• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit?

    2019-06-18 05:42:12YingShanZhang張穎珊JianSheLiu劉建設ChangHaoZhao趙昌昊YongChengHe何永成DaXu徐達andWeiChen陳煒
    Chinese Physics B 2019年6期
    關(guān)鍵詞:陳煒徐達張穎

    Ying-Shan Zhang(張穎珊),Jian-She Liu(劉建設),Chang-Hao Zhao(趙昌昊),Yong-Cheng He(何永成),Da Xu(徐達),and Wei Chen(陳煒)

    1Department of Microelectronics and Nanoelectronics,Tsinghua University,Beijing 100084,China

    2Institute of Microelectronics,Tsinghua University,Beijing 100084,China

    3Tsinghua National Laboratory for Information Science and Technology,Tsinghua University,Beijing 100084,China

    Keywords:dynamical decoupling,superconducting qubit,imperfection,dephasing

    1.Introduction

    A superconducting quantum system is one of the most promising candidates for practical quantum computers.Considerable efforts have been made to integrate the wide variety of superconducting qubits and their auxiliary equipment.However,scaling up while maintaining relatively long coherence time is still dif ficult.Decoherence induces errors in computing.Speci fically,relaxation causes bit- flip error and dephasing leads to phase- flip error.If we wish to run useful algorithms on such a vulnerable superconducting quantum computer,then errors have to be compensated for.One way to do this is quantum error correction(QEC),[1,2]where one actively detects errors and then corrects them.Another way is error mitigation,in which dynamical decoupling(DD)and decoherence-free subspaces(DFSs)are prominent.[3-5]Compared to QEC and DFSs,DD consumes much less time and hardware resources because of no encoding overhead and is more suitable for current superconducting quantum systems with a few dozens of noisy qubits.[6,7]In an advanced quantumsystem with many qubits that reach fault-tolerant threshold,we can even combine unconditional DD with conditional QEC to achieve a balance between performance and overhead.[8]DD can prolong quantum state storage time and be flexibly inserted into quantum circuits to improve fidelity of quantum state manipulation.[9]It is also scalable because we can perform DD on each qubit independently and simultaneously in multi-qubit systems.[10,11]

    Dynamic decoupling has been utilized in superconducting quantum systems to protect the Bell state,[12]and the entanglement between a qubit and a microscopic two-level system.[13]Dynamic decoupling has also been applied to aflux qubit[14]and a transmon qubit[15]as a probe for noise spectroscopy.Nevertheless,imperfections can result in lowered or even lost effectiveness of DD.[16]Imperfections relevant to the efficiency of DD against dephasing originate from erroneous generation of DD signal,distortion of the signal due to circuit components,and qubit relaxation.To the best of our knowledge,the effects of imperfections on the performance of DD on superconducting qubits have not yet been systematically discussed.

    In the present paper,we study the impact of such imperfections on the results of DD via simulations.The rest of this paper is organized as follows.We first describe the theoretical model of a qubit,its noise environment and driving pulses,and we then conduct master equation simulation of the qubit evolution.By comparing the performance of DD under distinctive imperfections,we finally discuss what imperfections count and how to avoid their adverse effects.

    2.Theoretical model

    2.1.Qubit dynamics

    A qubit state can be expressed as density matrix ρ.The qubit’s evolution follows Liouville-Von Neumann equation[17]

    where i is the imaginary unit,ˉh is the reduced Planck constant,and H is the qubit Hamiltonian

    ωqis the qubit transition frequency.σzisPauli Z-matrix.Hc(t)is the time-dependent control signal,and Hn(t)is the noise.For a classical noise that leads to dephasing[18]

    where n(t)is a random function of time.

    An alternative way to express noise is power spectral density.Low-frequency noise causes dephasing,while highfrequency noise close to positive(negative)qubit frequency leads to relaxation(excitation)(see Appendix A for more detailed discussions).In superconducting quantum circuits,low frequency noise is well approximated by 1/f noise.[19]Therefore,we use 1/f noise to study dephasing.In other words,n(t)has 1/f power spectrum.

    The environment consists of multiple channels of qubit decoherence.The dynamics of qubit in environment follows Lindblad master equation[20]

    where H is the qubit Hamiltonian that represents coherent evolution and Lkis the collapse operator of the k-th decoherence channel.Assuming constant relaxation rate γ1,then the expressions for relaxation and excitation are

    where nthis the residual thermal population of qubit.

    2.2.DD and relevant imperfections

    Dynamic decoupling is the application of control sequences designed against unwanted system-environment coupling,denoted by a Hamiltonian HSE.The control Hamiltonian Hc(t)on the system has propagator[21]

    where T is the time-ordering operator. Under the frame change with unitary operatorUc(t),HSEbecomes

    where˙Uc(t)is the time derivative ofUc(t).The propagator for the controlled system is[22]

    For N-order decoupling with cyclic controlUc(t+Tc)=Uc(t)of period Tc,the expansion of U(nTc)in Tcto the N-th order shows no effect on the system,for any natural number n.That is,if we stroboscopically observe the system at the end of each control cycle,then the system is effectively decoupled from the environment to the N-th order.For decoupling sequences to work,the noise in a control cycle should be correlated in some way.1/f noise is coherent noise and has quite a long correlation time,which makes it perfect for the demonstration of DD.

    The basic DD protocols are Carr-Purcell(CP)[23]and Carr-Purcell-Meiboom-Gill(CPMG)[24],which are composed of evenly-spaced π-pulses.The initial qubit state and the rotation axes of control pulses are all in the XY plane,but the rotation axis of CP π-pulses is perpendicular to qubit initial state while that of CPMG is parallel to it.CPMG is theoretically better than CP because state error accumulates only in the fourth order of pulse nutation error for CPMG,while in the second order for CP.[25]

    The Uhrig DD(UDD)[26]protocol has the same rotation axis as CPMG but the k-th π-pulse is applied at

    where tDDis the total evolution time and NDDis the total number of decoupling pulses.For noise with a power density spectrum that increases with frequency and suddenly cuts off,UDD works better than CPMG.[27]But for most noise types that diminish with frequency,CPMG is the better choice.

    The measurement system for DD in a three-dimensional(3D)superconducting transmon qubit studied in this work is presented in Fig.1.For other superconducting qubit types,the input ports for driving and measurement pulses may be separate.However,places where error can occur are basically the same,as demonstrated in the light gray dashed boxes in Fig.1.First,low-frequency pulses are generated by an arbitrary waveform generator(AWG)to control the timing of driving and measurement pulses.Driving pulses have two channels that control qubit rotations in the XY plane.CP,CPMG,and UDD pulses are originally written in Dirac δ function,assuming each pulse to be in finitely strong and fast.This control protocol is called bang-bang control.But in practice,superconducting qubits are controlled by bounded pulses,with limited height and width,which is an inevitable source of error.Also,AWG has jitter errors.Consequently,the width and position of a pulse can deviate from its assigned value.Then,an IQ mixer takes the two-channel control pulses from AWG and mixes them with continuous high-frequency signal from a microwave source.Ideally,when the control pulses are zero in both channels,the output signal from the mixer should also be zero.However,the on-off ratio of the mixer is finite and the output is not completely turned off.This composes another source of imperfection.Next,the mixed signal goes through a splitter to combine it with measurement signal,attenuators to minimize thermal noise,a filter to exclude highfrequency noise and multiple wiring coaxial cables,before it reaches qubit cavity.The nonlinearity of these components and impedance mismatch at their interfaces can all contribute to the distortion of driving signal seen by the qubit,which is named as filtering effect.Finally,the superconducting qubit itself has finite relaxation time and can randomly jump between its two eigenstates during DD against dephasing,which may affect the measurement results.

    Fig.1.The DD measurement system for a 3D superconducting transmon qubit.Imperfections aredescribed,some with schematic diagrams,in light-gray dashed boxes.

    3.Method

    QuTiP[28]is a useful toolbox for numerical simulation in quantum systems. It provides master equation solver brmesolve(·)that allows us to specify the noise power spectrum,but its Hamiltonian has to be time-independent.Another solver in QuTiP,mesolve(·),is capable of dealing with time-dependent Hamiltonian and collapse operators but does not include noise power spectrum.To simulate a qubit under DD pulses with 1/f noise,we put 1/f noise into the Hamiltonian,as shown in Eq.(3),and we utilize mesolve(·)to address the problem.

    Fig.2.Simulation of qubit evolution under CP decoupling pulses.(a)Above are qubit control(blue)and measurement(green)pulses for NDD=1 with 1/f noise(purple).Below is the corresponding qubit evolution on Bloch sphere.Left to right:initial|0〉state,dephasing during the first tDD/2,decoupling during the second tDD/2, final state deviated from|0〉because of dephasing;(b)Qubit evolution with time for different NDDand corresponding linear fitting curves.Each point is an average of 100 times of simulation.

    As can be seen in Fig.2(a),in experiments of DD on a superconducting qubit,we first rotate the qubit to XY plane by an X(π/2)pulse,then perform X(π)or Y(π)DD pulses for NDDtimes with intervals de fined in Subsection 2.2.At last,the qubit is rotated back for measurement by an X(π/2)or-X(π/2)compensation pulse,which ensures that the total rotation angle of all control pulses is an integer multiple of 2π.

    In our simulation,for each NDDand tDD,we generate a time-domain sequence of 1/f noise(see Appendix B)and add it to the same control Hamiltonian as in experiments.Starting from the initial density matrix|0〉〈0|,we calculate mesolve(·)for one time step and update the density matrix.The stepwise calculation is repeated until the density matrix of the final state is recorded.This procedure is repeated for 100 times and the final density matrices are averaged.Finally,the expectation value of σzis evaluated for the averaged density matrix.We sweep tDDto achieve the average time evolution ofand sweep NDDfrom 1 to 10.An example of the results is shown in Fig.2(b).Then the slope of time evolution is extracted as the average dephasing ratewhich is a good indication of DD performance.A large〉means fast dephasing and bad performance of decoupling.

    Without DD,we adjust the qubit dephasing time to T2~200ns by modifying the strength of 1/f noise.For the moment,we use rectangular pulses.TRabi=40ns is chosen as the Rabi oscillation period.A short TRabiis preferable,but the minimal TRabiavailable is limited by the precision of AWG.For an ordinary measurement system,the maximum sample rate of AWG is around 109sample/s,which makes TRabi=40ns a practical choice.The length of a π pulse is TRabi/2=20ns,for both X-control and Y-control.The preparation and compensation pulses are 10ns long each,a quarter of TRabi.

    4.Results and discussion

    We now present the simulation results and compare the influence of the imperfections listed in Fig.1.We will then brie fly discuss the ways to fight against imperfections that have signi ficant effects on the performance of DD.

    4.1.Qubit relaxation

    We begin our analysis with the effect of limited qubit relaxation time.We simulate bounded CP on a noisy qubit with T1=1/(2γ1)=560ns,along with a good qubit with T1=10μs,and compare them to an ideal qubit with no relaxation.Figure 3 elucidates that longer T1has little improvement on the performance of DD.In our following discussions,we can safely assume T1=∞when simulating the effects of other factors.

    Fig.3.Bounded CP decoupling results for qubits with T1=560ns,and T1=10μs,and in finite T1.

    4.2.Bounded pulses

    Now we compare the performance of ideal pulses with bounded ones.The impacts of finite pulse width on different decoupling protocols are shown in Fig.4.As NDDincreases,the interval between adjacent pulses decreases for a fixed tDD.Therefore,the effect of decoupling improves with NDD,for both ideal and bounded cases.Bounded pulses deteriorate the performance of all three DD protocols,indicated by higherthan their ideal counterparts.The differences become more obvious for bigger NDD.Ideal CP and CPMG are almost as good but CPMG works better when bounded because it is more robust to error.UDD has poor performance,even in ideal case,because it essentially is designed for highfrequency noise.

    Fig.4.(a)Waveform of ideal(blue dotted line)and bounded(red solid line)CP,CPMG,and UDD for NDD=5;(b)Comparison between CP,CPMG,and UDD pulses with ideal and bounded strength.Error bar is linear fitting error(not simulation error).

    4.3.Jitter

    From now on,we concentrate on the bounded CP because it is more prone to error than CPMG and more sensitive to 1/f noise than UDD.In other words,it epitomizes more clearly the influence of imperfections.We then consider the jitter of AWG.Jitter is modeled with the truncated normal distribution between±0.25ns with meanμ=0ns and standard deviation σ=0.1ns.We add this random jitter to the position or width of each CP pulse and the simulation results are illustrated in Fig.5.The jitter in pulse width causes a slight reduction in performance of CP,while the jitter in pulse position significantly increases〉and is obviously detrimental to the performance because the error caused by positive and minus jitter in pulse width can counteract to a large extent,while the error due to the jitter in position cannot.Hence,the jitter in pulse position should be carefully treated if we want to suppress the dephasing.

    Fig.5.(a)Waveform of bounded CP with jitter for NDD=5.The bluedotted line is the accurate waveform,while the red-solid line contains jitter in pulse width(left)or position(right).The extent of jitter is exaggerated for clarity;(b)Impact of jitter in position or width on the performance of bounded CP pulses.

    4.4.Finite on-off ratio

    The finiteon-offratioofmixerismodeledas10%residue when its input is zero.Equivalently,the LO to RF isolation of the mixer is 20dB.In Fig.6,we plot the average trajectories for different NDD.These trajectories deviate greatly from ideal ones in Fig.2(b)so that they can no longer be fitted linearly.The oscillation of state in time is apparently due to qubit rotation by the residual drive when control should be turned off.Consequently,the dynamic decoupling cannot work properly if the on-off ratio of mixer is not good enough.

    Fig.6.Qubit average trajectories with bounded CP when mixer output cannot be completely turned off.

    4.5.Filtering effect

    Filtering effect is another inevitable source of error.We use a low-pass Butterworth Filter(BF)to emulate the filtering of circuit components.The order of the filter is 1 or 3,and the-3dB bandwidth is 0.2 or 0.4 times Nyquist frequency fc.From Fig.7,we can see that different filtering parameters produce similar effects,despite the fact that the waveforms after filtering are different.The performance with filter is much worse than that without them.Thus filtering effect is a signi ficant factor that may make DD fail.

    Fig.7.(a)Waveform of bounded CP after passing through a Butterworth Filter(BF)with different order and bandwidth parameters;(b)Bounded CP decoupling results for un filtered and filtered pulses.

    Fig.8.(a)The shape of trapezoid,truncated Gaussian,and raised cosine pulse;(b)Bounded CP decoupling results using the above pulses,with and without filtering effect.

    We sometimes engineer the pulse shape to achieve better gate fidelity.The steep rising and falling edges of a rectangular pulse have in finite high-frequency components,which bring about distortion when the pulse encounters filtering.We change the shape of edges to mitigate such deformation.Trapezoid,truncated Gaussian and raised cosine types of pulse shapes are simulated here,as shown in Fig.8(a),in which raised cosine is theoretically the best because of its smooth transitions.[29]When we use these three pulse types instead of rectangular pulse,the performance before and after filtering are summarized in Fig.8(b).The filtering effect is modeled by a 3rd-order BF with 0.01fcbandwidth.The rising and falling time for all three pulse types are 10ns.For truncated Gaussian shape,we use σ =5ns,and truncate to 2σ.The waveforms before and after the pulses pass through the filter are nearly identical,even for the narrow bandwidth we choose.Performanceof CP with and without filtering for these pulses are also almost the same,which implies that filtering no longer adds to error with optimized pulse shaping.However,because the shaped pulses in our simulation share the same pulse height as rectangular pulses,they are much wider and suffer more from dephasing within pulse duration.Thus their performance are inferior to perfect rectangular pulses and approaches that of filtered rectangular pulses,as shown by the blue dash-dot and red-dashed lines in Fig.7,respectively.Pulse shaping can eliminate the error caused by filtering effect,but does not necessarily assist DD to perform better.As a matter of fact,when the qubit itself has short dephasing time,we need shorter pulses with larger height if we want to improve DD performance by pulse shaping.

    4.6.Solutions

    The impacts of all imperfections discussed in this paper and corresponding countermeasures are summarized in Table 1.

    Table 1.Types of imperfections,the severity of their effects on DD and how to alleviate these effects.

    More complicated DD protocols are favorable as far as bounded pulses are concerned. For example,Eulerian DD[22,30]eliminates the effect of bounded pulses and concatenated DD[31]features higher-order robust decoupling of qubits against dephasing as well as relaxation.Pulse position jitter can be mitigated by synchronizing the AWG and the microwave source with a 10MHz clock standard,reducing rounding errors with carefully chosen parameters or highprecision AWG,and avoiding mechanical vibrations of devices and wiring.As experimental results in our lab indicate,if the LO to RF isolation of the mixer is less than 80dB,corresponding to an on-off ratio of 10000:1,residual drive will lead to visible degradation.Therefore,we usually cascade two or three mixers with 20 dB-40 dB isolation each to avoid this problem.Pulse shapes with gradual transition edges are robust to the filtering effect.The simulations and analysis of imperfections can be further generalized to other applications of DD,such as the improvement of sensitivity of quantum sensing with NV centers.[32]

    5.Conclusion

    In this paper,we have built a model of a superconducting qubit under 1/f noise and DD driving pulses.We use QuTiP to simulate qubit evolution and compare the performance of DD via average dephasing rate under the influence of various imperfections.Bounded pulses perform worse than ideal ones.Jitter in pulse position,poor on-off ratio and filtering effect can greatly degrade DD performance,while jitter in pulse width and qubit relaxation has smaller effects.Pulse shaping can prevent the pulses from distortion by filtering effect,but short pulses are necessary to improve DD performance.These methods and some of the conclusions in this work can be applied to more complicated systems,such as quantum information processing system with multiple superconducting qubits.

    Appendix A:Understanding relaxation and dephasing

    The interaction between a qubit and a harmonic oscillation mode from its environment is described by the Jaynes-Cummings Hamiltonian:

    ωqand ωaare the resonant frequency of the qubit and the oscillation mode,respectively.is Pauli Z-matrix.a and a?are annihilation and creation operator of the mode.is the lowering operator that destroys an exciton and changes qubit state from|1〉to|0〉,while its conjugate transposeis the raising operator that creates an exciton and transforms|0〉to|1〉.g is the coupling strength between the qubit and the mode.We denote Δ = ωq-ωaas the frequency difference between the qubit and the mode.When Δ?g,which is the so-called weak coupling regime,there is no direct energy exchange because of energy conservation.But qubit energy levels are slightly modi fied by the number of excitons in the mode.Accordingly,the fluctuations in exciton number result in spectral broadening.Spectral broadening can be regarded as uncertain rotation velocity around Z axis on Bloch sphere.Hence,dephasing occurs,which means that the phase of the qubit state becomes randomized.Meanwhile,Δ?g is a strong coupling regime.The qubit can absorb a photon from the mode and experience a transition from|0〉to|1〉,which is excitation.It can also emit a photon to the mode and undergo a transition|1〉to|0〉,which is relaxation.When Δ~g,dephasing,excitation and relaxation can happen at the same time.For a superconducting qubit of a few GHz resonant frequency,its coupling with low-frequency modes from its environment are the source of dephasing,while high-frequency modes contribute to excitation and relaxation.

    Appendix B:Generation of 111/// fff noise in time domain

    We denote the power spectral density of random noise n(t)as Snn(f).They are connected by z(f),the Fourier trans-

    form of n(t):

    For the purpose of simulation,a discrete-time version of n(t)has to be generated from Snn(f)repeatedly.We assume Snn(f)can be truncated,namely:when f>fcut,Snn(f)=0.This is a good approximation for most noise types,such as 1/f noise.According to the Nyquist theorem,let Δt=1/(2fmax)be the time step of our length-N sequence nseq,where fmax≥fcut,then we should also sample N points from Snn(f).Note that a practical power spectral density is symmetric,Snn(f)=Snn(-f),so we can choose M=N/2+1 sampling points for f≥0.The sampled sequence is de fined as Sseq={Snn(-(M-2)Δf),Snn(-(M-3)Δf),...,Snn(-Δf),Snn(0),Snn(Δf),...,Snn((M-2)Δf),Snn((M-1)Δf)}.The interval between adjacent points in Sseqis Δf=fmax/(M-1).We also de fine zseq={z(-(M-2)Δf),z(-(M-3)Δf),...,z(-Δf),z(0),z(Δf),...,z((M-2)Δ f),z((M-1)Δ f)}as the fast Fourier transform(FFT)ofnseq.WhenwecalculatezseqfromSseq,arbitrary phases are added to recover randomness because Sseqdoes not contain phase information.We generate phases that obey uniform distribution in[0,2π),φ(j),j=1,2,...,M-2.Let D=fcut/Δf,then

    z(0)may not be convergent for some noise spectrums such as 1/f noise,so we substitute it with an independent DC component z0.Finally,we use inverse FFT(iFFT)to get nseq:

    where Re(·)takesthe real part of a complex number.

    Acknowledgment

    The authors thank Liu Yulong from Tsinghua University and Wang Xin from Xi’an Jiaotong University for helpful discussions on QuTiP.

    猜你喜歡
    陳煒徐達張穎
    張穎
    大江南北(2023年2期)2023-02-11 05:45:56
    Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics
    張穎
    大江南北(2022年11期)2022-11-08 12:04:18
    張穎
    大江南北(2022年3期)2022-03-12 01:19:16
    我一定回來
    遼河(2022年2期)2022-03-03 09:13:03
    Quantum computation and simulation with superconducting qubits?
    陳煒
    書香兩岸(2020年3期)2020-06-29 12:33:45
    坐在車里發(fā)呆的老公
    婦女生活(2017年11期)2017-11-06 21:35:33
    酒作誘餌試功臣
    酒作誘餌試功臣
    亚洲第一欧美日韩一区二区三区| 成人欧美大片| 亚洲 欧美 日韩 在线 免费| 男女下面进入的视频免费午夜| 国产高清视频在线观看网站| 欧美乱妇无乱码| 中文字幕免费在线视频6| 丁香六月欧美| 日韩精品青青久久久久久| 欧美午夜高清在线| 中亚洲国语对白在线视频| 18+在线观看网站| 波多野结衣巨乳人妻| 欧美区成人在线视频| 午夜a级毛片| 日本免费a在线| 亚洲成人久久爱视频| 精品久久久久久久久久免费视频| 国内精品美女久久久久久| 免费av毛片视频| 99久久无色码亚洲精品果冻| 高清在线国产一区| av天堂中文字幕网| 丰满人妻一区二区三区视频av| 在线观看美女被高潮喷水网站 | 色尼玛亚洲综合影院| 搞女人的毛片| 久久精品久久久久久噜噜老黄 | 特大巨黑吊av在线直播| 搞女人的毛片| 国产高清激情床上av| 国产高清有码在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 小说图片视频综合网站| 丰满人妻一区二区三区视频av| 欧美成人一区二区免费高清观看| 欧美另类亚洲清纯唯美| av福利片在线观看| 亚洲av美国av| 国产人妻一区二区三区在| 男女那种视频在线观看| 两个人的视频大全免费| 国产黄a三级三级三级人| 欧美成狂野欧美在线观看| 老女人水多毛片| av天堂中文字幕网| 十八禁网站免费在线| 最后的刺客免费高清国语| 久久伊人香网站| 欧美激情久久久久久爽电影| 九九久久精品国产亚洲av麻豆| 免费人成视频x8x8入口观看| 精品久久久久久久久久久久久| 精品福利观看| 美女高潮喷水抽搐中文字幕| 一本一本综合久久| 麻豆一二三区av精品| 日本免费一区二区三区高清不卡| 最近视频中文字幕2019在线8| 一进一出抽搐动态| 特级一级黄色大片| 色综合亚洲欧美另类图片| 老鸭窝网址在线观看| 国产精品久久电影中文字幕| 精品国产亚洲在线| 亚洲av美国av| 别揉我奶头~嗯~啊~动态视频| 人妻丰满熟妇av一区二区三区| 国产午夜福利久久久久久| 亚洲,欧美精品.| 日本一二三区视频观看| 天堂av国产一区二区熟女人妻| 国产免费一级a男人的天堂| 亚洲国产欧洲综合997久久,| 简卡轻食公司| 久久久久免费精品人妻一区二区| 国产午夜精品久久久久久一区二区三区 | 国产 一区 欧美 日韩| 伊人久久精品亚洲午夜| 黄色女人牲交| 别揉我奶头~嗯~啊~动态视频| 国产精品野战在线观看| 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 黄色丝袜av网址大全| 国产视频一区二区在线看| 免费电影在线观看免费观看| 欧美日韩福利视频一区二区| 久久久久久久久久成人| 免费av毛片视频| 国产亚洲av嫩草精品影院| 精品久久久久久久久久免费视频| 波多野结衣高清无吗| or卡值多少钱| 中文字幕免费在线视频6| 亚洲av二区三区四区| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 欧美一级a爱片免费观看看| 1000部很黄的大片| 超碰av人人做人人爽久久| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 麻豆国产97在线/欧美| 国产美女午夜福利| 亚洲无线观看免费| 午夜福利欧美成人| 一区二区三区免费毛片| 久久国产精品人妻蜜桃| 欧美又色又爽又黄视频| 在线观看美女被高潮喷水网站 | av天堂在线播放| 免费观看人在逋| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| 国产av不卡久久| 国产成人av教育| 中文资源天堂在线| 午夜福利欧美成人| 午夜精品在线福利| 日韩欧美在线乱码| 国产蜜桃级精品一区二区三区| 一个人观看的视频www高清免费观看| 亚洲成av人片免费观看| 久久99热6这里只有精品| 欧美精品啪啪一区二区三区| 亚洲欧美日韩东京热| 黄色一级大片看看| 99久久久亚洲精品蜜臀av| 久久精品国产亚洲av香蕉五月| 乱人视频在线观看| 欧美色视频一区免费| 亚洲美女搞黄在线观看 | 色噜噜av男人的天堂激情| 久久精品久久久久久噜噜老黄 | av在线观看视频网站免费| 欧美精品国产亚洲| 嫩草影院入口| 国产成人欧美在线观看| 国产激情偷乱视频一区二区| 又紧又爽又黄一区二区| 村上凉子中文字幕在线| 国产成人福利小说| 国产精华一区二区三区| 又黄又爽又刺激的免费视频.| 亚洲经典国产精华液单 | 精品日产1卡2卡| 波野结衣二区三区在线| 久久精品影院6| 久久99热6这里只有精品| 又黄又爽又免费观看的视频| 国产精品,欧美在线| 国产真实乱freesex| 在线观看舔阴道视频| 亚洲精品成人久久久久久| 中国美女看黄片| 高潮久久久久久久久久久不卡| 波多野结衣高清无吗| 欧美在线一区亚洲| 高潮久久久久久久久久久不卡| av中文乱码字幕在线| 欧美zozozo另类| 亚洲在线观看片| 亚洲精品亚洲一区二区| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| av欧美777| 久久久色成人| 看十八女毛片水多多多| 欧美性猛交黑人性爽| 午夜福利成人在线免费观看| 亚洲精品亚洲一区二区| 亚洲精华国产精华精| 亚洲三级黄色毛片| 色在线成人网| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 最新在线观看一区二区三区| 我的老师免费观看完整版| 我要搜黄色片| 亚洲三级黄色毛片| 少妇被粗大猛烈的视频| 99热6这里只有精品| 久久久久国产精品人妻aⅴ院| 亚洲av美国av| 欧美3d第一页| 我的老师免费观看完整版| 制服丝袜大香蕉在线| av黄色大香蕉| 国产真实伦视频高清在线观看 | 又黄又爽又刺激的免费视频.| 人人妻,人人澡人人爽秒播| 毛片一级片免费看久久久久 | 日本熟妇午夜| 五月玫瑰六月丁香| 国产久久久一区二区三区| 国产精品一区二区性色av| 制服丝袜大香蕉在线| 久久久久久久亚洲中文字幕 | 简卡轻食公司| 亚洲第一欧美日韩一区二区三区| 国产极品精品免费视频能看的| 黄色视频,在线免费观看| 国产在视频线在精品| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 欧美日韩国产亚洲二区| 欧美黄色片欧美黄色片| 欧美高清性xxxxhd video| 两个人的视频大全免费| 午夜老司机福利剧场| 久久久久久久久中文| 搡女人真爽免费视频火全软件 | 久久久精品欧美日韩精品| 久久伊人香网站| 日韩精品青青久久久久久| 性插视频无遮挡在线免费观看| 美女被艹到高潮喷水动态| 在线观看一区二区三区| 国产69精品久久久久777片| av天堂中文字幕网| 日日干狠狠操夜夜爽| 看免费av毛片| 国产精品免费一区二区三区在线| 精品日产1卡2卡| 国产爱豆传媒在线观看| 嫁个100分男人电影在线观看| 国产成+人综合+亚洲专区| 亚洲精品色激情综合| 一级av片app| 亚洲精品在线美女| 99久久精品热视频| 天堂动漫精品| 精品一区二区三区视频在线| 99精品在免费线老司机午夜| 久久精品人妻少妇| 有码 亚洲区| xxxwww97欧美| 亚洲第一区二区三区不卡| 嫩草影院新地址| 国内精品久久久久精免费| 亚洲欧美日韩无卡精品| 日韩欧美国产在线观看| 日本与韩国留学比较| 久久性视频一级片| 黄色日韩在线| 91在线精品国自产拍蜜月| 午夜久久久久精精品| 村上凉子中文字幕在线| 99热6这里只有精品| 中文亚洲av片在线观看爽| 亚洲av一区综合| 亚洲人成网站高清观看| eeuss影院久久| 美女 人体艺术 gogo| 婷婷精品国产亚洲av| 久久久久久久亚洲中文字幕 | 精品99又大又爽又粗少妇毛片 | a级毛片a级免费在线| 免费黄网站久久成人精品 | 直男gayav资源| 国产野战对白在线观看| 日韩高清综合在线| 看十八女毛片水多多多| 欧美成人性av电影在线观看| 欧美乱色亚洲激情| 天堂√8在线中文| 国产精品永久免费网站| 久久精品久久久久久噜噜老黄 | 久久精品国产亚洲av涩爱 | 国产大屁股一区二区在线视频| 波多野结衣高清无吗| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av| 极品教师在线免费播放| 日韩欧美在线乱码| 色综合站精品国产| 丁香六月欧美| 亚洲内射少妇av| 天堂影院成人在线观看| 国产伦精品一区二区三区视频9| 国产人妻一区二区三区在| 亚洲精品一卡2卡三卡4卡5卡| 我要搜黄色片| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看 | 久久99热这里只有精品18| 国产精品亚洲av一区麻豆| 在线观看av片永久免费下载| 成人av在线播放网站| 精品不卡国产一区二区三区| 欧美成人a在线观看| 91九色精品人成在线观看| 床上黄色一级片| 中文在线观看免费www的网站| 色噜噜av男人的天堂激情| 夜夜夜夜夜久久久久| 久久久久久九九精品二区国产| www.www免费av| 黄色一级大片看看| 亚洲欧美日韩卡通动漫| 久久久久国产精品人妻aⅴ院| 中文字幕熟女人妻在线| 精品国内亚洲2022精品成人| 国产高清视频在线观看网站| 亚洲在线观看片| 香蕉av资源在线| 亚洲avbb在线观看| 最新中文字幕久久久久| 99久国产av精品| 2021天堂中文幕一二区在线观| 18禁黄网站禁片午夜丰满| 国产精品一区二区性色av| 18禁裸乳无遮挡免费网站照片| 少妇高潮的动态图| 国产av不卡久久| 国产人妻一区二区三区在| 日日夜夜操网爽| 在线观看av片永久免费下载| 国产精品精品国产色婷婷| 精品久久久久久成人av| 国产精品不卡视频一区二区 | 97超级碰碰碰精品色视频在线观看| 少妇高潮的动态图| 哪里可以看免费的av片| 国产69精品久久久久777片| 变态另类成人亚洲欧美熟女| 欧美性猛交黑人性爽| 国产精品久久电影中文字幕| 91久久精品电影网| 狠狠狠狠99中文字幕| 99热精品在线国产| 久久精品久久久久久噜噜老黄 | 欧美乱色亚洲激情| 国产伦人伦偷精品视频| 内射极品少妇av片p| 99国产综合亚洲精品| 人人妻人人看人人澡| 国产精品三级大全| 小蜜桃在线观看免费完整版高清| 久久久久久久午夜电影| 麻豆一二三区av精品| 色哟哟·www| 夜夜躁狠狠躁天天躁| 我的女老师完整版在线观看| 日本一本二区三区精品| 美女高潮喷水抽搐中文字幕| 亚洲三级黄色毛片| 国产一区二区亚洲精品在线观看| 人人妻人人看人人澡| 欧美一区二区国产精品久久精品| 亚洲中文日韩欧美视频| 亚洲av电影在线进入| 久久久久久久久中文| 欧美日韩中文字幕国产精品一区二区三区| 18+在线观看网站| 成人特级av手机在线观看| 窝窝影院91人妻| 真人一进一出gif抽搐免费| av福利片在线观看| 男人的好看免费观看在线视频| 搞女人的毛片| 亚洲熟妇熟女久久| 久久久久久久亚洲中文字幕 | 国产在线精品亚洲第一网站| 国产一区二区在线观看日韩| 欧美另类亚洲清纯唯美| 他把我摸到了高潮在线观看| 国产色爽女视频免费观看| 久久精品国产清高在天天线| 国产色爽女视频免费观看| 亚洲,欧美精品.| 亚洲av成人精品一区久久| 88av欧美| 日日夜夜操网爽| 久9热在线精品视频| 一区二区三区激情视频| 久久久国产成人免费| 12—13女人毛片做爰片一| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 久久久久性生活片| 色在线成人网| 精品99又大又爽又粗少妇毛片 | 午夜老司机福利剧场| 国产老妇女一区| www.www免费av| 亚洲国产高清在线一区二区三| 免费观看的影片在线观看| 成年女人看的毛片在线观看| 欧美日韩福利视频一区二区| av在线观看视频网站免费| 美女高潮的动态| 亚洲精品日韩av片在线观看| 国产久久久一区二区三区| 免费av毛片视频| 又黄又爽又刺激的免费视频.| 精品午夜福利在线看| 99热精品在线国产| 久久久精品欧美日韩精品| 国产伦在线观看视频一区| 日本a在线网址| 伦理电影大哥的女人| 免费搜索国产男女视频| 99视频精品全部免费 在线| 毛片女人毛片| 91午夜精品亚洲一区二区三区 | 老司机深夜福利视频在线观看| 国产高清有码在线观看视频| 变态另类成人亚洲欧美熟女| 久久久色成人| 又黄又爽又免费观看的视频| 久久6这里有精品| 亚洲欧美日韩东京热| 成人午夜高清在线视频| 欧美日韩综合久久久久久 | 色视频www国产| 国产真实伦视频高清在线观看 | 亚洲av二区三区四区| 69av精品久久久久久| 黄色日韩在线| 真人一进一出gif抽搐免费| 在线观看av片永久免费下载| 首页视频小说图片口味搜索| 热99在线观看视频| 精品一区二区三区av网在线观看| 亚洲无线在线观看| 久久精品国产亚洲av涩爱 | 动漫黄色视频在线观看| 狂野欧美白嫩少妇大欣赏| 日本五十路高清| 国产精品伦人一区二区| 婷婷六月久久综合丁香| 啦啦啦观看免费观看视频高清| 国产成人福利小说| 亚洲中文字幕一区二区三区有码在线看| 午夜精品在线福利| 午夜免费成人在线视频| 精品99又大又爽又粗少妇毛片 | 午夜福利视频1000在线观看| 久久精品人妻少妇| 91麻豆av在线| 在线免费观看的www视频| 可以在线观看毛片的网站| 亚洲最大成人av| 欧美精品啪啪一区二区三区| 桃红色精品国产亚洲av| 又粗又爽又猛毛片免费看| 国产黄色小视频在线观看| 赤兔流量卡办理| 免费大片18禁| 在线a可以看的网站| 美女cb高潮喷水在线观看| 精品人妻偷拍中文字幕| 亚洲第一欧美日韩一区二区三区| 国产私拍福利视频在线观看| 波多野结衣巨乳人妻| 午夜亚洲福利在线播放| 九九在线视频观看精品| 欧美日韩福利视频一区二区| 亚洲精品日韩av片在线观看| 国产又黄又爽又无遮挡在线| 欧美性猛交黑人性爽| 日韩国内少妇激情av| 毛片一级片免费看久久久久 | 久久精品人妻少妇| 欧美成人免费av一区二区三区| 欧美午夜高清在线| 天堂av国产一区二区熟女人妻| 超碰av人人做人人爽久久| 亚洲精品一卡2卡三卡4卡5卡| 在现免费观看毛片| 午夜福利18| 直男gayav资源| 国产av不卡久久| 国产精品亚洲美女久久久| 欧美黑人巨大hd| 免费在线观看影片大全网站| 亚洲一区高清亚洲精品| 91麻豆精品激情在线观看国产| 99久久精品一区二区三区| 性色av乱码一区二区三区2| 精品不卡国产一区二区三区| 午夜激情欧美在线| 午夜a级毛片| 国内精品久久久久精免费| 美女xxoo啪啪120秒动态图 | 国产精品电影一区二区三区| 我要搜黄色片| 日本黄色视频三级网站网址| 99热这里只有是精品在线观看 | av专区在线播放| 性色av乱码一区二区三区2| 熟女电影av网| 非洲黑人性xxxx精品又粗又长| 丁香欧美五月| 亚洲av成人精品一区久久| 国产精品自产拍在线观看55亚洲| 白带黄色成豆腐渣| 国产欧美日韩一区二区精品| 一级a爱片免费观看的视频| av黄色大香蕉| 最近视频中文字幕2019在线8| 一个人看的www免费观看视频| 最近在线观看免费完整版| 亚洲欧美日韩无卡精品| 久久久久久久亚洲中文字幕 | 成人高潮视频无遮挡免费网站| 日本a在线网址| 成人永久免费在线观看视频| 天堂√8在线中文| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿在线中文| 国产激情偷乱视频一区二区| 十八禁网站免费在线| 淫妇啪啪啪对白视频| 男女床上黄色一级片免费看| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 亚洲中文日韩欧美视频| av在线天堂中文字幕| 成人永久免费在线观看视频| 亚洲av一区综合| 成人高潮视频无遮挡免费网站| 99国产精品一区二区蜜桃av| 国产白丝娇喘喷水9色精品| 老鸭窝网址在线观看| h日本视频在线播放| 一边摸一边抽搐一进一小说| 日本成人三级电影网站| 桃红色精品国产亚洲av| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 久久久久亚洲av毛片大全| 丰满人妻熟妇乱又伦精品不卡| 琪琪午夜伦伦电影理论片6080| 国产毛片a区久久久久| 成人无遮挡网站| 亚洲第一区二区三区不卡| 一边摸一边抽搐一进一小说| 亚洲国产精品合色在线| 精品人妻视频免费看| 偷拍熟女少妇极品色| 亚洲av二区三区四区| 欧美在线一区亚洲| 女同久久另类99精品国产91| 一进一出好大好爽视频| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区免费观看 | 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 亚洲美女黄片视频| 很黄的视频免费| 久久欧美精品欧美久久欧美| aaaaa片日本免费| 久久人人精品亚洲av| 中文字幕免费在线视频6| 香蕉av资源在线| 国产大屁股一区二区在线视频| 久久精品影院6| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 日本 av在线| 国产综合懂色| 国产成人福利小说| 国产亚洲精品av在线| 91av网一区二区| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产精品av视频在线免费观看| 日本三级黄在线观看| 88av欧美| 亚洲国产日韩欧美精品在线观看| 欧美zozozo另类| av在线蜜桃| 久久精品国产99精品国产亚洲性色| www.色视频.com| 赤兔流量卡办理| 99国产精品一区二区蜜桃av| 久久香蕉精品热| x7x7x7水蜜桃| www日本黄色视频网| 国产高清三级在线| 俄罗斯特黄特色一大片| 精品不卡国产一区二区三区| 三级毛片av免费| 国产不卡一卡二| 级片在线观看| 美女高潮喷水抽搐中文字幕| 看黄色毛片网站| 99久久无色码亚洲精品果冻| 999久久久精品免费观看国产| 国产美女午夜福利| 无遮挡黄片免费观看| 日本三级黄在线观看| 国产精品亚洲av一区麻豆| 国产免费av片在线观看野外av| 亚洲av中文字字幕乱码综合| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女| 亚洲国产色片| 深夜a级毛片| 天堂网av新在线| 国产精品爽爽va在线观看网站| 国产精品亚洲美女久久久| 99riav亚洲国产免费| 最好的美女福利视频网| 国产又黄又爽又无遮挡在线| 哪里可以看免费的av片| 国产亚洲精品av在线|