• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum multicast communication over the butterfly network

    2022-01-23 06:34:24XingBoPan潘興博XiuBoChen陳秀波GangXu徐剛ZhaoDou竇釗ZongPengLi李宗鵬andYiXianYang楊義先
    Chinese Physics B 2022年1期
    關(guān)鍵詞:徐剛

    Xing-Bo Pan(潘興博) Xiu-Bo Chen(陳秀波) Gang Xu(徐剛)Zhao Dou(竇釗) Zong-Peng Li(李宗鵬) and Yi-Xian Yang(楊義先)

    1Information Security Center,State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2School of Information Science and Technology,North China University of Technology,Beijing 100144,China

    3Huawei Technologies Co. Ltd,Shenzhen 518129,China

    4School of Computer Science,Wuhan University,Wuhan 430072,China

    Keywords: quantum nondemolition measurement, special single particle basis, quantum network coding,quantum multicast communication

    1. Introduction

    In 2000,Ahlswedeet al.[1]proposed the idea of classical network coding for the first time, which is of epoch-making significance and brings new opportunities for the development of information communication.

    Fig.1. Classic network coding.

    As shown in Fig.1, by performing an XOR operation at the bottleneck node,the receiversT1andT2can get bitsa1anda2simultaneously. The protocol completes two pairs of multicast communication over the butterfly network. The network coding solves the congestion problem at the bottleneck node,and improves the transmission efficiency and the total network throughput.[2-6]

    In 2007, Hayashiet al.[7]initiated proposed a quantum network coding protocol considering the advantages of network coding. As shown in Fig. 2, sendersS1andS2transmit pure states, while receivers receive the mixed states. Although this protocol can achieve quantum 2-pair multi-unicast communication, and the fidelity of the output states cannot reach 1. It is impossible in principle to replicate exactly an unknown quantum state due to the non-cloning theorem.[8]Subsequently, Kobayashiet al.[9-11]showed that as long as classical communication is free over the butterfly network,the perfect transmission of quantum states[12-15]can be completed. This result provides a theoretical basis for perfect quantum network coding.[12,16-19]So far, a large number of quantum network coding schemes[20-24]have been proposed,some of which have been implemented in experiments.[25,26]In Ref.[25],Luet al.have demonstrated Hayashi’protocol[12]by employing eight photons generated via spontaneous parametric down-conversion. The average fidelities of cross state transmission and cross entanglement distribution achieved exceed the theoretical upper bounds permitted without prior entanglement. In Ref. [26], Pathumsootet al.have completed a particular implementation of quantum network coding using measurement-based quantum computation on IBM Q processors. Pathumsootet al. have demonstrated how a quantum computer can be used to model an entangling quantum network and experimentally confirmed the operation of quantum network coding in a superconducting device. This shows that it has taken a step from the theory of quantum network coding toward practical use on real devices. At present, quantum network coding in the form of quantum multi-unicast communication[12,16-24]emerges in endlessly,while quantum network coding in the form of quantum multicast communication[27-30]is relatively less.

    Fig.2. Quantum network coding with universal cloning.

    In 2006, Shi and Soljanin[27]began to study the multicast problem in quantum networks. Through quantum lossless compression and decompression technology, quantum multicast communication can be completed in quantum networks. In 2009, Liet al.[28]proposed a new optimization quantum-inspired evolutionary algorithm (QEA) to solve the multicast routing problems. In 2010, Xinget al.[29]proposed an improved quantum-inspired evolutionary algorithm for coding resource optimization based network coding multicast scheme. In 2015,Xuet al.[30]proposed a quantum cooperative multicast coding scheme. In Ref.[30],Xuet al. gave the explicit definition of quantum cooperative multicast, and designed an efficient scheme for cooperative multicast of twolevel quantum states over the butterfly network.Quantum multicast communication solves the one-to-many quantum communication problem,which is a great significance to the practical application of quantum communication networks[31-35]in the future.

    We study quantum network coding and quantum multicast communication. In Ref.[36],Liet al. designed universal quantum operations by applying local operation and classical communication,[38]and proposed a perfect quantum multipleunicast network coding protocol. In Ref. [37], Pati proposed assisted cloning and orthogonal complementing of unknown quantum state. Without violating the quantum non-cloning theorem,by applying quantum non-demolitional measurement(QND),[39-41]the assisted clone and orthogonal complementation of an unknown quantum state can be achieved with the help of the quantum and classical channels. Subsequently, a number of perfect assisted cloning schemes[42-44]have been proposed.

    In this paper,we propose a quantum multicast communication with network coding, which achieves quantum 2-pair multicast communication over the butterfly network. Then we extend quantum 2-pair multicast communication to the extended butterfly network,and quantumk-pair multicast communication is proposed over the extended butterfly network.Firstly,an EPR state is shared between each adjacent repeater of butterfly network, and use the quantum operations introduced in Subsection 2.1 to generate entanglement relationship between non-adjacent senders and receivers. Secondly, after each sender adds auxiliary particles according to the multicast numberk,the added auxiliary particles and the EPR state form a multi-particle entangled state through controlled NOT gates.Thirdly,we use Bell basis and single-particle basis to measure multi-particle entangled state, in which Bell basis measurement is quantum non-demolition measurement.Finally,by designing encoding and decoding strategies, quantum multicast communication can be completed with the help of classical and quantum channels.

    2. Preliminaries

    2.1. Quantum complementary state

    In our scheme,Victor prepares an arbitrary quantum state|ψ〉v=α|0〉v+β|1〉v,whereα=cos(θ/2),β=eiφsin(θ/2),just like representing an arbitrary quantum state on the bloch sphere. The normalization condition|α|2+|β|2=1 is satisfied. We define that|ψ⊥〉vis quantum complementary state of|ψ〉v,in which|ψ⊥〉v=α|1〉v-β*|0〉v.

    In order to achieve quantum multicast communication,Victor needs to perform the special single particle basis. We assume the special single particle basis{|m〉,|n〉}is

    The normalization and orthogonalization relationships are satisfied between the set of basis.

    2.2. Quantum operations

    We refer to the encoding and decoding operations in Refs.[21,36]to design quantum operations over the extended butterfly network. The extended butterfly network is shown in Fig.3.

    Fig.3. The extended butterfly network.

    Fig. 4. One source node to multiple target nodes: EPR pairs are shared between a source node and multiple target nodes, Connection operation Con→n2,...,mk→nk is applied as shown in Table 1.

    Table 1. Con→n2,...,mk→nk.

    Table 1. Con→n2,...,mk→nk.

    1 Quantum repeater Si performs CNOTm1m2,...,CNOTm1 mk successively.2 Quantum repeater Si uses {|0〉,|1〉} to measure particles m2,...,mk and let g=(g2,...,gk)be measurement result,where gi ∈{0,1}.3 Quantum repeater Si sends g2,...,gk to quantum repeater Tj (2 ≤j ≤k)through the classic channel,if g j (2 ≤j ≤k)=1,then Tj applies an X to particle nj.Here,the particles m1,m2,...,mk are owned by quantum repeater Si;the particles n1,n2,...,nk are owned by quantum repeater Tj,respectively;and X is Pauli operator.

    Fig.5. Multiple sources node to intermediate node: EPR pairs are shared between multiple source nodes and an intermediate node,Connection operationis applied as shown in Table 2.

    Table 2.

    Table 2.

    Fig.6. Intermediate node to multiple target nodes: EPR pairs are shared between an intermediate node and multiple target nodes,Connection operation Con→n1,m2→n2,...,mk→nk is applied as shown in Table 3.

    Table 3. Con→n1,m2→n2,...,mk→nk.

    Table 3. Con→n1,m2→n2,...,mk→nk.

    1 Quantum repeater R2 performs CNOTmm1,CNOTmm2,...,CNOTmmk successively.2 Quantum repeater R2 uses {|0〉,|1〉} to measure particles m1,m2,...,mk and let g=(g1,g2,...,gk)be measurement result,where gi ∈{0,1}.3 Quantum repeater R2 sends g1,g2,...,gk to quantum repeater Tj(1 ≤j ≤k) via classic channel, if gj (1 ≤j ≤k)=1, then Tj applies an X to particle n j.Here,the particles m,m1,m2,...,mk are owned by quantum repeater R2;the particle n j is owned by quantum repeater Tj (1 ≤j ≤k); and X is the Pauli operator.

    Fig. 7. Intermediate node to one target node: an EPR pair is shared between an intermediate node and a target node, Controlled-NOT gateis applied as shown in Table 4.

    1 An XOR operationm1⊕m2⊕...⊕mkis performed to get classical resultλat quantum repeaterTj.

    2. A controlled Not gateCNOTλmis performed at quantum repeaterTj,

    whereλis the control qubit andmis the target qubit.

    Here,the particlesm,m1,m2,...,mkare owned by quantum repeaterTj;the particlenis owned by quantum repeaterR2.

    Fig.8. Remove operation: delete the extra particles through Remove operation Reml→n as shown in Table 5.

    Table 5. Reml→n.

    Through the above connection (Figs. 4-7) and remove(Fig. 8) operations, the entanglement relationship can be established in the first step of our scheme.

    3. Our works

    3.1. Quantum 2-pair multicast communication

    We propose a quantum 2-pair multicast communication scheme over the butterfly network. As shown in Fig. 9,Victor V prepares two arbitrary quantum states|ψ1〉1=α1|0〉1+β1|1〉1,|ψ2〉2=α2|0〉2+β2|1〉2, sends|ψ1〉1toS1and|ψ2〉2toS2. Whereα1= cos(θ1/2),α2= cos(θ2/2),β1= eiφ1sin(θ1/2),β2= eiφ2sin(θ2/2). It satisfies the normalization condition|α1|2+|β1|2=1,|α2|2+|β2|2=1. On the butterfly network, we allow either one qubit transmission in quantum channel or no more than two-bit classical communication in classical channel. Our scheme is divided into four stages: establishing entanglement relationship, adding auxiliary particles, quantum measurements and encoding process,and transmission and decoding process.

    Fig.9. The butterfly network with preparer.

    Secondly,adding auxiliary particles. In our scheme,auxiliary particles are added according to the multicast numberk. The number of auxiliary particles is (k-2)×2. According to the formula, there is no need to add auxiliary particles for quantum 2-pair multicast communication. Go directly to quantum measurements and encoding process. It should be noted that quantum 2-pair multicast communication is the only case which no auxiliary particles are added.

    Fig.10. The butterfly network with entanglement.

    Thirdly, quantum measurements and encoding process.The combined state of|ψi〉iand|Ψ+〉siitiiat each senderSi(i ∈(1,2))is

    Each senderSiuses Bell basis{|Ψ+〉,|Ψ-〉,|Φ+〉,|Φ-〉}to measure particlesi,sii, which is a quantum non-demolition measurement. The measurement results of Bell basis are encoded into 2-bitXiaccording to Table 6.

    Table 6. Bell measurements coding table.

    After senderSiperforms Bell basis measurement,follow by sending particleito Victor. Victor uses the single particle basis{|m〉i,|n〉i}to measure particlei, and encodes the measurement result with 1-bitYias shown in Table 7, whereYi,jrepresents the encoding result of thej-the single particle basis measurement applied by Victor to the senderSi. After Victor performs the single particle basis measurement,senderSiwill get quantum stateU(Yi)|ψ〉siior quantum complementary stateU(Yi)|ψ⊥〉sii. According to theYireceived from Victor,senderSiapplies recovery operationU(Yi)to obtain|ψ〉siior|ψ⊥〉siiwith equal probability.

    Table 7. Single particle basis coding table.

    Finally, transmission and decoding process. SenderS1sendsX1to intermediate nodeR1and receiverT2via classic channelsC(S1,R1) andC(S1,T2), respectively. SenderS2sendsX2to intermediate nodeR1and receiverT1via classic channelsC(S2,R1)andC(S2,T1),respectively. An XOR operation is performed to getX1⊕X2atR1, andX1⊕X2is transmitted to next nodeR2. AtR2,X1⊕X2is copied and transmitted to receiversT1andT2via classic channelsC(R2,T1)andC(R2,T2), respectively. ReceiverT1performs the XOR operation(X1⊕X2)⊕X2to obtainX1,and applies unitary operationU(X1)-1to quantum stateU(X1)|ψ1〉t11to get quantum state|ψ1〉t11. ReceiverT2performs the XOR operation(X1⊕X2)⊕X1to obtainX2, and applies unitary operationU(X2)-1to quantum stateU(X2)|ψ2〉t22to get quantum state|ψ2〉t22. SenderS1sends quantum state|ψ1〉or quantum complement state|ψ1⊥〉to receiverT2through quantum channelQ(S1,T2). SenderS2sends quantum state|ψ2〉or quantum complement state|ψ2⊥〉to receiverR1through quantum channelQ(S2,T1).

    Through the above four stages, quantum state|ψ1〉with probability 1 and quantum state|ψ2〉with probability 1/2 or quantum complement state|ψ2⊥〉with probability 1/2 can be obtained at receiverT1. Quantum state|ψ2〉with probability 1 and quantum state|ψ1〉with probability 1/2 or quantum complement state|ψ1⊥〉with probability 1/2 can be obtained at receiverT2.It should be noted that if the amplitudes of the transmitted quantum states|ψ1〉1and|ψ2〉2are real numbers,Victor will apply the special single particle basis{|m〉=α|0〉+β|1〉,|n〉=β|0〉-α|1〉}to perform quantum measurements, then each receiverT1,T2receives both quantum states|ψ1〉and|ψ2〉with probability 1. Thereby, quantum 2-pair multicast communication can be completed over the butterfly network.

    3.2. Quantum kkk-pair multicast communication scheme

    We extend quantum 2-pair multicast communication to extended butterfly network,and propose quantumk-pair multicast communication scheme over the extended butterfly network.

    Fig.11. The extended butterfly network with preparer V.

    Firstly, establishing entanglement relationship. The initial entanglement relationship over the extended butterfly network is shown in Fig. 12. By applying quantum operations introduced in Subsection 2.2,the entangled relationship is established between senderSiand receiverTi,i ∈{1,...,k}.

    Fig.12. The extended butterfly network with entanglement.

    The initial state of quantum system is

    The quantum state|Γ1〉becomes

    Each senderSiapplies Bell-basis to measure particle pairs (i,sii), (Auxi,1,Auxi,2),..., (Auxi,(k-2)×2-1,Auxi,(k-2)×2) successively, which is a quantum nondemolition measurement. After Bell-basis measurements,each receiverTiwill get one of the quantum states{|ψi〉tii,σz|ψi〉tii,σx|ψi〉tii,σzσx|ψi〉tii}. Each senderSisends particlesi,Auxi,1,...,Auxi,(k-2)×2-1to Victor. After receiving the single particles,Victor applies the special single particle basis{|m〉,|n〉}to measure the received particlesi,Auxi,1,...,Auxi,(k-2)×2-1. Here Victor will performk-1 single particle basis measurements. The basis{|m〉,|n〉}is

    Victor encodes each measurement result with 1-bitYiaccording to Table 7,and transmits(k-1)bitsYito senderSi. Each senderSireceives (k-1) bitsYifrom Victor. When theYiis 0,quantum complement state is obtained at sender,otherwise quantum state is obtained. After Victor performs the special single particle measurement,The state of particlessii,Auxi,2,...,Auxi,(k-2)×2will be obtained at each senderSiin the following form:

    4. Conclusion

    In this paper,we consider Bell states,auxiliary particles,and free classical channels as auxiliary resources to complete quantum multicast communication,which solve the bottleneck problem and improve the communication efficiency.Although auxiliary resources are consumed,quantum channels are used only once at most in our scheme. It should be noted that if the amplitudes of transmitted quantum states are real numbers,each receiver can receivekquantum states.

    In our scheme,no matter how many times Bell basis measurements are applied, the receivers use only one of the following four unitary operations to recover the quantum state,that is,{I,σx,σz,σxσz}. Therefore, the capacity of classical channel is no more than 2 bits in our scheme. The maximum capacity of classical channels will not be increased with the increase of multicast numberk,which saves the utilization of classical channels to some extent.

    At present, quantum multicast communication is in a booming stage. We are also the first attempt to study quantum multicast communication by adding auxiliary resources.Next,we will consider how to save resources to complete quantum multicast communication over the butterfly network,which is also the task we have been trying to solve.In the future,the establishment and application of quantum network[45-47]cannot be separated from quantum multicast communication.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 92046001, 61671087,61962009, and 61971021), the Fundamental Research Funds for the Central Universities (Grant Nos. 2019XD-A02 and 2020RC38), the Fund from Huawei Technologies Co. Ltd(Grant No. YBN2020085019), the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No. 2018BDKFJJ018), the Fundamental Research Funds for Beijing Municipal Commission of Education, the Scientific Research Launch Funds of North China University of Technology, and Beijing Urban Governance Research Base of North China University of Technology.

    猜你喜歡
    徐剛
    殺人者徐剛(短篇小說)
    飛天(2025年1期)2025-01-28 00:00:00
    徐剛書法作品選登
    共青城市蘇家垱鄉(xiāng):共繪美麗鄉(xiāng)村新畫卷
    Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
    Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme*
    一瞬即永恒
    冬夜
    冬夜
    愿他永遠是少年
    南方文壇(2016年1期)2016-03-23 13:44:43
    冬夜
    小小說月刊(2016年2期)2016-02-16 12:28:37
    a在线观看视频网站| 欧美性感艳星| 一进一出抽搐动态| 中文字幕久久专区| 亚洲 欧美 日韩 在线 免费| 国产精品一及| 一本一本综合久久| 淫妇啪啪啪对白视频| 欧美不卡视频在线免费观看| 亚洲精品成人久久久久久| 噜噜噜噜噜久久久久久91| 成年人黄色毛片网站| 国产精品久久电影中文字幕| 看十八女毛片水多多多| 久久亚洲精品不卡| 99久久无色码亚洲精品果冻| 尤物成人国产欧美一区二区三区| 激情在线观看视频在线高清| 久久精品国产自在天天线| 欧美一区二区亚洲| 老司机午夜福利在线观看视频| 脱女人内裤的视频| 一区二区三区高清视频在线| 床上黄色一级片| 男人和女人高潮做爰伦理| 国产精品永久免费网站| 午夜两性在线视频| 97超视频在线观看视频| 久久性视频一级片| 欧美一级a爱片免费观看看| 在线观看免费视频日本深夜| 国产欧美日韩一区二区三| 69人妻影院| 性欧美人与动物交配| 韩国av一区二区三区四区| 久久精品人妻少妇| 免费看美女性在线毛片视频| 中文字幕免费在线视频6| 伊人久久精品亚洲午夜| 草草在线视频免费看| 成人午夜高清在线视频| 欧美高清性xxxxhd video| 国产精品乱码一区二三区的特点| 亚洲美女黄片视频| 日本免费a在线| 桃色一区二区三区在线观看| 一本综合久久免费| 久久精品久久久久久噜噜老黄 | 悠悠久久av| 亚洲真实伦在线观看| 亚洲精品色激情综合| 亚洲精品影视一区二区三区av| 好男人电影高清在线观看| 午夜免费男女啪啪视频观看 | 免费观看的影片在线观看| 国产69精品久久久久777片| 天堂网av新在线| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| АⅤ资源中文在线天堂| 毛片一级片免费看久久久久 | 我要搜黄色片| 欧美在线一区亚洲| 免费搜索国产男女视频| 午夜老司机福利剧场| 亚洲精品影视一区二区三区av| 一边摸一边抽搐一进一小说| 毛片女人毛片| 中文字幕精品亚洲无线码一区| 国产中年淑女户外野战色| 亚洲精品456在线播放app | 夜夜夜夜夜久久久久| 欧美成人免费av一区二区三区| 亚洲欧美精品综合久久99| 精品久久久久久久久久免费视频| 亚洲经典国产精华液单 | 日本在线视频免费播放| 女同久久另类99精品国产91| avwww免费| 亚洲aⅴ乱码一区二区在线播放| 日本黄色片子视频| 伦理电影大哥的女人| av国产免费在线观看| 乱人视频在线观看| 青草久久国产| 蜜桃亚洲精品一区二区三区| 久久国产精品人妻蜜桃| 中文字幕久久专区| 国产毛片a区久久久久| 亚洲中文字幕一区二区三区有码在线看| 国产精品98久久久久久宅男小说| 国产精品久久久久久久电影| 国产精品影院久久| 日本与韩国留学比较| 国产伦精品一区二区三区视频9| 久久亚洲精品不卡| 一二三四社区在线视频社区8| 久久人人爽人人爽人人片va | 久久99热6这里只有精品| 国产探花在线观看一区二区| 在线a可以看的网站| 国产一区二区在线观看日韩| 精品欧美国产一区二区三| 免费人成在线观看视频色| 男人舔奶头视频| 黄色视频,在线免费观看| 热99re8久久精品国产| 波多野结衣巨乳人妻| 精品人妻1区二区| 久久久精品欧美日韩精品| 亚洲第一欧美日韩一区二区三区| 国产免费男女视频| 黄片小视频在线播放| 久久久色成人| 国产伦一二天堂av在线观看| 我的女老师完整版在线观看| 99在线视频只有这里精品首页| 高潮久久久久久久久久久不卡| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 无人区码免费观看不卡| 白带黄色成豆腐渣| 亚洲激情在线av| 久久久色成人| 亚洲,欧美,日韩| 热99在线观看视频| 男人和女人高潮做爰伦理| 可以在线观看毛片的网站| 亚洲av成人不卡在线观看播放网| 18禁在线播放成人免费| 精品人妻一区二区三区麻豆 | 精品久久久久久久久久久久久| 亚洲人成网站在线播放欧美日韩| 天堂动漫精品| 18禁黄网站禁片午夜丰满| 亚洲中文日韩欧美视频| 村上凉子中文字幕在线| 久久午夜福利片| 精品一区二区三区av网在线观看| 神马国产精品三级电影在线观看| 亚洲七黄色美女视频| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 老司机午夜福利在线观看视频| 欧美不卡视频在线免费观看| 国产一区二区激情短视频| 日韩 亚洲 欧美在线| 欧美激情国产日韩精品一区| 欧美黑人欧美精品刺激| 美女高潮的动态| 免费无遮挡裸体视频| 免费av毛片视频| 成人性生交大片免费视频hd| 91狼人影院| 男女做爰动态图高潮gif福利片| 日韩欧美精品免费久久 | 亚洲av电影在线进入| 欧美成人免费av一区二区三区| 国产精品1区2区在线观看.| 男女床上黄色一级片免费看| 国产69精品久久久久777片| 波野结衣二区三区在线| a级毛片a级免费在线| 色综合欧美亚洲国产小说| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 性色avwww在线观看| 真人做人爱边吃奶动态| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 麻豆一二三区av精品| 五月伊人婷婷丁香| 欧美日韩福利视频一区二区| 婷婷六月久久综合丁香| 免费在线观看成人毛片| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩卡通动漫| 午夜视频国产福利| 国产私拍福利视频在线观看| 日本撒尿小便嘘嘘汇集6| 天天一区二区日本电影三级| 久久久久久国产a免费观看| 性欧美人与动物交配| av天堂中文字幕网| 90打野战视频偷拍视频| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品粉嫩美女一区| 欧美另类亚洲清纯唯美| 国产精品久久久久久久电影| 深夜精品福利| 欧美中文日本在线观看视频| 国产精品亚洲一级av第二区| 久久久成人免费电影| 麻豆国产av国片精品| 欧美日本视频| 波多野结衣高清作品| 欧美3d第一页| 欧美日韩黄片免| 99国产综合亚洲精品| 天堂影院成人在线观看| 自拍偷自拍亚洲精品老妇| 在线观看午夜福利视频| 久久精品国产亚洲av涩爱 | 国产伦精品一区二区三区四那| 午夜福利18| 日本一二三区视频观看| 国产毛片a区久久久久| 精品久久久久久久久av| 欧美国产日韩亚洲一区| 久久国产乱子伦精品免费另类| 久久午夜福利片| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 黄色一级大片看看| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 久久欧美精品欧美久久欧美| 99riav亚洲国产免费| 午夜视频国产福利| 亚洲熟妇中文字幕五十中出| 欧美极品一区二区三区四区| 午夜福利高清视频| 中国美女看黄片| 国产探花在线观看一区二区| 国产91精品成人一区二区三区| 国内精品久久久久久久电影| 91久久精品电影网| 给我免费播放毛片高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 黄片小视频在线播放| 一级av片app| 麻豆久久精品国产亚洲av| 狠狠狠狠99中文字幕| 又黄又爽又刺激的免费视频.| 神马国产精品三级电影在线观看| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 88av欧美| 一本精品99久久精品77| av欧美777| 久99久视频精品免费| 国产精品1区2区在线观看.| 我要看日韩黄色一级片| 精品国内亚洲2022精品成人| 国产精品免费一区二区三区在线| 久久草成人影院| 老熟妇仑乱视频hdxx| 岛国在线免费视频观看| 成人永久免费在线观看视频| 成人特级av手机在线观看| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线在线| 久99久视频精品免费| av福利片在线观看| 夜夜爽天天搞| 国产精品亚洲美女久久久| 99在线人妻在线中文字幕| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 国产美女午夜福利| 亚洲人成网站在线播放欧美日韩| av视频在线观看入口| 中文字幕av在线有码专区| 香蕉av资源在线| 如何舔出高潮| 国产野战对白在线观看| 老司机午夜十八禁免费视频| 午夜福利在线观看免费完整高清在 | 99久久精品一区二区三区| 亚洲综合色惰| 久久精品国产亚洲av天美| 最好的美女福利视频网| 精品一区二区三区视频在线| 精品国产亚洲在线| 夜夜爽天天搞| 国产探花极品一区二区| 免费观看人在逋| 亚洲三级黄色毛片| 亚洲国产欧洲综合997久久,| 日本在线视频免费播放| 久久亚洲精品不卡| 免费看日本二区| 男人舔奶头视频| 国产精品嫩草影院av在线观看 | 亚洲精品在线美女| 午夜老司机福利剧场| 亚洲国产精品合色在线| 51午夜福利影视在线观看| av专区在线播放| 亚洲激情在线av| 欧美日韩亚洲国产一区二区在线观看| 2021天堂中文幕一二区在线观| 给我免费播放毛片高清在线观看| 亚洲专区国产一区二区| 一区二区三区四区激情视频 | 女人十人毛片免费观看3o分钟| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区| 亚洲精品456在线播放app | 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 久久久成人免费电影| 老司机福利观看| 中文字幕av成人在线电影| 十八禁人妻一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av日韩精品久久久久久密| 一本精品99久久精品77| 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片 | 制服丝袜大香蕉在线| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 精品久久久久久久久久久久久| 成人三级黄色视频| 男人狂女人下面高潮的视频| 久久国产乱子伦精品免费另类| 能在线免费观看的黄片| 国产爱豆传媒在线观看| 精品人妻熟女av久视频| 亚洲专区中文字幕在线| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av| 欧美zozozo另类| 日本熟妇午夜| 亚洲av熟女| 老司机深夜福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 国产精品永久免费网站| 久久婷婷人人爽人人干人人爱| 亚洲一区高清亚洲精品| 2021天堂中文幕一二区在线观| 成人av在线播放网站| 精品一区二区三区视频在线观看免费| 最近最新免费中文字幕在线| 欧美不卡视频在线免费观看| 欧美成人a在线观看| 亚洲最大成人中文| 亚洲国产精品成人综合色| 少妇熟女aⅴ在线视频| 亚洲性夜色夜夜综合| 窝窝影院91人妻| 99热只有精品国产| 亚洲人成网站高清观看| 亚洲精品色激情综合| 十八禁国产超污无遮挡网站| 国产精品一区二区三区四区久久| 国产高清三级在线| 日本精品一区二区三区蜜桃| 又黄又爽又刺激的免费视频.| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久久久免 | 给我免费播放毛片高清在线观看| 亚洲专区国产一区二区| 亚洲五月天丁香| 看十八女毛片水多多多| 午夜老司机福利剧场| 在线观看免费视频日本深夜| 成人无遮挡网站| 麻豆成人av在线观看| 色播亚洲综合网| 老熟妇乱子伦视频在线观看| 两个人视频免费观看高清| 亚洲最大成人中文| 性插视频无遮挡在线免费观看| 欧美绝顶高潮抽搐喷水| 色播亚洲综合网| 国产黄片美女视频| 国产成人影院久久av| 99久久九九国产精品国产免费| 超碰av人人做人人爽久久| 欧美日韩国产亚洲二区| 亚洲欧美日韩卡通动漫| 久久国产精品影院| 97热精品久久久久久| 欧美最新免费一区二区三区 | 亚洲无线观看免费| 亚洲七黄色美女视频| 国产精品亚洲美女久久久| 午夜亚洲福利在线播放| 国产白丝娇喘喷水9色精品| 性插视频无遮挡在线免费观看| 又黄又爽又免费观看的视频| 日本 欧美在线| av天堂中文字幕网| 欧美乱妇无乱码| 国产精品久久久久久久电影| 午夜精品久久久久久毛片777| 国产一区二区三区视频了| 国产亚洲精品久久久com| 三级国产精品欧美在线观看| 少妇人妻精品综合一区二区 | 国产精华一区二区三区| 悠悠久久av| 99在线视频只有这里精品首页| 精品一区二区三区视频在线观看免费| 男人和女人高潮做爰伦理| 亚洲成人久久性| 能在线免费观看的黄片| 亚洲真实伦在线观看| 国产成人欧美在线观看| 久久亚洲精品不卡| 尤物成人国产欧美一区二区三区| 久久中文看片网| 国产 一区 欧美 日韩| 97超视频在线观看视频| 免费一级毛片在线播放高清视频| 国产一区二区激情短视频| 免费人成在线观看视频色| 亚洲无线在线观看| 老司机深夜福利视频在线观看| 在线观看美女被高潮喷水网站 | 琪琪午夜伦伦电影理论片6080| 国产伦精品一区二区三区四那| 欧美黑人欧美精品刺激| 免费人成在线观看视频色| 九九热线精品视视频播放| 91九色精品人成在线观看| 美女xxoo啪啪120秒动态图 | 男女视频在线观看网站免费| 成年女人看的毛片在线观看| 能在线免费观看的黄片| 日韩欧美精品v在线| 欧美极品一区二区三区四区| 美女黄网站色视频| 真人做人爱边吃奶动态| 欧美一区二区亚洲| 婷婷精品国产亚洲av| 国产精华一区二区三区| 日韩精品青青久久久久久| 51国产日韩欧美| 亚洲精品一区av在线观看| 成人鲁丝片一二三区免费| 男女下面进入的视频免费午夜| 嫩草影视91久久| 日韩亚洲欧美综合| 97碰自拍视频| 国产v大片淫在线免费观看| 久久99热这里只有精品18| 精品久久久久久久久久免费视频| 亚洲熟妇熟女久久| 99久久99久久久精品蜜桃| 国内毛片毛片毛片毛片毛片| 欧美激情久久久久久爽电影| 久久久久九九精品影院| 国产三级中文精品| 性欧美人与动物交配| 一a级毛片在线观看| 国产又黄又爽又无遮挡在线| 欧美性猛交黑人性爽| 国产成+人综合+亚洲专区| 一区二区三区四区激情视频 | 俺也久久电影网| 一区二区三区高清视频在线| 性欧美人与动物交配| 黄色女人牲交| 国产av麻豆久久久久久久| 我要搜黄色片| 99视频精品全部免费 在线| 国产人妻一区二区三区在| 午夜福利18| 别揉我奶头 嗯啊视频| 亚洲av免费在线观看| 少妇的逼水好多| 岛国在线免费视频观看| 国产一级毛片七仙女欲春2| 少妇人妻精品综合一区二区 | 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线| 久99久视频精品免费| 深夜a级毛片| 直男gayav资源| 国产国拍精品亚洲av在线观看| 免费一级毛片在线播放高清视频| 一级毛片久久久久久久久女| 又紧又爽又黄一区二区| 国产精品嫩草影院av在线观看 | 午夜a级毛片| 99热这里只有是精品50| 99国产综合亚洲精品| 国产精品1区2区在线观看.| 一级作爱视频免费观看| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| 久久久久久大精品| 少妇高潮的动态图| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av在线| 亚洲人成网站在线播| 日本精品一区二区三区蜜桃| 国产亚洲精品综合一区在线观看| 亚洲七黄色美女视频| 变态另类成人亚洲欧美熟女| 51国产日韩欧美| 少妇丰满av| 亚洲三级黄色毛片| 69人妻影院| 永久网站在线| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 免费观看精品视频网站| 精品免费久久久久久久清纯| 国产一级毛片七仙女欲春2| 日本黄色片子视频| 美女黄网站色视频| 亚洲一区二区三区不卡视频| 亚洲欧美清纯卡通| 久久人人精品亚洲av| 尤物成人国产欧美一区二区三区| 有码 亚洲区| 日韩精品中文字幕看吧| 午夜精品久久久久久毛片777| 欧美日本亚洲视频在线播放| 观看免费一级毛片| 偷拍熟女少妇极品色| 久久香蕉精品热| 亚洲欧美激情综合另类| 国产精品一及| 亚洲一区二区三区不卡视频| 亚州av有码| 亚洲,欧美,日韩| 国产亚洲av嫩草精品影院| 午夜福利18| 男女那种视频在线观看| 免费看美女性在线毛片视频| 成年女人看的毛片在线观看| 亚洲精品456在线播放app | 久久久久国内视频| 亚洲 国产 在线| 99久国产av精品| 十八禁网站免费在线| 国产伦一二天堂av在线观看| 久久九九热精品免费| 最好的美女福利视频网| 日本一本二区三区精品| 搡老妇女老女人老熟妇| 每晚都被弄得嗷嗷叫到高潮| 国产中年淑女户外野战色| 久久久成人免费电影| 亚洲成av人片在线播放无| 99riav亚洲国产免费| 国产三级中文精品| 一本精品99久久精品77| 日韩欧美免费精品| 久久香蕉精品热| 欧美3d第一页| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 亚洲人与动物交配视频| 国产欧美日韩一区二区三| 中文字幕av在线有码专区| 亚洲精品久久国产高清桃花| 2021天堂中文幕一二区在线观| 国产精品久久久久久久久免 | 久久伊人香网站| 亚洲av日韩精品久久久久久密| 成人国产综合亚洲| 51国产日韩欧美| 亚洲激情在线av| 久久久久久久久久成人| 麻豆成人午夜福利视频| 搡女人真爽免费视频火全软件 | 欧美日韩福利视频一区二区| 国产一区二区在线观看日韩| 国产激情偷乱视频一区二区| 性插视频无遮挡在线免费观看| 久久热精品热| 天堂影院成人在线观看| 国产伦人伦偷精品视频| 一区二区三区激情视频| 人妻久久中文字幕网| 亚洲熟妇中文字幕五十中出| 看十八女毛片水多多多| 日本撒尿小便嘘嘘汇集6| 国产精品一及| 国产精品乱码一区二三区的特点| 久久久色成人| 日本 av在线| 亚洲国产日韩欧美精品在线观看| 18禁裸乳无遮挡免费网站照片| 精品人妻1区二区| 乱码一卡2卡4卡精品| 日本a在线网址| 我的老师免费观看完整版| 亚洲不卡免费看| 深爱激情五月婷婷| 12—13女人毛片做爰片一| 欧美另类亚洲清纯唯美| 久久久久久国产a免费观看| 国产老妇女一区| 男人狂女人下面高潮的视频| 久久久久久国产a免费观看| 九九在线视频观看精品| 特大巨黑吊av在线直播| 久久久久久久午夜电影| 成人特级黄色片久久久久久久| 桃色一区二区三区在线观看| 天堂√8在线中文| 黄色日韩在线| 久久精品国产99精品国产亚洲性色| 亚洲精品色激情综合| 精品福利观看| 免费在线观看成人毛片| 免费高清视频大片| 一个人看的www免费观看视频| 国产成人av教育| 高清日韩中文字幕在线| 亚洲欧美日韩东京热| 一级黄片播放器| 丰满人妻一区二区三区视频av| 国产免费男女视频| 51国产日韩欧美|