• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials?

    2019-06-18 05:42:40HaoLu陸浩JunyangWang汪君洋BonanLiu劉柏男GengChu褚賡GeZhou周格FeiLuo羅飛JieyunZheng鄭杰允XiqianYu禹習(xí)謙andHongLi李泓
    Chinese Physics B 2019年6期

    Hao Lu(陸浩),Junyang Wang(汪君洋),Bonan Liu(劉柏男),Geng Chu(褚賡),Ge Zhou(周格),Fei Luo(羅飛),Jieyun Zheng(鄭杰允),Xiqian Yu(禹習(xí)謙),?,and Hong Li(李泓),?

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences(CAS),Beijing 100049,China

    3CAS Research Group on High Energy Density Lithium Batteries for EV,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    4Key Laboratory of Green Process Engineering,State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    5Tianmulake Excellent Anode Materials Co.,Ltd.,Changzhou 213300,China

    Keywords:lithium-ion battery,silicon monoxide,carbon coating,anode material

    1.Introduction

    Rechargeable lithium-ion batteries(LIBs)have been widely applied as predominant power sources in portable electronic devices,electric vehicles(EV),and electricity storage systems.With the rapid development of emerging electric vehicle markets,the increasing demands for high energy and power density,long-term cyclic stability,and low-cost have been critical challenges for lithium-ion batteries.[1-3]Among all the anode materials for LIBs that have been developed until now,silicon(Si)is considered as the most promising anode material for next generation high-energy-density LIBs owing to its high specific capacity(~ 4200 mAh·g-1)and low operating voltage for Li+insertion/extraction(<0.5 V versus Li+/Li).[4,5]However,there are two major drawbacks for the Si anode that hinder its commercial application:(i)the low intrinsic electric conductivity,and(ii)the severe volume swelling(>400%)during repeated Li-Si alloying/dealloying process.The drastic volume change leads to severe pulverization of the electrode,continuous formation of unstable solid electrolyte interphase(SEI)over recurrent charge/discharge cycles,and thus rapid decay of specific capacity.[6,7]Many strategies-such as employing nanocrystallized Si,forming composites with other phases,and surface coating with carbon-have been applied to achieve better electrochemical performance of Si anodes.[8-14]However,the long-term cycling stability of Si anode materials is still not yet able to meet the strict requirements for practical applications.

    As an alternative material among the Si-based anode materials,silicon monoxide(SiO)has been attracting growing attention in recent years because of its high reversible specific capacity(~ 2400 mAh·g-1)and stable cycling performance.The structural model of amorphous SiO is still ambiguous,with amorphous Si and SiO2clusters surrounded by Si-suboxide matrix as one plausible model.[15-17]This unique microstructure of SiO can effectively alleviate the large volume change of SiO electrodes during cycling,comparing with Si anodes.More speci fically,during the first lithiation pro-cess,Li reacts with SiO2to produce Li2O and LixSiOy(mainly Li4SiO4).Such compounds can act as buffer skeleton and relieve the severe volume change of SiO electrodes caused by further lithiation reaction,reducing the pulverization of SiO electrodes and the electrical disconnection with current collectors,and thus improve the cyclic performance of SiO.

    Nevertheless,SiO anode materials still suffer from relatively large volume change(~200%)during Li+insertion/extraction and low initial coulombic efficiency(ICE),due to the poor intrinsic electrical conductivity and the irreversible reactionbetweenLi+andSiO2clusters.Toresolvetheseproblems,several methods including element doping(e.g.,boron,titanium,and tungsten),construction of SiO/C composites,and surface coating(e.g.,carbon,TiO2,and Fe3O4)have been conducted to further improve the performance of SiO.[18-24]Among these strategies,surface coating with carbonaceous materials(e.g.,graphite,amorphous carbon,carbon nano fiber,carbon nanotubes,graphene,and reduced graphene oxide)has been widely employed in industrial production due to its lowcost and remarkable improvements in performance.For example,Wang et al.synthesized a carbon coated SiO nanocomposite with a core-shell structure via a solution route,which exhibits a high reversible specific capacity of~ 800 mAh·g-1at the 50th cycle and excellent rate performance.[25]Lee et al.reported that a nitrogen-doped carbon coated micro-sized SiO anode delivers a reversible capacity of 955 mAh·g-1after 200 cycles at a current density of 1500 mA·g-1,whereas only 545 mAh·g-1for bare SiO.[26]Carbon coating on SiO surface can greatly improve the electrical conductivity,effectively reduce the polarization,and relieve the severe volume change of SiO electrode,thus significantly enhance its cycling stability and rate capability.To achieve an excellent comprehensive performance,the carbon content in the surface coating layers needs to be further controlled to maintain the high capacity,initial coulombic efficiency,and cycle stability.

    In this work,the micro-sized SiO@C with carbon coating layer of different thicknesses were controllably synthesized via a simple pitch pyrolysis reaction method.The effect of carbon content on the electrochemical performances of SiO@C was investigated.The SiO@C/graphite(SiO@C/G)composites with the target capacity of 600 mAh·g-1were further synthesized by a ball-milling process.The SiO@C/G composite anodes exhibit a high reversible capacity and improved cycling performance in half cells as well as full cells with LiNi0.5Co0.2Mn0.3O2(NCM)as cathode material.

    2.Experiment

    2.1.Fabrication of SiO@C/G composites

    Silicon monoxide(Tianmulake Excellent Anode Materials Co.,Ltd.)was selected as the raw material to prepare the SiO@C composites via a simple pitch pyrolysis method.Firstly,SiO powder with an average particle size of 4μm-6μm was mixed with petroleum pitch,then the above mixture was heat-treated at a temperature of 300°C for 2 h and then 900°C for 2 h at a heating rate of 10°C·min-1in Ar atmosphere to obtain SiO@C composites.By the above process,SiO@C composites with different carbon coating contents(5 wt%,10 wt%,15 wt%,and 35 wt%)were synthesized at different mass ratios of SiO powders and petroleum pitch,which were labeled as SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively.

    SiO@C/G composites were prepared to match the capacity of the cathode material.Graphite(Tianmulake Excellent Anode Materials Co.,Ltd.)was added to maintain the total capacity of SiO@C/G at 600 mAh·g-1.These mixtures were ball-milled for 5 h to obtain the final SiO@C/G composite materials(labeled as SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35).The amount of graphite of SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35 is 75.6 wt%,73.8 wt%,71.0 wt%,and 63.6 wt%,respectively.

    2.2.Characterizations

    The phase purity of aforementioned composite materials was characterized by an x-ray diffractometer(D8 Bruker)with Cu Kα radiation in the 2θ range of 10°-80°.The morphologies were investigated by scanning electron microscope(SEM,Hitachi-S4800)and transmission electron microscopy(TEM,FEI Tecnai G2 F20).Raman spectra were obtained by a Raman spectrometer(JY-HR800)using a 532-nm laser as a light source.The content of carbon was analyzed by carbon and sulphur analyzer(Yronh,CS-320).The tap density was measured by tapping apparatus(BNST,FZS4-4B).The specific surface areas of SiO@C samples were measured with the Brunauere-Emmete-Teller(BET)method by nitrogen adsorption isotherms collected at 77 K(Quantachrome,NOVA4200e).

    2.3.Electrochemical characterizations

    To make the electrode,the active material,carbon black,and water-soluble binder were mixed in a weight ratio of 93:2:5 in distilled water.The binder consisted of sodium carboxymethyl cellulose(CMC)and water system styrene butadiene rubber emulsion(SBR)water solutions in a weight ratio of 2:3.The slurry was deposited on copper foil using a blade and dried at 80°C in vacuum for 10 h.The mass loading of active materials was about 5 mg·cm-2.

    Coin-type cells were assembled in an argon- filled glovebox using Celgard 2500 as a separator,1-mol·L-1LiPF6in ethylene carbonate(EC)/diethyl carbonate(DEC)(1:1,v/v)as an electrolyte,and Li foil as a counter electrode.The charge/discharge tests were carried out using a Land battery test system(CT2001 A,Land)in a voltage range of 0.005 V-2.0 V at 0.1 A·g-1.Electrochemical impedance spectroscopy(EIS)was measured at anopen-circuit voltage inthe frequency range of 100 kHz and 10 mHz on an electrochemical station(CHI600E).

    Full cell electrochemical performance was evaluated in 2.5-Ah pouch cells using LiNi0.5Co0.2Mn0.3O2as cathodes and SiO@C/G composites as anodes.Both cathode and anode electrodes were fabricated in a pilot line(Tianmulake Excellent Anode Materials Co.,Ltd.).The electrolyte solution was 1-mol·L-1LiPF6in EC:DEC:DMC(1:1:1 in volume ratio).The full cells were charged and discharged in the voltage range of 2.75 V-4.2 V at various C-rates(1 C=677 mA·g-1).

    3.Results and discussion

    The synthesis process for micro-sized SiO@C/G composites is schematically illustrated in Fig.1.The micro-sized SiO@C samples with carbon coating layer of different thicknesses are first synthesized through a simple pitch pyrolysis reaction method.Then,the as-prepared SiO@C samples are mixed with graphite powders via a mechanical milling process to obtain the SiO@C/G composites.The carbon content of SiO@C samples are analyzed by carbon and sulphur analyzer.The actual carbon content for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35 samples are 5.3%,9.8%,15.8%,and 35.1%,respectively,which are well consistent with the designed values.With the increase in carbon content,the tap densities and the specific surface areas of SiO@C samples remain almost unchanged(Table 1),indicating a similar particle size and surface morphology.

    Fig.1.Schematic illustration of the preparation process of micro-sized SiO@C/G composites.

    Table 1.The carbon content,tap density,and specific surface area of as-prepared SiO@C samples.

    Phase composition and crystallinities of the pristine SiO and SiO@C samples are characterized by x-ray diffraction(XRD).For all diffraction patterns,as shown in Fig.2(a),they are composed of a hump and several relatively sharp diffraction peaks.The hump located in the 2θ range of 20°-30°is corresponding to a typical amorphous phase of SiO2,and the sharp diffraction peaks at 28.4°,47.3°,and 56.1°can be assigned to the crystalline phase of Si.The occurrence of the diffraction peaks of Si crystalline in the XRD patterns of SiO@C samples is due to a partial thermal disproportionation reaction of SiO during the pyrolysis process(Fig.1).The intensities of Si diffraction peaks are almost identical for all SiO@C samples,indicating that there is no signi ficant difference in Si content for all SiO@C samples.Figure 2(b)shows the Raman spectra of the as-prepared SiO@C samples.The peaks located at around 520 cm-1and 980 cm-1correspond to Si crystalline phase,which is in accordance with the XRD results.The peaks located at~1340 cm-1and~1575 cm-1correspond to the disordered(D)bands and graphene(G)bands of carbon,respectively,and the peak intensity ratio can be used to describe the extent of graphitization.The Raman spectra results demonstrate the existence of amorphous carbon(ID/IGratio is~1.57)for the SiO@C samples.

    Fig.2.(a)XRD patterns and(b)Raman spectra of the SiO@C samples.

    SEM and high-resolution transmission electron microscopy(HRTEM)measurements are carried out to investigate the morphology and microstructure of the as-prepared SiO@C samples.As shown in Fig.3,the pristine SiO and as-prepared SiO@C samples have similar particle size with an average diameter of 4μm-6μm.The surface of SiO particles becomes smoother after carbon coating,contrasting the coarse surface of the pristine SiO particle(Figs.3(a)-3(f)).The uniform carbon coating is further con firmed by HRTEM.It can be clearly observed from Figs.3(g)-3(j)that the surface of SiO@C particles is uniformly coated by a dense amorphous carbon layer.With the increase in carbon content,the thickness of coating layer increases from 10.6 nm for SiO@C-5 to 23.8 nm,36.8 nm,and 81.0 nm for SiO@C-10,SiO@C-15,and SiO@C-35 samples,respectively.Such a dense carbon coating layer can enhance the electric conductivity of SiO electrode during lithium intercalation/de-intercalation,leading to the improvement of the electrochemical performance of SiO.

    To evaluate the electrochemical performances of asprepared SiO@C samples,galvanostatic charge-discharge tests are performed by using a coin-type half-cell. Figure4(a)shows the charge/discharge voltage profiles of SiO@C electrodes at a current density of 0.1 A·g-1in the voltage range of 0.005 V-2.0 V.The initial charge capacities are 1708.9 mAh·g-1,1634.2 mAh·g-1,1500.4 mAh·g-1,and 1151.5 mAh·g-1for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively(Table 2).As for the charge specific capacity of soft carbon is just about 250 mAh·g-1,the composite with a higher carbon amount will have a lower initial charge specific capacity.The cycling performance and corresponding coulombic efficiency(CE)of the SiO@C samples are shown in Figs.4(b)and 4(c).It can be seen that the cycling stability and coulombic efficiency of SiO@C gradually improve with the increase of carbon content. The discharge capacity retention after 20 cycles is 54.1%,59.4%,65.3%,and 87.2%for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively(Table 2).The reasons for such improvements can be explained as follows:i)The carbon coating layer greatly enhances the electric conductivity and then effectively reduces the polarization of SiO electrodes;and ii)the carbon layer can function as a buffer layer to relieve the large volume swelling of SiO.

    Fig.3.(a)and(b)SEM images of pristine SiO;(c)-(f)SEM images of SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35;(g)-(j)HRTEM images of SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35 samples.

    Fig.4.(a)and(d)The initial charge/discharge curves,(b)and(e)discharge capacity retention,and(c)and(f)the corresponding coulombic efficiencies of SiO@C and SiO@C/G composites,respectively.

    Table 2.The electrochemical performance of SiO@C samples and SiO@C/G composites in half cells.

    SiO@C/G composites are prepared to further improve the long-term cycle stability of SiO@C.To match the capacity of positive electrode materials,the initial charge capacity of SiO@C/G composites is designed to 600 mAh·g-1(the highest charge capacity of commercial silicon-based anodes)by introducing different mass ratios of graphite powders.The galvanostatic charge-discharge tests of SiO@C/G composites are performed at a current density of 0.1 A·g-1in the voltage range of 0.005 V-2.0 V in coin-type half-cell firstly.The electrochemistry performances are displayed and summarized in Fig.4 and Table 2.The initial charge capacities of SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35 are 596.2 mAh·g-1,592.6 mAh·g-1,598.0 mAh·g-1,and 601.0 mAh·g-1,respectively,which are in good accordance with the designed value of 600 mAh·g-1.All the SiO@C/G composites show higher initial coulombic efficiency and better cycling performance than the SiO@C samples, illustrating that the introduction of graphite is bene ficial to further improve the long-term cycling life of SiO@C.Among all SiO@C/G composites,the SiO@C/G-15 sample exhibits the best capacity retention of 80.4%after 50 cycles,while for SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35,the capacity retention is 66.7%,71.9%,and 76.4%,respectively.The capacity retention of SiO@C/G-35 is slightly poorer than that of SiO@C/G-15 because a smaller amount of graphite is added(lower capacity of SiO@C).

    Fig.5.Charge/discharge pro files of SiO@C/G||NCM full cell(a)at 2nd cycle and(b)at 100th cycle,the corresponding differential capacity(dQ/dV)plots(c)at 2nd cycle and(d)at 100th cycle,the cyclic performance of full cells(e)at 25 °C and(f)45 °C,and(g)the rate performance of the full cells.

    To evaluate the feasibility of the SiO@C/G composite anodes for practical application,2.5-Ah pouch-type full cells are assembled with the as-synthesized SiO@C/G composites as anodes and the commercially available LiNi0.5Co0.2Mn0.3O2as the cathodes.Figures 5(a)and 5(b)show the chargedischarge curves of the SiO@C/G‖NCM full cells at the 2nd and 100th cycles,respectively.The full cell with SiO@C/G-15 exhibits the highest discharge capacity of 2212.9 mAh·g-1after 100 cycles. The corresponding differential capacity(dQ/dV)plots of SiO@C/G||NCM full cells exhibit similar peak features at 2nd cycle(Fig.5(c))and at 100th cycle(Fig.5(d)).The intense peak between 3.95 V and 4.1 V is ascribed to the delithiation of graphite.This peak in SiO@C/G-15 remains in the highest voltage range after 100 cycles,indicating that the polarization of SiO@C/G-15 electrode is minimal among the SiO@C/G composite electrodes.It is expected that the polarization caused by electronic conductivity is negligible due to the introduction of graphite and the measurement of dQ/dV at such a low rate of 0.02 C.Therefore,it can be further inferred that the SiO@C/G-15 maintains better ionic conductivity than other SiO@C/G composites during cycling.As shown in Figs.5(e)and 5(f),the full cells with SiO@C/G-15 exhibit the best capacity retention of 90.7%and 90.1%at 25°C and 45°C,respectively(Table 3).Thus,stable cycling is achieved with SiO@C/G-15 composite electrodes in full cells even at a high temperature of 45°C.The rate capabilities of full cells at different current densities are exhibited in Fig.5(g).The charge capacity gradually decreases with the increases of rate from 0.5 C to 5 C.A notable drop of the charge capacity occurs at a high rate of 10 C.

    Table 3.The electrochemical performance of SiO@C/G||NCM full cells.

    Fig.6.SEMimagesof(a)and(e)SiO@C/G-5,(b)and(f)SiO@C/G-10,(c)and(g)SiO@C/G-15,(d)and(h)SiO@C/G-35composite electrodes collected in full cells after 2 cycles,and(i)and(m)SiO@C/G-5,(j)and(n)SiO@C/G-10,(k)and(o)SiO@C/G-15,(l)and(p)SiO@C/G-35 composite electrodes after 100 cycles.

    The morphology of the SiO@C/G electrodes after 2nd cycle and 100th cycle in full cells is investigated by SEM(Fig.6).It can be seen that there is no particle pulverization and fracture in the SiO@C/G composite electrodes,even after 100 cycles,indicating that the carbon coating layer and graphite skeleton play a signi ficant role in buffering the volume swelling of SiO particles and enhancing the mechanical stability of SiO electrodes.Figures 6(a)-6(h)show the sur-face morphology of SiO@C/G composite electrodes after two cycles.It is obvious that the particle surface of the SiO@C/G composites,especiallySiO@C/G-5,iscoveredbyarough film(Fig.6(e)),which can be ascribed to the solid-electrolyte interphase(SEI) film.After 100 cycles,the thickness of SEI increases on the surface of SiO@C/G particles(Figs.6(i)-6(p)).It can be clearly observed in Fig.6(m)that the SiO@C/G-5 particle is almost completely covered by a thick SEI film.In contrast,no signi ficant changes of surface morphology can be observed on SiO@C/G-15 after cycling compared with SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35.These results suggest that a carbon coating layer with moderate thickness will be propitious to effectively form a stable SEI film and maintain a high ionic conductivity for the SiO@C/G composite,thus enhancing its long-term cycling stability.

    To further understand the difference in the electrochemical performance of SiO@C/G composites,electrochemical impedance spectroscopy measurements are performed with full cells.As shown in Figs.7(a)and 7(b),the Nyquist plots consist of a small intercept at high frequency region(corresponding to the ohmic resistance,Ro),several semicircles at the medium frequency region(corresponding to the interface resistance and charge transfer resistance,RSEIand Rct),and a sloping straight line at the low frequency region(corresponding to the Warburg impedance,W).Figures 7(c)and 7(d)show the EIS fitting results of full cells after 2nd and 100th cycles.SiO@C/G-15 exhibits the minimum RSEIand Rctthan those of SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35 after the 2nd and 100th cycles,implying that better ionic conductivity can be maintained in the SiO@C/G-15 electrode after cycling,which is consistent with the variation of delithiation peak voltage of graphite derived from dQ/dV plots in Figs.5(c)and 5(d).In contrast,the SiO@C/G-5 electrode displays significantly larger RSEIand Rctafter 100 cycles due to the increase in SEI thickness,which can be inferred from the SEM results as shown in Fig.6(m).These results suggest that a moderate carbon coating layer can effectively stabilize the solid/liquid interfaces between the SiO@C/G composite electrode and electrolyte and maintain better ionic conductivity during cycling,thus greatly improving the long-term cycling stability.

    Fig.7.The Nyquist plots and corresponding fitting parameters of SiO@C/G‖NCM full cells after(a)and(c)2nd,and(b)and(d)100th cycles.The inserts are the corresponding equivalent circuits.

    4.Conclusions

    In summary,the micro-sized SiO@C/G composites with different thicknesses of carbon coating layers have been controllably synthesized via a pitch pyrolysis reaction method followed by a ball-milling process.Uniform amorphous carbon coating on SiO particle with thicknesses of 11.9 nm,21.6 nm,36.8 nm,and 81.0 nm is achieved,for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively.The capacity retention and coulombic efficiency of SiO@C samples are gradually improved with the increase of carbon content.For practical application,SiO@C/G composites have been fabricated with the target overall capacity of 600 mAh·g-1.Among all the SiO@C/G composites,the SiO@C/G-15 composite electrode exhibits a high initial coulombic efficiency of 84.5%and an outstanding capacity retention of 90.7%at room temperature and 90.1%at high temperature of 45°C after 100 cycles in full cells with NCM as cathode.Therefore,a carbon coating layer with a moderate thickness will be propitious for SiO@C/G composites to effectively form a stable SEI film and maintain a high ionic conductivity during cycling,thus enhancing the long-term cycling stability.The new insights into SiO@C/G composites presented in this work will promote the commercialized application of SiO anode materials.

    久久久精品大字幕| 乱人视频在线观看| 国产真实乱freesex| 亚洲av不卡在线观看| 欧美日本视频| 日韩欧美精品v在线| 一级毛片电影观看 | 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 成人高潮视频无遮挡免费网站| 亚洲精品日韩在线中文字幕 | 91精品一卡2卡3卡4卡| 国产女主播在线喷水免费视频网站 | 亚洲,欧美,日韩| 熟女电影av网| 免费不卡的大黄色大毛片视频在线观看 | av免费观看日本| 久久精品综合一区二区三区| 麻豆乱淫一区二区| 伦精品一区二区三区| 国产三级中文精品| 美女xxoo啪啪120秒动态图| 日韩 亚洲 欧美在线| 一本精品99久久精品77| 亚洲中文字幕一区二区三区有码在线看| 99久久精品热视频| 春色校园在线视频观看| 国产探花在线观看一区二区| 永久网站在线| 亚洲国产欧美人成| 国产视频内射| 97超碰精品成人国产| 三级国产精品欧美在线观看| 精品久久国产蜜桃| 久久精品夜色国产| 91狼人影院| 日日啪夜夜撸| 日日干狠狠操夜夜爽| 久久99热6这里只有精品| 国产成人午夜福利电影在线观看| 2021天堂中文幕一二区在线观| 狂野欧美激情性xxxx在线观看| 可以在线观看的亚洲视频| 亚洲三级黄色毛片| 亚洲av中文av极速乱| a级毛片免费高清观看在线播放| 国产人妻一区二区三区在| 欧美一级a爱片免费观看看| 亚洲国产高清在线一区二区三| 高清日韩中文字幕在线| 亚洲av免费高清在线观看| 国产综合懂色| 我的老师免费观看完整版| 亚洲国产欧洲综合997久久,| 狂野欧美白嫩少妇大欣赏| 免费一级毛片在线播放高清视频| 亚洲成人久久性| 久久人人爽人人爽人人片va| 久久人人爽人人片av| 97超碰精品成人国产| 2022亚洲国产成人精品| 亚洲最大成人av| 99热6这里只有精品| 麻豆一二三区av精品| 久久热精品热| 69人妻影院| 中文字幕制服av| 99久久九九国产精品国产免费| 久久精品久久久久久噜噜老黄 | 亚洲精品乱码久久久v下载方式| 国产白丝娇喘喷水9色精品| 久久精品夜夜夜夜夜久久蜜豆| 卡戴珊不雅视频在线播放| 老司机福利观看| 国产精品.久久久| 亚洲欧洲国产日韩| 久久久色成人| 看片在线看免费视频| 日韩一本色道免费dvd| 久久久精品94久久精品| 亚洲av电影不卡..在线观看| 成人特级黄色片久久久久久久| 黑人高潮一二区| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 一进一出抽搐gif免费好疼| 久久久精品94久久精品| 成年免费大片在线观看| .国产精品久久| 国产精品免费一区二区三区在线| 人妻少妇偷人精品九色| 国产伦理片在线播放av一区 | 日韩 亚洲 欧美在线| 18+在线观看网站| 最好的美女福利视频网| 欧美成人a在线观看| 色尼玛亚洲综合影院| 99视频精品全部免费 在线| 99热只有精品国产| 美女 人体艺术 gogo| 日韩在线高清观看一区二区三区| 少妇丰满av| 18禁在线无遮挡免费观看视频| 日韩欧美国产在线观看| 少妇裸体淫交视频免费看高清| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 成人国产麻豆网| 一级毛片我不卡| 啦啦啦观看免费观看视频高清| ponron亚洲| a级毛片a级免费在线| 一本一本综合久久| 国产成人一区二区在线| 美女国产视频在线观看| 99久久精品国产国产毛片| 中文字幕久久专区| 欧美又色又爽又黄视频| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 免费无遮挡裸体视频| 国产成人91sexporn| 国产成人影院久久av| 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| 日本免费a在线| 成年av动漫网址| 高清午夜精品一区二区三区 | 国产成人freesex在线| 成人国产麻豆网| 禁无遮挡网站| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 成人高潮视频无遮挡免费网站| 国产成人91sexporn| 麻豆国产av国片精品| 亚洲成av人片在线播放无| 精华霜和精华液先用哪个| 欧美xxxx黑人xx丫x性爽| 午夜精品一区二区三区免费看| 精品人妻偷拍中文字幕| 丝袜美腿在线中文| 免费一级毛片在线播放高清视频| 国产 一区精品| 性插视频无遮挡在线免费观看| 老女人水多毛片| 国产高潮美女av| 少妇裸体淫交视频免费看高清| 国产久久久一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 欧美色视频一区免费| 在线国产一区二区在线| 丰满的人妻完整版| 最近2019中文字幕mv第一页| 一个人看的www免费观看视频| 爱豆传媒免费全集在线观看| 免费看日本二区| av天堂中文字幕网| 哪里可以看免费的av片| 久久99热6这里只有精品| 大香蕉久久网| 男女边吃奶边做爰视频| 别揉我奶头 嗯啊视频| 色哟哟哟哟哟哟| 国产一区二区三区在线臀色熟女| 国产大屁股一区二区在线视频| 男的添女的下面高潮视频| 一个人免费在线观看电影| 午夜福利成人在线免费观看| 又爽又黄a免费视频| 在现免费观看毛片| 蜜桃亚洲精品一区二区三区| 免费观看精品视频网站| 免费看光身美女| 欧美日本亚洲视频在线播放| 我要搜黄色片| 成年免费大片在线观看| 国产午夜精品一二区理论片| 99视频精品全部免费 在线| 99热网站在线观看| 变态另类丝袜制服| 我要看日韩黄色一级片| 亚洲最大成人手机在线| 亚洲久久久久久中文字幕| 午夜免费男女啪啪视频观看| 在线a可以看的网站| 日韩欧美 国产精品| 日韩人妻高清精品专区| 草草在线视频免费看| 亚洲综合色惰| av卡一久久| 精品久久久久久成人av| 夫妻性生交免费视频一级片| 精品国产三级普通话版| 欧美在线一区亚洲| 欧洲精品卡2卡3卡4卡5卡区| 亚洲经典国产精华液单| 成人国产麻豆网| 国产精品久久视频播放| 日本黄色片子视频| 99热精品在线国产| 亚洲电影在线观看av| 日韩精品有码人妻一区| av又黄又爽大尺度在线免费看 | 欧美一区二区精品小视频在线| 爱豆传媒免费全集在线观看| 性色avwww在线观看| 又爽又黄a免费视频| 国产成人精品久久久久久| 亚洲18禁久久av| 亚洲四区av| 十八禁国产超污无遮挡网站| 九九在线视频观看精品| 美女黄网站色视频| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 一个人看的www免费观看视频| 国内揄拍国产精品人妻在线| 最近2019中文字幕mv第一页| 99视频精品全部免费 在线| 九九热线精品视视频播放| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 日本成人三级电影网站| 国产一区二区三区在线臀色熟女| 联通29元200g的流量卡| 亚洲av.av天堂| a级毛色黄片| 国产熟女欧美一区二区| 综合色丁香网| 大又大粗又爽又黄少妇毛片口| 精华霜和精华液先用哪个| 国产精品久久久久久精品电影小说 | 国产av麻豆久久久久久久| 久久亚洲精品不卡| 亚洲欧美日韩高清专用| 九草在线视频观看| 国产一区二区在线av高清观看| 亚洲一区高清亚洲精品| 一进一出抽搐gif免费好疼| 天天躁日日操中文字幕| 特级一级黄色大片| 精品久久久久久久久av| 真实男女啪啪啪动态图| 婷婷六月久久综合丁香| 一级av片app| 亚洲中文字幕一区二区三区有码在线看| 日本爱情动作片www.在线观看| 国产精品电影一区二区三区| 99热网站在线观看| 国产亚洲精品av在线| 国产高清激情床上av| 一级黄片播放器| 在线a可以看的网站| 欧美一区二区亚洲| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| av在线老鸭窝| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲网站| 91久久精品电影网| 禁无遮挡网站| 亚洲人成网站在线播放欧美日韩| 丝袜美腿在线中文| 日本熟妇午夜| 欧美一区二区亚洲| 亚洲成av人片在线播放无| 亚洲18禁久久av| 欧美高清性xxxxhd video| 99国产极品粉嫩在线观看| 日本欧美国产在线视频| 国产精品1区2区在线观看.| 国产视频首页在线观看| 十八禁国产超污无遮挡网站| 亚洲美女视频黄频| 国产中年淑女户外野战色| 黄色配什么色好看| 嫩草影院新地址| 少妇的逼水好多| av免费在线看不卡| 成熟少妇高潮喷水视频| 亚洲乱码一区二区免费版| 简卡轻食公司| 高清午夜精品一区二区三区 | 亚洲成人av在线免费| 美女xxoo啪啪120秒动态图| 亚洲丝袜综合中文字幕| 亚洲熟妇中文字幕五十中出| 久久久a久久爽久久v久久| 男女下面进入的视频免费午夜| 国产片特级美女逼逼视频| 一个人看的www免费观看视频| 舔av片在线| 大又大粗又爽又黄少妇毛片口| 搡女人真爽免费视频火全软件| 亚洲成a人片在线一区二区| 国产高潮美女av| 最近手机中文字幕大全| 亚洲成人av在线免费| a级一级毛片免费在线观看| 99热网站在线观看| 亚洲国产精品久久男人天堂| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 成人鲁丝片一二三区免费| 久久热精品热| 日韩 亚洲 欧美在线| 亚洲一区二区三区色噜噜| 能在线免费看毛片的网站| 国产精品国产高清国产av| 亚洲av一区综合| 国产午夜精品一二区理论片| 91久久精品国产一区二区三区| 欧美一级a爱片免费观看看| 丰满的人妻完整版| 日韩欧美国产在线观看| 91麻豆精品激情在线观看国产| 人妻久久中文字幕网| 国产精品福利在线免费观看| 国产精品一二三区在线看| 久久热精品热| 最近的中文字幕免费完整| 悠悠久久av| 春色校园在线视频观看| 亚洲第一区二区三区不卡| 午夜福利在线观看吧| 欧美不卡视频在线免费观看| 丝袜美腿在线中文| 人人妻人人澡人人爽人人夜夜 | 麻豆久久精品国产亚洲av| 综合色av麻豆| 久久精品国产鲁丝片午夜精品| 蜜臀久久99精品久久宅男| 熟女人妻精品中文字幕| 日本免费一区二区三区高清不卡| 成人性生交大片免费视频hd| 成人毛片a级毛片在线播放| 在现免费观看毛片| 99久久久亚洲精品蜜臀av| 亚洲av免费高清在线观看| 夜夜看夜夜爽夜夜摸| 一级毛片我不卡| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡免费网站照片| 免费av不卡在线播放| 国产高清有码在线观看视频| 黄色配什么色好看| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 嫩草影院入口| 日本成人三级电影网站| 国产精华一区二区三区| 人妻夜夜爽99麻豆av| 亚洲四区av| 国产午夜福利久久久久久| 一本久久中文字幕| 国内精品美女久久久久久| 99久久精品国产国产毛片| 成人特级黄色片久久久久久久| 性色avwww在线观看| 亚洲成人av在线免费| 久久午夜福利片| 国语自产精品视频在线第100页| 免费人成视频x8x8入口观看| 在线观看66精品国产| 六月丁香七月| 亚洲国产高清在线一区二区三| 一本久久精品| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线| 日本免费一区二区三区高清不卡| 国产成人aa在线观看| 欧美一区二区精品小视频在线| 人妻少妇偷人精品九色| 午夜福利在线在线| 干丝袜人妻中文字幕| 中文欧美无线码| 国产单亲对白刺激| 在线观看一区二区三区| 精品人妻一区二区三区麻豆| 日韩三级伦理在线观看| av专区在线播放| 国产一区二区亚洲精品在线观看| 日韩成人伦理影院| 校园人妻丝袜中文字幕| 成人高潮视频无遮挡免费网站| 亚洲av熟女| 婷婷亚洲欧美| 亚洲va在线va天堂va国产| 熟女电影av网| 亚洲国产色片| 神马国产精品三级电影在线观看| 免费看av在线观看网站| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 亚洲自偷自拍三级| 免费一级毛片在线播放高清视频| 一级二级三级毛片免费看| 国产午夜精品论理片| 国产黄色小视频在线观看| 不卡视频在线观看欧美| 18禁在线无遮挡免费观看视频| 成人亚洲欧美一区二区av| 一边摸一边抽搐一进一小说| 三级国产精品欧美在线观看| 在线免费观看不下载黄p国产| 只有这里有精品99| 久久久国产成人精品二区| 哪个播放器可以免费观看大片| 国产精品久久久久久久久免| 久久这里只有精品中国| 精品久久久久久久久久免费视频| 色哟哟·www| 久久久久久久久中文| 欧美一区二区亚洲| 国产白丝娇喘喷水9色精品| 久久草成人影院| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 亚洲国产欧美在线一区| 日韩欧美在线乱码| а√天堂www在线а√下载| 国产毛片a区久久久久| 中国美女看黄片| 久久精品91蜜桃| 精品一区二区三区视频在线| 人人妻人人澡欧美一区二区| 国产精品久久电影中文字幕| 99热只有精品国产| 国产午夜精品一二区理论片| 亚洲七黄色美女视频| 三级经典国产精品| 一本一本综合久久| 日产精品乱码卡一卡2卡三| 嘟嘟电影网在线观看| 成人国产麻豆网| 久久人妻av系列| 99在线人妻在线中文字幕| 小蜜桃在线观看免费完整版高清| 日本爱情动作片www.在线观看| h日本视频在线播放| 一本久久精品| 又粗又爽又猛毛片免费看| 女人被狂操c到高潮| 男女下面进入的视频免费午夜| 乱码一卡2卡4卡精品| 少妇的逼好多水| 国产成人午夜福利电影在线观看| 最近视频中文字幕2019在线8| 久久亚洲国产成人精品v| 狠狠狠狠99中文字幕| 小说图片视频综合网站| 能在线免费观看的黄片| 国产午夜精品久久久久久一区二区三区| 国产精品蜜桃在线观看 | 一级av片app| 九九久久精品国产亚洲av麻豆| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 日本熟妇午夜| 国产精华一区二区三区| 亚洲精品久久久久久婷婷小说 | 亚洲在线观看片| or卡值多少钱| 看十八女毛片水多多多| 麻豆国产av国片精品| 免费看a级黄色片| 中文字幕免费在线视频6| 99热只有精品国产| 国产精品不卡视频一区二区| 卡戴珊不雅视频在线播放| 国产午夜福利久久久久久| 中文字幕精品亚洲无线码一区| 五月伊人婷婷丁香| 亚洲人成网站高清观看| 18禁在线播放成人免费| 欧美日韩综合久久久久久| 精品一区二区三区视频在线| 亚洲欧美日韩无卡精品| 观看免费一级毛片| 国产视频首页在线观看| 一个人看的www免费观看视频| 亚洲四区av| 只有这里有精品99| 国产精品永久免费网站| 精品久久国产蜜桃| 岛国毛片在线播放| 99在线视频只有这里精品首页| 免费看a级黄色片| 日本三级黄在线观看| 天堂√8在线中文| 国产成人一区二区在线| 亚洲va在线va天堂va国产| 亚洲精品亚洲一区二区| 欧美高清性xxxxhd video| 国产av不卡久久| 欧美激情国产日韩精品一区| 国产成人影院久久av| 波多野结衣高清无吗| 精品久久久久久成人av| 精品久久久久久久久av| 大香蕉久久网| 成人av在线播放网站| 亚洲精品日韩av片在线观看| 国产高清三级在线| 青青草视频在线视频观看| 亚洲成人av在线免费| 国产成人aa在线观看| 日本与韩国留学比较| 亚洲久久久久久中文字幕| 国产成人精品婷婷| 久久鲁丝午夜福利片| 国产亚洲av嫩草精品影院| 自拍偷自拍亚洲精品老妇| 国产在视频线在精品| 日韩强制内射视频| 波野结衣二区三区在线| 国产中年淑女户外野战色| 久久精品夜夜夜夜夜久久蜜豆| 亚洲三级黄色毛片| 国产高清有码在线观看视频| 国内精品美女久久久久久| 一级av片app| 黑人高潮一二区| 欧美+日韩+精品| 高清毛片免费观看视频网站| 国产亚洲5aaaaa淫片| 亚洲美女搞黄在线观看| 一级毛片电影观看 | 国产一级毛片七仙女欲春2| 欧美3d第一页| 亚洲av免费在线观看| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 精品人妻视频免费看| 亚洲在线观看片| 天美传媒精品一区二区| 国产午夜福利久久久久久| 国产单亲对白刺激| 国产精品一区二区三区四区久久| 久久精品国产亚洲av涩爱 | 国产精品一区二区在线观看99 | 国产一区亚洲一区在线观看| 直男gayav资源| 久久久久久久久大av| 亚洲人成网站高清观看| 国产一区二区亚洲精品在线观看| 久久久久久久久久成人| 亚洲婷婷狠狠爱综合网| 国内精品美女久久久久久| 午夜爱爱视频在线播放| 只有这里有精品99| 青春草国产在线视频 | 亚洲最大成人av| 国产探花极品一区二区| 日韩av在线大香蕉| 一级黄色大片毛片| 在线免费十八禁| 久久99蜜桃精品久久| 99热这里只有精品一区| 99热网站在线观看| 精品久久久噜噜| 综合色av麻豆| 天天一区二区日本电影三级| 亚洲av第一区精品v没综合| 一个人看的www免费观看视频| 亚洲最大成人手机在线| 大型黄色视频在线免费观看| 婷婷色av中文字幕| 日韩欧美一区二区三区在线观看| 成人综合一区亚洲| 免费看美女性在线毛片视频| 网址你懂的国产日韩在线| 久久国内精品自在自线图片| 久久久久久九九精品二区国产| 麻豆乱淫一区二区| 26uuu在线亚洲综合色| 午夜久久久久精精品| 亚洲自偷自拍三级| 欧美高清成人免费视频www| 精品免费久久久久久久清纯| 婷婷精品国产亚洲av| 亚洲va在线va天堂va国产| 成人毛片60女人毛片免费| 欧美色欧美亚洲另类二区| 久久精品国产自在天天线| 老师上课跳d突然被开到最大视频| 国产亚洲91精品色在线| 97超碰精品成人国产| 亚洲av熟女| av.在线天堂| 少妇人妻精品综合一区二区 | 超碰av人人做人人爽久久| 少妇高潮的动态图| 最后的刺客免费高清国语| 国产爱豆传媒在线观看| 人妻系列 视频| 久久国产乱子免费精品| 精品久久久久久久久久久久久| 亚洲自偷自拍三级| 看片在线看免费视频| 超碰av人人做人人爽久久| 国产黄片美女视频| 亚洲最大成人手机在线| 午夜福利在线在线| 高清毛片免费看| 国产黄a三级三级三级人| 国产免费男女视频| 久久6这里有精品| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 日本免费一区二区三区高清不卡|