• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Load-Compression Relationships of Bonded Rubber Ring

    2016-05-16 02:42:08,
    船舶力學(xué) 2016年3期
    關(guān)鍵詞:振華上海交通大學(xué)重工

    ,

    (1 Offshore Heavy Industries Design&Research Institute,Shanghai Zhenhua Heavy Industry Co.,Ltd.,Shanghai 200125, China;2 School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240, China)

    Load-Compression Relationships of Bonded Rubber Ring

    ZHENG Yi-kan1,ZHANG Shi-lian2

    (1 Offshore Heavy Industries Design&Research Institute,Shanghai Zhenhua Heavy Industry Co.,Ltd.,Shanghai 200125, China;2 School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240, China)

    Bonded rubber rings are widely used in many engineering domains to buffer the impact.In general,accurate load-deformation relationships are required in these applications.However,previous researches merely discussed the cylindrical rubber pad rather than the rubber ring.Besides,few of them are based on continuum mechanics theory.In this paper,the load-compression relationships of the bonded incompressible rubber ring are derived for three boundary conditions.The Mooney-Rivlin material is considered and the derivation is based on continuum mechanics theory.The results calculated by the derived formulae are compared with the FEM solutions and proved to have adequate accuracy for various shape factors and materials,even in the finite strain.The typical load-compression curves of the rubber rings are also presented and the characteristic of the compression stiffness in different boundaries are discussed.

    load-compression relationship;rubber ring;mooney-rivlin;boundary condition; finite strain

    0 Introduction

    Bonded rubber rings are widely used in many engineering domains to buffer the impact. LMU(Leg Mating Units)is a good example of its application,which is used in the float-over installations on the sea.As shown in Fig.1,the rubber rings are bonded between metal plates to provide higher compression stiffness.The rigid center cylinder,such as a cast tubular member,is often set inside the rubber ring to prevent the instability of stacked elastomeric pads and spacer plates[1].On this occasion,rubber rings are preferred than circular rubber pads.

    In general,accurate load-deformation relationships are required in these applications.The in-depth theoretical mechanical analysis of the compression performance will provide an important reference for the engineers,especially in the early stages of the design.Many researchers have put in the effort to this issue.Gent,Lindley and Meinecke[2-3]first derived the compressive stiffness of the incompressible elastic layer bonded between rigid plates for infinite-strip,circular pads and other shapes.Kelly et al[4-7]developed a theoretical approach andtook the effect of bulk compressibility into consideration.Koh and Kelly[8]abandoned the stress assumption and derived the compression stiffness of the bonded square layer using only the kinematic assumptions.Tsai and Lee[9]derived the compression stiffness of va-rious shaped rubber layers without limitation on the values of Poisson’s ratio.Whereafter,simplified forms of those formulae are given[10]. Furthermore,Lindley[11]derived a load-compression relationship for the circular rubber pad. Hill[12]derived partial solutions of finite elasticity for various situations based on the incompressible Mooney-Rivlin material with certain limiting condition.

    However,none of above researches has given a discussion about the rubber ring and most of them are based on linear elastic theory.In this paper,the load-compression relationships of the bonded incompressible rubber ring are derived for three boundary conditions,i.e.,when the inner surface is restrained,when the outer surface is restrained and when both surfaces are free.The kinematic assumptions mentioned above are adopted:(i)Planes parallel to the rigid bounding plates remain plane and parallel;(ii)Lines normal to the rigid bounding plates before deformation become parabolic after loading[8].The Mooney-Rivlin material is considered and the derivation is based on continuum mechanics theory.The results calculated by the derived formulae are compared with the FEM solutions.The typical load-compression curves of the rubber rings are also presented and the characteristic of the compression stiffness in different boundaries are discussed.

    Fig.1 Rubber ring bonded between rigid plates

    1 Inner surface restrained

    Fig.2 Undeformed and deformed configurations of the rubber ring when the inner surface is restrained

    The first situation in consideration is when the inner surface of the rubber ring is restrained in both radial direction and circumferential direction.This is an extreme case when arigid column with a same diameter as the inner diameter of the rubber ring is set up.The rubber ring is assumed as homogeneous,isotropic and incompressible.The undeformed and deformed configurations of the rubber ring under compressive load in this situation are shown in Fig.2,as well as the material coordinates(R,Θ,Z)and spatial coordinates(r,h,z).The inner and outer radii are RB0and RA0,respectively.The origin points are located in the center and the mid-height of the rubber ring.The transformation relations between these coordinates are as follows considering two kinematic assumptions:planes parallel to the rigid plates remain plane and parallel and vertical lines become parabolic.

    The inverse transformation is:

    where λ is the length ratio in z direction and α0is the relative extension in radial direction at the mid-height of the rubber ring,regarded as the first order small quantity.

    From the incompressible condition,ignoring the second order small quantities,α0is:

    where η is defined as RB0/R.

    The covariant and contravariant components of the metric tensor of the material and spatial cylindrical coordinates,denoted as GAB,GAB,gij,gij,respectively,are as follows:

    Denoting the material and spatial coordinates bythe deformation gradient F is written as:

    where giand GAare covariant base vectors ofand reciprocal base vectors ofrespectively.The left Cauchy-Green deformation tensor is[13]:

    The inverse of B is:

    where cijcan be calculated by the following equation:

    Now define three parameters:

    Then equations(1)and(4)turn to be:

    Utilizing Eqn(8)through Eqn(19),we can get the contravariant components of B and B-1:

    The Cauchy stress tensor of the incompressible hyperelastic material can be expressed by[13]:

    where I is the metric tensor of{xi};p is the unknown hydrostatic pressure;ψ1and ψ2are the partial derivatives of the potential function with respect to the first invariant I1and second invariant I2of B,respectively.That is,

    For the incompressible Mooney-Rivlin material,

    where C1and C2are two material parameters.

    Utilizing Eqn(20)through Eqn(25)and ignoring the second order small quantities,the nonzero physical components of the Cauchy stress tensor are:

    Consider the equilibrium equation in r direction and the boundary condition:

    where f1is equal to zero;r0is the outer radius of the rubber ring after deformation,which is a function of z.

    From equations(26)through(29),we obtain:Since α,β and γ are all first order small quantities,by neglecting the second order small quantities,equations(32)and(33)become:

    Substituting equations(34),(35)and(17)to Eqn(30),we have:

    Integrating Eqn(36)from r to r0and utilizing the boundary condition Eqn(31),we have:

    In the above integration,the itemsare treated as constant.Although in fact they are functions of r,this treatment will not induce obvious error because α and γ are the first order small quantities.

    From equations(26)and(28),

    It will become the following equation by neglecting the second order small quantities:

    The effective compression modulus is,on average of the volume,defined as:

    where the integral variable z has been transformed to Z to simplify the form of the integral and d is the compression displacement,which equalshere.

    Substituting equations(37)and(39)into Eqn(40),Ec1becomes:

    Using Taylor’s series,it can be proved readily that the mean value of the polynomial ofin Z direction equals the polynomial of the mean value ofand the error is the second order small quantity,namely:

    where k is an integer.This derivation also holds forAs a consequence,the integral in Eqn(41)can be calculated approximately as:

    Therefore,

    Utilizing Eqn(7)and Eqn(14),the mean valuein the whole volume can be derived:

    Similarly,

    Substituting Eqn(44)through Eqn(47)into Eqn(43),the effective compression modulusis obtained.

    2 Outer surface restrained

    The second situation is when the outer surface of the rubber ring is restrained.This is an extreme case when a rigid sleeve with the same diameter as the outer diameter of the rubber ring exists.The undeformed and deformed configurations of the rubber ring under compressive load in this situation are shown in Fig.3.The inner and outer radii are RC0and RB0,respectively.It is similar with the situation in the previous section except the outer and inner surface switch roles.

    Fig.3 Undeformed and deformed configurations of the rubber ring when the outer surface is restrained

    From Fig.3,the transformation relation between r and R changes to:

    Meanwhile,from the incompressible condition,α0changes to:

    where η is defined as RB0/R.Take advantage of these equations,we can derive the transformation relation with the same form as in Chapter 1:

    Further,it is apparently all other transformation relations are the same as those in section 2.Using the same method in Chapter 1,identical equations from Eqn(8)through Eqn(36) can be gotten.The only difference is that r0represents the inner radius of the rubber ring after deformation.Then,similar with equations(37)and(43),the stress component in the radial direction is:and the effective compression modulus is:

    3 Outer and inner surfaces free

    Fig.4 Undeformed and deformed configurations of the rubber ring when the outer and inner surfaces are free

    The last situation is when the outer and inner surfaces of the rubber ring are free.The undeformed and deformed configurations of the rubber ring under compressive load in this situation are shown in Fig.4.The extensions in radial direction at the mid-height of the outer surface and inner surface are RA0α0′and RC0α0″,respectively,where RA0is the outer radius and RB0is the inner radius.

    This issue can be solved using the results achieved already.As shown in Fig.4,the rubber ring can be divided into two parts,separating by an imaginary neutral cylinder surface.This surface is assumed to keep unchanged in radial direction and circumferential direction during the deformation.In this way,the outer and inner parts become rubber rings as described in Chapter 1 and Chapter 2,whose effective compression modulus are already known.The only problem is the radius of the neutral surface RB0is not known yet.To determine RB0,let Eqn (37)equals Eqn(51)on average of the height and neglect the small quantities in the equation for simplification,i.e.,letand λ equal 1;let rA0equal RA0,rC0equal RC0and r equal RB0.Then we can get the following formula for RB0:

    Substituting Eqn(57)into equations(43)and(52),we can get the effective compression modulus of the outer and inner parts of the rubber ring,i.e.,EC1and EC2.These two parts are parallelly connected.The total effect of the whole rubber ring is:

    4 FEM solutions and discussion

    The load-compression curves in the three situations from equations(43),(52)and(58) were compared with the solutions of the nonlinear FEM program Abaqus.The FEM analysis used axisymmetric models and implicit algorithm.The hybrid stress element CAX4RH was adopted to avoid volumetric locking.The materials are all incompressible Mooney-Rivlin types, including four sets of representative material parameters as shown in Tab.1,indicated by Mat-1 through Mat-4.To evaluate these formulae as thoroughly as possible,a series of rubber rings with different geometric dimensioning are checked.These rubber rings contain five shape factors and three diameter ratios,as in Tab.2,and with the same outer radius RA0=200 mm.Here, the shape factor S is defined traditionally as RA0/2h,and η0is the ratio of the inner radius to the outer radius.Taking the three boundary conditions into consideration,180 models were calculated in total.The rubber rings are compressed until the free surface is about to contact with the rigid plates.The maximal compression strain is 0.18.

    Tab.1 Material parameters used in the calculation

    Tab.2 Geometric dimensioning of the rubber rings

    Fig.5 through Fig.7 plot three typical load-compression curves for Mat-1.Similar results are found in other cases and the charts are omitted.It is seen from these figures that:(i)The results of all the three formulae derived in this paper fit very well with the FEM calculation; (ii)The effective compression modulus Ecincreases obviously with compression;(iii)Ecvaries quite considerably in different boundary conditions.When the outer surface is restrained,the value is much higher than the one when the inner surface is restrained,and it reaches the minimum when both the surfaces are free.As a consequence,for the rubber rings with a rigid center cylinder,the vertical stiffness may have significant change during compression,depending on the diameters of the rubber inner surface and the center cylinder.If the diameters are close,at first the compression modulus can be gained by Eqn(58).With the increasing of compression,the inner surface could contact with the center cylinder,which makes the situation more like that described in Chapter 1 and leads a much higher vertical stiffness.This phenomenon deserves to be noticed in the design stage.

    Fig.5 Load-deformation curves for Mat-1,S=1,RB0/RA0=1/2,inner surface restrained

    Fig.6 Load-deformation curves for Mat-1,S=1,RB0/RA0=1/2,outer surface restrained

    Fig.7 Load-deformation curves for Mat-1,S=2,RB0/RA0=1/2,outer and inner surfaces free

    For the better discussion of the results,a new shape factor which describes the aspect ratio of the rubber ring’s cross section is defined as:

    Fig.8 Absolute value error of Ecfor Mat-1 at maximum compression,inner surface restrained

    Fig.9 Absolute value error of Ecfor Mat-1 at maximum compression,outer surface restrained

    Fig.10 Absolute value error of Ecfor Mat-1 at maximum compression,outer and inner surfaces free

    The absolute value errors of Ecat the maximum compression of Mat-1 are plotted in Fig.8 trough Fig.10.The other materials have the similar results,which are tabulated in Tab.3 through Tab.5.From these figures and tables,we can see that equations(43),(52)and(58)show very good accuracy in most cases.In general,when S′is larger than 1.0 for Eqn(43),and larger than 2.0 for equations(52)and(58),the error is less than 3 percent in most cases.There is one exception yet.It is shown the error of Eqn(52)is sensitive to the ratio of the inner radius to the outer radius,which becomes apparent when η equals 1/4.However,the error drops quickly with the decrease of λ,i.e.,the initial stiffness obtained by Eqn(52)is in fact very accurate.The main reason is that the average processing is applied for some terms to get EC. When the outer surface is restrained,the rubber ring is harder to be compressed than in other situations and small change of λ will bring a relative large change ofIn this way,the error is induced.In the termof Eqn(52),this error is further magnified by the square and the coefficientwhich is much larger thanin Eqn(43). As a consequence,the error may reach 10 percent when η is small.It is suggested Eqn(52) be modified to consider this error source as follows,i.e.,use the mean value in the whole volume rather than the mean value in z for1+( )α in the above term.

    Using Eqn(60)instead of Eqn(52),the absolute value errors of Ecat the maximum compression are tabulated in Tab.6.The accuracy is very good for all cases as long as S′≥2.0.

    Tab.3 Absolute value errors of Ecfor Mat-2 at maximum compression

    Tab.4 Absolute value errors of Ecfor Mat-3 at maximum compression

    Tab.5 Absolute value errors of Ecfor Mat-4 at maximum compression

    Tab.6 Absolute value errors of Ecfor Eqn(60)at maximum compression

    From the above discussing,it is recommended in general that Eqn(43)be used for S′≥1.0,and equations(60)and(58)be used for S′≥2.0.This range is sufficient for most engineering applications and the formulae will provide a good approximation to Ecof the rubber ring.

    5 Conclusions

    The load-compression relationships of the incompressible rubber ring bonded between rigid plates are derived in this paper.The relationships are based on two kinematics assumptions.The hyper-elastic Mooney-Rivlin type material is considered and the derivation complies with the theory of continuum mechanics.Three boundary conditions are considered in the deriva-tion,i.e.,when the inner surface is restrained,when the outer surface is restrained and when both surfaces are free.

    The theoretical solutions are obtained.The comparison with the FEM results shows these proposed formulae has a very good accuracy in predicting the behavior of the bonded rubber ring with various shape factors,even in the finite strain.The typical load-compression curves of the rubber rings are also presented and the characteristics of the compression stiffness in different boundaries are discussed.

    [1]Yuan R H,Wang A M,et al.Design considerations of leg mating units for floatover installations[C]//ISOPE,Proceedings of the Twenty-second(2012)International Offshore and Polar Engineering Conference.Greece,ISOPE,2012: 1091-1098.

    [2]Gent A N,Lindley P B.The compression of bonded rubber blocks[J].Proceeding of the Institution of Mechanical Engineers,1959,173:111-117.

    [3]Gent A N,Meinecke E A.Compression,bending and shear of bonded rubber blocks[J].Polymer Engineering and Sciences,1970,10:48-53.

    [4]Kelly J M.Earthquake-resistant design with rubber[M].London:Springer,1993.

    [5]Chalhoub M S,Kelly J M.Analysis of infinite-strip-shaped base isolator with elastomer bulk compression[J].Journal of Engineering Mechanics ASCE,1991,117:1791-1805.

    [6]Chalhoub M S,Kelly J M.Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings[J].International Journal of Solids and Structures,1990,26:734-760.

    [7]Koh C G,Kelly J M.Effects of axial load on elastomeric isolation bearings[R].Report no.UCB/EERC-86/12,Berkeley: Earthquake Engineering Research Center,University of California,1987.

    [8]Koh C G,Kelly J M.Compression stiffness of bonded square layers of nearly incompressible material[J].Engineering Structures,1989,11:9-15.

    [9]Tsai H C,Lee C C.Compressive stiffness of elastic layers bonded between rigid plates[J].International Journal of Solids and Structures,1998,35:3053-3069.

    [10]Tsai H C,Pai W J.Simplified stiffness formulae for elastic layers bonded between rigid plates[J].Engineering Structures, 2003,25:1443-1454.

    [11]Lindley P B.Load-compression relationships of rubber units[J].J Strain Anal.,1966,1:190-195.

    [12]Hill J M.A review of partial solutions of finite elasticity and their applications[J].International Journal of Non-Linear Mechanics,2001,36:447-463.

    [13]Huang Z P.Fundamentals of continuum mechanics[M].Beijing:Higher Education Press,2011.

    粘結(jié)橡膠環(huán)的載荷—壓縮關(guān)系

    鄭軼刊1,張世聯(lián)2

    (1上海振華重工(集團(tuán))股份有限公司,海上重工設(shè)計研究院,上海200125;2上海交通大學(xué)船舶海洋與建筑工程學(xué)院,上海 200240)

    粘結(jié)橡膠環(huán)在很多工程領(lǐng)域被廣泛應(yīng)用于緩沖沖擊。這些應(yīng)用一般都要求掌握橡膠墊準(zhǔn)確的載荷壓縮關(guān)系。但以往的研究僅討論了橡膠柱體而忽略了橡膠環(huán),而且僅少數(shù)研究是基于連續(xù)介質(zhì)力學(xué)理論的。文章推導(dǎo)了剛性板間不可壓縮橡膠環(huán)在三種邊界條件下的載荷—壓縮關(guān)系,考慮了Mooney-Rivlin材料,并基于連續(xù)介質(zhì)力學(xué)理論進(jìn)行了推導(dǎo)。文中將推導(dǎo)公式的計算結(jié)果與有限元計算結(jié)果進(jìn)行了比較,證明了這些公式有足夠的精度,適用于各種形狀系數(shù)和材料參數(shù),在有限應(yīng)變下仍然適用。最后,文中還給出了典型橡膠環(huán)的載荷—壓縮曲線,并對不同邊界條件下的壓縮剛度特性進(jìn)行了討論。

    載荷—壓縮關(guān)系;橡膠環(huán);Mooney-Rivlin;邊界條件;有限應(yīng)變

    O342

    :A

    鄭軼刊(1983-),男,上海振華重工(集團(tuán))股份有限公司,海上重工設(shè)計研究院博士,通訊作者;

    O342

    A

    10.3969/j.issn.1007-7294.2016.03.012

    1007-7294(2016)03-0363-17

    張世聯(lián)(1952-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    Received date:2015-07-18

    Biography:ZHENG Yi-kan(1983-),male,Ph.D.,E-mail:zykorzht@sjtu.edu.cn;

    ZHANG Shi-lian(1952-),male,professor/tutor.

    猜你喜歡
    振華上海交通大學(xué)重工
    山金重工有限公司
    黃金(2023年12期)2023-12-21 05:37:40
    家住西安
    上海交通大學(xué)
    電氣自動化(2022年2期)2023-01-07 03:51:56
    三一重工股份有限公司
    中國公路(2020年16期)2020-10-14 06:33:40
    三一重工股份有限公司
    中國公路(2020年9期)2020-05-26 08:17:12
    上海交通大學(xué)參加機(jī)器人比賽
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    “杯”慘
    現(xiàn)代重工獲2艘VLGC訂單
    廣東造船(2013年5期)2013-04-29 00:44:03
    《疾風(fēng)圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    久久这里有精品视频免费| 成人性生交大片免费视频hd| 亚洲精品国产成人久久av| 青春草亚洲视频在线观看| 免费看美女性在线毛片视频| 久久婷婷人人爽人人干人人爱| 国产精品日韩av在线免费观看| 免费大片18禁| 男人的好看免费观看在线视频| 成人午夜高清在线视频| 91久久精品国产一区二区成人| 男人的好看免费观看在线视频| 欧美xxxx性猛交bbbb| 真实男女啪啪啪动态图| 黄色一级大片看看| 永久网站在线| 国产熟女欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人午夜福利电影在线观看| 又黄又爽又刺激的免费视频.| 黄色一级大片看看| 国产精品无大码| 久久久久久久久大av| 国产一区二区在线av高清观看| 一个人免费在线观看电影| 精品久久国产蜜桃| 永久网站在线| 国产精品三级大全| 国产午夜精品久久久久久一区二区三区| 悠悠久久av| 久久精品91蜜桃| 欧美激情久久久久久爽电影| 国产午夜精品论理片| 国产91av在线免费观看| 国产精品一二三区在线看| 一进一出抽搐动态| 国产成人影院久久av| 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区亚洲| 国产精品爽爽va在线观看网站| 国产男人的电影天堂91| 精品一区二区免费观看| 我的女老师完整版在线观看| 免费观看a级毛片全部| 国产三级在线视频| 国产一区二区三区av在线 | 自拍偷自拍亚洲精品老妇| 中文字幕av在线有码专区| 国产色爽女视频免费观看| 又爽又黄无遮挡网站| 国产国拍精品亚洲av在线观看| 日本免费一区二区三区高清不卡| 日韩成人av中文字幕在线观看| 国国产精品蜜臀av免费| 99热网站在线观看| 免费看a级黄色片| 波野结衣二区三区在线| 99热精品在线国产| 久久久a久久爽久久v久久| 精品久久久久久成人av| 国产一级毛片在线| 性欧美人与动物交配| 午夜激情欧美在线| 国产人妻一区二区三区在| 免费电影在线观看免费观看| 麻豆久久精品国产亚洲av| 在线天堂最新版资源| 免费av不卡在线播放| 欧美又色又爽又黄视频| 波多野结衣高清作品| 91在线精品国自产拍蜜月| 国产精品一区www在线观看| 直男gayav资源| 91狼人影院| av在线亚洲专区| 在线观看免费视频日本深夜| 国产乱人视频| 九色成人免费人妻av| 亚洲精品影视一区二区三区av| 久久精品夜色国产| 精品国内亚洲2022精品成人| 久久久久久九九精品二区国产| avwww免费| 色综合站精品国产| 1024手机看黄色片| 啦啦啦啦在线视频资源| 久久久久久久久久久免费av| 亚洲精品自拍成人| 久久精品影院6| 免费大片18禁| 午夜久久久久精精品| 欧美日本视频| 男的添女的下面高潮视频| 在线观看一区二区三区| 亚洲精品久久国产高清桃花| 国模一区二区三区四区视频| 国模一区二区三区四区视频| 村上凉子中文字幕在线| 日本黄大片高清| 悠悠久久av| 91av网一区二区| 亚洲欧美日韩无卡精品| 免费不卡的大黄色大毛片视频在线观看 | 两个人视频免费观看高清| 亚洲内射少妇av| 中国国产av一级| 国产黄色小视频在线观看| 一级毛片我不卡| 亚洲一级一片aⅴ在线观看| 亚洲无线在线观看| 精品午夜福利在线看| 精品久久国产蜜桃| 亚洲av熟女| 综合色丁香网| 国产一区二区三区在线臀色熟女| 我要看日韩黄色一级片| 好男人视频免费观看在线| 天天躁日日操中文字幕| 99riav亚洲国产免费| 日本爱情动作片www.在线观看| 欧美一区二区亚洲| 国产精品福利在线免费观看| 国产免费男女视频| 人妻制服诱惑在线中文字幕| 欧美激情国产日韩精品一区| 日韩在线高清观看一区二区三区| 嘟嘟电影网在线观看| 如何舔出高潮| 亚洲成a人片在线一区二区| 一级二级三级毛片免费看| 久久人人爽人人爽人人片va| 床上黄色一级片| 国产精品女同一区二区软件| 非洲黑人性xxxx精品又粗又长| 校园春色视频在线观看| 天天一区二区日本电影三级| 久久精品国产自在天天线| 国产精品女同一区二区软件| 少妇熟女欧美另类| 精品久久久久久久久久久久久| 成人亚洲欧美一区二区av| eeuss影院久久| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 97超碰精品成人国产| 国产高潮美女av| 草草在线视频免费看| 久久久久久国产a免费观看| 精品久久久久久久末码| 蜜桃亚洲精品一区二区三区| 人人妻人人澡人人爽人人夜夜 | 国产精品嫩草影院av在线观看| 一级黄片播放器| 成人性生交大片免费视频hd| av女优亚洲男人天堂| 亚洲丝袜综合中文字幕| 热99在线观看视频| 亚洲人与动物交配视频| 精品不卡国产一区二区三区| 免费看美女性在线毛片视频| 十八禁国产超污无遮挡网站| 深夜a级毛片| 插阴视频在线观看视频| 少妇熟女欧美另类| 亚洲av二区三区四区| 免费观看a级毛片全部| 舔av片在线| 日韩亚洲欧美综合| 国产探花在线观看一区二区| 一级黄色大片毛片| 亚洲综合色惰| 少妇人妻精品综合一区二区 | 91午夜精品亚洲一区二区三区| 色尼玛亚洲综合影院| 久久99热6这里只有精品| 99久久精品国产国产毛片| 哪里可以看免费的av片| 中文精品一卡2卡3卡4更新| 欧美性感艳星| 国产黄a三级三级三级人| 国产一区二区在线av高清观看| 国产高清视频在线观看网站| 美女黄网站色视频| 一边亲一边摸免费视频| 热99在线观看视频| 久久精品国产自在天天线| 国产成年人精品一区二区| 哪里可以看免费的av片| 成年女人永久免费观看视频| 一夜夜www| 亚洲av一区综合| 国产成人福利小说| 精品久久久久久久久亚洲| 亚洲真实伦在线观看| 久久久成人免费电影| 97人妻精品一区二区三区麻豆| avwww免费| 免费看a级黄色片| 有码 亚洲区| 可以在线观看的亚洲视频| 免费人成在线观看视频色| 国产成人精品久久久久久| 亚洲自偷自拍三级| 国产成人aa在线观看| 99热这里只有精品一区| 一进一出抽搐gif免费好疼| 国产亚洲91精品色在线| 国产黄色视频一区二区在线观看 | 卡戴珊不雅视频在线播放| 成人二区视频| 国产午夜精品一二区理论片| 国产免费男女视频| 国产又黄又爽又无遮挡在线| 乱码一卡2卡4卡精品| 看黄色毛片网站| 日本熟妇午夜| 网址你懂的国产日韩在线| 亚洲一区二区三区色噜噜| 小说图片视频综合网站| 在线天堂最新版资源| 两个人的视频大全免费| 亚洲自拍偷在线| 黄片无遮挡物在线观看| 日本色播在线视频| 亚洲精品乱码久久久久久按摩| 亚洲精品亚洲一区二区| 精品熟女少妇av免费看| 日本黄色视频三级网站网址| 内地一区二区视频在线| 精品无人区乱码1区二区| 在线播放国产精品三级| 免费观看精品视频网站| 中文字幕av在线有码专区| 99热这里只有是精品在线观看| 久久国内精品自在自线图片| 久久久国产成人免费| 女人十人毛片免费观看3o分钟| 亚洲欧洲日产国产| 成人三级黄色视频| 黄片wwwwww| 久久久成人免费电影| 国产精品国产三级国产av玫瑰| 此物有八面人人有两片| 久久99蜜桃精品久久| 蜜臀久久99精品久久宅男| 免费观看在线日韩| 午夜免费男女啪啪视频观看| 九草在线视频观看| 内射极品少妇av片p| 十八禁国产超污无遮挡网站| 午夜激情欧美在线| 午夜福利视频1000在线观看| 一个人观看的视频www高清免费观看| 偷拍熟女少妇极品色| 免费电影在线观看免费观看| 免费av毛片视频| 久久久a久久爽久久v久久| 美女高潮的动态| 乱系列少妇在线播放| 美女内射精品一级片tv| 久久精品国产清高在天天线| 国产伦一二天堂av在线观看| 精品人妻一区二区三区麻豆| 国产精品伦人一区二区| 成熟少妇高潮喷水视频| 色尼玛亚洲综合影院| 男人狂女人下面高潮的视频| 99热这里只有精品一区| 亚洲欧美中文字幕日韩二区| 欧美潮喷喷水| 亚洲国产精品sss在线观看| 亚洲av熟女| 中文在线观看免费www的网站| 免费av不卡在线播放| 久久久久久久久大av| av卡一久久| 国产又黄又爽又无遮挡在线| 欧洲精品卡2卡3卡4卡5卡区| 你懂的网址亚洲精品在线观看 | 在线国产一区二区在线| 国产精品综合久久久久久久免费| 观看美女的网站| 国产精品一区二区三区四区久久| 国产国拍精品亚洲av在线观看| 国产黄a三级三级三级人| 精品久久久久久久末码| 亚洲国产精品成人综合色| 免费观看人在逋| 毛片一级片免费看久久久久| 欧美性猛交黑人性爽| av在线观看视频网站免费| 免费看a级黄色片| 国产精品精品国产色婷婷| 国产精品伦人一区二区| 国产女主播在线喷水免费视频网站 | av天堂中文字幕网| av天堂中文字幕网| 午夜激情欧美在线| 亚洲av第一区精品v没综合| 春色校园在线视频观看| 青春草亚洲视频在线观看| 国产单亲对白刺激| 一级黄色大片毛片| 噜噜噜噜噜久久久久久91| 国产一级毛片在线| 午夜福利高清视频| 少妇裸体淫交视频免费看高清| 又爽又黄无遮挡网站| 国产精品一区二区在线观看99 | 亚洲国产精品成人综合色| 最近最新中文字幕大全电影3| 一进一出抽搐gif免费好疼| 日本av手机在线免费观看| 在线播放国产精品三级| 国产av在哪里看| 夜夜爽天天搞| 麻豆一二三区av精品| 97人妻精品一区二区三区麻豆| 欧美在线一区亚洲| 可以在线观看毛片的网站| 中文欧美无线码| 亚洲国产精品成人综合色| 欧美潮喷喷水| 婷婷六月久久综合丁香| 精品一区二区三区视频在线| 大香蕉久久网| a级毛片免费高清观看在线播放| 久久草成人影院| 亚洲第一区二区三区不卡| av在线天堂中文字幕| 又爽又黄a免费视频| 少妇丰满av| 不卡一级毛片| 日本爱情动作片www.在线观看| 国产在线男女| 国产一区二区在线av高清观看| 日本一本二区三区精品| 中文精品一卡2卡3卡4更新| 久久久a久久爽久久v久久| 美女国产视频在线观看| 99热这里只有精品一区| 日韩制服骚丝袜av| 老师上课跳d突然被开到最大视频| 婷婷六月久久综合丁香| 精品久久久久久久久久久久久| 久久这里只有精品中国| 高清毛片免费看| avwww免费| 人妻久久中文字幕网| 日本色播在线视频| 晚上一个人看的免费电影| 97人妻精品一区二区三区麻豆| 成人鲁丝片一二三区免费| 久久久午夜欧美精品| 国产精品美女特级片免费视频播放器| 日韩精品青青久久久久久| 一进一出抽搐动态| 日本五十路高清| 亚洲人与动物交配视频| 亚洲真实伦在线观看| 99热全是精品| 国产三级在线视频| 女人被狂操c到高潮| 免费看a级黄色片| 久久99热6这里只有精品| 免费看a级黄色片| 99热这里只有是精品在线观看| 日本五十路高清| a级毛色黄片| 久久99蜜桃精品久久| 欧美3d第一页| av免费观看日本| 麻豆精品久久久久久蜜桃| 亚洲真实伦在线观看| 久久99热6这里只有精品| 国产精品福利在线免费观看| 国产精品蜜桃在线观看 | 精品久久久久久久末码| 国产老妇女一区| 18禁裸乳无遮挡免费网站照片| 99视频精品全部免费 在线| 亚洲va在线va天堂va国产| 日本成人三级电影网站| 男人和女人高潮做爰伦理| 国产午夜福利久久久久久| 国产精华一区二区三区| 人妻夜夜爽99麻豆av| 国产人妻一区二区三区在| 中文字幕av成人在线电影| 中文字幕精品亚洲无线码一区| 亚洲激情五月婷婷啪啪| 免费看av在线观看网站| 精华霜和精华液先用哪个| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区性色av| 亚洲欧美日韩高清专用| 此物有八面人人有两片| 成人二区视频| 国产精品av视频在线免费观看| 九九爱精品视频在线观看| 精品久久久久久久久亚洲| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久 | 国产熟女欧美一区二区| 亚洲av免费高清在线观看| 12—13女人毛片做爰片一| 欧美xxxx性猛交bbbb| av天堂在线播放| 国产视频内射| www日本黄色视频网| 欧美极品一区二区三区四区| 国产私拍福利视频在线观看| 国内精品久久久久精免费| 成年女人永久免费观看视频| 成人永久免费在线观看视频| 欧美激情在线99| www.av在线官网国产| 国产精品久久视频播放| 天堂中文最新版在线下载 | 国语自产精品视频在线第100页| 天天躁日日操中文字幕| 亚洲中文字幕日韩| 国产真实乱freesex| 神马国产精品三级电影在线观看| 女人被狂操c到高潮| 午夜a级毛片| 日韩欧美国产在线观看| 亚洲av免费在线观看| 中文字幕久久专区| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看| 黄色视频,在线免费观看| 少妇熟女aⅴ在线视频| 亚洲av熟女| 欧美区成人在线视频| 国产亚洲精品久久久com| 日本免费一区二区三区高清不卡| 国产单亲对白刺激| 精品人妻视频免费看| 特大巨黑吊av在线直播| 亚洲一级一片aⅴ在线观看| 一级毛片aaaaaa免费看小| 青春草亚洲视频在线观看| 日韩欧美在线乱码| 色哟哟·www| 成人美女网站在线观看视频| 午夜a级毛片| 午夜激情欧美在线| 免费av不卡在线播放| 综合色av麻豆| 天堂av国产一区二区熟女人妻| 日韩欧美一区二区三区在线观看| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 日本爱情动作片www.在线观看| 国产精品国产高清国产av| 好男人视频免费观看在线| 色哟哟哟哟哟哟| 国产黄色视频一区二区在线观看 | 日本免费a在线| 伦理电影大哥的女人| 午夜福利视频1000在线观看| 久久欧美精品欧美久久欧美| 99热这里只有精品一区| 长腿黑丝高跟| 国产伦理片在线播放av一区 | 久久久久久久久久成人| 99久久无色码亚洲精品果冻| 我的老师免费观看完整版| 在线免费观看不下载黄p国产| 哪个播放器可以免费观看大片| 级片在线观看| 国国产精品蜜臀av免费| 日韩国内少妇激情av| 亚洲五月天丁香| 日韩欧美 国产精品| 女人被狂操c到高潮| 亚洲综合色惰| 少妇的逼水好多| 成人午夜高清在线视频| 精品一区二区三区人妻视频| 国产日本99.免费观看| 国产一区二区在线观看日韩| 国内精品久久久久精免费| 99九九线精品视频在线观看视频| av福利片在线观看| 三级毛片av免费| 18禁黄网站禁片免费观看直播| 国产精品永久免费网站| 国产黄a三级三级三级人| 国产免费男女视频| 久久国内精品自在自线图片| 欧美日本亚洲视频在线播放| 亚洲天堂国产精品一区在线| 国国产精品蜜臀av免费| 国产精品.久久久| 亚洲最大成人手机在线| 欧美日韩在线观看h| 中文在线观看免费www的网站| 欧美一区二区国产精品久久精品| 老熟妇乱子伦视频在线观看| 亚洲欧美中文字幕日韩二区| 人人妻人人澡欧美一区二区| 国产v大片淫在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色综合亚洲欧美另类图片| 美女被艹到高潮喷水动态| 91在线精品国自产拍蜜月| 伊人久久精品亚洲午夜| 禁无遮挡网站| 深夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久黄片| 亚洲国产日韩欧美精品在线观看| 日韩欧美精品免费久久| 蜜臀久久99精品久久宅男| 在线播放国产精品三级| 久久久精品欧美日韩精品| 夫妻性生交免费视频一级片| 国产成人aa在线观看| 3wmmmm亚洲av在线观看| 黄色欧美视频在线观看| а√天堂www在线а√下载| 亚洲一区二区三区色噜噜| 国产亚洲欧美98| 丰满人妻一区二区三区视频av| 欧美日本视频| 春色校园在线视频观看| 日韩欧美精品v在线| 国产亚洲av片在线观看秒播厂 | 亚洲乱码一区二区免费版| 老师上课跳d突然被开到最大视频| 久久久精品欧美日韩精品| 成人亚洲欧美一区二区av| 久久人人爽人人片av| 久久久成人免费电影| 国产精品人妻久久久久久| 欧美成人一区二区免费高清观看| av天堂在线播放| 中文在线观看免费www的网站| 听说在线观看完整版免费高清| 波野结衣二区三区在线| 日韩一区二区三区影片| 村上凉子中文字幕在线| 天堂网av新在线| 日日干狠狠操夜夜爽| 亚洲中文字幕一区二区三区有码在线看| 亚洲成a人片在线一区二区| 久久久久久久久大av| 日日摸夜夜添夜夜添av毛片| 99riav亚洲国产免费| 黄片无遮挡物在线观看| 欧美一级a爱片免费观看看| 日本免费a在线| 国产免费一级a男人的天堂| 99久国产av精品| 中文精品一卡2卡3卡4更新| 九草在线视频观看| 最近2019中文字幕mv第一页| 国产精品久久久久久精品电影| 在线国产一区二区在线| 最近手机中文字幕大全| 日本色播在线视频| 久久这里有精品视频免费| 丝袜美腿在线中文| 国产三级中文精品| 精品人妻一区二区三区麻豆| 亚洲av一区综合| 人妻夜夜爽99麻豆av| 国产精品久久电影中文字幕| 国产视频首页在线观看| 亚洲国产高清在线一区二区三| 久久草成人影院| 色哟哟·www| 亚洲成人av在线免费| 干丝袜人妻中文字幕| 久久精品影院6| 黄色一级大片看看| 一级黄片播放器| 久久久久久久久久黄片| 国内精品一区二区在线观看| 热99re8久久精品国产| 亚洲一级一片aⅴ在线观看| 国产精品乱码一区二三区的特点| 麻豆成人午夜福利视频| 国内揄拍国产精品人妻在线| 少妇的逼水好多| 18禁裸乳无遮挡免费网站照片| 久久国产乱子免费精品| 99久久精品一区二区三区| 午夜老司机福利剧场| 日本色播在线视频| 波多野结衣巨乳人妻| 日韩欧美精品免费久久| 亚洲精品日韩av片在线观看| 免费人成在线观看视频色| 国模一区二区三区四区视频| 国产 一区精品| 天堂网av新在线| 丝袜美腿在线中文| 久久热精品热| 18禁裸乳无遮挡免费网站照片| 国产精品无大码| 99久久精品一区二区三区| 国产成人影院久久av| 婷婷色综合大香蕉| 久久久精品大字幕| 性插视频无遮挡在线免费观看| 在线观看av片永久免费下载| 国产 一区 欧美 日韩| 久久6这里有精品| 久久99精品国语久久久| 免费人成在线观看视频色| 日韩欧美精品免费久久| 亚洲国产精品sss在线观看|