• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics

    2022-12-28 09:54:58WeiJiangWu吳維江DaXu徐達(dá)JieQian錢(qián)潔JieLi李杰YiPuWang王逸璞andJianQiangYou游建強(qiáng)
    Chinese Physics B 2022年12期
    關(guān)鍵詞:徐達(dá)李杰

    Wei-Jiang Wu(吳維江), Da Xu(徐達(dá)), Jie Qian(錢(qián)潔), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建強(qiáng))

    Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device,Department of Physics and State Key Laboratory of Modern Optical Instrumentation,Zhejiang University,Hangzhou 310027,China

    Keywords: magnon,magnetostatic mode,temperature,yttrium–iron–garnet(YIG)

    1. Introduction

    Nonlinear effects are a large class of physical phenomena that have been continuously and actively explored in optics,[1–3]plasmonics,[4–6]and acoustics,[7–9]as well as in other oscillations and wave systems.[10–12]Nonlinearity and nonlinear interactions are weak and difficult to be detected in some systems, but they can also become sufficiently strong to be the dominant factor in some other systems. A nonlinear system serves as the basis for further development of applications, such as information processing,[13,14]information conversion,[15]switching devices,[16]and so on.

    Cavity magnonics, on the other hand, has gradually demonstrated its unique advantages in fundamental and applied research over the last few years.[17–42]It is expected to be a critical component of hybrid quantum systems[43]and quantum network nodes.[44]A commonly used cavity magnonic system consists of a microwave cavity and ferrimagnets,such as the yttrium–iron–garnet (YIG). The spin collective excitation modes are spin waves in the ferrimagnetic spin ensemble. The most widely studied spin wave mode is the uniform precession mode of spins (i.e., the Kittel mode), which has the largest magnetic dipole moment and can strongly interact with the microwave in both the quantum limit[17,18]and roomtemperature classical regime.[19]Under the bias of an external magnetic field with certain inhomogeneity, besides the Kittel mode,there are also higher-order magnetostatic(HMS)modes in the spin ensemble.[45–47]Previous studies often ignored the influence of these magnetostatic modes on the observation and application of Kittel mode in experiments. However,the HMS modes actually have nontrivial spin textures. Their non-zero orbital angular momentum feature can be used to demonstrate nonreciprocal Brillouin light scattering in optomagnonics and other chiral optics.[33,48–50]

    In this work,we focus on the heating-induced cross effect on frequency shifts of the Kittel and HMS modes in a nonlinear cavity magnonic system,where the non-linearity is embodied in the self-Kerr effect of magnon mode under strong drive.The heating effect is investigated experimentally in a coupled three-dimensional(3D)cavity and YIG sphere system,where the YIG sphere supports both the Kittel and HMS modes. A large frequency difference between these two modes is found.When the Kittel mode or HMS mode is pumped to generate a certain number of magnon excitations,the pumped mode gains a frequency shift due to the self-Kerr effect.[31,51–56]Meanwhile, the frequency of the undriven mode also shifts due to the driving induced raise of the temperature in the sample.This offers additional controllable degrees of freedom in cavity magnonics without increasing system’s complexity. Our study will also bring new ideas to the magnetostatics studies and hybrid magnonic operations.[57–59]

    2. System and theoretical model

    The experimental setup of the cavity magnonic system is illustrated in Fig.1(a). It consists of the microwave field in a 3D copper cavity(internal dimension is 44.0 mm×20.0 mm×6.0 mm), the magnon modes in a single crystal YIG sphere(1 mm in diameter), and the drive field provided by a microwave(MW)source.The YIG sphere is glued on the top of a beryllium ceramic rod and mounted at the antinode of the magnetic field of the cavity mode TE102(ωc/2π=10.07 GHz).The whole sample is placed in a bias magnetic fieldB0applied along the[110]crystal axis of YIG sphere,which results in a negative self-Kerr coefficient (when the magnon mode is driven, the self-Kerr effect with negative coefficient corresponds to a redshift of the magnon mode frequency).[31,56]The cavity has three ports. The port 1 and port 2 are connected with the vector network analyzer (VNA) for measuring the microwave transmission spectrum|S21|2. The drive field is loaded to port 3, which is terminated with a magnetic coil. The bias magnetic field, the rf magnetic field from the magnetic coil,and the rf magnetic field from the cavity mode TE102are perpendicular to each other at the position of the YIG sphere. This configuration maximizes the cavity–YIG coupling strength and drive efficiency. It should be noted that the rf magnetic field from the cavity is employed as the probing field, which has a far lower intensity than the drive field(rf magnetic field from the magnetic coil). The magnetic coil plays multiple roles: (i)it radiates the drive field;(ii)it works as a dissipative channel for the magnon modes.

    More spin moments contribute to the Kittel mode in the crystal, resulting in a larger magnetic dipole and a stronger coupling with the cavity mode.[43,60]Both the Kittel mode and HMS mode become nonlinear modes on account of the magnetocrystalline anisotropy. The magnetocrystalline anisotropy energy measures the energy cost when tuning the magnetization orientation from the easy axis to the hard axis. These energy terms[see Eq.(A4)in Appendix A]give rise to the self-Kerr effect and excitation number bistability.[52]The magnon mode is pumped to generate a certain number of excitations, which increases macrospin precession angle and YIG sphere’s temperature due to spin-lattice relaxation, as shown in Fig. 1(b). The temperature alters the magnetocrystalline anisotropy energy and saturation magnetization,which makes all the magnon modes shift in frequency. In previous studies, the cross effect between the Kittel mode and HMS mode has rarely been investigated. Here,we model the two magnon modes with two sub-magnetizationsMKandMH, where subscripts K and H represent the Kittel mode and HMS mode,respectively. The effective Hamiltonian of the coupled system can be written as(see Appendix B)

    Fig.1. (a)Schematic diagram of the experimental setup. The YIG sphere is coupled to the cavity mode TE102. The cavity is placed in the bias magnetic field B0 (blue arrow). The microwave source connected to the loop coil provides a drive field. The vector network analyzer(VNA)measures the cavity transmission spectrum|S21|2. Inset: in the YIG sphere,the Kittel mode and HMS mode are denoted by two sub-magnetizations. (b)Schematic diagram of the self-Kerr and heating effects.In the upper panel,the drive field applied on the Kittel mode excites a certain number of magnons, resulting in an increase of the precession angle θ. The magnon mode dissipates energy into the crystal lattice via spin-lattice relaxation. Then, as the sample is heated and the temperature rises,the self-Kerr effect will shift the frequency of the Kittel mode. The heating effect will shift the frequency of the HMS mode without changing the precession angle of the HMS-mode magnetization MH.A similar effect occurs by exchanging the roles of the two modes,as shown in the lower panel. The dotted arrows represent the states after driving.

    3. Experimental results

    The transmission spectra of the coupled system are measuredversusthe magnet coil current as shown in Fig.2(a).The anti-crossing indicates the strong coherent coupling between the Kittel mode and cavity mode, and they will periodically exchange energy with each other.[19]At the left part of the transmission mapping, when the magnet coil current is about 4.75 A, we find a small coupling feature, which is attributed to the HMS mode. The coupling strength is 2 MHz. Here,the frequency difference between the Kittel mode and HMS mode is 301 MHz,which is much lager than the linewidths of the modes. When the magnon mode is pumped by the drive field,the temperature of the sample rises,and be measured by attaching a thermocouple to the surface of the sample.

    Fig.2. Drive on the Kittel mode. (a)The transmission spectra are measured versus magnet coil current. The Kittel mode(red dashed line)and HMS mode(green dashed line)are coupled with the cavity mode. (b)The transmission spectra are measured versus magnet coil current,while a drive field of 9.8 GHz and 25 dBm is applied on the Kittel mode. The Kittel mode has a frequency shift ?k,s due to the self-Kerr effect, and the HMS mode has a even larger frequency shift ?h,c caused by the heating effect. (c)The frequency shifts of the Kittel mode and HMS mode are extracted from panel(b),and plotted versus δ′k=ωk ?ωd1 ?2π·5.94 MHz. The experimental results are fitted with Eq.(2)and ?h,c=2.5?k,s.

    3.1. Drive the Kittel mode

    In Fig.2(b),we apply the drive field with an input power of 25 dBm at the fixed frequencyωd1/2π=9.8 GHz on the Kittel mode and measure the transmission spectraversusthe magnetic coil current.Typical bistable frequency jumps can be observed in both the Kittel mode and HMS mode. This measurement is equivalent to sweeping the frequency of the drive field while fixing the frequencies of the magnon modes. We define the drive-field detuning asδk=ωk?ωd1. It should be noted that our system works in the double-dispersive regime,

    whereΛc,k=ωc?ωk?gkandΛh,k=ωh?ωk?gh. The coherent couplings induced-frequency shifts are approximately equal tog2k/Λc,kandg2h/Λh,k, respectively.[51,52]In the dispersive regime, they are all small terms. Also, the coupling strength between the HMS mode and cavity mode is relatively small. In this case, we can intently pay attention to the effects induced by Kerr nonlinearity. Then we extract and plot the frequency shifts of the two magnon modesversus δ′k/2π=δk/2π ?5.94 MHz in Fig.2(c). The driven Kittel mode has a maximum frequency shift of about?60 MHz,and the undriven HMS mode has a synchronous frequency shift of about?150 MHz. In this case, the temperature of the YIG sphere rises from approximately 300 K to 360 K.The temperature increasement of the YIG sphere results from the spin-lattice relaxation process. The magnons pumped by the drive field dissipate their energy to the lattice vibration phonon mode.

    The frequency shift?k,sof the driven Kittel mode can be fitted by the following equation[51,52][see Eq.(B7)]:

    3.2. Drive the HMS mode

    The cross effect on the frequency shift implies that the HMS mode excitation will also induce a frequency shift of the Kittel mode. Next,we apply the drive field(25 dBm)at a fixed frequencyωd2/2π=10.1 GHz on the HMS mode and sweep the magnetic field. The measured transmission mapping is shown in Fig.3(a). As expected,the HMS mode has a

    Fig.3. Drive on the HMS mode. (a)The transmission spectra are measured versus magnet coil current,while a drive field of 10.1 GHz and 25 dBm is applied on the HMS mode.The HMS mode has a frequency shift ?h,s due to the self-Kerr effect,and the Kittel mode has a smaller frequency shift ?k,c caused by the heating effect. (b)The frequency shifts of the Kittel mode and HMS mode are extracted from panel(a),and plotted versus δ′h. The experimental results are fitted using Eq.(3)and ?k,c=2.1?h,s.

    frequency shift due to the self-Kerr effect,and simultaneously the heating-induced cross effect shifts the frequency of the Kittel mode. We extract the frequency shifts of these two modesversusthe effective drive-field detuningδ′has shown in Fig.3(b). In this case,the temperature of the YIG sphere is increased from 300 K to about 310 K.Similarly,the self-Kerr effect induced frequency shift?h,sof the HMS mode obeys the following equation:

    4. Conclusion

    In this work, we investigated the heating-induced crossfrequency shifts when the magnon mode is pumped in a ferrimagnetic spin ensemble, in which one Kittel mode and one higher-order magnetostatic mode co-exist. The heatingincuced cross effect between them plus their individual self-Kerr effects gives rise to fascinating phenomena. In the experiment, we drive the Kittel mode and the higher-order magnetostatic mode, respectively. Our experiment opens up a new path to study nonlinear effects in magnetic materials and spin ensembles. The mutual interaction between different magnetostatic modes in a single YIG sample can also provide new degrees of freedom for cavity spintronics and cavity magnonics.[61]We anticipate that this finding may stimulate more designs and applications of cavity magnonics.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grants Nos. 11934010, U1801661,and 12174329), the Zhejiang Province Program for Science and Technology (Grant No. 2020C01019), the Fundamental Research Funds for the Central Universities (Grant No. 2021FZZX001-02), and the China Postdoctoral Science Foundation(Grant No.2019M660137).

    Appendix A:Hamiltonian of the kittel mode

    First, we derive the Hamiltonian of the magnon modes without including the heating effect. Under the bias magnetic fieldB0, the Hamiltonian of the Kittel mode is written as(HMS mode has a similar form)[51]

    where the first term represents the Zeeman energy and the second term is the magnetocrystalline anisotropy energy,MK=(MK,x,MK,y,MK,z) is the sub-magnetization corresponding to the Kittel mode,Vis the volume of the YIG sphere,μ0is the vacuum permeability, andHanis the anisotropic field due to the magnetocrystalline anisotropy in the YIG crystal.

    We adopt the direction of the bias magneticB0as thezdirection(B0=B0ez).When the[110]crystal axis of the YIG sphere is aligned along the bias magnetic field,the anisotropic field is given by[62]

    Appendix B:Heating-induced cross effect on the frequency shifts

    The first-order magnetocrystalline anisotropy constantKan,saturation magnetizationMK,andSKare all temperaturedependent. Consequently, temperature change can alter the Kerr coefficient and the magnon mode frequency. To quantify the impact of temperature on the frequency shift,we measured the temperature dependence of magnon mode frequency from approximately 300 K to 350 K, as shown in Fig. B1. It can be seen that the ferromagnetic resonance(FMR)frequency of the sample varies with temperature,but there is no bistability during the external heating and cooling.

    Fig.B1.Magnon mode frequency–temperature dependence.The YIG sphere is placed on a heating plate,and a digital controller regulates the temperature of the entire plate accurately with auto tuning function. The resonant frequency of the magnon mode in the fixed bias magnetic field is measured by a loop antenna, as shown in the inset figure. In this temperature range, an approximately linear relationship is obtained.

    Fig.B2. (a)The temperature(bottom panel)of the sample and the magnon mode frequency shift (top panel) versus drive frequency. The drive power is fixed at 25 dBm. (b) The temperature (bottom panel) of the sample and the magnon mode frequency shift(top panel)versus drive power. The drive frequency is ωd/2π =9.86 GHz.

    While sweeping the drive frequency or drive power, we simultaneously monitor the frequency shift of the magnon mode and the sample’s temperature. The experimental results are displayed in Fig. B2. We can find that both the magnon mode frequency shift and temperature exhibit bistable behaviors. In our setup, the drive power required for obtaining magnon mode frequency shift is relatively large,but it can be reduced by utilizing a planar waveguide structure.[69]In fact,it is the bistability of the magnon excitation number that causes the simultaneous temperature bistability. Then, the temperature shifts the magnon frequency. The same holds for the refractive index of the YIG sample, where the thermal bistability is observed by measuring the optical resonance signal.[68]When one of the magnon modes in the sphere is excited, the temperature of the entire sample rises,which changes the saturation magnetization and magnetocrystalline anisotropy field of the sphere. The temperature change further affects the frequencies of other magnon modes in the sphere. Subsequently,the total Hamiltonian can be written as

    whereδc(k)=ωc(k)?ωd1,κcis the total damping rate of the cavity mode,γkis the damping rate of the Kittel mode, and?k,s=2K(T)is the frequency shift of the Kittel mode. Then we rewrite the operator as a sum of the steady-state value and the fluctuation,i.e.,a=A+δaandb=B+δb. It follows from Eq.(B2)thatAandBsatisfy

    wherePd1is the drive power andcis a constant coefficient reflecting the drive efficiency of the drive field. It should be noted that the frequency shift of the magnon mode is proportional to|B|2. Then, we replace|B|2in Eq. (B6) with?k,s.Meanwhile,an additional factor could be incorporated intock,i.e.,ck=c(?k,s/|B|2). Finally,we obtain

    Similarly,we can obtain the equation of the frequency shift of the HMS mode when the drive field is applied on the HMS mode. It reads

    Appendix C:Data processing method

    The transmission spectrum mapping consists of transmission spectra measured at different bias magnetic fields, as shown in Fig. C1(a). The individual transmission spectrum is depicted in Fig. C1(b). The anti-resonances correspond to various modes; for example,the green triangle dot represents the HMS mode,and the circle red dot denotes the Kittel mode.We extract the data points from the transmission spectra and plot them in the left panel of Fig. C1(c). We convert coordinates to frequency shiftversusdriving detuning due to its convenience for us to fit. First, we subtract the linear component that increases with the external bias field from all data points. The remaining component is the contribution of frequency shift caused by the driving field. Second, converting bias current to linear frequency. Third, we replace the horizontal axis with drive detuningδ′k=ωk?ωd1?2π·5.94 MHz and fit it using Eq.(2).

    Fig.C1. (a)Original transmission spectrum mapping. (b)The transmission spectrum|S21|2 corresponds to the black dashed line labelled in(a)at a certain bias magnetic field. (c)The Kerr effect induced frequency shifts are extracted. We subtract the linear frequency shift caused by the external bias field from all data points. The horizontal axis is changed to δ′k=ωk ?ωd1 ?2π·5.94 MHz when fitting with Eq.(2).

    猜你喜歡
    徐達(dá)李杰
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    ?。楱#镅酲耍颞Γ?多duō 多duo
    Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit?
    坐在車?yán)锇l(fā)呆的老公
    婦女生活(2017年11期)2017-11-06 21:35:33
    酒作誘餌試功臣
    酒作誘餌試功臣
    The gas jet behavior in submerged Laval nozzle flow *
    国产主播在线观看一区二区| 丝袜美腿诱惑在线| 欧美 亚洲 国产 日韩一| 天堂av国产一区二区熟女人妻 | bbb黄色大片| 操出白浆在线播放| 免费观看人在逋| 舔av片在线| 大型av网站在线播放| 在线观看午夜福利视频| 大型av网站在线播放| 十八禁人妻一区二区| 99在线视频只有这里精品首页| 1024手机看黄色片| 18美女黄网站色大片免费观看| 欧美日韩亚洲综合一区二区三区_| 久久中文看片网| 久久久久久久午夜电影| 欧美性猛交╳xxx乱大交人| 亚洲av日韩精品久久久久久密| 国产精品免费一区二区三区在线| 欧美又色又爽又黄视频| 欧美中文日本在线观看视频| 久久久精品国产亚洲av高清涩受| 女警被强在线播放| 久久久久性生活片| 少妇的丰满在线观看| 免费看日本二区| 国产97色在线日韩免费| 国产aⅴ精品一区二区三区波| 午夜久久久久精精品| av国产免费在线观看| 日本黄大片高清| 老熟妇乱子伦视频在线观看| 99久久无色码亚洲精品果冻| 我要搜黄色片| 国产精品爽爽va在线观看网站| 老汉色av国产亚洲站长工具| 亚洲精品粉嫩美女一区| 日韩欧美三级三区| 99在线人妻在线中文字幕| 变态另类丝袜制服| 俄罗斯特黄特色一大片| 国产欧美日韩精品亚洲av| 制服丝袜大香蕉在线| 99精品久久久久人妻精品| 欧美日韩一级在线毛片| 成年女人毛片免费观看观看9| www国产在线视频色| 啦啦啦韩国在线观看视频| 精品第一国产精品| 国产在线精品亚洲第一网站| 婷婷丁香在线五月| 欧美日韩福利视频一区二区| 欧美日韩福利视频一区二区| 成年免费大片在线观看| 欧美中文综合在线视频| 一本精品99久久精品77| 天堂影院成人在线观看| 级片在线观看| 亚洲欧洲精品一区二区精品久久久| 免费在线观看日本一区| 麻豆成人av在线观看| 麻豆久久精品国产亚洲av| 97碰自拍视频| 午夜福利在线在线| 五月伊人婷婷丁香| 国产一区在线观看成人免费| 日韩精品免费视频一区二区三区| 国产精品av视频在线免费观看| 精品乱码久久久久久99久播| 国产精品久久久久久精品电影| 长腿黑丝高跟| 成在线人永久免费视频| 免费搜索国产男女视频| 色精品久久人妻99蜜桃| 在线观看午夜福利视频| 老司机午夜十八禁免费视频| 伦理电影免费视频| 99热这里只有是精品50| 国产1区2区3区精品| 9191精品国产免费久久| 成人高潮视频无遮挡免费网站| 国语自产精品视频在线第100页| 亚洲电影在线观看av| 亚洲 国产 在线| 18禁黄网站禁片免费观看直播| 国产av一区二区精品久久| 国产精品久久久人人做人人爽| 亚洲精品粉嫩美女一区| 天天添夜夜摸| 一级片免费观看大全| 久久亚洲真实| 黄色女人牲交| 亚洲av成人一区二区三| 午夜福利免费观看在线| 国产精品,欧美在线| 欧美日本视频| 国产一级毛片七仙女欲春2| 99久久精品热视频| 制服丝袜大香蕉在线| 丝袜人妻中文字幕| 热99re8久久精品国产| 午夜久久久久精精品| 一本综合久久免费| 一级黄色大片毛片| 日本黄大片高清| 日韩精品免费视频一区二区三区| 女生性感内裤真人,穿戴方法视频| 最近最新中文字幕大全免费视频| 1024手机看黄色片| 成人三级做爰电影| 日日爽夜夜爽网站| 国产亚洲精品综合一区在线观看 | 久久久久久久久中文| 女同久久另类99精品国产91| 村上凉子中文字幕在线| 搡老岳熟女国产| 在线免费观看的www视频| 中文字幕熟女人妻在线| 久久精品国产亚洲av高清一级| 18禁黄网站禁片午夜丰满| 国产激情久久老熟女| 99久久99久久久精品蜜桃| 国产精品亚洲美女久久久| 国产99白浆流出| 99re在线观看精品视频| or卡值多少钱| 18禁黄网站禁片午夜丰满| 日韩欧美在线二视频| 波多野结衣巨乳人妻| 亚洲av成人一区二区三| 悠悠久久av| 巨乳人妻的诱惑在线观看| 亚洲精品色激情综合| 一夜夜www| 狂野欧美白嫩少妇大欣赏| 精品一区二区三区av网在线观看| 久久精品亚洲精品国产色婷小说| 成人av一区二区三区在线看| 男女床上黄色一级片免费看| 中文亚洲av片在线观看爽| 午夜两性在线视频| 日韩 欧美 亚洲 中文字幕| 欧美黄色片欧美黄色片| 中亚洲国语对白在线视频| 色尼玛亚洲综合影院| 天堂av国产一区二区熟女人妻 | 国产精品香港三级国产av潘金莲| 亚洲av日韩精品久久久久久密| 18美女黄网站色大片免费观看| 狂野欧美白嫩少妇大欣赏| 日本三级黄在线观看| 看片在线看免费视频| 成人一区二区视频在线观看| 免费无遮挡裸体视频| 三级国产精品欧美在线观看 | 1024香蕉在线观看| 久久久久久大精品| 成人手机av| 亚洲第一电影网av| 日韩大尺度精品在线看网址| 欧美 亚洲 国产 日韩一| 99国产极品粉嫩在线观看| 中文字幕熟女人妻在线| 久久九九热精品免费| 亚洲人成伊人成综合网2020| 首页视频小说图片口味搜索| svipshipincom国产片| 亚洲国产欧美网| 少妇粗大呻吟视频| 91麻豆精品激情在线观看国产| a级毛片a级免费在线| 亚洲欧美日韩高清专用| 精品久久久久久成人av| 欧美乱码精品一区二区三区| 欧美成人午夜精品| 在线观看一区二区三区| 欧美在线一区亚洲| 最新在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 在线十欧美十亚洲十日本专区| 天天躁夜夜躁狠狠躁躁| 婷婷六月久久综合丁香| 亚洲欧美一区二区三区黑人| 桃色一区二区三区在线观看| netflix在线观看网站| 91字幕亚洲| av欧美777| 两个人视频免费观看高清| 久久午夜亚洲精品久久| 色尼玛亚洲综合影院| 欧美 亚洲 国产 日韩一| 嫩草影视91久久| 一二三四社区在线视频社区8| 免费搜索国产男女视频| 国产成人欧美在线观看| 久久久久免费精品人妻一区二区| 亚洲自拍偷在线| a级毛片a级免费在线| 可以在线观看的亚洲视频| xxx96com| 757午夜福利合集在线观看| 亚洲成人中文字幕在线播放| 麻豆国产av国片精品| 久久性视频一级片| 女人被狂操c到高潮| 国产午夜精品论理片| 午夜影院日韩av| 91成年电影在线观看| 最近在线观看免费完整版| 中文在线观看免费www的网站 | 亚洲av第一区精品v没综合| 亚洲男人的天堂狠狠| 久久久久久免费高清国产稀缺| 淫秽高清视频在线观看| 精品日产1卡2卡| 欧美精品啪啪一区二区三区| 最好的美女福利视频网| 90打野战视频偷拍视频| 亚洲人成伊人成综合网2020| 国产av麻豆久久久久久久| 午夜激情av网站| 97人妻精品一区二区三区麻豆| 欧美日韩乱码在线| 久久久国产成人精品二区| 啦啦啦韩国在线观看视频| 国产亚洲av高清不卡| 色综合亚洲欧美另类图片| 高清毛片免费观看视频网站| 欧美一级a爱片免费观看看 | a级毛片在线看网站| 亚洲avbb在线观看| 精品福利观看| 中文字幕人成人乱码亚洲影| 免费观看人在逋| 中出人妻视频一区二区| 亚洲一区中文字幕在线| 97碰自拍视频| 90打野战视频偷拍视频| 精品熟女少妇八av免费久了| 免费观看精品视频网站| 精品国产超薄肉色丝袜足j| 他把我摸到了高潮在线观看| 最近最新免费中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 老熟妇乱子伦视频在线观看| 一区福利在线观看| a级毛片在线看网站| 级片在线观看| 国产精品乱码一区二三区的特点| 免费看a级黄色片| 久久久久久国产a免费观看| 后天国语完整版免费观看| 黄色丝袜av网址大全| 老司机在亚洲福利影院| 美女大奶头视频| 国产精品自产拍在线观看55亚洲| 三级毛片av免费| 免费一级毛片在线播放高清视频| 悠悠久久av| 亚洲精品美女久久久久99蜜臀| 99riav亚洲国产免费| 亚洲国产精品久久男人天堂| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 女警被强在线播放| 国产精品亚洲美女久久久| 人人妻人人澡欧美一区二区| 九九热线精品视视频播放| 国产区一区二久久| 男人舔女人的私密视频| 久久午夜亚洲精品久久| 日本黄色视频三级网站网址| 日本 欧美在线| 特级一级黄色大片| 香蕉丝袜av| 国产1区2区3区精品| 免费电影在线观看免费观看| 亚洲国产精品久久男人天堂| 日韩精品免费视频一区二区三区| 特大巨黑吊av在线直播| 成人三级黄色视频| 最新在线观看一区二区三区| 999久久久国产精品视频| av超薄肉色丝袜交足视频| 亚洲一区二区三区不卡视频| 国产精品爽爽va在线观看网站| 久久久精品大字幕| 岛国视频午夜一区免费看| 国产成人啪精品午夜网站| 欧美日本亚洲视频在线播放| 在线看三级毛片| 成人av一区二区三区在线看| 99在线视频只有这里精品首页| 又紧又爽又黄一区二区| 午夜福利在线观看吧| 免费在线观看视频国产中文字幕亚洲| 成在线人永久免费视频| 黑人操中国人逼视频| 十八禁网站免费在线| 国产人伦9x9x在线观看| 国产精品av视频在线免费观看| www国产在线视频色| 神马国产精品三级电影在线观看 | 亚洲精品在线观看二区| 99热6这里只有精品| 国产99白浆流出| 亚洲精品久久国产高清桃花| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 又黄又粗又硬又大视频| 国产黄色小视频在线观看| 国产av麻豆久久久久久久| 男女床上黄色一级片免费看| 黄色a级毛片大全视频| 久久精品国产清高在天天线| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av香蕉五月| 久久精品国产99精品国产亚洲性色| 久久欧美精品欧美久久欧美| 精品无人区乱码1区二区| 每晚都被弄得嗷嗷叫到高潮| 黄片大片在线免费观看| 欧美三级亚洲精品| 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 欧美黑人巨大hd| 天天一区二区日本电影三级| 亚洲七黄色美女视频| 成人永久免费在线观看视频| 国产黄色小视频在线观看| 久久精品国产综合久久久| 久久香蕉国产精品| 看黄色毛片网站| 国产av不卡久久| 级片在线观看| 国产三级中文精品| 久久国产精品影院| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 亚洲五月婷婷丁香| 久久久久性生活片| 欧美另类亚洲清纯唯美| 欧美成人午夜精品| 亚洲国产欧美人成| 成年免费大片在线观看| 一级黄色大片毛片| 久久精品夜夜夜夜夜久久蜜豆 | 中出人妻视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美日韩高清专用| 久久久久久人人人人人| 午夜老司机福利片| 嫩草影视91久久| 三级毛片av免费| 国产精品综合久久久久久久免费| 日韩有码中文字幕| 91字幕亚洲| 国产成人一区二区三区免费视频网站| 国产男靠女视频免费网站| 免费在线观看亚洲国产| 色在线成人网| 老司机福利观看| 男人舔女人下体高潮全视频| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 亚洲 欧美一区二区三区| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区av网在线观看| 一二三四社区在线视频社区8| 国内精品久久久久精免费| 波多野结衣高清作品| 黑人欧美特级aaaaaa片| 少妇粗大呻吟视频| 我要搜黄色片| 99久久综合精品五月天人人| 亚洲国产高清在线一区二区三| 香蕉丝袜av| 午夜精品一区二区三区免费看| av欧美777| 搡老岳熟女国产| 欧美乱妇无乱码| 91在线观看av| av有码第一页| 亚洲avbb在线观看| 18禁黄网站禁片免费观看直播| 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人巨大hd| 免费在线观看日本一区| 黄片小视频在线播放| 老司机福利观看| 久久婷婷成人综合色麻豆| 一夜夜www| 91av网站免费观看| 日韩欧美在线乱码| 亚洲av美国av| 日韩欧美在线二视频| 亚洲欧美日韩无卡精品| 制服诱惑二区| 欧美日韩国产亚洲二区| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| 国产精品久久久久久久电影 | 午夜成年电影在线免费观看| 亚洲成人久久性| 麻豆av在线久日| 亚洲国产高清在线一区二区三| 香蕉国产在线看| 每晚都被弄得嗷嗷叫到高潮| 在线看三级毛片| 少妇人妻一区二区三区视频| 精品久久久久久成人av| 日韩欧美三级三区| 99国产精品99久久久久| 在线观看美女被高潮喷水网站 | 91字幕亚洲| 岛国在线观看网站| 老汉色av国产亚洲站长工具| 一卡2卡三卡四卡精品乱码亚洲| 黑人欧美特级aaaaaa片| 国语自产精品视频在线第100页| 九色成人免费人妻av| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 91av网站免费观看| 久久久久久久久中文| 亚洲精品美女久久av网站| 日韩欧美国产在线观看| 一区福利在线观看| 亚洲精品国产一区二区精华液| 久久人人精品亚洲av| 99精品久久久久人妻精品| 老司机靠b影院| 成人手机av| 久久久久国产精品人妻aⅴ院| 国内毛片毛片毛片毛片毛片| 亚洲专区字幕在线| 国产高清有码在线观看视频 | 在线观看www视频免费| 免费人成视频x8x8入口观看| 一本大道久久a久久精品| 欧美性猛交黑人性爽| 可以在线观看毛片的网站| 亚洲18禁久久av| 观看免费一级毛片| 草草在线视频免费看| 免费在线观看亚洲国产| 色综合婷婷激情| 亚洲国产精品999在线| 午夜老司机福利片| 国产精品久久久久久亚洲av鲁大| 69av精品久久久久久| 看片在线看免费视频| 欧美一区二区国产精品久久精品 | 亚洲中文字幕一区二区三区有码在线看 | 99久久综合精品五月天人人| 欧美在线黄色| 欧美一级毛片孕妇| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 国产精品影院久久| 国产亚洲av嫩草精品影院| 精品福利观看| 在线观看美女被高潮喷水网站 | 国产精品1区2区在线观看.| 岛国在线免费视频观看| 91在线观看av| 成在线人永久免费视频| 亚洲中文日韩欧美视频| АⅤ资源中文在线天堂| 中文在线观看免费www的网站 | 色综合欧美亚洲国产小说| 成人三级黄色视频| 可以免费在线观看a视频的电影网站| 97碰自拍视频| 成人午夜高清在线视频| 老熟妇乱子伦视频在线观看| 精品免费久久久久久久清纯| 99国产精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 欧美日韩亚洲国产一区二区在线观看| 12—13女人毛片做爰片一| 99国产精品一区二区蜜桃av| 欧美乱色亚洲激情| 视频区欧美日本亚洲| 日韩大尺度精品在线看网址| 黄片小视频在线播放| 制服人妻中文乱码| av有码第一页| 白带黄色成豆腐渣| 久久香蕉激情| 18禁黄网站禁片免费观看直播| 观看免费一级毛片| av在线天堂中文字幕| 精品福利观看| 国产精品美女特级片免费视频播放器 | 人人妻人人澡欧美一区二区| 在线播放国产精品三级| 国产黄a三级三级三级人| 韩国av一区二区三区四区| 岛国在线免费视频观看| 免费在线观看影片大全网站| 成年人黄色毛片网站| 午夜两性在线视频| 俺也久久电影网| 久久精品91蜜桃| 亚洲成av人片免费观看| 男人舔奶头视频| 欧美另类亚洲清纯唯美| 亚洲精品粉嫩美女一区| 亚洲av五月六月丁香网| 别揉我奶头~嗯~啊~动态视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久久久免费视频| 香蕉丝袜av| 国产精品久久久久久久电影 | 久久香蕉激情| 国产不卡一卡二| 午夜精品一区二区三区免费看| 制服丝袜大香蕉在线| 久久精品91蜜桃| 国产69精品久久久久777片 | 欧美色视频一区免费| 97人妻精品一区二区三区麻豆| 国产精品一区二区免费欧美| 欧美性猛交╳xxx乱大交人| 日本熟妇午夜| 国产av又大| 老汉色∧v一级毛片| 婷婷丁香在线五月| 国产黄a三级三级三级人| 欧美精品啪啪一区二区三区| 别揉我奶头~嗯~啊~动态视频| 美女午夜性视频免费| 精品欧美一区二区三区在线| 国产免费av片在线观看野外av| 国产精品电影一区二区三区| 一个人观看的视频www高清免费观看 | 免费在线观看视频国产中文字幕亚洲| 香蕉国产在线看| 国产在线观看jvid| 国产精品电影一区二区三区| 免费搜索国产男女视频| 此物有八面人人有两片| 久久久久精品国产欧美久久久| 嫩草影院精品99| 久久国产精品影院| 国产区一区二久久| 国产高清视频在线观看网站| 色老头精品视频在线观看| 亚洲五月天丁香| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| 啪啪无遮挡十八禁网站| 国产乱人伦免费视频| 日韩av在线大香蕉| 色老头精品视频在线观看| 国产精品久久久久久人妻精品电影| 手机成人av网站| av超薄肉色丝袜交足视频| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 三级国产精品欧美在线观看 | 免费观看人在逋| 超碰成人久久| 岛国在线免费视频观看| av免费在线观看网站| 十八禁人妻一区二区| 我的老师免费观看完整版| 欧美人与性动交α欧美精品济南到| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久免费视频| 色尼玛亚洲综合影院| 久久中文字幕一级| 妹子高潮喷水视频| 人妻久久中文字幕网| 久久久国产精品麻豆| 全区人妻精品视频| 亚洲第一欧美日韩一区二区三区| 久久精品影院6| 亚洲欧美精品综合一区二区三区| 免费在线观看亚洲国产| 男女床上黄色一级片免费看| 手机成人av网站| 日本撒尿小便嘘嘘汇集6| 亚洲18禁久久av| 日韩精品中文字幕看吧| 黄色片一级片一级黄色片| 日韩欧美一区二区三区在线观看| 在线观看舔阴道视频| 禁无遮挡网站| 日韩精品免费视频一区二区三区| 亚洲成av人片在线播放无| 制服诱惑二区| 国产精品av视频在线免费观看| 好看av亚洲va欧美ⅴa在| 久9热在线精品视频| 日韩欧美一区二区三区在线观看| 国产成+人综合+亚洲专区| av福利片在线| 日本 av在线| 黑人操中国人逼视频| 1024手机看黄色片| 国产免费av片在线观看野外av| 又黄又粗又硬又大视频| 亚洲人成电影免费在线| 中文字幕人成人乱码亚洲影| 国产激情欧美一区二区| 高清毛片免费观看视频网站| 国产不卡一卡二|