• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Establishment of Metamodels for Ship Seakeeping Performance Using an Effective Approximation Modeling Method

    2016-05-16 02:41:52,,,
    船舶力學(xué) 2016年3期
    關(guān)鍵詞:南安普頓耐波性工程學(xué)院

    ,,,

    (1.School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhengjiang 212003, China;2.Fluid Structure Interactions Research Group,Faculty of Engineering and the Environment,University of Southampton,Southampton,UK,SO17 1BJ)

    Establishment of Metamodels for Ship Seakeeping Performance Using an Effective Approximation Modeling Method

    LI Dong-qin1,Philip A.WILSON2,JIANG Zhi-yong1,ZHAO Xin1

    (1.School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhengjiang 212003, China;2.Fluid Structure Interactions Research Group,Faculty of Engineering and the Environment,University of Southampton,Southampton,UK,SO17 1BJ)

    The prediction of seakeeping performance for ships is a complex calculation process because of the large number of possible ship configuration variables that will affect the seakeeping motion; high fidelity commercial software is used to forecast the ship performance such as Computational Fluid Dynamics(CFD)then there is a large overhead in both time and money to use such software. In this paper,the Latin Hypercube Design methodology is employed to explore the design space and to sample data to cover the design space.An index is introduced,namely the percentage of downtime which illustrates the short-term and long-term ship seakeeping motion,defined as the comprehensive evaluation index for ship seakeeping performance,which is to be used in the comparison process of ship design.The five motions of ship seakeeping performance were considered as roll,pitch, yaw,sway and heave.To improve the efficiency of seakeeping calculation,an effective approximation modeling method-the Single-parameter Lagrangian Support Vector Regression(SPL-SVR)was adopted and trained to establish the metamodels and predict the seakeeping performance and this algorithm was first proposed by authors in their past studies.For the Offshore Supply Vessel(OSV), the seakeeping criteria were predicted with the SPL-SVR and compared with the NAPA-based calculation results with the seakeeping manager,the Artificial Neural Network results and classical SVR results.Using two ship speeds for an Offshore Supply Vessel,the metamodels of ship seakeeping performance of short-term percentage of downtime were established;these metamodels were suitable for the practical application in ship preliminary design stage and all the numerical results show the effectiveness of the new approximation algorithms.

    metamodel;Support Vector Machine;design of experiment;seakeeping

    0 Introduction

    An accurate and effective prediction technique for the ship seakeeping performance plays an important role in the hydrodynamic-based ship design process.Specifically,it needs to en-sure two aspects.Firstly,a high-precision calculation method,i.e.,strip theory rather than empirical regression formula which has been widely used in ship seakeeping prediction[1],is required to calculate the ship motions in waves at the preliminary ship design stage.Secondly, and perhaps the most important part,is that the computational cost for seakeeping performance will be minimised.The authors have already performed initial research in the ship multidisciplinary design integrated with the ship resistance and ship seakeeping performance[2],the calculation seemed to be computationally expensive,time consuming and not of a great practical use.Although,the running speed of computers is now greatly enhanced,the cost of high precision computation for ship seakeeping performance in the preliminary stage is still too expensive and limits the progress of ship design.So far,the approximation model(metamodel or surrogate model)was adopted to solve this kind of problem in complex engineering system design and earned great progress[3].Referencing the same ideas,this paper makes an effort to improve a new simple and effective algorithm of Support Vector Machines and apply it to establish the metamodels of ship seakeeping performance.

    1 Theoretical background of SPL-SVR

    In real world design problems,there are often several disciplines in ship design.There are disciplines which may be studied with different software tools,or the disciplines may be searching for other solutions with different teams of engineers.With the increasing complexity of ship design problems,accuratly calculating ship performance has become increasingly difficult in the design process.Discovering a simple,accurate approximation model to replace the specific simulation calculation is the one way to satisfy the growing needs of computation.In the last century,researchers have successively proposed a variety of metamodeling techniques such as the neural network,the response surface method[4]and Kriging methods[5]to aid forecasting estimates for engineering computing needs.The use of metamodeling techniques to reduce the time spent on computational analyses is well known and will obviously increase the efficiency of the design process.

    However,how do we improve the accuracy and robustness performance of metamodeling techniques is the really important question,especially when the sample size becomes small, limited and scarce and the established metamodels for ship performance will affect the final optimization solution.As a novel method of modern artificial intelligence technology,Support Vector Machines(SVM)[6-7]is proposed to aim at the limited samples problem and has a good generalization performance as well as global optimal extremum which have been proved by many researchers[8].

    The SVM is based on Statistical Learning Theory(SLT),and has been recognized as a powerful machine learning technique.It offers a united framework for the limited-sample learning problem and can solve those practical problems such as model-choosing,limited samples, multiple dimensions,non-linear problems and local minima.By learning the training samples,it can obtain the black box which describes the complicated mapping relation without knowing the connection between the dependent variables and independent ones.Thus it has been used to construct metamodels and an excellent result has been achieved[9].

    In this paper,we will use an effective approximation modelling method named Singleparameter Lagrangian Support Vector Regression(SPL-SVR),which is a new support vector regression algorithm proposed by the authors[10-11]to construct the implicit metamodels of ship resistance performance.It is worth mentioning that construction of metamodels of ship seakeeping performance in this paper is a continuation of the work in Ref.[10-11].These two references gave all details required.Here,we will briefly recall the mathematical theory of this algorithm for the readers’convenience.The methodology in short is given below:

    In order to reduce complexity,the new algorithm of SVR has only one parameter ξ to control the errors instead of two parameters ξ,ξ*in the classical SVR,adds b2/2 to the item of confidence interval at the same time,and adopts the Laplace loss function.Hence we arrive at the formulation stated as follows:

    The solution of Eq.(1)can be transformed into the dual optimization problem.A Lagrange function can be constructed and with the associated kernel functionwhich correspond to dot product in a feature space given by a nonlinear transformation φ of the data vectors in the input space.The Eq.(1)can be transferred into the dual optimization problem shown as follows:

    Thus,the estimation function is calculated as follows:

    In a sense,the complexity of a function’s representation by Support Vectors(SVs)only depends on the number of SVs.In this paper,we select a normal kernel function-the Radial Basis Function(RBF)[12].

    2 Distributions of ship samples

    To make the model simpler and computational feasible,some design parameters were fixed. At the same time,obtained from many shipping companies and design institutions,plenty of data about the offshore supply vessels were gathered.It was stipulated that the OSV would have two propellers and large block coefficient.The distributions of main principal characteristics are showed in Fig.1,in which the black round points represent the 30 training ship data from DOE method.

    Fig.1 Distribution of vessels’principal characteristics

    In fact,there are many variables which will affect the ship seakeeping performance.However,the addition of more variables to the model would hamper the result evaluation and the methodology validation.It could be that the performance criteria are based on ship wash and bow shape[13-15].Eventually,we chose the length between perpendiculars,the breadth,depth, the design draught,the block coefficient,the longitudinal prismatic coefficient,longitudinal centre of buoyancy,ship speed and wave angle as the design variables,and these nine parameters can show the geometrical characteristics of ship hull.Once the fixed parameters are established,the design variables are chosen and listed in the Tab.1.

    Tab.1 Range of design variables in DOE

    Here,we use the standard model-based calibration toolbox from commercial software Matlab to establish the training data set with Latin Hypercube Design proposed by Ref.[16].The training sample couples are taken from the DOE.A total of 30 ships were used in the test with the details listed in Tab.2 and one of the ship hulls is shown in Fig.2.

    Fig.2 Transverse section and 3D lay-out of the ship hull

    Tab.2 Design variables of selected 30 training ship data

    Continue Tab.2

    3 Calculation of ship seakeeping performance

    Before establishing the metamodels of seakeeping performance and its effects in the ship design process,we should first decide which calculation method for the ship seakeeping performance of offshore supply vessel should be used.

    3.1 The actual wave conditions

    It is important to realize that the wave spectra are attempts to describe the ocean wave spectra in very special conditions,namely the conditions after a wind with constant velocity has been blowing for a long time.A typical ocean wave spectrum will be much more complicated and variable.Here,the JONSWAP spectrum for North Sea and South Sea of China is capable of giving the safe analysis results of ship motions in wave.

    The JONSWAP spectrum is a Pierson-Moskowitz spectrum multiplied by an extra peak enhancement factor and is used to represent a fetch limited sea spectrum as for the two sea areas previous mentioned.

    3.2 Wave scatter table in South Sea of China

    Considering the actual wave influence in design,we often need to know the maximum of wave parameters which will happen over a period of several years.In order to establish longterm forecasts,we also need to know the joint probability distribution of the significant wave height and average zero crossing period,usually expressed by the use of the wave scatter table. The wave information in South Sea of China was collected in Ref.[17],where the area ranges is 105°-125°east longitude,0.5°-23°north latitude.

    Actually,based on the need of ship performance prediction and ship hull design,muchmore emphasis should be laid on the collection of basic environmental information about the wind,wave and current in navigation area.The wave scatter table in South Sea of China is listed as Tab.3.

    Tab.3 Wave scatter table in South Sea of China(Annual)

    3.3 Determination of seakeeping criteria

    The limitation of the ship motion was estimated from data gleaned from OSV operators and the weight for seakeeping criteria in different condition are given in Tab.4.The velocity of 0 kn is the normal working condition,and the velocity of 14.5 kns is the normal operating speed for the vessel from harbor to working area for the OSV.

    Tab.4 Seakeeping criteria values or allowed probabilities for OSV

    3.4 Comprehensive evaluation index for seakeeping performance

    There are many factors influencing the ship seakeeping performance especially for different types of deep-sea vessels,it is difficult to decide the optimum design with good seakeeping performance according to one or more basic seakeeping factors.It is necessary to find a proper comprehensive evaluation index for ship seakeeping performance.There are now two types of evaluation index:one is the percentage of working time,the other is the percentage of desired speed.Here,we propose a new index of long term forecast percentage of downtime, which aims to show the ability of ship working in the prescribed conditions(environment andtime)and is an effective evaluation index of seakeeping quality.Specific calculation steps are listed as follows:

    Step 1:According to the working requirement,choose the navigation speed and working speed of OSV.Calculate the frequency response functions in regular wave under specific velocities Vsand wave angles μm.

    Step 2:Choose the ocean wave spectrum,predict the ship motion responses and accelerations of the unit significant wave height under the irregular wave.

    Step 3:Gather the ocean wave statistics information around the ship working area,the actual ocean wave environmental condition and wave statistics probability(Scatter Diagrams),determine the various seakeeping criteria factors k and establish the seakeeping criteria group Ck.

    Step 4:Calculate motion response RAO ra()1/3for various seakeeping criteria factors under the specific speed Vs,wave angles μmand different wave period Tjin the irregular wave. Then calculate the limited wave height Hsmjkand the percentage of downtime POTsmkfor different seakeeping criteria factors k under the specific speed Vsand wave angles μm.

    Step 5:Based on the importance distribution αk(or weight coefficient)of each seakeeping criteria factor k in the seakeeping criteria group Ck,calculate the comprehensive evaluation index POTshortfor seakeeping performance which is called the ship short-term percentage of downtime and this index indicate the ultimate working capacity of ship under the given speed and wave angle.

    Step 6:Considering the speed frequency distributionand wave angle frequency distributionin the real voyage,the comprehensive evaluation index POTlongfor seakeeping performance which is called the ship long-term percentage of downtime can be calculated as below:

    4 Establishment of ship seakeeping metamodel

    Hydrodynamic design of ships involves several stages,from preliminary and early-stage design to late-stage and final design.As the objective of this study is to develop a practical metamodel of an offshore supply vessel at the early stage of the hydrodynamic-based ship design,a practical calculation tool,based on the strip theory called Seakeeping Manager from the commercial software NAPA,is used to compute the ship motion in irregular wave including roll, pitch,yaw,sway and heave motions.

    Fig.3 Response functions for the seakeeping criterias(Vs=0 kns)

    Firstly,we consider that the working speed for the offshore supply vessel is 0 kns and navigation speed is 14.5 kns,and the wave angles are 0°,30°,60°,90°,120°,150°and 180°. We choose one of the 30 ship training data above to calculate the seakeeping performance as an example.As mentioned above,we choose seven seakeeping criteria to evaluate the ship seakeeping performance:roll,pitch,slam,heave,propeller emergence,deck wetness and vertical acceleration at bow.Further,some of the response functions of these seakeeping criteria under different wave angles are shown as Fig.3.

    Considering the wave scatter table in South Sea of China,the percentage of downtime (which means non-working time)is shown in Fig.4 which indicates the comprehensive evaluation index for the seakeeping criteria will meet the permission of design requirements.

    Further,the benchmarking methodology presented here can be used in a wider setting to analyze how the performance is affected by certain design decisions.Hence,this approach can support the design process with performance estimated at an early stage,without running expensive model tests or time consuming CFD calculations.Here,we construct the metamodels of ship seakeeping performance based on the theory of Support Vector Machine and set up the program in Matlab.

    Fig.5 Approximation results of downtime POTshortfor ship type 20 to 30(Vs=0 kns)

    Fig.6 Approximation results of downtime POTshortfor ship type 20 to 30(Vs=14.5 kns)

    Here,the first 20 ship types created with the DOE method are selected as training data set and the last 10 ship types as test data set.The chosen variables are the length between perpendiculars,the breadth,depth,the design draught,the block coefficient,the longitudinal prismatic coefficient,longitudinal centre of buoyancy,ship speed and wave angle as the design variables,and the ship short-term percentage of downtime POTshortbased on the importance distribution weight for seven seakeeping criteria under the circumstance of the working speed and navigation speed as the output variable.The calculation results with velocity 0 kns and 14.5 kns were compared with Seakeeping Manager,ANN and classic SVR which were shown as Fig.5 and Fig.6.

    Here,the calculated results for the working speed with wave angle 60°and navigation speed with wave angle 120°are listed in Tab.5 and Tab.6.The Relative Error(RE)and Mean Relative Error(MRE)are applied as performance indexes:

    Tab.5 Calculation results with Relative Error(RE)for downtime POTshortwith wave angle 60°(Vs=0 kns)

    Tab.6 Calculation results with Relative Error(RE)for downtime POTshortwith wave angle 120°(Vs=14.5 kns)

    Continue Tab.6

    The comparison of relative errors for different wave angles and velocities is listed in Tab. 7.The maximum MRE within the different wave angles and velocities comparing to the result of seakeeping Manager for ANN is 10.155%and the minimum MRE is 6.315%;the maximum MRE for SVR is 7.465%and the minimum MRE is 4.443%;the maximum MRE for SPL-SVR is 4.531%and the minimum MRE is 2.653%.It can be seen that the results are acceptable and agree well with each other.Obviously,if the training ships data set,the kernel parameters and the calculation method for seakeeping criteria are chosen properly,we can use these metamodels to predict the ship seakeeping performance in the preliminary ship design stage.

    Tab.7 Comparison of downtime errors POTshortfor the two ship speed(Unit:%)

    Considering the two kinds of circumstances,the proposed SPL-SVR algorithm shows a good approximation and prediction performance,so we can also find that this new algorithm of Support Vector Machine is suitable for the nonlinear approximation problem whether in the running time or accuracy.Obviously,we can obtain high fitting precision calculation results for seakeeping performance in the CFD-based preliminary ship design process.That is to say,we can use these metamodels to calculate the ship short-term seakeeping performance POTshortinstead of CFD method in the preliminary ship design stage.Considering the ship speeds and wave angle frequency distributions in the real voyage,the comprehensive evaluation index POT for long-term seakeeping performance can be also evaluated.

    5 Conclusions

    In this paper,a new SVR-based algorithm was proposed and used to establish metamodels for predicting the ship seakeeping performance of Offshore Supply Vessel.Comparing to ANN and classic SVR,the proposed SPL-SVR can achieve the most accurate calculation results.In the meantime,these metamodels were also quite precise compared to the expensive simulation tool for the complete analysis and calculation of ship seakeeping performance together with dramatic reductions in processing time at preliminary design stages.In order to train this new algorithm,the RBF kernel function was adopted and its parameters should be considered carefully.This indicates that the SPL-SVR-based metamodels can be used to evaluate the ship seakeeping performance accurately and less time-consuming at the preliminary design of offshore supply vessel.

    Further developments using this techniques are currently being considered include the use of SPL-SVR to establish the surrogate models of ship resistance and manoeuvring performance,and the integration of three kinds of surrogate models with multidisciplinary design optimization in the preliminary design of offshore supply vessel.Under these circumstances the development of MDO frameworks for Offshore Supply Vessel which combines these less costly analysis metamodels with global optimization algorithms will be successful.

    Acknowledgments

    The authors wish to thank The National Natural Science Foundation of China(Grant No. 51509114),The Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012-696)and the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)for their financial support.

    [1]?züm S,■ener B,Yilmaz H.A parametric study on seakeeping assessment of fast ships in conceptual design stage[J].O-cean Engineering,2011,38(13):1439-1447.

    [2]Li Dongqin,Jiang Zhiyong,Yang Yongxiang.Multidisciplinary and multi-objective design optimization based on adaptive weighted-sum method[J].Shipbuilding of China,2012,53(4):75-83.

    [3]Leifsson L,Koziel S.Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction[J].Journal of Computational Science,2010,1(2):98-106.

    [4]Balabanov O.Development of approximations for HSCT wing bending material weight using response surface methodology [D].Dissertation Virginia Polytechnic Institute and State University,Blacksburg(VA),1997.

    [5]Zhang Guanyu,Wang Guoqiang,Li Xuefei,Ren Yunpeng.Global optimization of reliability design for large ball mill gear transmission based on the Kriging model and genetic algorithm[J].Mechanism and Machine Theory,2013,69:321-336.

    [6]Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.

    [7]Smola A J,Sch?lkopf B.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222.

    [8]Vapnik V N.Universal learning technology:Support Vector Machines[J].NEC Journal of Advanced Technology,2005,2 (2):137-144.

    [9]Yun Yeboon,Yoon Min,Nakayama H.Multi-objective optimization based on meta-modeling by using support vector regression[J].Optimization Engineer,2009,10:167-181.

    [10]Li Dongqin,Guan Yifeng,Wang Qingfeng,Chen Zhitong.Support vector regression-based multidisciplinary design optimization for ship design[C]//Proceedings of the 31th International Conference on Ocean,Offshore and Arctic Engineering,June 10-15,2012.Rio de Janeiro,Brazil,2012.

    [11]Li Dongqin,Philip A.Wilson,Guan Yifeng,Zhao Xin.An effective approximation modeling method for ship resistance in multidisciplinary ship design optimization[C]//Proceedings of the 33th International Conference on Ocean,Offshore and Arctic Engineering,June 8-13,2014.San Francisco,California,USA,2014.

    [12]Liu Zhiliang,Zuo Ming J,Xu Hongbing.Parameter selection for Gaussian radial basis function in support vector machine classification[C].Proceedings of 2012 International Conference on Quality,Reliability,Risk,Maintenance,and Safety Engineering,2012:576-581.

    [13]Doyle R,Whittaker T J T,Elasaber B.A study of fast ferry wash in shallow water[C]//FAST 2001.Southampton,2001: 90-96.

    [14]Doctors L J,Phillips S J,Day A.Focussing the wave-wash system of a high speed marine ferry[C]//FAST 2001.Southampton,2001:97-106,.

    [15]Keuning J A,Pinkster J.The effect of bow shape on the seakeeping performance of a fast monohull[C]//FAST 2001. Southampton,2001:197-212.

    [16]McKay M D,Conover W J,Beckman R J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics,1979,21(2):34-42.

    [17]Hogben N,Dacunha N,Oliver G.Global wave statistics[M].British Maritime Technology,1986.

    Philip A.WILSON(1954-),男,英國南安普頓大學(xué)流體結(jié)構(gòu)耦合研究小組教授;

    蔣志勇(1956-),男,江蘇科技大學(xué)船舶與海洋工程學(xué)院教授;

    趙 欣(1990-),女,江蘇科技大學(xué)船舶與海洋工程學(xué)院碩士生。

    一種有效近似建模方法及船舶耐波性代理模型構(gòu)建

    李冬琴1,Philip A.WILSON2,蔣志勇1,趙 欣1

    (1.江蘇科技大學(xué) 船舶與海洋工程學(xué)院,江蘇鎮(zhèn)江212003;2.南安普頓大學(xué) 工程與環(huán)境學(xué)院,流體結(jié)構(gòu)耦合研究組,英國南安普頓 SO17 1BJ)

    船舶耐波性能預(yù)報計算過程復(fù)雜,會受到諸多設(shè)計變量的影響;且采用高精度商業(yè)軟件如CFD預(yù)報船舶性能的計算代價非常高。文章采用拉丁超立方方法進行了設(shè)計空間抽樣。定義了一個新的綜合衡準指標來表達船舶耐波性能,即短期和長期作用下船舶非工作時間百分數(shù)。考慮了船舶耐波性能中的五個運動方向:橫搖、縱搖、轉(zhuǎn)艏、橫蕩和升沉。為提高船舶耐波性能計算效率,一種有效的近似建模方法—單參數(shù)Lagrangian支持向量回歸算法被用于訓(xùn)練并構(gòu)建代理模型以預(yù)報船舶耐波性能,且該算法是由作者在過去的研究工作中首次提出。以海洋平臺支援船(OSV)為例,采用SPL-SVR算法預(yù)報船舶耐波性能,并與基于NAPA計算仿真結(jié)果、人工神經(jīng)網(wǎng)絡(luò)和經(jīng)典支持向量回歸算法進行對比。該文考慮OSV的兩種速度,建立了海洋平臺支援船短期作用下非工作時間百分數(shù)的耐波性能響應(yīng)面模型,結(jié)果顯示采用SPL-SVR算法建立的船舶耐波性能響應(yīng)面模型比較適合船型初步設(shè)計的工程實際應(yīng)用,并具有較高的計算效率。

    代理模型;支持向量機;實驗設(shè)計;船舶耐波性

    U661.73

    :A

    李冬琴(1979-),女,江蘇科技大學(xué)船舶與海洋工程學(xué)院副教授;

    U661.32

    :A

    10.3969/j.issn.1007-7294.2016.03.002

    1007-7294(2016)03-0243-15

    Received date:2015-08-20

    Foundation item:Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012696); the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

    Biography:LI Dong-qin(1979-),female,associate professor,E-mail:mandy_ldq@163.com; Philip A.WILSON(1954-),male,professor.

    猜你喜歡
    南安普頓耐波性工程學(xué)院
    基于STAR-CCM+的海上風(fēng)電運維母船水動力性能分析
    廣東造船(2024年3期)2024-01-01 00:00:00
    福建工程學(xué)院
    福建工程學(xué)院
    Discuss Learner-related Factors and How These Might Influence the Process and Outcomes of Classroom Language Learning
    福建工程學(xué)院
    福建工程學(xué)院
    中國商人收購南安普頓
    300t級執(zhí)法船耐波性研究
    廣東造船(2016年4期)2016-10-26 09:22:20
    船舶耐波性安全評價及程序設(shè)計應(yīng)用
    Rapid Prototyping Technology of Tissue Engineering Scaffold
    科技視界(2014年21期)2014-08-21 02:38:06
    我的女老师完整版在线观看| 国产片特级美女逼逼视频| 秋霞在线观看毛片| 中文字幕av在线有码专区| 国产精品.久久久| 国产熟女欧美一区二区| 免费观看在线日韩| 亚洲激情五月婷婷啪啪| 日本五十路高清| 亚洲国产精品国产精品| 精品久久久久久久久久久久久| 成人美女网站在线观看视频| 日韩一区二区视频免费看| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av涩爱 | 色噜噜av男人的天堂激情| 国产高清视频在线观看网站| 最近中文字幕高清免费大全6| 好男人视频免费观看在线| 精品久久久久久久末码| 美女cb高潮喷水在线观看| 99热6这里只有精品| 国产一级毛片在线| 女的被弄到高潮叫床怎么办| 国产免费男女视频| 成人国产麻豆网| 69av精品久久久久久| 91精品国产九色| 日韩成人伦理影院| 亚洲精品成人久久久久久| 国产精品女同一区二区软件| 国产精品蜜桃在线观看 | 99在线人妻在线中文字幕| 男人的好看免费观看在线视频| 内地一区二区视频在线| 夜夜看夜夜爽夜夜摸| 国产成人91sexporn| 国产成人a∨麻豆精品| 亚洲av不卡在线观看| 在线播放无遮挡| 波多野结衣高清无吗| 色综合站精品国产| 午夜激情欧美在线| 内射极品少妇av片p| 久久人人精品亚洲av| av在线播放精品| 在线免费十八禁| 亚洲三级黄色毛片| 日日啪夜夜撸| 搡老妇女老女人老熟妇| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 高清日韩中文字幕在线| 亚洲国产色片| 亚洲无线观看免费| 亚洲乱码一区二区免费版| 最近视频中文字幕2019在线8| 美女 人体艺术 gogo| 成人午夜精彩视频在线观看| 人人妻人人澡欧美一区二区| 丝袜美腿在线中文| 国产高清三级在线| 在线观看av片永久免费下载| 一级二级三级毛片免费看| 桃色一区二区三区在线观看| 黄色视频,在线免费观看| 亚洲成人久久爱视频| 美女被艹到高潮喷水动态| 国产乱人视频| 乱人视频在线观看| 久久精品国产99精品国产亚洲性色| 欧美一级a爱片免费观看看| 久久久久久久久久成人| 久久亚洲国产成人精品v| 亚洲在久久综合| 老司机影院成人| 国产一区二区亚洲精品在线观看| 成人特级av手机在线观看| 亚洲av熟女| 毛片女人毛片| 亚洲成人久久爱视频| 日本黄色片子视频| 国产精品麻豆人妻色哟哟久久 | 欧美日韩在线观看h| 91麻豆精品激情在线观看国产| 偷拍熟女少妇极品色| 18禁裸乳无遮挡免费网站照片| a级毛色黄片| 十八禁国产超污无遮挡网站| 久久久久久久久久成人| 人妻夜夜爽99麻豆av| 日韩中字成人| 亚洲国产欧美人成| 在线观看午夜福利视频| 久久99热6这里只有精品| 亚洲在线观看片| 三级经典国产精品| 久久精品影院6| 国产美女午夜福利| 久久久久国产网址| 日韩三级伦理在线观看| 精品无人区乱码1区二区| 久久久久免费精品人妻一区二区| 国产伦精品一区二区三区视频9| 国产精品久久久久久av不卡| 啦啦啦观看免费观看视频高清| 久久热精品热| 成人午夜高清在线视频| 一本精品99久久精品77| 欧美又色又爽又黄视频| av卡一久久| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 国产精品日韩av在线免费观看| 美女 人体艺术 gogo| 搞女人的毛片| 亚洲精品色激情综合| 在线免费十八禁| 亚洲精华国产精华液的使用体验 | 99久久人妻综合| 亚洲中文字幕日韩| 99九九线精品视频在线观看视频| 国产乱人偷精品视频| 亚洲电影在线观看av| 亚洲欧洲日产国产| 99热这里只有精品一区| 黑人高潮一二区| 久久午夜亚洲精品久久| 久久亚洲国产成人精品v| 精品久久久久久久久亚洲| 中国美女看黄片| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| av在线播放精品| 中文在线观看免费www的网站| 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 国产69精品久久久久777片| 老熟妇乱子伦视频在线观看| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 欧美3d第一页| 欧美日韩一区二区视频在线观看视频在线 | 久久韩国三级中文字幕| 99热精品在线国产| 久久精品国产自在天天线| 插阴视频在线观看视频| 日韩在线高清观看一区二区三区| 日韩欧美一区二区三区在线观看| 午夜精品在线福利| 尾随美女入室| 99热只有精品国产| 一级av片app| 免费av不卡在线播放| 国产av不卡久久| 国产视频内射| av天堂中文字幕网| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 日本黄色视频三级网站网址| 久久精品综合一区二区三区| 国产乱人偷精品视频| ponron亚洲| 精品免费久久久久久久清纯| 99精品在免费线老司机午夜| 日韩精品有码人妻一区| 国产美女午夜福利| 波野结衣二区三区在线| 色综合站精品国产| 成年av动漫网址| 国产精品一区二区性色av| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 国产极品天堂在线| 男插女下体视频免费在线播放| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久亚洲| 亚洲四区av| 国产精品人妻久久久久久| 日韩精品有码人妻一区| 麻豆精品久久久久久蜜桃| 国产精品1区2区在线观看.| 哪里可以看免费的av片| 亚洲不卡免费看| 两个人的视频大全免费| 嫩草影院入口| 91精品一卡2卡3卡4卡| 国产精品av视频在线免费观看| 欧美色视频一区免费| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久 | 欧美变态另类bdsm刘玥| 丰满的人妻完整版| 男人狂女人下面高潮的视频| 永久网站在线| 69人妻影院| 国产精品麻豆人妻色哟哟久久 | 大型黄色视频在线免费观看| 插阴视频在线观看视频| 天天一区二区日本电影三级| 综合色av麻豆| 国产高清三级在线| 亚洲国产精品sss在线观看| 超碰av人人做人人爽久久| 日本黄色片子视频| 一夜夜www| 搡老妇女老女人老熟妇| av卡一久久| 色哟哟·www| 99久久精品国产国产毛片| 欧美另类亚洲清纯唯美| 久久久久久久久中文| 九九在线视频观看精品| 黄片wwwwww| 卡戴珊不雅视频在线播放| 亚洲久久久久久中文字幕| h日本视频在线播放| 久久婷婷人人爽人人干人人爱| 色播亚洲综合网| 亚洲不卡免费看| 人体艺术视频欧美日本| 国产精品,欧美在线| 99久久精品国产国产毛片| 国产成人a区在线观看| 国产精品一区二区性色av| 一边亲一边摸免费视频| 亚洲国产精品成人久久小说 | 97人妻精品一区二区三区麻豆| 国产高清有码在线观看视频| 国产一级毛片在线| 国产毛片a区久久久久| 国产精品久久久久久精品电影| 国产亚洲av嫩草精品影院| 国产高清三级在线| 日本黄大片高清| 国产一区二区在线av高清观看| 狂野欧美白嫩少妇大欣赏| 欧美日本视频| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| 亚洲欧美精品综合久久99| www.av在线官网国产| 一区福利在线观看| 在线观看午夜福利视频| 国产成人精品一,二区 | 亚洲最大成人手机在线| 日韩欧美国产在线观看| 久久精品91蜜桃| 长腿黑丝高跟| 最近2019中文字幕mv第一页| 国产精品不卡视频一区二区| 国产一区二区三区av在线 | 亚洲最大成人中文| www.色视频.com| 久久九九热精品免费| 天堂av国产一区二区熟女人妻| 男人舔奶头视频| 国产精品爽爽va在线观看网站| 啦啦啦啦在线视频资源| 国产精品乱码一区二三区的特点| 免费不卡的大黄色大毛片视频在线观看 | 91精品国产九色| 老熟妇乱子伦视频在线观看| 久久精品国产清高在天天线| 久久久色成人| 日韩一区二区视频免费看| 日本五十路高清| 一区二区三区四区激情视频 | 男女做爰动态图高潮gif福利片| 在线观看午夜福利视频| 欧美一级a爱片免费观看看| 欧美+亚洲+日韩+国产| 国产黄色小视频在线观看| 久久精品国产亚洲av天美| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 99久久精品一区二区三区| 久久久久久伊人网av| 国产精品久久久久久久久免| 国产三级中文精品| 简卡轻食公司| 我的老师免费观看完整版| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av涩爱 | 久久久久久久久久成人| 精品国产三级普通话版| 97热精品久久久久久| 亚洲图色成人| 国产成人精品久久久久久| 丰满乱子伦码专区| 国产一级毛片在线| 亚洲色图av天堂| 丰满人妻一区二区三区视频av| 亚洲精品国产av成人精品| 啦啦啦韩国在线观看视频| 亚洲乱码一区二区免费版| 嫩草影院入口| 欧美最黄视频在线播放免费| 久久久午夜欧美精品| 免费搜索国产男女视频| 黄色欧美视频在线观看| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区成人| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜福利久久久久久| 国产一区亚洲一区在线观看| 精品无人区乱码1区二区| 老熟妇乱子伦视频在线观看| 久久久久久久久久黄片| 国产黄色视频一区二区在线观看 | 老熟妇乱子伦视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 中文亚洲av片在线观看爽| 久久久久久国产a免费观看| 国产一级毛片在线| 高清午夜精品一区二区三区 | 国产免费男女视频| 日本免费a在线| 免费av观看视频| 麻豆国产97在线/欧美| 天堂网av新在线| 亚洲一级一片aⅴ在线观看| 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 老司机福利观看| 精品人妻视频免费看| 99热全是精品| 欧美日本亚洲视频在线播放| 精品无人区乱码1区二区| 22中文网久久字幕| 久99久视频精品免费| 亚洲一区二区三区色噜噜| 午夜老司机福利剧场| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 亚洲成av人片在线播放无| 亚洲精品成人久久久久久| 长腿黑丝高跟| 国产爱豆传媒在线观看| 中文精品一卡2卡3卡4更新| 亚洲高清免费不卡视频| 日本免费a在线| 高清在线视频一区二区三区 | 一卡2卡三卡四卡精品乱码亚洲| 1000部很黄的大片| 一级毛片久久久久久久久女| 99久久成人亚洲精品观看| 午夜福利高清视频| 亚洲av熟女| 国产欧美日韩精品一区二区| 日韩精品有码人妻一区| 国产美女午夜福利| 亚洲经典国产精华液单| 国国产精品蜜臀av免费| 国内久久婷婷六月综合欲色啪| 波多野结衣高清无吗| 99riav亚洲国产免费| 亚洲无线观看免费| 亚洲国产欧美在线一区| 99热6这里只有精品| 又粗又爽又猛毛片免费看| 熟女人妻精品中文字幕| 99国产极品粉嫩在线观看| 99热全是精品| 成人三级黄色视频| 亚洲久久久久久中文字幕| 热99在线观看视频| 天堂影院成人在线观看| 国产精品免费一区二区三区在线| 久久久精品大字幕| 国产一区二区激情短视频| av专区在线播放| 国产一区二区在线av高清观看| av专区在线播放| 久久久久久国产a免费观看| 午夜视频国产福利| 免费看美女性在线毛片视频| 岛国毛片在线播放| 97热精品久久久久久| 人体艺术视频欧美日本| 日韩亚洲欧美综合| 国产精品综合久久久久久久免费| 一级黄片播放器| 蜜臀久久99精品久久宅男| 国产精品一二三区在线看| 人人妻人人澡欧美一区二区| 晚上一个人看的免费电影| 国产一区二区三区av在线 | 国产成年人精品一区二区| 成人美女网站在线观看视频| 少妇的逼好多水| 午夜视频国产福利| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放 | 亚洲人成网站在线播| 精品国产三级普通话版| 久久久a久久爽久久v久久| 国产成年人精品一区二区| 亚洲三级黄色毛片| 舔av片在线| 国产伦一二天堂av在线观看| 两个人视频免费观看高清| www.av在线官网国产| 亚洲精品影视一区二区三区av| 国产高清不卡午夜福利| 1024手机看黄色片| 波多野结衣高清无吗| 一进一出抽搐动态| 婷婷精品国产亚洲av| 嫩草影院新地址| 99热这里只有是精品50| 久久欧美精品欧美久久欧美| 少妇猛男粗大的猛烈进出视频 | 国产色婷婷99| 国产蜜桃级精品一区二区三区| 国产单亲对白刺激| 久久精品人妻少妇| 毛片女人毛片| 国产精品一区二区在线观看99 | 小蜜桃在线观看免费完整版高清| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 日本五十路高清| 亚洲欧美日韩高清专用| 此物有八面人人有两片| 欧美成人免费av一区二区三区| 99久久精品热视频| 99热精品在线国产| 我要搜黄色片| 一级黄色大片毛片| 欧美色视频一区免费| 国产三级中文精品| 人妻久久中文字幕网| 亚洲综合色惰| av专区在线播放| 黄色视频,在线免费观看| 久久鲁丝午夜福利片| 中国美女看黄片| 国产免费一级a男人的天堂| 最近的中文字幕免费完整| 国产精品福利在线免费观看| 欧美高清性xxxxhd video| 久久中文看片网| 啦啦啦韩国在线观看视频| 听说在线观看完整版免费高清| 人妻制服诱惑在线中文字幕| 最近手机中文字幕大全| 亚洲精品自拍成人| 中文字幕免费在线视频6| 高清日韩中文字幕在线| 精品久久久久久久人妻蜜臀av| 在线观看美女被高潮喷水网站| h日本视频在线播放| 99久国产av精品国产电影| 又粗又爽又猛毛片免费看| 免费看日本二区| 免费av毛片视频| 99久久九九国产精品国产免费| 欧美成人a在线观看| 免费观看在线日韩| 人妻系列 视频| 26uuu在线亚洲综合色| 观看免费一级毛片| 国产一区二区三区在线臀色熟女| 99久久九九国产精品国产免费| 亚洲欧美清纯卡通| 日韩精品青青久久久久久| 国产精品久久久久久久久免| 日韩欧美三级三区| 久久亚洲国产成人精品v| 卡戴珊不雅视频在线播放| 永久网站在线| 欧美丝袜亚洲另类| 成人国产麻豆网| 欧美一级a爱片免费观看看| 激情 狠狠 欧美| 国产毛片a区久久久久| 禁无遮挡网站| 日本五十路高清| 亚洲不卡免费看| 99在线人妻在线中文字幕| 成人永久免费在线观看视频| 亚洲精品久久国产高清桃花| 男人舔奶头视频| 亚洲人成网站在线播| 亚洲国产欧美在线一区| 欧美激情国产日韩精品一区| 亚洲欧美清纯卡通| 免费看a级黄色片| 色尼玛亚洲综合影院| 一边亲一边摸免费视频| 少妇熟女aⅴ在线视频| 国产精华一区二区三区| 2021天堂中文幕一二区在线观| 久久精品国产亚洲av天美| 精品久久久久久久久av| 少妇熟女aⅴ在线视频| 国产精华一区二区三区| 久久人人精品亚洲av| 高清在线视频一区二区三区 | 日韩av在线大香蕉| 99久久久亚洲精品蜜臀av| 久久草成人影院| 日韩三级伦理在线观看| 成人永久免费在线观看视频| 男人的好看免费观看在线视频| 欧美又色又爽又黄视频| 国产av一区在线观看免费| 亚洲精品粉嫩美女一区| 少妇熟女aⅴ在线视频| 日本欧美国产在线视频| 中文欧美无线码| 国产乱人偷精品视频| 欧美性猛交黑人性爽| 成年版毛片免费区| 国产黄色视频一区二区在线观看 | 欧美成人a在线观看| 国产爱豆传媒在线观看| 亚洲久久久久久中文字幕| 国产黄a三级三级三级人| 免费看光身美女| 卡戴珊不雅视频在线播放| 久久久久久久久久久免费av| 国产精品女同一区二区软件| 在现免费观看毛片| 网址你懂的国产日韩在线| 卡戴珊不雅视频在线播放| 久久久久久久久久久免费av| 色播亚洲综合网| av天堂中文字幕网| 插阴视频在线观看视频| 久久精品91蜜桃| 国产片特级美女逼逼视频| 22中文网久久字幕| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 亚洲成人中文字幕在线播放| 精品久久久久久成人av| 日韩欧美一区二区三区在线观看| 久久精品国产鲁丝片午夜精品| 高清日韩中文字幕在线| 欧美一级a爱片免费观看看| 麻豆国产97在线/欧美| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 伊人久久精品亚洲午夜| 99久久无色码亚洲精品果冻| av天堂中文字幕网| 免费观看的影片在线观看| 亚洲成人久久性| 精品无人区乱码1区二区| 亚洲精品日韩av片在线观看| 欧美成人精品欧美一级黄| 久久精品国产清高在天天线| 国产伦在线观看视频一区| 99久国产av精品国产电影| 亚洲精品成人久久久久久| 国产av麻豆久久久久久久| 99久久无色码亚洲精品果冻| 此物有八面人人有两片| 老师上课跳d突然被开到最大视频| 成人漫画全彩无遮挡| 欧美日韩一区二区视频在线观看视频在线 | 亚洲图色成人| 成人漫画全彩无遮挡| 精品熟女少妇av免费看| 蜜桃亚洲精品一区二区三区| 麻豆国产97在线/欧美| 免费av不卡在线播放| 亚洲成a人片在线一区二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲一区高清亚洲精品| 亚洲av成人av| 一个人看的www免费观看视频| 久久久久性生活片| 国产精品国产三级国产av玫瑰| 熟妇人妻久久中文字幕3abv| 国产真实乱freesex| 久久99热这里只有精品18| 尾随美女入室| 日韩亚洲欧美综合| 热99在线观看视频| 日韩成人伦理影院| 久久久久网色| 国产蜜桃级精品一区二区三区| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清专用| 搡女人真爽免费视频火全软件| 久久亚洲国产成人精品v| 在现免费观看毛片| 久久这里只有精品中国| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影小说 | 亚洲熟妇中文字幕五十中出| 白带黄色成豆腐渣| 久久99热6这里只有精品| 久久精品影院6| 一级黄色大片毛片| 嘟嘟电影网在线观看| 欧美一区二区国产精品久久精品| 在线天堂最新版资源| 国产精品蜜桃在线观看 | 啦啦啦观看免费观看视频高清| 欧美成人a在线观看| 亚洲成人精品中文字幕电影| 日韩一区二区视频免费看| 久久久久九九精品影院| eeuss影院久久| 国产精品人妻久久久久久| 日韩亚洲欧美综合| 色综合亚洲欧美另类图片| 特级一级黄色大片|