• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics

    2022-12-28 09:54:58WeiJiangWu吳維江DaXu徐達(dá)JieQian錢(qián)潔JieLi李杰YiPuWang王逸璞andJianQiangYou游建強(qiáng)
    Chinese Physics B 2022年12期
    關(guān)鍵詞:徐達(dá)李杰

    Wei-Jiang Wu(吳維江), Da Xu(徐達(dá)), Jie Qian(錢(qián)潔), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建強(qiáng))

    Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device,Department of Physics and State Key Laboratory of Modern Optical Instrumentation,Zhejiang University,Hangzhou 310027,China

    Keywords: magnon,magnetostatic mode,temperature,yttrium–iron–garnet(YIG)

    1. Introduction

    Nonlinear effects are a large class of physical phenomena that have been continuously and actively explored in optics,[1–3]plasmonics,[4–6]and acoustics,[7–9]as well as in other oscillations and wave systems.[10–12]Nonlinearity and nonlinear interactions are weak and difficult to be detected in some systems, but they can also become sufficiently strong to be the dominant factor in some other systems. A nonlinear system serves as the basis for further development of applications, such as information processing,[13,14]information conversion,[15]switching devices,[16]and so on.

    Cavity magnonics, on the other hand, has gradually demonstrated its unique advantages in fundamental and applied research over the last few years.[17–42]It is expected to be a critical component of hybrid quantum systems[43]and quantum network nodes.[44]A commonly used cavity magnonic system consists of a microwave cavity and ferrimagnets,such as the yttrium–iron–garnet (YIG). The spin collective excitation modes are spin waves in the ferrimagnetic spin ensemble. The most widely studied spin wave mode is the uniform precession mode of spins (i.e., the Kittel mode), which has the largest magnetic dipole moment and can strongly interact with the microwave in both the quantum limit[17,18]and roomtemperature classical regime.[19]Under the bias of an external magnetic field with certain inhomogeneity, besides the Kittel mode,there are also higher-order magnetostatic(HMS)modes in the spin ensemble.[45–47]Previous studies often ignored the influence of these magnetostatic modes on the observation and application of Kittel mode in experiments. However,the HMS modes actually have nontrivial spin textures. Their non-zero orbital angular momentum feature can be used to demonstrate nonreciprocal Brillouin light scattering in optomagnonics and other chiral optics.[33,48–50]

    In this work,we focus on the heating-induced cross effect on frequency shifts of the Kittel and HMS modes in a nonlinear cavity magnonic system,where the non-linearity is embodied in the self-Kerr effect of magnon mode under strong drive.The heating effect is investigated experimentally in a coupled three-dimensional(3D)cavity and YIG sphere system,where the YIG sphere supports both the Kittel and HMS modes. A large frequency difference between these two modes is found.When the Kittel mode or HMS mode is pumped to generate a certain number of magnon excitations,the pumped mode gains a frequency shift due to the self-Kerr effect.[31,51–56]Meanwhile, the frequency of the undriven mode also shifts due to the driving induced raise of the temperature in the sample.This offers additional controllable degrees of freedom in cavity magnonics without increasing system’s complexity. Our study will also bring new ideas to the magnetostatics studies and hybrid magnonic operations.[57–59]

    2. System and theoretical model

    The experimental setup of the cavity magnonic system is illustrated in Fig.1(a). It consists of the microwave field in a 3D copper cavity(internal dimension is 44.0 mm×20.0 mm×6.0 mm), the magnon modes in a single crystal YIG sphere(1 mm in diameter), and the drive field provided by a microwave(MW)source.The YIG sphere is glued on the top of a beryllium ceramic rod and mounted at the antinode of the magnetic field of the cavity mode TE102(ωc/2π=10.07 GHz).The whole sample is placed in a bias magnetic fieldB0applied along the[110]crystal axis of YIG sphere,which results in a negative self-Kerr coefficient (when the magnon mode is driven, the self-Kerr effect with negative coefficient corresponds to a redshift of the magnon mode frequency).[31,56]The cavity has three ports. The port 1 and port 2 are connected with the vector network analyzer (VNA) for measuring the microwave transmission spectrum|S21|2. The drive field is loaded to port 3, which is terminated with a magnetic coil. The bias magnetic field, the rf magnetic field from the magnetic coil,and the rf magnetic field from the cavity mode TE102are perpendicular to each other at the position of the YIG sphere. This configuration maximizes the cavity–YIG coupling strength and drive efficiency. It should be noted that the rf magnetic field from the cavity is employed as the probing field, which has a far lower intensity than the drive field(rf magnetic field from the magnetic coil). The magnetic coil plays multiple roles: (i)it radiates the drive field;(ii)it works as a dissipative channel for the magnon modes.

    More spin moments contribute to the Kittel mode in the crystal, resulting in a larger magnetic dipole and a stronger coupling with the cavity mode.[43,60]Both the Kittel mode and HMS mode become nonlinear modes on account of the magnetocrystalline anisotropy. The magnetocrystalline anisotropy energy measures the energy cost when tuning the magnetization orientation from the easy axis to the hard axis. These energy terms[see Eq.(A4)in Appendix A]give rise to the self-Kerr effect and excitation number bistability.[52]The magnon mode is pumped to generate a certain number of excitations, which increases macrospin precession angle and YIG sphere’s temperature due to spin-lattice relaxation, as shown in Fig. 1(b). The temperature alters the magnetocrystalline anisotropy energy and saturation magnetization,which makes all the magnon modes shift in frequency. In previous studies, the cross effect between the Kittel mode and HMS mode has rarely been investigated. Here,we model the two magnon modes with two sub-magnetizationsMKandMH, where subscripts K and H represent the Kittel mode and HMS mode,respectively. The effective Hamiltonian of the coupled system can be written as(see Appendix B)

    Fig.1. (a)Schematic diagram of the experimental setup. The YIG sphere is coupled to the cavity mode TE102. The cavity is placed in the bias magnetic field B0 (blue arrow). The microwave source connected to the loop coil provides a drive field. The vector network analyzer(VNA)measures the cavity transmission spectrum|S21|2. Inset: in the YIG sphere,the Kittel mode and HMS mode are denoted by two sub-magnetizations. (b)Schematic diagram of the self-Kerr and heating effects.In the upper panel,the drive field applied on the Kittel mode excites a certain number of magnons, resulting in an increase of the precession angle θ. The magnon mode dissipates energy into the crystal lattice via spin-lattice relaxation. Then, as the sample is heated and the temperature rises,the self-Kerr effect will shift the frequency of the Kittel mode. The heating effect will shift the frequency of the HMS mode without changing the precession angle of the HMS-mode magnetization MH.A similar effect occurs by exchanging the roles of the two modes,as shown in the lower panel. The dotted arrows represent the states after driving.

    3. Experimental results

    The transmission spectra of the coupled system are measuredversusthe magnet coil current as shown in Fig.2(a).The anti-crossing indicates the strong coherent coupling between the Kittel mode and cavity mode, and they will periodically exchange energy with each other.[19]At the left part of the transmission mapping, when the magnet coil current is about 4.75 A, we find a small coupling feature, which is attributed to the HMS mode. The coupling strength is 2 MHz. Here,the frequency difference between the Kittel mode and HMS mode is 301 MHz,which is much lager than the linewidths of the modes. When the magnon mode is pumped by the drive field,the temperature of the sample rises,and be measured by attaching a thermocouple to the surface of the sample.

    Fig.2. Drive on the Kittel mode. (a)The transmission spectra are measured versus magnet coil current. The Kittel mode(red dashed line)and HMS mode(green dashed line)are coupled with the cavity mode. (b)The transmission spectra are measured versus magnet coil current,while a drive field of 9.8 GHz and 25 dBm is applied on the Kittel mode. The Kittel mode has a frequency shift ?k,s due to the self-Kerr effect, and the HMS mode has a even larger frequency shift ?h,c caused by the heating effect. (c)The frequency shifts of the Kittel mode and HMS mode are extracted from panel(b),and plotted versus δ′k=ωk ?ωd1 ?2π·5.94 MHz. The experimental results are fitted with Eq.(2)and ?h,c=2.5?k,s.

    3.1. Drive the Kittel mode

    In Fig.2(b),we apply the drive field with an input power of 25 dBm at the fixed frequencyωd1/2π=9.8 GHz on the Kittel mode and measure the transmission spectraversusthe magnetic coil current.Typical bistable frequency jumps can be observed in both the Kittel mode and HMS mode. This measurement is equivalent to sweeping the frequency of the drive field while fixing the frequencies of the magnon modes. We define the drive-field detuning asδk=ωk?ωd1. It should be noted that our system works in the double-dispersive regime,

    whereΛc,k=ωc?ωk?gkandΛh,k=ωh?ωk?gh. The coherent couplings induced-frequency shifts are approximately equal tog2k/Λc,kandg2h/Λh,k, respectively.[51,52]In the dispersive regime, they are all small terms. Also, the coupling strength between the HMS mode and cavity mode is relatively small. In this case, we can intently pay attention to the effects induced by Kerr nonlinearity. Then we extract and plot the frequency shifts of the two magnon modesversus δ′k/2π=δk/2π ?5.94 MHz in Fig.2(c). The driven Kittel mode has a maximum frequency shift of about?60 MHz,and the undriven HMS mode has a synchronous frequency shift of about?150 MHz. In this case, the temperature of the YIG sphere rises from approximately 300 K to 360 K.The temperature increasement of the YIG sphere results from the spin-lattice relaxation process. The magnons pumped by the drive field dissipate their energy to the lattice vibration phonon mode.

    The frequency shift?k,sof the driven Kittel mode can be fitted by the following equation[51,52][see Eq.(B7)]:

    3.2. Drive the HMS mode

    The cross effect on the frequency shift implies that the HMS mode excitation will also induce a frequency shift of the Kittel mode. Next,we apply the drive field(25 dBm)at a fixed frequencyωd2/2π=10.1 GHz on the HMS mode and sweep the magnetic field. The measured transmission mapping is shown in Fig.3(a). As expected,the HMS mode has a

    Fig.3. Drive on the HMS mode. (a)The transmission spectra are measured versus magnet coil current,while a drive field of 10.1 GHz and 25 dBm is applied on the HMS mode.The HMS mode has a frequency shift ?h,s due to the self-Kerr effect,and the Kittel mode has a smaller frequency shift ?k,c caused by the heating effect. (b)The frequency shifts of the Kittel mode and HMS mode are extracted from panel(a),and plotted versus δ′h. The experimental results are fitted using Eq.(3)and ?k,c=2.1?h,s.

    frequency shift due to the self-Kerr effect,and simultaneously the heating-induced cross effect shifts the frequency of the Kittel mode. We extract the frequency shifts of these two modesversusthe effective drive-field detuningδ′has shown in Fig.3(b). In this case,the temperature of the YIG sphere is increased from 300 K to about 310 K.Similarly,the self-Kerr effect induced frequency shift?h,sof the HMS mode obeys the following equation:

    4. Conclusion

    In this work, we investigated the heating-induced crossfrequency shifts when the magnon mode is pumped in a ferrimagnetic spin ensemble, in which one Kittel mode and one higher-order magnetostatic mode co-exist. The heatingincuced cross effect between them plus their individual self-Kerr effects gives rise to fascinating phenomena. In the experiment, we drive the Kittel mode and the higher-order magnetostatic mode, respectively. Our experiment opens up a new path to study nonlinear effects in magnetic materials and spin ensembles. The mutual interaction between different magnetostatic modes in a single YIG sample can also provide new degrees of freedom for cavity spintronics and cavity magnonics.[61]We anticipate that this finding may stimulate more designs and applications of cavity magnonics.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grants Nos. 11934010, U1801661,and 12174329), the Zhejiang Province Program for Science and Technology (Grant No. 2020C01019), the Fundamental Research Funds for the Central Universities (Grant No. 2021FZZX001-02), and the China Postdoctoral Science Foundation(Grant No.2019M660137).

    Appendix A:Hamiltonian of the kittel mode

    First, we derive the Hamiltonian of the magnon modes without including the heating effect. Under the bias magnetic fieldB0, the Hamiltonian of the Kittel mode is written as(HMS mode has a similar form)[51]

    where the first term represents the Zeeman energy and the second term is the magnetocrystalline anisotropy energy,MK=(MK,x,MK,y,MK,z) is the sub-magnetization corresponding to the Kittel mode,Vis the volume of the YIG sphere,μ0is the vacuum permeability, andHanis the anisotropic field due to the magnetocrystalline anisotropy in the YIG crystal.

    We adopt the direction of the bias magneticB0as thezdirection(B0=B0ez).When the[110]crystal axis of the YIG sphere is aligned along the bias magnetic field,the anisotropic field is given by[62]

    Appendix B:Heating-induced cross effect on the frequency shifts

    The first-order magnetocrystalline anisotropy constantKan,saturation magnetizationMK,andSKare all temperaturedependent. Consequently, temperature change can alter the Kerr coefficient and the magnon mode frequency. To quantify the impact of temperature on the frequency shift,we measured the temperature dependence of magnon mode frequency from approximately 300 K to 350 K, as shown in Fig. B1. It can be seen that the ferromagnetic resonance(FMR)frequency of the sample varies with temperature,but there is no bistability during the external heating and cooling.

    Fig.B1.Magnon mode frequency–temperature dependence.The YIG sphere is placed on a heating plate,and a digital controller regulates the temperature of the entire plate accurately with auto tuning function. The resonant frequency of the magnon mode in the fixed bias magnetic field is measured by a loop antenna, as shown in the inset figure. In this temperature range, an approximately linear relationship is obtained.

    Fig.B2. (a)The temperature(bottom panel)of the sample and the magnon mode frequency shift (top panel) versus drive frequency. The drive power is fixed at 25 dBm. (b) The temperature (bottom panel) of the sample and the magnon mode frequency shift(top panel)versus drive power. The drive frequency is ωd/2π =9.86 GHz.

    While sweeping the drive frequency or drive power, we simultaneously monitor the frequency shift of the magnon mode and the sample’s temperature. The experimental results are displayed in Fig. B2. We can find that both the magnon mode frequency shift and temperature exhibit bistable behaviors. In our setup, the drive power required for obtaining magnon mode frequency shift is relatively large,but it can be reduced by utilizing a planar waveguide structure.[69]In fact,it is the bistability of the magnon excitation number that causes the simultaneous temperature bistability. Then, the temperature shifts the magnon frequency. The same holds for the refractive index of the YIG sample, where the thermal bistability is observed by measuring the optical resonance signal.[68]When one of the magnon modes in the sphere is excited, the temperature of the entire sample rises,which changes the saturation magnetization and magnetocrystalline anisotropy field of the sphere. The temperature change further affects the frequencies of other magnon modes in the sphere. Subsequently,the total Hamiltonian can be written as

    whereδc(k)=ωc(k)?ωd1,κcis the total damping rate of the cavity mode,γkis the damping rate of the Kittel mode, and?k,s=2K(T)is the frequency shift of the Kittel mode. Then we rewrite the operator as a sum of the steady-state value and the fluctuation,i.e.,a=A+δaandb=B+δb. It follows from Eq.(B2)thatAandBsatisfy

    wherePd1is the drive power andcis a constant coefficient reflecting the drive efficiency of the drive field. It should be noted that the frequency shift of the magnon mode is proportional to|B|2. Then, we replace|B|2in Eq. (B6) with?k,s.Meanwhile,an additional factor could be incorporated intock,i.e.,ck=c(?k,s/|B|2). Finally,we obtain

    Similarly,we can obtain the equation of the frequency shift of the HMS mode when the drive field is applied on the HMS mode. It reads

    Appendix C:Data processing method

    The transmission spectrum mapping consists of transmission spectra measured at different bias magnetic fields, as shown in Fig. C1(a). The individual transmission spectrum is depicted in Fig. C1(b). The anti-resonances correspond to various modes; for example,the green triangle dot represents the HMS mode,and the circle red dot denotes the Kittel mode.We extract the data points from the transmission spectra and plot them in the left panel of Fig. C1(c). We convert coordinates to frequency shiftversusdriving detuning due to its convenience for us to fit. First, we subtract the linear component that increases with the external bias field from all data points. The remaining component is the contribution of frequency shift caused by the driving field. Second, converting bias current to linear frequency. Third, we replace the horizontal axis with drive detuningδ′k=ωk?ωd1?2π·5.94 MHz and fit it using Eq.(2).

    Fig.C1. (a)Original transmission spectrum mapping. (b)The transmission spectrum|S21|2 corresponds to the black dashed line labelled in(a)at a certain bias magnetic field. (c)The Kerr effect induced frequency shifts are extracted. We subtract the linear frequency shift caused by the external bias field from all data points. The horizontal axis is changed to δ′k=ωk ?ωd1 ?2π·5.94 MHz when fitting with Eq.(2).

    猜你喜歡
    徐達(dá)李杰
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    ?。楱#镅酲耍颞Γ?多duō 多duo
    Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit?
    坐在車?yán)锇l(fā)呆的老公
    婦女生活(2017年11期)2017-11-06 21:35:33
    酒作誘餌試功臣
    酒作誘餌試功臣
    The gas jet behavior in submerged Laval nozzle flow *
    欧美黄色片欧美黄色片| 成人一区二区视频在线观看| 可以在线观看的亚洲视频| 欧美xxxx黑人xx丫x性爽| 中文字幕人妻丝袜一区二区| 国产av在哪里看| 久久精品91蜜桃| 久久久久久久亚洲中文字幕 | 国产伦精品一区二区三区视频9 | 男女下面进入的视频免费午夜| 精品一区二区三区人妻视频| 欧美激情久久久久久爽电影| 天堂网av新在线| 色av中文字幕| 99在线视频只有这里精品首页| 狠狠狠狠99中文字幕| 深爱激情五月婷婷| 九九久久精品国产亚洲av麻豆| 国产午夜精品久久久久久一区二区三区 | 真实男女啪啪啪动态图| 午夜激情福利司机影院| 青草久久国产| 国产精品久久视频播放| 搡老妇女老女人老熟妇| 久久久久久国产a免费观看| 99热只有精品国产| 婷婷精品国产亚洲av在线| 欧美区成人在线视频| 少妇的逼水好多| 精品一区二区三区av网在线观看| 精品久久久久久久久久久久久| 国产亚洲欧美98| 亚洲黑人精品在线| 九九热线精品视视频播放| 欧美在线黄色| 在线观看av片永久免费下载| 亚洲电影在线观看av| 欧美日韩综合久久久久久 | 午夜日韩欧美国产| 亚洲最大成人手机在线| 免费电影在线观看免费观看| 露出奶头的视频| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 午夜精品久久久久久毛片777| 国模一区二区三区四区视频| 狠狠狠狠99中文字幕| 俄罗斯特黄特色一大片| 亚洲熟妇中文字幕五十中出| 中文字幕人成人乱码亚洲影| 99久久久亚洲精品蜜臀av| 国产精品国产高清国产av| 91在线观看av| 两个人看的免费小视频| 亚洲第一电影网av| 亚洲第一欧美日韩一区二区三区| 很黄的视频免费| 麻豆成人午夜福利视频| 母亲3免费完整高清在线观看| 日本a在线网址| 亚洲精品国产精品久久久不卡| 久久99热这里只有精品18| 女人高潮潮喷娇喘18禁视频| 国产高清视频在线播放一区| 麻豆久久精品国产亚洲av| 欧美最新免费一区二区三区 | 母亲3免费完整高清在线观看| 久久久国产精品麻豆| 一个人免费在线观看的高清视频| 国产精品爽爽va在线观看网站| 免费高清视频大片| 丰满人妻一区二区三区视频av | 俄罗斯特黄特色一大片| 深爱激情五月婷婷| 亚洲狠狠婷婷综合久久图片| 变态另类丝袜制服| 露出奶头的视频| 九色成人免费人妻av| 五月玫瑰六月丁香| 亚洲国产欧美人成| 成人特级av手机在线观看| 精品国产美女av久久久久小说| 日韩成人在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 动漫黄色视频在线观看| 中文字幕av成人在线电影| 中文字幕av成人在线电影| 91久久精品电影网| 欧美最新免费一区二区三区 | 欧美丝袜亚洲另类 | 日本成人三级电影网站| 三级男女做爰猛烈吃奶摸视频| 国产精品1区2区在线观看.| 国产99白浆流出| 老熟妇仑乱视频hdxx| 午夜免费成人在线视频| 身体一侧抽搐| 一进一出抽搐gif免费好疼| 欧美日本亚洲视频在线播放| 精品人妻偷拍中文字幕| 好男人电影高清在线观看| 在线观看av片永久免费下载| 国产精品久久久久久亚洲av鲁大| 精华霜和精华液先用哪个| 国产精品香港三级国产av潘金莲| 婷婷精品国产亚洲av在线| 两个人的视频大全免费| 中文字幕av成人在线电影| 日韩欧美 国产精品| 岛国在线观看网站| 国产精品亚洲美女久久久| 少妇高潮的动态图| 午夜两性在线视频| 国内精品美女久久久久久| 午夜福利高清视频| 国产三级在线视频| 国内少妇人妻偷人精品xxx网站| 老汉色∧v一级毛片| 此物有八面人人有两片| 亚洲国产精品sss在线观看| 亚洲激情在线av| 变态另类丝袜制服| 深爱激情五月婷婷| 亚洲欧美一区二区三区黑人| 亚洲精华国产精华精| 俺也久久电影网| 别揉我奶头~嗯~啊~动态视频| 国产精品美女特级片免费视频播放器| 真人一进一出gif抽搐免费| 精品无人区乱码1区二区| 国产97色在线日韩免费| 欧美黄色淫秽网站| 亚洲av不卡在线观看| 午夜久久久久精精品| xxx96com| netflix在线观看网站| 熟妇人妻久久中文字幕3abv| 老熟妇乱子伦视频在线观看| 国产精品1区2区在线观看.| 精品国产亚洲在线| 神马国产精品三级电影在线观看| 欧美又色又爽又黄视频| 精品久久久久久,| avwww免费| 国产成年人精品一区二区| 国产亚洲欧美在线一区二区| 叶爱在线成人免费视频播放| 日韩高清综合在线| 国产成人av教育| 麻豆成人午夜福利视频| 首页视频小说图片口味搜索| 中文字幕人妻熟人妻熟丝袜美 | 色综合亚洲欧美另类图片| 欧美黑人欧美精品刺激| 最近视频中文字幕2019在线8| 搡老妇女老女人老熟妇| 青草久久国产| 在线免费观看不下载黄p国产 | 国产爱豆传媒在线观看| 欧美日本亚洲视频在线播放| 3wmmmm亚洲av在线观看| 黄片小视频在线播放| 欧美性猛交黑人性爽| 12—13女人毛片做爰片一| 亚洲欧美日韩东京热| 色哟哟哟哟哟哟| 国产av在哪里看| 黄色女人牲交| 他把我摸到了高潮在线观看| 18禁国产床啪视频网站| 国产精品三级大全| а√天堂www在线а√下载| 一本一本综合久久| 夜夜夜夜夜久久久久| 黄色丝袜av网址大全| 一区二区三区国产精品乱码| 国产精品国产高清国产av| 三级国产精品欧美在线观看| 精品久久久久久,| 国产高清激情床上av| 国产精品久久久久久精品电影| 88av欧美| 精品久久久久久久毛片微露脸| 欧美成人一区二区免费高清观看| av女优亚洲男人天堂| 免费看日本二区| 午夜福利成人在线免费观看| 美女高潮的动态| xxx96com| 99久久99久久久精品蜜桃| 亚洲专区国产一区二区| 国产乱人视频| 黄色女人牲交| 欧美性猛交黑人性爽| 俺也久久电影网| www国产在线视频色| av专区在线播放| 成年版毛片免费区| 亚洲精品亚洲一区二区| 国产蜜桃级精品一区二区三区| 99国产综合亚洲精品| 熟女人妻精品中文字幕| 国产精品久久电影中文字幕| 黑人欧美特级aaaaaa片| 看片在线看免费视频| 少妇高潮的动态图| 91久久精品电影网| 男女做爰动态图高潮gif福利片| 欧美性猛交黑人性爽| 性色avwww在线观看| 欧美成人免费av一区二区三区| 国产在线精品亚洲第一网站| 亚洲无线观看免费| 欧美三级亚洲精品| 午夜a级毛片| 亚洲av电影在线进入| 久久亚洲真实| x7x7x7水蜜桃| 精品久久久久久久久久久久久| 99久久精品一区二区三区| 国产免费男女视频| 国产极品精品免费视频能看的| 国产三级中文精品| 男人舔女人下体高潮全视频| 综合色av麻豆| 欧美在线一区亚洲| 亚洲人与动物交配视频| 国产精品 欧美亚洲| 香蕉久久夜色| 国产免费一级a男人的天堂| 国产三级中文精品| 一进一出好大好爽视频| 超碰av人人做人人爽久久 | 蜜桃亚洲精品一区二区三区| 国产欧美日韩精品一区二区| 熟女电影av网| 国产不卡一卡二| 综合色av麻豆| 桃红色精品国产亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成av人片在线播放无| 国产午夜福利久久久久久| 男女下面进入的视频免费午夜| 最近视频中文字幕2019在线8| 国产精华一区二区三区| 日韩欧美在线二视频| 老司机在亚洲福利影院| 国产男靠女视频免费网站| 国产精品免费一区二区三区在线| 观看美女的网站| 无人区码免费观看不卡| 亚洲天堂国产精品一区在线| 亚洲av五月六月丁香网| 91av网一区二区| 九九热线精品视视频播放| av女优亚洲男人天堂| 国产成人a区在线观看| 欧美最新免费一区二区三区 | netflix在线观看网站| 日本成人三级电影网站| 国产蜜桃级精品一区二区三区| 欧美日韩乱码在线| 欧美色欧美亚洲另类二区| 人妻丰满熟妇av一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲成人精品中文字幕电影| 中文字幕人妻丝袜一区二区| 色播亚洲综合网| 99久久综合精品五月天人人| 日韩精品中文字幕看吧| 久久人人精品亚洲av| 丰满乱子伦码专区| av女优亚洲男人天堂| 99热精品在线国产| 在线天堂最新版资源| 男人舔奶头视频| 琪琪午夜伦伦电影理论片6080| 国产精品综合久久久久久久免费| 国产一区在线观看成人免费| 国产伦人伦偷精品视频| 久久草成人影院| 国产探花极品一区二区| 国产野战对白在线观看| 综合色av麻豆| 18禁黄网站禁片午夜丰满| 免费在线观看日本一区| 12—13女人毛片做爰片一| 午夜免费观看网址| 69av精品久久久久久| 成熟少妇高潮喷水视频| 搞女人的毛片| av天堂在线播放| 久久久精品欧美日韩精品| 欧美色欧美亚洲另类二区| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 欧美一区二区国产精品久久精品| 一级黄片播放器| 99久久99久久久精品蜜桃| 国产爱豆传媒在线观看| 亚洲内射少妇av| 亚洲成av人片免费观看| 亚洲在线观看片| 精品人妻偷拍中文字幕| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 免费一级毛片在线播放高清视频| 国产精品1区2区在线观看.| 午夜福利欧美成人| 69av精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 国产精品1区2区在线观看.| 日本 av在线| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 小蜜桃在线观看免费完整版高清| 日韩精品青青久久久久久| 国产精品爽爽va在线观看网站| 中文字幕精品亚洲无线码一区| 成人欧美大片| 大型黄色视频在线免费观看| 国产精品自产拍在线观看55亚洲| 桃色一区二区三区在线观看| 欧美绝顶高潮抽搐喷水| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 人妻丰满熟妇av一区二区三区| 又粗又爽又猛毛片免费看| 国产三级黄色录像| 桃色一区二区三区在线观看| 国内精品一区二区在线观看| 国产一区在线观看成人免费| 亚洲五月天丁香| 国产精品永久免费网站| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧洲综合997久久,| 亚洲国产色片| 国产伦精品一区二区三区四那| 久久欧美精品欧美久久欧美| 制服丝袜大香蕉在线| 99久久综合精品五月天人人| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 亚洲七黄色美女视频| 亚洲国产中文字幕在线视频| 精品福利观看| 天堂√8在线中文| 热99re8久久精品国产| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 日本a在线网址| 国产精品 欧美亚洲| 又黄又爽又免费观看的视频| 香蕉av资源在线| 久久久国产成人免费| 亚洲国产日韩欧美精品在线观看 | 高清毛片免费观看视频网站| 一级毛片女人18水好多| 一进一出抽搐gif免费好疼| 欧美性猛交黑人性爽| 老司机午夜福利在线观看视频| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 女警被强在线播放| netflix在线观看网站| 人人妻人人澡欧美一区二区| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合久久99| 亚洲电影在线观看av| 久久久国产精品麻豆| 成人亚洲精品av一区二区| 麻豆成人av在线观看| 久久精品影院6| 亚洲欧美激情综合另类| 国产精品99久久99久久久不卡| 丰满人妻一区二区三区视频av | 怎么达到女性高潮| 一区二区三区高清视频在线| or卡值多少钱| 校园春色视频在线观看| 午夜福利在线观看免费完整高清在 | 国产蜜桃级精品一区二区三区| 男女视频在线观看网站免费| 国产色爽女视频免费观看| 桃红色精品国产亚洲av| 麻豆国产av国片精品| av专区在线播放| 伊人久久大香线蕉亚洲五| 久久久久久大精品| 亚洲人成网站在线播| 亚洲精品在线美女| 国产一区二区三区在线臀色熟女| 老司机福利观看| 国产一区二区三区视频了| 国产精品日韩av在线免费观看| 欧美3d第一页| 亚洲成av人片在线播放无| 免费观看精品视频网站| 日本在线视频免费播放| 天天一区二区日本电影三级| 色噜噜av男人的天堂激情| 美女cb高潮喷水在线观看| 亚洲成av人片在线播放无| 亚洲精品日韩av片在线观看 | 两个人视频免费观看高清| 最近最新中文字幕大全电影3| 日本免费一区二区三区高清不卡| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频| 亚洲精品一区av在线观看| 99国产精品一区二区蜜桃av| 啦啦啦观看免费观看视频高清| 亚洲国产精品999在线| a在线观看视频网站| 国产伦精品一区二区三区四那| 美女大奶头视频| 日韩亚洲欧美综合| 一个人看视频在线观看www免费 | 国产成人欧美在线观看| 亚洲专区国产一区二区| 黄色视频,在线免费观看| xxx96com| 亚洲欧美日韩无卡精品| 给我免费播放毛片高清在线观看| 欧美高清成人免费视频www| 国产高清激情床上av| 国产成人av教育| 国产精品1区2区在线观看.| 九九热线精品视视频播放| 丰满人妻熟妇乱又伦精品不卡| 国产三级在线视频| 黄片大片在线免费观看| 在线播放无遮挡| 宅男免费午夜| 少妇的逼水好多| 亚洲真实伦在线观看| 青草久久国产| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清视频在线观看网站| 久久草成人影院| 日韩欧美 国产精品| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 国产91精品成人一区二区三区| 国产精品亚洲av一区麻豆| 成人特级黄色片久久久久久久| 超碰av人人做人人爽久久 | 夜夜看夜夜爽夜夜摸| 国产黄色小视频在线观看| 淫妇啪啪啪对白视频| 久久亚洲精品不卡| 成年免费大片在线观看| 免费在线观看影片大全网站| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 99精品欧美一区二区三区四区| 人妻久久中文字幕网| 12—13女人毛片做爰片一| 最近最新免费中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看| 99在线人妻在线中文字幕| 亚洲久久久久久中文字幕| 久久人人精品亚洲av| 禁无遮挡网站| 白带黄色成豆腐渣| 黄色视频,在线免费观看| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| aaaaa片日本免费| 欧美区成人在线视频| 听说在线观看完整版免费高清| 午夜精品一区二区三区免费看| 日韩 欧美 亚洲 中文字幕| 国产麻豆成人av免费视频| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 18+在线观看网站| 亚洲,欧美精品.| 亚洲精品乱码久久久v下载方式 | 午夜免费激情av| 国产激情偷乱视频一区二区| 91字幕亚洲| 99精品欧美一区二区三区四区| 国产精品久久视频播放| 午夜福利视频1000在线观看| 麻豆成人午夜福利视频| 国产av一区在线观看免费| 欧美激情久久久久久爽电影| 亚洲成人中文字幕在线播放| 成人性生交大片免费视频hd| 国产视频一区二区在线看| 九九热线精品视视频播放| 亚洲人成网站高清观看| 国产精品香港三级国产av潘金莲| 亚洲精品456在线播放app | 免费看日本二区| 国产爱豆传媒在线观看| 成年人黄色毛片网站| av天堂中文字幕网| 亚洲aⅴ乱码一区二区在线播放| 国产伦在线观看视频一区| 十八禁网站免费在线| 高清在线国产一区| 久久人人精品亚洲av| 一进一出抽搐动态| 日韩欧美 国产精品| 黄片大片在线免费观看| 欧美日韩精品网址| 欧美成人性av电影在线观看| 国产伦一二天堂av在线观看| 嫩草影院精品99| 成人欧美大片| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 亚洲成人精品中文字幕电影| 亚洲人与动物交配视频| 一进一出抽搐gif免费好疼| 亚洲最大成人手机在线| 欧美日韩综合久久久久久 | 欧美成人免费av一区二区三区| 亚洲乱码一区二区免费版| 国产欧美日韩一区二区精品| 老熟妇乱子伦视频在线观看| 最近最新中文字幕大全免费视频| 波多野结衣巨乳人妻| 天堂动漫精品| 国产高清三级在线| 精品国产美女av久久久久小说| 法律面前人人平等表现在哪些方面| 啦啦啦免费观看视频1| av片东京热男人的天堂| 在线观看av片永久免费下载| 青草久久国产| 亚洲成人免费电影在线观看| 国模一区二区三区四区视频| 精品福利观看| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 一级毛片高清免费大全| 国产私拍福利视频在线观看| 一本精品99久久精品77| 日韩欧美三级三区| 九色国产91popny在线| 久久99热这里只有精品18| 日本三级黄在线观看| 国产一区二区在线观看日韩 | 欧美乱码精品一区二区三区| 18禁在线播放成人免费| 欧美日韩国产亚洲二区| 叶爱在线成人免费视频播放| 国产熟女xx| 偷拍熟女少妇极品色| 99国产精品一区二区三区| 少妇裸体淫交视频免费看高清| 国产精品99久久久久久久久| 我要搜黄色片| 免费看光身美女| 99国产精品一区二区蜜桃av| 757午夜福利合集在线观看| 欧美成人性av电影在线观看| 国产精品国产高清国产av| 女人十人毛片免费观看3o分钟| 特级一级黄色大片| 69人妻影院| 在线十欧美十亚洲十日本专区| 69人妻影院| 国产精品99久久99久久久不卡| 一区二区三区免费毛片| 波野结衣二区三区在线 | 日韩欧美在线二视频| 国产精品香港三级国产av潘金莲| 色av中文字幕| 日本 av在线| 日韩欧美在线二视频| 国产精品一及| 人妻丰满熟妇av一区二区三区| 亚洲国产欧美人成| 麻豆一二三区av精品| av在线天堂中文字幕| 国产免费男女视频| 日韩av在线大香蕉| 岛国在线观看网站| 日韩av在线大香蕉| 亚洲专区国产一区二区| 在线观看午夜福利视频| 999久久久精品免费观看国产| 给我免费播放毛片高清在线观看| 两个人的视频大全免费| 少妇人妻精品综合一区二区 | 午夜亚洲福利在线播放| 亚洲最大成人中文| 嫩草影院入口| 久久香蕉精品热| 最近在线观看免费完整版| 欧美+亚洲+日韩+国产| 国产成人aa在线观看| 精品一区二区三区人妻视频| 一本一本综合久久| 日韩精品青青久久久久久| 国产69精品久久久久777片| 18禁黄网站禁片免费观看直播| 亚洲avbb在线观看| 丰满的人妻完整版| 午夜精品一区二区三区免费看| 国产精品三级大全| 欧美日韩国产亚洲二区| 免费人成视频x8x8入口观看| 亚洲电影在线观看av| 精品一区二区三区视频在线 | 真人一进一出gif抽搐免费| 国内少妇人妻偷人精品xxx网站| 美女高潮的动态| 男女做爰动态图高潮gif福利片| 日韩欧美国产在线观看| 天堂√8在线中文|