• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit?

    2019-06-18 05:42:12YingShanZhang張穎珊JianSheLiu劉建設ChangHaoZhao趙昌昊YongChengHe何永成DaXu徐達andWeiChen陳煒
    Chinese Physics B 2019年6期
    關(guān)鍵詞:陳煒徐達張穎

    Ying-Shan Zhang(張穎珊),Jian-She Liu(劉建設),Chang-Hao Zhao(趙昌昊),Yong-Cheng He(何永成),Da Xu(徐達),and Wei Chen(陳煒)

    1Department of Microelectronics and Nanoelectronics,Tsinghua University,Beijing 100084,China

    2Institute of Microelectronics,Tsinghua University,Beijing 100084,China

    3Tsinghua National Laboratory for Information Science and Technology,Tsinghua University,Beijing 100084,China

    Keywords:dynamical decoupling,superconducting qubit,imperfection,dephasing

    1.Introduction

    A superconducting quantum system is one of the most promising candidates for practical quantum computers.Considerable efforts have been made to integrate the wide variety of superconducting qubits and their auxiliary equipment.However,scaling up while maintaining relatively long coherence time is still dif ficult.Decoherence induces errors in computing.Speci fically,relaxation causes bit- flip error and dephasing leads to phase- flip error.If we wish to run useful algorithms on such a vulnerable superconducting quantum computer,then errors have to be compensated for.One way to do this is quantum error correction(QEC),[1,2]where one actively detects errors and then corrects them.Another way is error mitigation,in which dynamical decoupling(DD)and decoherence-free subspaces(DFSs)are prominent.[3-5]Compared to QEC and DFSs,DD consumes much less time and hardware resources because of no encoding overhead and is more suitable for current superconducting quantum systems with a few dozens of noisy qubits.[6,7]In an advanced quantumsystem with many qubits that reach fault-tolerant threshold,we can even combine unconditional DD with conditional QEC to achieve a balance between performance and overhead.[8]DD can prolong quantum state storage time and be flexibly inserted into quantum circuits to improve fidelity of quantum state manipulation.[9]It is also scalable because we can perform DD on each qubit independently and simultaneously in multi-qubit systems.[10,11]

    Dynamic decoupling has been utilized in superconducting quantum systems to protect the Bell state,[12]and the entanglement between a qubit and a microscopic two-level system.[13]Dynamic decoupling has also been applied to aflux qubit[14]and a transmon qubit[15]as a probe for noise spectroscopy.Nevertheless,imperfections can result in lowered or even lost effectiveness of DD.[16]Imperfections relevant to the efficiency of DD against dephasing originate from erroneous generation of DD signal,distortion of the signal due to circuit components,and qubit relaxation.To the best of our knowledge,the effects of imperfections on the performance of DD on superconducting qubits have not yet been systematically discussed.

    In the present paper,we study the impact of such imperfections on the results of DD via simulations.The rest of this paper is organized as follows.We first describe the theoretical model of a qubit,its noise environment and driving pulses,and we then conduct master equation simulation of the qubit evolution.By comparing the performance of DD under distinctive imperfections,we finally discuss what imperfections count and how to avoid their adverse effects.

    2.Theoretical model

    2.1.Qubit dynamics

    A qubit state can be expressed as density matrix ρ.The qubit’s evolution follows Liouville-Von Neumann equation[17]

    where i is the imaginary unit,ˉh is the reduced Planck constant,and H is the qubit Hamiltonian

    ωqis the qubit transition frequency.σzisPauli Z-matrix.Hc(t)is the time-dependent control signal,and Hn(t)is the noise.For a classical noise that leads to dephasing[18]

    where n(t)is a random function of time.

    An alternative way to express noise is power spectral density.Low-frequency noise causes dephasing,while highfrequency noise close to positive(negative)qubit frequency leads to relaxation(excitation)(see Appendix A for more detailed discussions).In superconducting quantum circuits,low frequency noise is well approximated by 1/f noise.[19]Therefore,we use 1/f noise to study dephasing.In other words,n(t)has 1/f power spectrum.

    The environment consists of multiple channels of qubit decoherence.The dynamics of qubit in environment follows Lindblad master equation[20]

    where H is the qubit Hamiltonian that represents coherent evolution and Lkis the collapse operator of the k-th decoherence channel.Assuming constant relaxation rate γ1,then the expressions for relaxation and excitation are

    where nthis the residual thermal population of qubit.

    2.2.DD and relevant imperfections

    Dynamic decoupling is the application of control sequences designed against unwanted system-environment coupling,denoted by a Hamiltonian HSE.The control Hamiltonian Hc(t)on the system has propagator[21]

    where T is the time-ordering operator. Under the frame change with unitary operatorUc(t),HSEbecomes

    where˙Uc(t)is the time derivative ofUc(t).The propagator for the controlled system is[22]

    For N-order decoupling with cyclic controlUc(t+Tc)=Uc(t)of period Tc,the expansion of U(nTc)in Tcto the N-th order shows no effect on the system,for any natural number n.That is,if we stroboscopically observe the system at the end of each control cycle,then the system is effectively decoupled from the environment to the N-th order.For decoupling sequences to work,the noise in a control cycle should be correlated in some way.1/f noise is coherent noise and has quite a long correlation time,which makes it perfect for the demonstration of DD.

    The basic DD protocols are Carr-Purcell(CP)[23]and Carr-Purcell-Meiboom-Gill(CPMG)[24],which are composed of evenly-spaced π-pulses.The initial qubit state and the rotation axes of control pulses are all in the XY plane,but the rotation axis of CP π-pulses is perpendicular to qubit initial state while that of CPMG is parallel to it.CPMG is theoretically better than CP because state error accumulates only in the fourth order of pulse nutation error for CPMG,while in the second order for CP.[25]

    The Uhrig DD(UDD)[26]protocol has the same rotation axis as CPMG but the k-th π-pulse is applied at

    where tDDis the total evolution time and NDDis the total number of decoupling pulses.For noise with a power density spectrum that increases with frequency and suddenly cuts off,UDD works better than CPMG.[27]But for most noise types that diminish with frequency,CPMG is the better choice.

    The measurement system for DD in a three-dimensional(3D)superconducting transmon qubit studied in this work is presented in Fig.1.For other superconducting qubit types,the input ports for driving and measurement pulses may be separate.However,places where error can occur are basically the same,as demonstrated in the light gray dashed boxes in Fig.1.First,low-frequency pulses are generated by an arbitrary waveform generator(AWG)to control the timing of driving and measurement pulses.Driving pulses have two channels that control qubit rotations in the XY plane.CP,CPMG,and UDD pulses are originally written in Dirac δ function,assuming each pulse to be in finitely strong and fast.This control protocol is called bang-bang control.But in practice,superconducting qubits are controlled by bounded pulses,with limited height and width,which is an inevitable source of error.Also,AWG has jitter errors.Consequently,the width and position of a pulse can deviate from its assigned value.Then,an IQ mixer takes the two-channel control pulses from AWG and mixes them with continuous high-frequency signal from a microwave source.Ideally,when the control pulses are zero in both channels,the output signal from the mixer should also be zero.However,the on-off ratio of the mixer is finite and the output is not completely turned off.This composes another source of imperfection.Next,the mixed signal goes through a splitter to combine it with measurement signal,attenuators to minimize thermal noise,a filter to exclude highfrequency noise and multiple wiring coaxial cables,before it reaches qubit cavity.The nonlinearity of these components and impedance mismatch at their interfaces can all contribute to the distortion of driving signal seen by the qubit,which is named as filtering effect.Finally,the superconducting qubit itself has finite relaxation time and can randomly jump between its two eigenstates during DD against dephasing,which may affect the measurement results.

    Fig.1.The DD measurement system for a 3D superconducting transmon qubit.Imperfections aredescribed,some with schematic diagrams,in light-gray dashed boxes.

    3.Method

    QuTiP[28]is a useful toolbox for numerical simulation in quantum systems. It provides master equation solver brmesolve(·)that allows us to specify the noise power spectrum,but its Hamiltonian has to be time-independent.Another solver in QuTiP,mesolve(·),is capable of dealing with time-dependent Hamiltonian and collapse operators but does not include noise power spectrum.To simulate a qubit under DD pulses with 1/f noise,we put 1/f noise into the Hamiltonian,as shown in Eq.(3),and we utilize mesolve(·)to address the problem.

    Fig.2.Simulation of qubit evolution under CP decoupling pulses.(a)Above are qubit control(blue)and measurement(green)pulses for NDD=1 with 1/f noise(purple).Below is the corresponding qubit evolution on Bloch sphere.Left to right:initial|0〉state,dephasing during the first tDD/2,decoupling during the second tDD/2, final state deviated from|0〉because of dephasing;(b)Qubit evolution with time for different NDDand corresponding linear fitting curves.Each point is an average of 100 times of simulation.

    As can be seen in Fig.2(a),in experiments of DD on a superconducting qubit,we first rotate the qubit to XY plane by an X(π/2)pulse,then perform X(π)or Y(π)DD pulses for NDDtimes with intervals de fined in Subsection 2.2.At last,the qubit is rotated back for measurement by an X(π/2)or-X(π/2)compensation pulse,which ensures that the total rotation angle of all control pulses is an integer multiple of 2π.

    In our simulation,for each NDDand tDD,we generate a time-domain sequence of 1/f noise(see Appendix B)and add it to the same control Hamiltonian as in experiments.Starting from the initial density matrix|0〉〈0|,we calculate mesolve(·)for one time step and update the density matrix.The stepwise calculation is repeated until the density matrix of the final state is recorded.This procedure is repeated for 100 times and the final density matrices are averaged.Finally,the expectation value of σzis evaluated for the averaged density matrix.We sweep tDDto achieve the average time evolution ofand sweep NDDfrom 1 to 10.An example of the results is shown in Fig.2(b).Then the slope of time evolution is extracted as the average dephasing ratewhich is a good indication of DD performance.A large〉means fast dephasing and bad performance of decoupling.

    Without DD,we adjust the qubit dephasing time to T2~200ns by modifying the strength of 1/f noise.For the moment,we use rectangular pulses.TRabi=40ns is chosen as the Rabi oscillation period.A short TRabiis preferable,but the minimal TRabiavailable is limited by the precision of AWG.For an ordinary measurement system,the maximum sample rate of AWG is around 109sample/s,which makes TRabi=40ns a practical choice.The length of a π pulse is TRabi/2=20ns,for both X-control and Y-control.The preparation and compensation pulses are 10ns long each,a quarter of TRabi.

    4.Results and discussion

    We now present the simulation results and compare the influence of the imperfections listed in Fig.1.We will then brie fly discuss the ways to fight against imperfections that have signi ficant effects on the performance of DD.

    4.1.Qubit relaxation

    We begin our analysis with the effect of limited qubit relaxation time.We simulate bounded CP on a noisy qubit with T1=1/(2γ1)=560ns,along with a good qubit with T1=10μs,and compare them to an ideal qubit with no relaxation.Figure 3 elucidates that longer T1has little improvement on the performance of DD.In our following discussions,we can safely assume T1=∞when simulating the effects of other factors.

    Fig.3.Bounded CP decoupling results for qubits with T1=560ns,and T1=10μs,and in finite T1.

    4.2.Bounded pulses

    Now we compare the performance of ideal pulses with bounded ones.The impacts of finite pulse width on different decoupling protocols are shown in Fig.4.As NDDincreases,the interval between adjacent pulses decreases for a fixed tDD.Therefore,the effect of decoupling improves with NDD,for both ideal and bounded cases.Bounded pulses deteriorate the performance of all three DD protocols,indicated by higherthan their ideal counterparts.The differences become more obvious for bigger NDD.Ideal CP and CPMG are almost as good but CPMG works better when bounded because it is more robust to error.UDD has poor performance,even in ideal case,because it essentially is designed for highfrequency noise.

    Fig.4.(a)Waveform of ideal(blue dotted line)and bounded(red solid line)CP,CPMG,and UDD for NDD=5;(b)Comparison between CP,CPMG,and UDD pulses with ideal and bounded strength.Error bar is linear fitting error(not simulation error).

    4.3.Jitter

    From now on,we concentrate on the bounded CP because it is more prone to error than CPMG and more sensitive to 1/f noise than UDD.In other words,it epitomizes more clearly the influence of imperfections.We then consider the jitter of AWG.Jitter is modeled with the truncated normal distribution between±0.25ns with meanμ=0ns and standard deviation σ=0.1ns.We add this random jitter to the position or width of each CP pulse and the simulation results are illustrated in Fig.5.The jitter in pulse width causes a slight reduction in performance of CP,while the jitter in pulse position significantly increases〉and is obviously detrimental to the performance because the error caused by positive and minus jitter in pulse width can counteract to a large extent,while the error due to the jitter in position cannot.Hence,the jitter in pulse position should be carefully treated if we want to suppress the dephasing.

    Fig.5.(a)Waveform of bounded CP with jitter for NDD=5.The bluedotted line is the accurate waveform,while the red-solid line contains jitter in pulse width(left)or position(right).The extent of jitter is exaggerated for clarity;(b)Impact of jitter in position or width on the performance of bounded CP pulses.

    4.4.Finite on-off ratio

    The finiteon-offratioofmixerismodeledas10%residue when its input is zero.Equivalently,the LO to RF isolation of the mixer is 20dB.In Fig.6,we plot the average trajectories for different NDD.These trajectories deviate greatly from ideal ones in Fig.2(b)so that they can no longer be fitted linearly.The oscillation of state in time is apparently due to qubit rotation by the residual drive when control should be turned off.Consequently,the dynamic decoupling cannot work properly if the on-off ratio of mixer is not good enough.

    Fig.6.Qubit average trajectories with bounded CP when mixer output cannot be completely turned off.

    4.5.Filtering effect

    Filtering effect is another inevitable source of error.We use a low-pass Butterworth Filter(BF)to emulate the filtering of circuit components.The order of the filter is 1 or 3,and the-3dB bandwidth is 0.2 or 0.4 times Nyquist frequency fc.From Fig.7,we can see that different filtering parameters produce similar effects,despite the fact that the waveforms after filtering are different.The performance with filter is much worse than that without them.Thus filtering effect is a signi ficant factor that may make DD fail.

    Fig.7.(a)Waveform of bounded CP after passing through a Butterworth Filter(BF)with different order and bandwidth parameters;(b)Bounded CP decoupling results for un filtered and filtered pulses.

    Fig.8.(a)The shape of trapezoid,truncated Gaussian,and raised cosine pulse;(b)Bounded CP decoupling results using the above pulses,with and without filtering effect.

    We sometimes engineer the pulse shape to achieve better gate fidelity.The steep rising and falling edges of a rectangular pulse have in finite high-frequency components,which bring about distortion when the pulse encounters filtering.We change the shape of edges to mitigate such deformation.Trapezoid,truncated Gaussian and raised cosine types of pulse shapes are simulated here,as shown in Fig.8(a),in which raised cosine is theoretically the best because of its smooth transitions.[29]When we use these three pulse types instead of rectangular pulse,the performance before and after filtering are summarized in Fig.8(b).The filtering effect is modeled by a 3rd-order BF with 0.01fcbandwidth.The rising and falling time for all three pulse types are 10ns.For truncated Gaussian shape,we use σ =5ns,and truncate to 2σ.The waveforms before and after the pulses pass through the filter are nearly identical,even for the narrow bandwidth we choose.Performanceof CP with and without filtering for these pulses are also almost the same,which implies that filtering no longer adds to error with optimized pulse shaping.However,because the shaped pulses in our simulation share the same pulse height as rectangular pulses,they are much wider and suffer more from dephasing within pulse duration.Thus their performance are inferior to perfect rectangular pulses and approaches that of filtered rectangular pulses,as shown by the blue dash-dot and red-dashed lines in Fig.7,respectively.Pulse shaping can eliminate the error caused by filtering effect,but does not necessarily assist DD to perform better.As a matter of fact,when the qubit itself has short dephasing time,we need shorter pulses with larger height if we want to improve DD performance by pulse shaping.

    4.6.Solutions

    The impacts of all imperfections discussed in this paper and corresponding countermeasures are summarized in Table 1.

    Table 1.Types of imperfections,the severity of their effects on DD and how to alleviate these effects.

    More complicated DD protocols are favorable as far as bounded pulses are concerned. For example,Eulerian DD[22,30]eliminates the effect of bounded pulses and concatenated DD[31]features higher-order robust decoupling of qubits against dephasing as well as relaxation.Pulse position jitter can be mitigated by synchronizing the AWG and the microwave source with a 10MHz clock standard,reducing rounding errors with carefully chosen parameters or highprecision AWG,and avoiding mechanical vibrations of devices and wiring.As experimental results in our lab indicate,if the LO to RF isolation of the mixer is less than 80dB,corresponding to an on-off ratio of 10000:1,residual drive will lead to visible degradation.Therefore,we usually cascade two or three mixers with 20 dB-40 dB isolation each to avoid this problem.Pulse shapes with gradual transition edges are robust to the filtering effect.The simulations and analysis of imperfections can be further generalized to other applications of DD,such as the improvement of sensitivity of quantum sensing with NV centers.[32]

    5.Conclusion

    In this paper,we have built a model of a superconducting qubit under 1/f noise and DD driving pulses.We use QuTiP to simulate qubit evolution and compare the performance of DD via average dephasing rate under the influence of various imperfections.Bounded pulses perform worse than ideal ones.Jitter in pulse position,poor on-off ratio and filtering effect can greatly degrade DD performance,while jitter in pulse width and qubit relaxation has smaller effects.Pulse shaping can prevent the pulses from distortion by filtering effect,but short pulses are necessary to improve DD performance.These methods and some of the conclusions in this work can be applied to more complicated systems,such as quantum information processing system with multiple superconducting qubits.

    Appendix A:Understanding relaxation and dephasing

    The interaction between a qubit and a harmonic oscillation mode from its environment is described by the Jaynes-Cummings Hamiltonian:

    ωqand ωaare the resonant frequency of the qubit and the oscillation mode,respectively.is Pauli Z-matrix.a and a?are annihilation and creation operator of the mode.is the lowering operator that destroys an exciton and changes qubit state from|1〉to|0〉,while its conjugate transposeis the raising operator that creates an exciton and transforms|0〉to|1〉.g is the coupling strength between the qubit and the mode.We denote Δ = ωq-ωaas the frequency difference between the qubit and the mode.When Δ?g,which is the so-called weak coupling regime,there is no direct energy exchange because of energy conservation.But qubit energy levels are slightly modi fied by the number of excitons in the mode.Accordingly,the fluctuations in exciton number result in spectral broadening.Spectral broadening can be regarded as uncertain rotation velocity around Z axis on Bloch sphere.Hence,dephasing occurs,which means that the phase of the qubit state becomes randomized.Meanwhile,Δ?g is a strong coupling regime.The qubit can absorb a photon from the mode and experience a transition from|0〉to|1〉,which is excitation.It can also emit a photon to the mode and undergo a transition|1〉to|0〉,which is relaxation.When Δ~g,dephasing,excitation and relaxation can happen at the same time.For a superconducting qubit of a few GHz resonant frequency,its coupling with low-frequency modes from its environment are the source of dephasing,while high-frequency modes contribute to excitation and relaxation.

    Appendix B:Generation of 111/// fff noise in time domain

    We denote the power spectral density of random noise n(t)as Snn(f).They are connected by z(f),the Fourier trans-

    form of n(t):

    For the purpose of simulation,a discrete-time version of n(t)has to be generated from Snn(f)repeatedly.We assume Snn(f)can be truncated,namely:when f>fcut,Snn(f)=0.This is a good approximation for most noise types,such as 1/f noise.According to the Nyquist theorem,let Δt=1/(2fmax)be the time step of our length-N sequence nseq,where fmax≥fcut,then we should also sample N points from Snn(f).Note that a practical power spectral density is symmetric,Snn(f)=Snn(-f),so we can choose M=N/2+1 sampling points for f≥0.The sampled sequence is de fined as Sseq={Snn(-(M-2)Δf),Snn(-(M-3)Δf),...,Snn(-Δf),Snn(0),Snn(Δf),...,Snn((M-2)Δf),Snn((M-1)Δf)}.The interval between adjacent points in Sseqis Δf=fmax/(M-1).We also de fine zseq={z(-(M-2)Δf),z(-(M-3)Δf),...,z(-Δf),z(0),z(Δf),...,z((M-2)Δ f),z((M-1)Δ f)}as the fast Fourier transform(FFT)ofnseq.WhenwecalculatezseqfromSseq,arbitrary phases are added to recover randomness because Sseqdoes not contain phase information.We generate phases that obey uniform distribution in[0,2π),φ(j),j=1,2,...,M-2.Let D=fcut/Δf,then

    z(0)may not be convergent for some noise spectrums such as 1/f noise,so we substitute it with an independent DC component z0.Finally,we use inverse FFT(iFFT)to get nseq:

    where Re(·)takesthe real part of a complex number.

    Acknowledgment

    The authors thank Liu Yulong from Tsinghua University and Wang Xin from Xi’an Jiaotong University for helpful discussions on QuTiP.

    猜你喜歡
    陳煒徐達張穎
    張穎
    大江南北(2023年2期)2023-02-11 05:45:56
    Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics
    張穎
    大江南北(2022年11期)2022-11-08 12:04:18
    張穎
    大江南北(2022年3期)2022-03-12 01:19:16
    我一定回來
    遼河(2022年2期)2022-03-03 09:13:03
    Quantum computation and simulation with superconducting qubits?
    陳煒
    書香兩岸(2020年3期)2020-06-29 12:33:45
    坐在車里發(fā)呆的老公
    婦女生活(2017年11期)2017-11-06 21:35:33
    酒作誘餌試功臣
    酒作誘餌試功臣
    精品一区二区免费观看| 亚洲av综合色区一区| 天堂8中文在线网| 亚洲免费av在线视频| 91国产中文字幕| 天堂中文最新版在线下载| 美女中出高潮动态图| 18禁观看日本| 女的被弄到高潮叫床怎么办| 久久精品久久精品一区二区三区| 久久午夜综合久久蜜桃| xxx大片免费视频| 哪个播放器可以免费观看大片| 黑丝袜美女国产一区| 宅男免费午夜| 久久毛片免费看一区二区三区| 国产野战对白在线观看| 亚洲成人一二三区av| 亚洲欧美一区二区三区国产| 精品卡一卡二卡四卡免费| 久久热在线av| 午夜激情久久久久久久| 久久久久国产一级毛片高清牌| 大话2 男鬼变身卡| 黑丝袜美女国产一区| 人体艺术视频欧美日本| 蜜桃在线观看..| 美女午夜性视频免费| 国产亚洲av高清不卡| 啦啦啦啦在线视频资源| 日韩一区二区三区影片| 亚洲欧美中文字幕日韩二区| 亚洲国产最新在线播放| 看免费av毛片| 亚洲综合色网址| 操美女的视频在线观看| 波多野结衣一区麻豆| 麻豆av在线久日| 精品免费久久久久久久清纯 | 中文字幕人妻丝袜制服| 一区二区日韩欧美中文字幕| tube8黄色片| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美激情在线| av电影中文网址| 毛片一级片免费看久久久久| 日本爱情动作片www.在线观看| www.熟女人妻精品国产| 欧美另类一区| 国产免费视频播放在线视频| 欧美国产精品va在线观看不卡| 欧美人与性动交α欧美软件| 亚洲婷婷狠狠爱综合网| 多毛熟女@视频| 久久久久视频综合| 欧美国产精品一级二级三级| xxx大片免费视频| 日韩制服骚丝袜av| 欧美国产精品一级二级三级| 女人爽到高潮嗷嗷叫在线视频| 久久久久久免费高清国产稀缺| 女人高潮潮喷娇喘18禁视频| 久久狼人影院| 女人久久www免费人成看片| 亚洲七黄色美女视频| 久久99精品国语久久久| 性少妇av在线| 成人漫画全彩无遮挡| 在现免费观看毛片| a级毛片黄视频| 国产亚洲av片在线观看秒播厂| 国产一区二区三区综合在线观看| 高清黄色对白视频在线免费看| 免费在线观看黄色视频的| 国产视频首页在线观看| 又黄又粗又硬又大视频| 国产老妇伦熟女老妇高清| 国产乱人偷精品视频| 人妻 亚洲 视频| 女人久久www免费人成看片| 日本爱情动作片www.在线观看| 欧美日韩福利视频一区二区| 一级毛片 在线播放| 夫妻午夜视频| 午夜免费鲁丝| 亚洲精品久久午夜乱码| av天堂久久9| 日本爱情动作片www.在线观看| 高清欧美精品videossex| 曰老女人黄片| 精品少妇一区二区三区视频日本电影 | 国产在线一区二区三区精| 18禁动态无遮挡网站| 精品亚洲成国产av| 天天影视国产精品| 午夜福利乱码中文字幕| 日韩欧美一区视频在线观看| 日韩视频在线欧美| 国产伦理片在线播放av一区| 国产成人午夜福利电影在线观看| 国产又爽黄色视频| 亚洲av成人不卡在线观看播放网 | 成人亚洲欧美一区二区av| 久久久欧美国产精品| 人妻 亚洲 视频| 欧美老熟妇乱子伦牲交| 亚洲男人天堂网一区| 人妻一区二区av| 国产一卡二卡三卡精品 | 热99久久久久精品小说推荐| 一级爰片在线观看| 欧美在线黄色| 人人妻人人爽人人添夜夜欢视频| 看十八女毛片水多多多| 麻豆av在线久日| 最新在线观看一区二区三区 | 美女脱内裤让男人舔精品视频| 永久免费av网站大全| 中文字幕人妻丝袜制服| 精品免费久久久久久久清纯 | 精品少妇一区二区三区视频日本电影 | 精品少妇内射三级| av国产久精品久网站免费入址| 日韩欧美精品免费久久| 亚洲精品国产av成人精品| av不卡在线播放| 欧美日韩精品网址| 青春草国产在线视频| 国产欧美日韩一区二区三区在线| 精品亚洲乱码少妇综合久久| 欧美av亚洲av综合av国产av | av福利片在线| 中国三级夫妇交换| 成人国语在线视频| 午夜久久久在线观看| svipshipincom国产片| 男女国产视频网站| 亚洲精品av麻豆狂野| 午夜日韩欧美国产| 欧美国产精品va在线观看不卡| 国产精品99久久99久久久不卡 | 久久国产精品大桥未久av| 制服丝袜香蕉在线| 国产成人精品久久二区二区91 | 中文精品一卡2卡3卡4更新| 精品久久蜜臀av无| 色综合欧美亚洲国产小说| 又粗又硬又长又爽又黄的视频| 国产精品三级大全| 青青草视频在线视频观看| 精品少妇内射三级| 高清欧美精品videossex| 国产 精品1| 国产亚洲一区二区精品| 自线自在国产av| 久久婷婷青草| 成人午夜精彩视频在线观看| 在线精品无人区一区二区三| 岛国毛片在线播放| av.在线天堂| 汤姆久久久久久久影院中文字幕| 观看av在线不卡| 七月丁香在线播放| 色婷婷av一区二区三区视频| 亚洲欧洲日产国产| 亚洲av电影在线观看一区二区三区| 丰满迷人的少妇在线观看| 中文字幕av电影在线播放| 精品卡一卡二卡四卡免费| 女人爽到高潮嗷嗷叫在线视频| 五月天丁香电影| 国产乱来视频区| 欧美日韩亚洲高清精品| 国产亚洲一区二区精品| 亚洲欧美一区二区三区国产| 亚洲精品成人av观看孕妇| 18禁观看日本| 久久国产精品男人的天堂亚洲| 国产探花极品一区二区| 欧美最新免费一区二区三区| 国产成人精品久久二区二区91 | 国产精品人妻久久久影院| 国精品久久久久久国模美| 久久精品亚洲熟妇少妇任你| 女性被躁到高潮视频| 亚洲国产成人一精品久久久| 国产成人系列免费观看| 欧美黑人欧美精品刺激| 免费女性裸体啪啪无遮挡网站| 丝袜人妻中文字幕| 国产麻豆69| 一级毛片电影观看| 久久99热这里只频精品6学生| 午夜福利影视在线免费观看| av电影中文网址| 国产精品99久久99久久久不卡 | 久久免费观看电影| 久久精品久久久久久噜噜老黄| xxx大片免费视频| 人人妻人人添人人爽欧美一区卜| 最近手机中文字幕大全| 国产精品久久久久久精品电影小说| 日韩中文字幕欧美一区二区 | 久久精品久久久久久久性| 精品亚洲成国产av| 在线观看免费视频网站a站| 男女床上黄色一级片免费看| 免费高清在线观看日韩| 一级毛片我不卡| 亚洲四区av| 欧美人与性动交α欧美软件| 一区二区三区乱码不卡18| 在线免费观看不下载黄p国产| 亚洲欧美激情在线| 日韩欧美一区视频在线观看| 免费观看av网站的网址| 欧美日韩一级在线毛片| 一级毛片电影观看| 国产老妇伦熟女老妇高清| 又黄又粗又硬又大视频| 精品一区二区三区av网在线观看 | tube8黄色片| 蜜桃在线观看..| 最近中文字幕2019免费版| 欧美日韩一级在线毛片| 校园人妻丝袜中文字幕| 激情五月婷婷亚洲| 在线观看国产h片| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 亚洲成人手机| 亚洲在久久综合| 亚洲av福利一区| 如何舔出高潮| 视频在线观看一区二区三区| 热99国产精品久久久久久7| 亚洲成av片中文字幕在线观看| 亚洲免费av在线视频| 日韩中文字幕欧美一区二区 | 精品一区二区三区四区五区乱码 | 午夜精品国产一区二区电影| 18在线观看网站| 热re99久久国产66热| 久久久精品免费免费高清| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 久久人妻熟女aⅴ| 自拍欧美九色日韩亚洲蝌蚪91| 久久影院123| 日日爽夜夜爽网站| 狂野欧美激情性bbbbbb| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 免费黄网站久久成人精品| 国产一区二区激情短视频 | 肉色欧美久久久久久久蜜桃| 欧美精品av麻豆av| 国产色婷婷99| 日韩大码丰满熟妇| 久久久久视频综合| 久久国产亚洲av麻豆专区| 秋霞在线观看毛片| 高清黄色对白视频在线免费看| 日日爽夜夜爽网站| 国产精品二区激情视频| 一级毛片电影观看| 国产淫语在线视频| 日韩大片免费观看网站| 九九爱精品视频在线观看| 欧美日韩成人在线一区二区| 下体分泌物呈黄色| 男女免费视频国产| 免费在线观看视频国产中文字幕亚洲 | 欧美精品亚洲一区二区| 亚洲国产精品一区二区三区在线| 亚洲精品国产av成人精品| 成年人免费黄色播放视频| av一本久久久久| 在线观看人妻少妇| 性少妇av在线| 成年av动漫网址| 久久精品亚洲av国产电影网| 亚洲欧美日韩另类电影网站| 精品福利永久在线观看| 免费在线观看视频国产中文字幕亚洲 | 999精品在线视频| 国产精品久久久久久人妻精品电影 | 深夜精品福利| 久久久久精品国产欧美久久久 | 老司机亚洲免费影院| 亚洲中文av在线| 久久综合国产亚洲精品| 国产xxxxx性猛交| 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 天堂8中文在线网| 午夜福利一区二区在线看| 少妇的丰满在线观看| 久久久久久久国产电影| 久久久久久久久久久免费av| 91aial.com中文字幕在线观看| av视频免费观看在线观看| 男女免费视频国产| 爱豆传媒免费全集在线观看| 校园人妻丝袜中文字幕| 国产老妇伦熟女老妇高清| 丁香六月天网| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 男人添女人高潮全过程视频| 亚洲一码二码三码区别大吗| 在线观看三级黄色| 黄色视频在线播放观看不卡| 国产成人午夜福利电影在线观看| 大香蕉久久成人网| 日日摸夜夜添夜夜爱| 国产在线一区二区三区精| 免费女性裸体啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 一级a爱视频在线免费观看| 免费看不卡的av| 制服诱惑二区| 精品卡一卡二卡四卡免费| 国产日韩欧美亚洲二区| 国产成人精品久久久久久| 亚洲av成人精品一二三区| 亚洲国产欧美网| 亚洲第一av免费看| 亚洲av中文av极速乱| 久久99热这里只频精品6学生| 伊人久久大香线蕉亚洲五| 在线天堂最新版资源| 欧美中文综合在线视频| 一区二区三区激情视频| 伦理电影大哥的女人| 国产精品亚洲av一区麻豆 | 岛国毛片在线播放| 少妇的丰满在线观看| 亚洲五月色婷婷综合| 免费在线观看完整版高清| 男人操女人黄网站| 国产免费一区二区三区四区乱码| 国产色婷婷99| 亚洲美女黄色视频免费看| 欧美少妇被猛烈插入视频| 午夜激情av网站| kizo精华| 又大又黄又爽视频免费| 人妻人人澡人人爽人人| 亚洲久久久国产精品| 欧美久久黑人一区二区| 人妻一区二区av| 久久热在线av| 国产一区二区三区综合在线观看| 老司机亚洲免费影院| 国产熟女欧美一区二区| 99久国产av精品国产电影| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 久久精品国产亚洲av高清一级| 国产在视频线精品| 在线看a的网站| 老司机深夜福利视频在线观看 | 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 九草在线视频观看| 国产成人a∨麻豆精品| 久久久国产精品麻豆| 毛片一级片免费看久久久久| 国产精品av久久久久免费| 天天躁日日躁夜夜躁夜夜| 夫妻性生交免费视频一级片| 亚洲综合精品二区| 男女之事视频高清在线观看 | 啦啦啦啦在线视频资源| 99香蕉大伊视频| 久久久久久久国产电影| 99热网站在线观看| 天天影视国产精品| 国产男人的电影天堂91| 午夜福利一区二区在线看| 国产片内射在线| 国产一卡二卡三卡精品 | 久久狼人影院| 国产精品 欧美亚洲| 久久毛片免费看一区二区三区| 欧美精品av麻豆av| 久久精品国产亚洲av涩爱| 亚洲 欧美一区二区三区| 精品酒店卫生间| 大片免费播放器 马上看| 欧美最新免费一区二区三区| 国产片内射在线| 丝袜喷水一区| 亚洲美女黄色视频免费看| 欧美日韩视频高清一区二区三区二| 晚上一个人看的免费电影| 天堂中文最新版在线下载| 黑人欧美特级aaaaaa片| 国产野战对白在线观看| 99久久精品国产亚洲精品| av在线app专区| 各种免费的搞黄视频| 国产xxxxx性猛交| www.精华液| 国产不卡av网站在线观看| 9色porny在线观看| 19禁男女啪啪无遮挡网站| 国产成人a∨麻豆精品| 欧美日韩综合久久久久久| 夜夜骑夜夜射夜夜干| 男女之事视频高清在线观看 | 悠悠久久av| 国产极品粉嫩免费观看在线| 一个人免费看片子| 黑人猛操日本美女一级片| 免费看不卡的av| 我的亚洲天堂| 免费高清在线观看日韩| 亚洲精品日本国产第一区| 久久天躁狠狠躁夜夜2o2o | 亚洲在久久综合| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 在线 av 中文字幕| 只有这里有精品99| 纯流量卡能插随身wifi吗| 国产成人91sexporn| 亚洲欧美色中文字幕在线| 国产亚洲欧美精品永久| 国产不卡av网站在线观看| 黄色怎么调成土黄色| 90打野战视频偷拍视频| www日本在线高清视频| 欧美精品人与动牲交sv欧美| 精品国产超薄肉色丝袜足j| 操出白浆在线播放| 国产精品久久久av美女十八| 国产人伦9x9x在线观看| 亚洲中文av在线| 夜夜骑夜夜射夜夜干| 一级片免费观看大全| 麻豆精品久久久久久蜜桃| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产欧美日韩在线播放| 操美女的视频在线观看| 一区二区日韩欧美中文字幕| 久久99热这里只频精品6学生| 午夜福利在线免费观看网站| 国产精品嫩草影院av在线观看| 亚洲av中文av极速乱| 黄色 视频免费看| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| 丰满乱子伦码专区| 黄色一级大片看看| 亚洲欧美一区二区三区黑人| 777久久人妻少妇嫩草av网站| 一区二区三区精品91| 18禁动态无遮挡网站| 桃花免费在线播放| 少妇被粗大的猛进出69影院| 久久99热这里只频精品6学生| 天天添夜夜摸| a 毛片基地| 国产黄频视频在线观看| 国产乱人偷精品视频| 高清av免费在线| 亚洲第一青青草原| av国产久精品久网站免费入址| 天天操日日干夜夜撸| 久久久久久免费高清国产稀缺| 久久这里只有精品19| 国产淫语在线视频| 久久精品久久精品一区二区三区| 你懂的网址亚洲精品在线观看| 亚洲欧美精品综合一区二区三区| 成人黄色视频免费在线看| 男女午夜视频在线观看| 久久久久精品国产欧美久久久 | 日韩制服丝袜自拍偷拍| 国产精品免费大片| 久久鲁丝午夜福利片| 无限看片的www在线观看| 亚洲av中文av极速乱| 亚洲精品国产av蜜桃| av又黄又爽大尺度在线免费看| 国产精品国产av在线观看| 日日爽夜夜爽网站| 男女下面插进去视频免费观看| 久久久久久免费高清国产稀缺| 国产一区二区在线观看av| h视频一区二区三区| 9色porny在线观看| 一级毛片黄色毛片免费观看视频| 国产日韩欧美视频二区| 亚洲av成人精品一二三区| 国产精品香港三级国产av潘金莲 | 欧美日韩亚洲高清精品| 亚洲国产欧美在线一区| 人人妻人人爽人人添夜夜欢视频| 咕卡用的链子| 国产极品天堂在线| 老熟女久久久| av一本久久久久| videosex国产| 97人妻天天添夜夜摸| 欧美日韩一级在线毛片| 国产淫语在线视频| 啦啦啦视频在线资源免费观看| 国产成人精品久久久久久| 久久久久久免费高清国产稀缺| 七月丁香在线播放| 黄片小视频在线播放| 精品卡一卡二卡四卡免费| 日韩一本色道免费dvd| 女的被弄到高潮叫床怎么办| 久久久国产一区二区| 国产在线视频一区二区| 在线 av 中文字幕| 一区在线观看完整版| 亚洲国产毛片av蜜桃av| 人人妻人人添人人爽欧美一区卜| 大陆偷拍与自拍| 国产精品国产三级国产专区5o| 久久这里只有精品19| avwww免费| 亚洲色图综合在线观看| 满18在线观看网站| 黄色 视频免费看| 亚洲综合色网址| 亚洲精品美女久久av网站| 亚洲精品日本国产第一区| 欧美人与性动交α欧美精品济南到| 午夜影院在线不卡| 久久青草综合色| 午夜福利网站1000一区二区三区| 亚洲精品国产区一区二| 中文字幕色久视频| 国产一卡二卡三卡精品 | 人人妻人人爽人人添夜夜欢视频| 亚洲自偷自拍图片 自拍| 一区二区av电影网| 久久久欧美国产精品| 咕卡用的链子| 中文欧美无线码| 亚洲第一av免费看| 亚洲精品av麻豆狂野| 母亲3免费完整高清在线观看| 熟妇人妻不卡中文字幕| 国产片内射在线| 欧美日韩综合久久久久久| 亚洲三区欧美一区| 少妇的丰满在线观看| 十八禁网站网址无遮挡| 亚洲欧美中文字幕日韩二区| 日韩不卡一区二区三区视频在线| 考比视频在线观看| 99九九在线精品视频| 大香蕉久久成人网| 国产又爽黄色视频| 日日爽夜夜爽网站| 1024视频免费在线观看| 91成人精品电影| 9色porny在线观看| 国产福利在线免费观看视频| 亚洲国产成人一精品久久久| 多毛熟女@视频| 久久国产精品大桥未久av| 韩国高清视频一区二区三区| xxx大片免费视频| 精品酒店卫生间| 亚洲欧美日韩另类电影网站| 成人国语在线视频| 成年人免费黄色播放视频| 国产精品一区二区精品视频观看| 色婷婷av一区二区三区视频| 亚洲,欧美,日韩| 老司机亚洲免费影院| 又大又黄又爽视频免费| 亚洲精品一二三| 久久精品亚洲熟妇少妇任你| 又大又黄又爽视频免费| 国产一卡二卡三卡精品 | 看十八女毛片水多多多| 一边摸一边做爽爽视频免费| 国产一区亚洲一区在线观看| 国产一区二区激情短视频 | 曰老女人黄片| 亚洲伊人久久精品综合| 久久av网站| 男人爽女人下面视频在线观看| 亚洲欧美成人综合另类久久久| 18禁国产床啪视频网站| 日本欧美国产在线视频| 亚洲欧美成人综合另类久久久| 18禁国产床啪视频网站| www日本在线高清视频| 国产精品秋霞免费鲁丝片| 国产成人一区二区在线| 9热在线视频观看99| 日本vs欧美在线观看视频| 亚洲久久久国产精品| 97人妻天天添夜夜摸| 成人国产av品久久久| 久久久久人妻精品一区果冻| 精品免费久久久久久久清纯 | 日韩,欧美,国产一区二区三区| 欧美日韩av久久| 中国三级夫妇交换| 亚洲中文av在线| 久久久精品区二区三区|