产综合懂色| 免费av观看视频| 黄色日韩在线| 久久国产乱子伦精品免费另类| 亚洲熟妇中文字幕五十中出| 女生性感内裤真人,穿戴方法视频| 国内毛片毛片毛片毛片毛片| 嫁个100分男人电影在线观看| 欧美日韩福利视频一区二区| 蜜桃亚洲精品一区二区三区| 午夜久久久久精精品| 亚洲av中文字字幕乱码综合| 熟妇人妻久久中文字幕3abv| 成人特级黄色片久久久久久久| 久久人人精品亚洲av| 亚洲av日韩精品久久久久久密| 在线观看午夜福利视频| 蜜桃亚洲精品一区二区三区| 波多野结衣巨乳人妻| 全区人妻精品视频| 日韩高清综合在线| 听说在线观看完整版免费高清| 国产真实乱freesex| 亚洲精品乱码久久久v下载方式| 欧美高清成人免费视频www| 国产免费一级a男人的天堂| 免费看a级黄色片| 一二三四社区在线视频社区8| 日韩av在线大香蕉| 日本撒尿小便嘘嘘汇集6| 国产色婷婷99| 人妻制服诱惑在线中文字幕| 国产精品影院久久| 精品久久久久久久久av| 久久久久国内视频| 蜜桃亚洲精品一区二区三区| 赤兔流量卡办理| 久久精品91蜜桃| 久久国产乱子伦精品免费另类| 日韩精品青青久久久久久| 国产91精品成人一区二区三区| 亚洲精品色激情综合| 国产精品日韩av在线免费观看| 欧美乱妇无乱码| 国产在视频线在精品| 白带黄色成豆腐渣| 午夜免费成人在线视频| 床上黄色一级片| 欧美成狂野欧美在线观看| 脱女人内裤的视频| 两个人的视频大全免费| 日本精品一区二区三区蜜桃| 久久久久九九精品影院| 亚洲国产精品久久男人天堂| av福利片在线观看| 精品乱码久久久久久99久播| 久久久久九九精品影院| 久久国产精品人妻蜜桃| 欧美最新免费一区二区三区 | 日韩欧美免费精品| 老司机午夜十八禁免费视频| 亚洲成av人片在线播放无| 97碰自拍视频| 久久精品影院6| 1024手机看黄色片| 男女那种视频在线观看| 亚洲国产日韩欧美精品在线观看| 精品一区二区三区视频在线观看免费| 亚洲综合色惰| 毛片一级片免费看久久久久 | 毛片女人毛片| 啦啦啦观看免费观看视频高清| 日本黄色视频三级网站网址| 香蕉av资源在线| 一本一本综合久久| 国产在视频线在精品| 欧美日韩综合久久久久久 | 国产视频一区二区在线看| 亚洲激情在线av| 久久久久九九精品影院| av黄色大香蕉| 亚洲色图av天堂| 亚洲美女视频黄频| 亚洲七黄色美女视频| 桃色一区二区三区在线观看| 国产精品电影一区二区三区| 国产视频一区二区在线看| 国产精品,欧美在线| 18美女黄网站色大片免费观看| 免费黄网站久久成人精品 | 成人三级黄色视频| av在线蜜桃| 淫妇啪啪啪对白视频| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看影片大全网站| 精品人妻视频免费看| 亚洲精品色激情综合| 国产一区二区在线av高清观看| 欧美一区二区亚洲| 好男人在线观看高清免费视频| 免费在线观看成人毛片| 又爽又黄无遮挡网站| 日韩大尺度精品在线看网址| 亚洲欧美日韩东京热| 国产一级毛片七仙女欲春2| 美女免费视频网站| 国产一区二区激情短视频| 97热精品久久久久久| 桃色一区二区三区在线观看| 小蜜桃在线观看免费完整版高清| 国产高清视频在线播放一区| 色噜噜av男人的天堂激情| 听说在线观看完整版免费高清| 久久伊人香网站| 中文亚洲av片在线观看爽| 噜噜噜噜噜久久久久久91| 又爽又黄无遮挡网站| 91久久精品电影网| 久久亚洲真实| 国产亚洲精品av在线| 欧美黑人欧美精品刺激| 精品日产1卡2卡| av在线蜜桃| 亚洲精华国产精华精| 可以在线观看毛片的网站| 国产主播在线观看一区二区| 能在线免费观看的黄片| 好看av亚洲va欧美ⅴa在| 丰满人妻一区二区三区视频av| 很黄的视频免费| 欧美日韩综合久久久久久 | 好男人电影高清在线观看| 亚洲自拍偷在线| 日韩欧美 国产精品| 国产视频内射| 老女人水多毛片| 美女 人体艺术 gogo| 久久久久久久亚洲中文字幕 | 亚洲在线观看片| 18禁黄网站禁片午夜丰满| 天美传媒精品一区二区| 亚洲av免费高清在线观看| 日本三级黄在线观看| 18+在线观看网站| 免费看a级黄色片| 日本免费a在线| 麻豆av噜噜一区二区三区| 可以在线观看毛片的网站| 日本免费一区二区三区高清不卡| 国产高清视频在线观看网站| 国产成人影院久久av| 国产亚洲欧美98| 在线国产一区二区在线| 亚洲专区国产一区二区| 亚洲va日本ⅴa欧美va伊人久久| 国产伦在线观看视频一区| 黄色一级大片看看| 少妇的逼水好多| 一个人看视频在线观看www免费| 大型黄色视频在线免费观看| 90打野战视频偷拍视频| 免费大片18禁| 久久精品国产99精品国产亚洲性色| 国产熟女xx| 97人妻精品一区二区三区麻豆| 亚洲精华国产精华精| 高潮久久久久久久久久久不卡| 两个人的视频大全免费| 久久久久久久午夜电影| 美女cb高潮喷水在线观看| 国产高清三级在线| 一进一出抽搐gif免费好疼| 国产精品久久久久久精品电影| 一区二区三区四区激情视频 | 日韩av在线大香蕉| 国产精品久久久久久久久免 | 97碰自拍视频| 欧美一区二区国产精品久久精品| 日韩亚洲欧美综合| 免费观看精品视频网站| 国产极品精品免费视频能看的| 高清日韩中文字幕在线| 最后的刺客免费高清国语| 国产 一区 欧美 日韩| 两个人的视频大全免费| 免费观看人在逋| 黄色丝袜av网址大全| 高清在线国产一区| 色5月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 97碰自拍视频| 久久人人爽人人爽人人片va | 中文字幕人妻熟人妻熟丝袜美| 国产精品98久久久久久宅男小说| 丰满人妻一区二区三区视频av| 别揉我奶头~嗯~啊~动态视频| 亚洲成av人片在线播放无| 精品久久久久久,| 两个人视频免费观看高清| 99久国产av精品| 白带黄色成豆腐渣| 国产91精品成人一区二区三区| 俺也久久电影网| 国产高清三级在线| 国产精品综合久久久久久久免费| 琪琪午夜伦伦电影理论片6080| 成人鲁丝片一二三区免费| av天堂中文字幕网| 一二三四社区在线视频社区8| 亚洲成人久久爱视频| 国产亚洲精品综合一区在线观看| 久久精品综合一区二区三区| 中文字幕av在线有码专区| 国产av不卡久久| 国产色婷婷99| 精品久久国产蜜桃| 免费人成在线观看视频色| 一二三四社区在线视频社区8| 国产成人a区在线观看| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 国产不卡一卡二| 亚洲第一欧美日韩一区二区三区| 国产三级中文精品| 日韩 亚洲 欧美在线| ponron亚洲| 亚洲国产色片| 亚洲成人久久性| 久久久国产成人免费| 成人特级黄色片久久久久久久| 两个人视频免费观看高清| 757午夜福利合集在线观看| 最近中文字幕高清免费大全6 | h日本视频在线播放| 日韩欧美免费精品| 国产精品国产高清国产av| 岛国在线免费视频观看| 日韩国内少妇激情av| 91在线精品国自产拍蜜月| 在线观看舔阴道视频| 99国产综合亚洲精品| 真人做人爱边吃奶动态| 最近视频中文字幕2019在线8| 国产精品人妻久久久久久| 国产一区二区在线av高清观看| 国产精品电影一区二区三区| 国产精品爽爽va在线观看网站| av专区在线播放| 欧美一区二区国产精品久久精品| 亚洲无线观看免费| 两个人视频免费观看高清| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说| 国产一区二区三区视频了| 久9热在线精品视频| 一进一出抽搐gif免费好疼| 狂野欧美白嫩少妇大欣赏| 亚洲专区中文字幕在线| 99热6这里只有精品| 国产三级在线视频| 色av中文字幕| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 精品午夜福利在线看| 美女被艹到高潮喷水动态| 琪琪午夜伦伦电影理论片6080| 日韩欧美在线乱码| 黄色视频,在线免费观看| 特级一级黄色大片| 老鸭窝网址在线观看| 国产黄片美女视频| 免费观看的影片在线观看| 亚洲经典国产精华液单 | avwww免费| 亚洲不卡免费看| 婷婷六月久久综合丁香| 国产成人a区在线观看| 99在线人妻在线中文字幕| 国内精品久久久久精免费| 色哟哟·www| 亚洲人成网站高清观看| 琪琪午夜伦伦电影理论片6080| 国产精品不卡视频一区二区 | 成年版毛片免费区| 亚洲欧美清纯卡通| 动漫黄色视频在线观看| 美女cb高潮喷水在线观看| 国产高清视频在线播放一区| 久久久久性生活片| 动漫黄色视频在线观看| 毛片一级片免费看久久久久 | 国产人妻一区二区三区在| 99久久99久久久精品蜜桃| 亚州av有码| 老司机午夜十八禁免费视频| 亚洲欧美日韩东京热| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 最好的美女福利视频网| 国内精品久久久久久久电影| 999久久久精品免费观看国产| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 久久精品影院6| 成人亚洲精品av一区二区| 中文亚洲av片在线观看爽| 在线国产一区二区在线| 亚洲18禁久久av| 久久久精品大字幕| 亚洲精品粉嫩美女一区| 国产欧美日韩精品一区二区| 琪琪午夜伦伦电影理论片6080| 赤兔流量卡办理| 中文字幕熟女人妻在线| 内射极品少妇av片p| 欧美成人性av电影在线观看| 久久久久国产精品人妻aⅴ院| 女人十人毛片免费观看3o分钟| 国产精品一区二区三区四区免费观看 | 国产黄色小视频在线观看| 欧美激情国产日韩精品一区| 91在线精品国自产拍蜜月| 婷婷亚洲欧美| 免费大片18禁| 欧美日韩瑟瑟在线播放| 欧美激情在线99| 国产精品1区2区在线观看.| 久久久久九九精品影院| 日韩欧美 国产精品| 18禁黄网站禁片午夜丰满| 日本五十路高清| 99热这里只有是精品在线观看 | www.www免费av| 内射极品少妇av片p| 久久久久久国产a免费观看| 丰满人妻熟妇乱又伦精品不卡| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区| 精品日产1卡2卡| 人妻制服诱惑在线中文字幕| 有码 亚洲区| 成熟少妇高潮喷水视频| 亚洲真实伦在线观看| 1024手机看黄色片| 欧美精品啪啪一区二区三区| 久久精品综合一区二区三区| 精品久久久久久久久久免费视频| 黄色女人牲交| 亚洲精品456在线播放app | 国产精品国产高清国产av| av在线天堂中文字幕| a级一级毛片免费在线观看| 美女高潮喷水抽搐中文字幕| 久久精品国产亚洲av天美| 婷婷色综合大香蕉| 99精品久久久久人妻精品| 永久网站在线| 免费搜索国产男女视频| 内射极品少妇av片p| 夜夜爽天天搞| 精品一区二区三区人妻视频| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区 | 国产 一区 欧美 日韩| 国产欧美日韩精品亚洲av| 亚洲无线观看免费| 91久久精品国产一区二区成人| 免费av不卡在线播放| 禁无遮挡网站| 在线观看av片永久免费下载| 国产亚洲欧美98| 亚洲片人在线观看| 国产大屁股一区二区在线视频| АⅤ资源中文在线天堂| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区精品| 婷婷精品国产亚洲av在线| 如何舔出高潮| 国产精品,欧美在线| 看片在线看免费视频| 制服丝袜大香蕉在线| 一级黄色大片毛片| 一进一出抽搐动态| 色在线成人网| 黄色丝袜av网址大全| 精品久久久久久久久av| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品免费久久 | 在现免费观看毛片| 悠悠久久av| 国产成人欧美在线观看| 男人舔女人下体高潮全视频| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 亚洲经典国产精华液单 | 夜夜看夜夜爽夜夜摸| 热99re8久久精品国产| 久久欧美精品欧美久久欧美| 亚洲第一电影网av| 麻豆国产97在线/欧美| 国产免费男女视频| 十八禁人妻一区二区| 动漫黄色视频在线观看| 美女 人体艺术 gogo| 最新中文字幕久久久久| 淫妇啪啪啪对白视频| 听说在线观看完整版免费高清| 757午夜福利合集在线观看| 欧美黑人巨大hd| .国产精品久久| 国产欧美日韩一区二区精品| av在线观看视频网站免费| 国产 一区 欧美 日韩| 少妇裸体淫交视频免费看高清| 国内精品美女久久久久久| 国产成人欧美在线观看| 99在线人妻在线中文字幕| 老熟妇乱子伦视频在线观看| 少妇人妻精品综合一区二区 | 无人区码免费观看不卡| 亚洲av.av天堂| 日日摸夜夜添夜夜添小说| 一级毛片久久久久久久久女| 在线十欧美十亚洲十日本专区| 久久久久久久久大av| 亚洲无线在线观看| 真人做人爱边吃奶动态| 亚洲av一区综合| 少妇高潮的动态图| 最近最新免费中文字幕在线| 国产黄片美女视频| 俺也久久电影网| 在线a可以看的网站| 国产成人影院久久av| 国产老妇女一区| 午夜老司机福利剧场| 亚洲 欧美 日韩 在线 免费| 久久午夜亚洲精品久久| 欧美+亚洲+日韩+国产| 色视频www国产| 国内揄拍国产精品人妻在线| 99热这里只有是精品50| 国产黄a三级三级三级人| 欧美高清成人免费视频www| 亚洲七黄色美女视频| 日本成人三级电影网站| 国产人妻一区二区三区在| av在线观看视频网站免费| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| 精品久久久久久久久久免费视频| 九九热线精品视视频播放| 日韩国内少妇激情av| 中国美女看黄片| 国产爱豆传媒在线观看| 精品无人区乱码1区二区| 午夜a级毛片| 国产色婷婷99|