盧丙舉, 靳漢文, 秦麗萍, 吳友生, 方 輝**
(1. 中國船舶重工集團公司第七一三研究所河南省水下智能裝備重點實驗室, 河南 鄭州 450015;2. 中國海洋大學海洋工程學院, 山東 青島 266100)
水下傳動裝置穩(wěn)定運轉(zhuǎn)是新型海洋裝備有效服役的關鍵之一,海洋環(huán)境下各類雜質(zhì)不斷進入高強鋼制傳動軸的小間隙配合面,硬質(zhì)顆粒(主要為韌性金屬顆粒)因配合面運動而擠入間隙并產(chǎn)生應力集中,引起配合面損傷乃至嵌入間隙;海洋環(huán)境下傳動裝置配合面蝕難以避免,無磨粒磨損情況下對整體性能影響有限,但是傳動過程中磨粒與含腐蝕配合面間局部應力場可能產(chǎn)生復雜變化,而局部應力三軸度變化對韌性金屬損傷演化影響顯著[1-2],很可能影響配合面磨粒磨損[3]過程,從而加速裝置傳動性能退化;另外,新型裝備入水出水循環(huán)過程必然存在溫差,也將改變磨粒與配合面之間的應力狀態(tài)及磨損過程,從而影響裝置傳動性能。因此,綜合考慮海洋環(huán)境腐蝕-溫度變化-金屬顆粒共同作用,建立水下傳動裝置磨粒-配合面-傳動軸間傳動-承載-損傷耦合模型與計算方法,對于水下傳動裝置故障機理探索與優(yōu)化設計更新都有直接的理論意義和工程價值。
磨粒磨損為磨粒與韌性鋼材配合面中表面材料損傷剝落過程[4-5]。早期磨粒磨損的計算大多基于Rabinowicz建立的關于磨粒磨損的經(jīng)典模型,給出了簡化模型和數(shù)學表達式,其中基本假設為:(1)將經(jīng)受磨損的材料簡化成一種不產(chǎn)生任何塑性變形的絕對剛體;(2)將硬質(zhì)磨粒簡化成一個圓錐體;(3)將磨損過程視為簡單的滑動過程[6-7]。經(jīng)典模型忽略了磨粒磨損過程中材料的永久變形與斷裂破壞[8],所以建立的的模型與實際差距較大,無法描述磨損面溝壑的產(chǎn)生以及磨粒的破碎。為解決以上問題,Barge[9]等提出了磨粒磨損中的犁溝模型,研究了較硬的圓頭形磨粒在較軟表面的犁溝切削過程,獲得了載荷、材料和磨粒的硬度等因素對表面應力分的影響。但是,這類模型采用傳統(tǒng)的韌性金屬塑性模型,對應本構多基于標準單軸拉伸試驗構建,未反應三軸應力[10]作用下材料破壞特征,也就無法反映擠壓磨損過程中磨粒和磨損面上復雜的應力變化,未能全面得到磨粒磨損塑性破壞的過程與機制,也就無法研究腐蝕導致金屬表面形貌微小變化對磨損破壞的影響。目前,塑性研究已確認復雜多軸作用下產(chǎn)生各類應力組合,對于材料失效特征及閾值影響顯著[11],而且韌性材料受力過程中承載截面上孔洞不斷萌生并擴展,使得有效承載截面積不斷減小,韌性材料損傷演化至失效過程不同于傳統(tǒng)的簡化塑性模型(例如理想彈塑性)預測。由上可見,韌性損傷是微細觀塑性累積過程,復雜應力作用下韌性損傷過程會更遠離簡化塑性模型預測,忽略應力三軸度及損傷演化的磨粒磨損計算對于水下關鍵結構性能變化的預測可能產(chǎn)生偏差。
海洋環(huán)境磨損、腐蝕與溫差共同作用下水下傳動裝置小間隙配合面很可能存在復雜應力作用下?lián)p傷演化過程。為更好反映海洋環(huán)境小間隙傳動配合面中磨粒磨損過程,本文采用基于不可逆熱力學原理的材料損傷演化模型,發(fā)展了基于狀態(tài)變量的數(shù)值計算方法,實現(xiàn)了有限元軟件 ABAQUS的二次開發(fā),為更好的反映工程中磨粒狀況,設計三維球形分形模型[12],實現(xiàn)了磨粒與接觸表面微觀接觸過程中三維復雜應力[13-14]演化過程的有效計算,由此分析了接觸表面的應力分布演化以及對傳動裝置轉(zhuǎn)動的影響?;谝陨夏P偷挠嬎憬Y果,探索海洋環(huán)境下傳動裝置磨損及性能退化機理,獲得腐蝕與溫度變化[15]對磨粒磨損與傳動性能過程的影響。整體上發(fā)展了基于金屬韌性損傷理論的傳遞結構配合面損傷機理及傳動性能建模與模擬,實現(xiàn)了材料塑性損傷、配合面磨損與傳動裝置性能分析一體化,獲得了不同環(huán)境條件下配合面損傷機制。
工程實際磨粒磨損中,配合面出現(xiàn)溝犁、磨粒局部扁平,具有典型的塑性損傷特征,這一過程中材料內(nèi)部主要是微孔洞和微裂紋的形成和擴展,使其產(chǎn)生大塑性變形乃至斷裂,從而使配合面和磨粒出現(xiàn)永久變形和破壞。因此,這里引入損傷變量以合理描述以上物理過程,工程實際中配合面和磨粒為韌性金屬,都是各向同性的連續(xù)介質(zhì),因此可以用一個標量來描述因微孔洞和微裂紋導致的連續(xù)介質(zhì)有效承載面積的減小,這里用D表示,定義:
(1)
式中:A是截面總面積;Ae是有效承載面積。磨粒磨損中顆粒與摩擦面都承受強非比例載荷作用,將顯著影響結構損傷與破壞速度與程度,從而改變傳動裝置運行性能。為在數(shù)值計算中有效描述復雜多軸應力場中韌性金屬破壞,進而獲得傳動裝置運行特性演化過程,這里采用基于不可逆熱力學的韌性金屬損傷耗散勢,由廣義正則化法則導出損傷材料的本構方程及損傷演化方程[16],其結果如下,
(2)
為在有限元軟件實現(xiàn)復雜應力下材料破壞與傳動結構磨損計算,F(xiàn)ortran編譯了韌性金屬損傷演化計算程序并導入ABAQUS求解器;模擬中可實現(xiàn):細觀上,磨粒與配合面接觸區(qū)內(nèi)材料彈性與塑性極限隨損傷退化,損傷達到閾值后單元失效實現(xiàn)磨損剝離;宏觀上,以配合面轉(zhuǎn)角與驅(qū)動力關系表征裝置傳動性能變化規(guī)律,循環(huán)驅(qū)動力作用下配合面不可恢復轉(zhuǎn)動角度增大表明傳動性能下降;通過磨粒-配合面-傳動軸一體化建模下細觀損傷與宏觀傳動耦合模擬,將磨粒磨損的細觀破壞機理與裝置傳動性能相關聯(lián),可實施裝置磨損故障的機理研究。通過子程序精細計算磨粒及傳動裝置的損傷,在循環(huán)加載過程中實時更新單元損傷與退化,程序編制思路與計算流程如圖1所示,簡述如下:
(1)計算得到正應力及切應力等6個應力分量,計算得到Mises等效應力,這是子程序主要參數(shù)及計算塑性損傷量累計的判據(jù)。
(2)子程序編譯中,參數(shù)使用ABAQUS可識別的狀態(tài)變量,利用狀態(tài)變量能夠保障參數(shù)準確傳遞。
(3)根據(jù)不斷更新的Mises等效應力與材料強度作數(shù)據(jù)比較,如果應力大于材料強度時,產(chǎn)生了塑性損傷,根據(jù)損傷演化方程計算損傷。
(4)根據(jù)數(shù)據(jù)循環(huán)不斷更新并累積塑性損傷,當損傷達到一定程度時,認為此單元材料已經(jīng)遭到破壞,于模型中將該單元刪除。
為了驗證程序的正確性,數(shù)值模擬了韌性金屬的標準單軸拉伸試驗,計算模型如圖2(a)所示,試樣參數(shù)與規(guī)范實驗一致,模型一端固定,另一端施加位移荷載,數(shù)值模擬與實驗結果進行對比(見圖2(b)、(c)):兩者基本吻合,驗證了材料子程序和計算設置能夠?qū)崿F(xiàn)單元塑性軟化、損傷,可應用于后續(xù)數(shù)值計算。
水下傳動裝置如圖3(a)所示,限位圓盤和轉(zhuǎn)動圓盤構成配合面,外側限位圓盤固定在軸上,內(nèi)側轉(zhuǎn)動圓盤由循環(huán)載荷F驅(qū)動繞軸轉(zhuǎn)動,驅(qū)動力F作用在撐桿上,作用方向如圖3(a)。有限元模型取一側配合面、軸組成,計算模型尺寸相對工程結構等比例縮小,如圖3(b)所示:兩圓盤外半徑皆為10 mm、厚度為2 mm,撐桿長度為38 mm,兩圓盤配合面間隙為0.6 mm,圓柱軸半徑為3 mm、長為30 mm。依分形理論建立三維磨粒模型,如圖4(c)所示,磨粒最大外直徑為1 mm。本研究中,循環(huán)正弦驅(qū)動力,幅值為600 N,周期為0.2 s。依據(jù)傳動裝置實際工作狀態(tài)觀察,磨粒初進入兩圓盤間隙,完好附于配合面表面,內(nèi)側圓盤在驅(qū)動力作用下循環(huán)轉(zhuǎn)動而引起磨粒磨損。傳動裝置處于海洋環(huán)境,配合面上腐蝕不可避免,很可能引入新的應力集中,從而影響磨粒和配合面損傷演化過程;另外,傳動裝置運動與整體水入水過程一致,因此配合面循環(huán)轉(zhuǎn)動中還存在高低溫變化,無磨粒磨損情況下環(huán)境溫差對于配合面應力狀態(tài)影響較小,但是磨粒局部應力集中十分顯著,應考慮溫度循環(huán)的影響。本文中,將對點腐蝕、面腐蝕狀態(tài)下傳動裝置磨粒磨損過程進行計算,并引入溫度因素,對比研究海洋環(huán)境下傳動裝置小間隙配合面磨粒磨損與傳動性能變化規(guī)律,具體工況見表1。
圖1 計算流程圖
圖2 (a) 單軸拉伸模型 (b) 應力應變演化曲線(c)損傷應變演化曲線
表1 計算工況
本文利用ABAQUS求解器對含腐蝕配合面磨粒磨損進行計算,腐蝕坑和面通過 Partition功能對模型進行分割,同時對腐蝕周邊區(qū)域網(wǎng)格細化,保證應力梯度較大區(qū)域中單元尺寸足夠小,避免網(wǎng)格畸變。選用4節(jié)點一階減縮積分殼單元(S4R),使用線性插值法,允許有限薄膜應變和大旋轉(zhuǎn)角,考慮了剪切變形的影響。在單元幾何類型的選擇上,常用單元有四邊形、三角形等,其中四邊形單元為首選,三角形單元雖然具有較好的邊界適應性,但計算精度較差,劃分的單元數(shù)過多,占用計算機內(nèi)存大,給計算帶來不利。以含12點蝕坑和3磨粒配合面磨損為例,邊界條件和網(wǎng)格模型如圖3和4所示。本研究中,配合面圓盤網(wǎng)格特征尺寸為0.89 mm,磨粒網(wǎng)格特征尺寸為0.022 mm,圓軸網(wǎng)格特征尺寸為1 mm,以上尺寸可較準確反映結構中應力集中與梯度特征并描述損傷演化。在施加荷載的分析步中,允許配合面繞z軸轉(zhuǎn)動,約束其它方向的運動。采用正弦循環(huán)驅(qū)動力荷載加載方式,以此模擬配合面五次循環(huán)運動過程,磨粒與配合面間采用面面接觸,內(nèi)圓盤與軸承間也采用面面接觸,接觸面間摩擦因數(shù)取0.15,法向定義為“硬接觸”即存在法向應力時,接觸面接觸,當法向應力為零或負值時,接觸面分離。材料本構采用前述韌性損傷演化模型,彈性模量223 GPa,泊松比0.3。
圖3 (a) 傳動配合面示意圖、點蝕(12蝕坑)磨粒(3顆)磨損 (b) 模型及(c) 配合面網(wǎng)格
圖4 面蝕(2蝕面)磨粒(3顆)磨損 (a) 模型,(b) 配合面網(wǎng)格, (c) 分型磨粒模型與網(wǎng)格
圖5(a)為點蝕情況下配合面驅(qū)動力與轉(zhuǎn)動關系,縱軸為傳動圓盤轉(zhuǎn)動角度,橫軸為傳動時間,圖中標記數(shù)字為傳動圓盤轉(zhuǎn)動周數(shù)。無腐蝕情況下,隨驅(qū)動力循環(huán)作用,轉(zhuǎn)動圓盤出現(xiàn)永久位移且隨循環(huán)次數(shù)不斷增加,配合面間相對位置無法恢復至初始狀態(tài),結構傳動性能顯著下降。考慮點蝕情況,相同載荷過程,點蝕配合面轉(zhuǎn)動幅度遠小于無腐蝕的配合面,而且差值隨轉(zhuǎn)動過程逐漸增大,即腐蝕顯著影響配合面運動,使得傳動性能下降。考慮面腐蝕情況,結構磨損和傳動性能變化趨勢與點腐蝕情況定性一致。根據(jù)旋轉(zhuǎn)位移曲線圖可得到,無腐蝕情況下一個磨粒工況最大轉(zhuǎn)角為27.22 ℃,三個磨粒工況為6.27 ℃,點腐蝕情況下,一個磨粒工況最大轉(zhuǎn)角為6.25 ℃,三個磨粒工況為3.18 ℃,圖6(a)為面蝕情況下配合面驅(qū)動力與轉(zhuǎn)動關系,面蝕情況下,一個磨粒工況最大轉(zhuǎn)角為11.3 ℃,三個磨粒工況最大轉(zhuǎn)角為0.88 ℃。將不同工況下的最大轉(zhuǎn)角總結如表2。
細觀上進一步分析上述現(xiàn)象產(chǎn)生的原因,磨粒與配合面之間的的擠壓旋轉(zhuǎn)是一種符合“犁耕”理論的現(xiàn)象,即任何物體想要占有一定的空間,都必須排除以前在這個地方的其他物體。而在上述計算模型中,由于腐蝕及磨損產(chǎn)生了磨粒及配合面產(chǎn)生了孔洞、溝犁[17]現(xiàn)象,磨粒與配合面不斷地嚙合或分離,而形成一種反復的離合過程。在嚙合與分離的過程中,磨粒的某一部分,由于破損或脫落而產(chǎn)生細微破壞[18],這逐漸改變了接觸條件,使得配合面的旋轉(zhuǎn)更加困難,同時,磨粒及配合面磨損不斷加劇;而且,配合面旋轉(zhuǎn)過程中出現(xiàn)接觸變形,使磨損微粒嵌入配合面表面磨損特性如圖5(c)圖6(c)所示,從而產(chǎn)生切削作用,切削的阻力就是磨損阻力,而由接觸反力圖5(b)、圖6(b)可見,兩類腐蝕情況下磨粒和配合面間接觸力遠大于無腐蝕情況,這是由于蝕坑的幾何奇異性加大了應力三軸度,增大的應力三軸度顯著加速損傷演化,磨損情況下點腐蝕的蝕坑間存在應力集中融合趨勢,即產(chǎn)生應力集中與損傷條帶,加速磨粒與配合面損傷演化,從而使得兩者間接觸力更快速發(fā)展。需要注意,點腐蝕對磨粒磨損的影響小于面腐蝕,即面腐蝕磨損時結構運動性能下降更顯著,由模擬結果分析,磨粒進入面腐蝕區(qū)域后,在其平面內(nèi)存在兩個方向的完全約束,而點腐蝕僅對磨粒局部產(chǎn)生約束,面腐蝕情況下配合面和磨粒中應力三軸度增大速度和幅值都遠大于點腐蝕情況,結構和磨粒塑性破壞速度和程度也就是遠大于點腐蝕情況,因此結構傳動性能下降更快。
圖5 (a)旋轉(zhuǎn)位移與時間關系、(b)接觸力與時間關系及(c)點蝕配合面磨損
(①Working condition 1: surface corrosion, one grinding grain;②Working condition 2: surface corrosion, three grinding grains)圖6 (a)旋轉(zhuǎn)位移與時間關系,(b)接觸力與時間關系及(c)面蝕配合面磨損特征
表2 不同工況下最大轉(zhuǎn)角
考慮腐蝕及溫度同時作用下對磨粒磨損接觸模型的影響。以點腐蝕和面蝕模型作為計算模型,分為1個磨粒、3個磨粒2組,溫度從20 ℃升高至25 ℃、從20 ℃升高至30 ℃時兩種件下的磨損情況,計算結果如圖7。同時考慮腐蝕及溫度作用對于配合面的正常工作影響時,相對于僅考慮腐蝕作用對配合面旋轉(zhuǎn)位移的影響,二者在演變過程中有區(qū)別,不過最終旋轉(zhuǎn)位移基本一致,出入水導致溫度變化相對于腐蝕,對于配合面磨粒磨損影響較小,腐蝕作用應作為工程設計重點關鍵因素。但是和僅有腐蝕作用的工況相比,增加溫度作用時的配合面應力明顯增大,這對傳動裝置使用壽命有一定影響,因此在結構設計及防護方面,溫度也是需要考慮的因素。
(①Working condition 5: pitting corrosion, one grinding grain, 20~25 ℃;②Working condition 5′: pitting corrosion, one grinding grain, 20~30 ℃;③Working condition 6: pitting corrosion, three grinding grains, 20~25 ℃;④Working condition 6′: pitting corrosion, three grinding grains, 20~30 ℃;⑤Working condition: surface corrosion, one grinding grain,20~25 ℃;⑥Working condition: surface corrosion, one grinding grain,20~30 ℃;⑦Working condition: surface corrosion, three grinding grains,20~25 ℃;⑧Working condition: surface corrosion, three grinding grains, 20~30℃.)
(1) 不考慮環(huán)境因素,傳動裝置運行中磨粒與配合面受強非比例載荷作用,金屬韌性損傷快速演化使磨粒與配合面的形貌產(chǎn)生顯著變化,磨粒破碎、配合面局部產(chǎn)生溝犁,傳動裝置轉(zhuǎn)動數(shù)周后嚙合力幅值急劇增大而完全約束結構運動,以上結果與工程實際一致。因此,基于細觀損傷模型和細宏觀統(tǒng)一建模方法,通過ABAQUS有限元軟件的二次開發(fā),所構建的小間隙配合面磨粒磨損模擬系統(tǒng)能正確反映傳動裝置破壞機理并實現(xiàn)預測。
(2)考慮海洋腐蝕作用,模擬發(fā)現(xiàn)腐蝕對磨粒產(chǎn)生局部約束作用,使磨粒與配合面的表面都產(chǎn)生應力奇異性,進一步增強應力三軸度而加速損傷演化,腐蝕存在連通為條帶損傷的趨勢,傳動裝置運動能力下降速度較無腐蝕條件更快。
(3)考慮溫度變化作用,模擬發(fā)現(xiàn)分形磨粒中不同接觸部位溫度差異較大,說明在球形分形磨粒磨損模型中,熱量積聚較慢而使其中溫度分布存在差異,對應最大應力也發(fā)生變化,這導致表層材料損傷演化速度加快,傳動裝置運動能力下降速度較低溫條件更快。