• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Load-Compression Relationships of Bonded Rubber Ring

    2016-05-16 02:42:08,
    船舶力學(xué) 2016年3期
    關(guān)鍵詞:振華上海交通大學(xué)重工

    ,

    (1 Offshore Heavy Industries Design&Research Institute,Shanghai Zhenhua Heavy Industry Co.,Ltd.,Shanghai 200125, China;2 School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240, China)

    Load-Compression Relationships of Bonded Rubber Ring

    ZHENG Yi-kan1,ZHANG Shi-lian2

    (1 Offshore Heavy Industries Design&Research Institute,Shanghai Zhenhua Heavy Industry Co.,Ltd.,Shanghai 200125, China;2 School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240, China)

    Bonded rubber rings are widely used in many engineering domains to buffer the impact.In general,accurate load-deformation relationships are required in these applications.However,previous researches merely discussed the cylindrical rubber pad rather than the rubber ring.Besides,few of them are based on continuum mechanics theory.In this paper,the load-compression relationships of the bonded incompressible rubber ring are derived for three boundary conditions.The Mooney-Rivlin material is considered and the derivation is based on continuum mechanics theory.The results calculated by the derived formulae are compared with the FEM solutions and proved to have adequate accuracy for various shape factors and materials,even in the finite strain.The typical load-compression curves of the rubber rings are also presented and the characteristic of the compression stiffness in different boundaries are discussed.

    load-compression relationship;rubber ring;mooney-rivlin;boundary condition; finite strain

    0 Introduction

    Bonded rubber rings are widely used in many engineering domains to buffer the impact. LMU(Leg Mating Units)is a good example of its application,which is used in the float-over installations on the sea.As shown in Fig.1,the rubber rings are bonded between metal plates to provide higher compression stiffness.The rigid center cylinder,such as a cast tubular member,is often set inside the rubber ring to prevent the instability of stacked elastomeric pads and spacer plates[1].On this occasion,rubber rings are preferred than circular rubber pads.

    In general,accurate load-deformation relationships are required in these applications.The in-depth theoretical mechanical analysis of the compression performance will provide an important reference for the engineers,especially in the early stages of the design.Many researchers have put in the effort to this issue.Gent,Lindley and Meinecke[2-3]first derived the compressive stiffness of the incompressible elastic layer bonded between rigid plates for infinite-strip,circular pads and other shapes.Kelly et al[4-7]developed a theoretical approach andtook the effect of bulk compressibility into consideration.Koh and Kelly[8]abandoned the stress assumption and derived the compression stiffness of the bonded square layer using only the kinematic assumptions.Tsai and Lee[9]derived the compression stiffness of va-rious shaped rubber layers without limitation on the values of Poisson’s ratio.Whereafter,simplified forms of those formulae are given[10]. Furthermore,Lindley[11]derived a load-compression relationship for the circular rubber pad. Hill[12]derived partial solutions of finite elasticity for various situations based on the incompressible Mooney-Rivlin material with certain limiting condition.

    However,none of above researches has given a discussion about the rubber ring and most of them are based on linear elastic theory.In this paper,the load-compression relationships of the bonded incompressible rubber ring are derived for three boundary conditions,i.e.,when the inner surface is restrained,when the outer surface is restrained and when both surfaces are free.The kinematic assumptions mentioned above are adopted:(i)Planes parallel to the rigid bounding plates remain plane and parallel;(ii)Lines normal to the rigid bounding plates before deformation become parabolic after loading[8].The Mooney-Rivlin material is considered and the derivation is based on continuum mechanics theory.The results calculated by the derived formulae are compared with the FEM solutions.The typical load-compression curves of the rubber rings are also presented and the characteristic of the compression stiffness in different boundaries are discussed.

    Fig.1 Rubber ring bonded between rigid plates

    1 Inner surface restrained

    Fig.2 Undeformed and deformed configurations of the rubber ring when the inner surface is restrained

    The first situation in consideration is when the inner surface of the rubber ring is restrained in both radial direction and circumferential direction.This is an extreme case when arigid column with a same diameter as the inner diameter of the rubber ring is set up.The rubber ring is assumed as homogeneous,isotropic and incompressible.The undeformed and deformed configurations of the rubber ring under compressive load in this situation are shown in Fig.2,as well as the material coordinates(R,Θ,Z)and spatial coordinates(r,h,z).The inner and outer radii are RB0and RA0,respectively.The origin points are located in the center and the mid-height of the rubber ring.The transformation relations between these coordinates are as follows considering two kinematic assumptions:planes parallel to the rigid plates remain plane and parallel and vertical lines become parabolic.

    The inverse transformation is:

    where λ is the length ratio in z direction and α0is the relative extension in radial direction at the mid-height of the rubber ring,regarded as the first order small quantity.

    From the incompressible condition,ignoring the second order small quantities,α0is:

    where η is defined as RB0/R.

    The covariant and contravariant components of the metric tensor of the material and spatial cylindrical coordinates,denoted as GAB,GAB,gij,gij,respectively,are as follows:

    Denoting the material and spatial coordinates bythe deformation gradient F is written as:

    where giand GAare covariant base vectors ofand reciprocal base vectors ofrespectively.The left Cauchy-Green deformation tensor is[13]:

    The inverse of B is:

    where cijcan be calculated by the following equation:

    Now define three parameters:

    Then equations(1)and(4)turn to be:

    Utilizing Eqn(8)through Eqn(19),we can get the contravariant components of B and B-1:

    The Cauchy stress tensor of the incompressible hyperelastic material can be expressed by[13]:

    where I is the metric tensor of{xi};p is the unknown hydrostatic pressure;ψ1and ψ2are the partial derivatives of the potential function with respect to the first invariant I1and second invariant I2of B,respectively.That is,

    For the incompressible Mooney-Rivlin material,

    where C1and C2are two material parameters.

    Utilizing Eqn(20)through Eqn(25)and ignoring the second order small quantities,the nonzero physical components of the Cauchy stress tensor are:

    Consider the equilibrium equation in r direction and the boundary condition:

    where f1is equal to zero;r0is the outer radius of the rubber ring after deformation,which is a function of z.

    From equations(26)through(29),we obtain:Since α,β and γ are all first order small quantities,by neglecting the second order small quantities,equations(32)and(33)become:

    Substituting equations(34),(35)and(17)to Eqn(30),we have:

    Integrating Eqn(36)from r to r0and utilizing the boundary condition Eqn(31),we have:

    In the above integration,the itemsare treated as constant.Although in fact they are functions of r,this treatment will not induce obvious error because α and γ are the first order small quantities.

    From equations(26)and(28),

    It will become the following equation by neglecting the second order small quantities:

    The effective compression modulus is,on average of the volume,defined as:

    where the integral variable z has been transformed to Z to simplify the form of the integral and d is the compression displacement,which equalshere.

    Substituting equations(37)and(39)into Eqn(40),Ec1becomes:

    Using Taylor’s series,it can be proved readily that the mean value of the polynomial ofin Z direction equals the polynomial of the mean value ofand the error is the second order small quantity,namely:

    where k is an integer.This derivation also holds forAs a consequence,the integral in Eqn(41)can be calculated approximately as:

    Therefore,

    Utilizing Eqn(7)and Eqn(14),the mean valuein the whole volume can be derived:

    Similarly,

    Substituting Eqn(44)through Eqn(47)into Eqn(43),the effective compression modulusis obtained.

    2 Outer surface restrained

    The second situation is when the outer surface of the rubber ring is restrained.This is an extreme case when a rigid sleeve with the same diameter as the outer diameter of the rubber ring exists.The undeformed and deformed configurations of the rubber ring under compressive load in this situation are shown in Fig.3.The inner and outer radii are RC0and RB0,respectively.It is similar with the situation in the previous section except the outer and inner surface switch roles.

    Fig.3 Undeformed and deformed configurations of the rubber ring when the outer surface is restrained

    From Fig.3,the transformation relation between r and R changes to:

    Meanwhile,from the incompressible condition,α0changes to:

    where η is defined as RB0/R.Take advantage of these equations,we can derive the transformation relation with the same form as in Chapter 1:

    Further,it is apparently all other transformation relations are the same as those in section 2.Using the same method in Chapter 1,identical equations from Eqn(8)through Eqn(36) can be gotten.The only difference is that r0represents the inner radius of the rubber ring after deformation.Then,similar with equations(37)and(43),the stress component in the radial direction is:and the effective compression modulus is:

    3 Outer and inner surfaces free

    Fig.4 Undeformed and deformed configurations of the rubber ring when the outer and inner surfaces are free

    The last situation is when the outer and inner surfaces of the rubber ring are free.The undeformed and deformed configurations of the rubber ring under compressive load in this situation are shown in Fig.4.The extensions in radial direction at the mid-height of the outer surface and inner surface are RA0α0′and RC0α0″,respectively,where RA0is the outer radius and RB0is the inner radius.

    This issue can be solved using the results achieved already.As shown in Fig.4,the rubber ring can be divided into two parts,separating by an imaginary neutral cylinder surface.This surface is assumed to keep unchanged in radial direction and circumferential direction during the deformation.In this way,the outer and inner parts become rubber rings as described in Chapter 1 and Chapter 2,whose effective compression modulus are already known.The only problem is the radius of the neutral surface RB0is not known yet.To determine RB0,let Eqn (37)equals Eqn(51)on average of the height and neglect the small quantities in the equation for simplification,i.e.,letand λ equal 1;let rA0equal RA0,rC0equal RC0and r equal RB0.Then we can get the following formula for RB0:

    Substituting Eqn(57)into equations(43)and(52),we can get the effective compression modulus of the outer and inner parts of the rubber ring,i.e.,EC1and EC2.These two parts are parallelly connected.The total effect of the whole rubber ring is:

    4 FEM solutions and discussion

    The load-compression curves in the three situations from equations(43),(52)and(58) were compared with the solutions of the nonlinear FEM program Abaqus.The FEM analysis used axisymmetric models and implicit algorithm.The hybrid stress element CAX4RH was adopted to avoid volumetric locking.The materials are all incompressible Mooney-Rivlin types, including four sets of representative material parameters as shown in Tab.1,indicated by Mat-1 through Mat-4.To evaluate these formulae as thoroughly as possible,a series of rubber rings with different geometric dimensioning are checked.These rubber rings contain five shape factors and three diameter ratios,as in Tab.2,and with the same outer radius RA0=200 mm.Here, the shape factor S is defined traditionally as RA0/2h,and η0is the ratio of the inner radius to the outer radius.Taking the three boundary conditions into consideration,180 models were calculated in total.The rubber rings are compressed until the free surface is about to contact with the rigid plates.The maximal compression strain is 0.18.

    Tab.1 Material parameters used in the calculation

    Tab.2 Geometric dimensioning of the rubber rings

    Fig.5 through Fig.7 plot three typical load-compression curves for Mat-1.Similar results are found in other cases and the charts are omitted.It is seen from these figures that:(i)The results of all the three formulae derived in this paper fit very well with the FEM calculation; (ii)The effective compression modulus Ecincreases obviously with compression;(iii)Ecvaries quite considerably in different boundary conditions.When the outer surface is restrained,the value is much higher than the one when the inner surface is restrained,and it reaches the minimum when both the surfaces are free.As a consequence,for the rubber rings with a rigid center cylinder,the vertical stiffness may have significant change during compression,depending on the diameters of the rubber inner surface and the center cylinder.If the diameters are close,at first the compression modulus can be gained by Eqn(58).With the increasing of compression,the inner surface could contact with the center cylinder,which makes the situation more like that described in Chapter 1 and leads a much higher vertical stiffness.This phenomenon deserves to be noticed in the design stage.

    Fig.5 Load-deformation curves for Mat-1,S=1,RB0/RA0=1/2,inner surface restrained

    Fig.6 Load-deformation curves for Mat-1,S=1,RB0/RA0=1/2,outer surface restrained

    Fig.7 Load-deformation curves for Mat-1,S=2,RB0/RA0=1/2,outer and inner surfaces free

    For the better discussion of the results,a new shape factor which describes the aspect ratio of the rubber ring’s cross section is defined as:

    Fig.8 Absolute value error of Ecfor Mat-1 at maximum compression,inner surface restrained

    Fig.9 Absolute value error of Ecfor Mat-1 at maximum compression,outer surface restrained

    Fig.10 Absolute value error of Ecfor Mat-1 at maximum compression,outer and inner surfaces free

    The absolute value errors of Ecat the maximum compression of Mat-1 are plotted in Fig.8 trough Fig.10.The other materials have the similar results,which are tabulated in Tab.3 through Tab.5.From these figures and tables,we can see that equations(43),(52)and(58)show very good accuracy in most cases.In general,when S′is larger than 1.0 for Eqn(43),and larger than 2.0 for equations(52)and(58),the error is less than 3 percent in most cases.There is one exception yet.It is shown the error of Eqn(52)is sensitive to the ratio of the inner radius to the outer radius,which becomes apparent when η equals 1/4.However,the error drops quickly with the decrease of λ,i.e.,the initial stiffness obtained by Eqn(52)is in fact very accurate.The main reason is that the average processing is applied for some terms to get EC. When the outer surface is restrained,the rubber ring is harder to be compressed than in other situations and small change of λ will bring a relative large change ofIn this way,the error is induced.In the termof Eqn(52),this error is further magnified by the square and the coefficientwhich is much larger thanin Eqn(43). As a consequence,the error may reach 10 percent when η is small.It is suggested Eqn(52) be modified to consider this error source as follows,i.e.,use the mean value in the whole volume rather than the mean value in z for1+( )α in the above term.

    Using Eqn(60)instead of Eqn(52),the absolute value errors of Ecat the maximum compression are tabulated in Tab.6.The accuracy is very good for all cases as long as S′≥2.0.

    Tab.3 Absolute value errors of Ecfor Mat-2 at maximum compression

    Tab.4 Absolute value errors of Ecfor Mat-3 at maximum compression

    Tab.5 Absolute value errors of Ecfor Mat-4 at maximum compression

    Tab.6 Absolute value errors of Ecfor Eqn(60)at maximum compression

    From the above discussing,it is recommended in general that Eqn(43)be used for S′≥1.0,and equations(60)and(58)be used for S′≥2.0.This range is sufficient for most engineering applications and the formulae will provide a good approximation to Ecof the rubber ring.

    5 Conclusions

    The load-compression relationships of the incompressible rubber ring bonded between rigid plates are derived in this paper.The relationships are based on two kinematics assumptions.The hyper-elastic Mooney-Rivlin type material is considered and the derivation complies with the theory of continuum mechanics.Three boundary conditions are considered in the deriva-tion,i.e.,when the inner surface is restrained,when the outer surface is restrained and when both surfaces are free.

    The theoretical solutions are obtained.The comparison with the FEM results shows these proposed formulae has a very good accuracy in predicting the behavior of the bonded rubber ring with various shape factors,even in the finite strain.The typical load-compression curves of the rubber rings are also presented and the characteristics of the compression stiffness in different boundaries are discussed.

    [1]Yuan R H,Wang A M,et al.Design considerations of leg mating units for floatover installations[C]//ISOPE,Proceedings of the Twenty-second(2012)International Offshore and Polar Engineering Conference.Greece,ISOPE,2012: 1091-1098.

    [2]Gent A N,Lindley P B.The compression of bonded rubber blocks[J].Proceeding of the Institution of Mechanical Engineers,1959,173:111-117.

    [3]Gent A N,Meinecke E A.Compression,bending and shear of bonded rubber blocks[J].Polymer Engineering and Sciences,1970,10:48-53.

    [4]Kelly J M.Earthquake-resistant design with rubber[M].London:Springer,1993.

    [5]Chalhoub M S,Kelly J M.Analysis of infinite-strip-shaped base isolator with elastomer bulk compression[J].Journal of Engineering Mechanics ASCE,1991,117:1791-1805.

    [6]Chalhoub M S,Kelly J M.Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings[J].International Journal of Solids and Structures,1990,26:734-760.

    [7]Koh C G,Kelly J M.Effects of axial load on elastomeric isolation bearings[R].Report no.UCB/EERC-86/12,Berkeley: Earthquake Engineering Research Center,University of California,1987.

    [8]Koh C G,Kelly J M.Compression stiffness of bonded square layers of nearly incompressible material[J].Engineering Structures,1989,11:9-15.

    [9]Tsai H C,Lee C C.Compressive stiffness of elastic layers bonded between rigid plates[J].International Journal of Solids and Structures,1998,35:3053-3069.

    [10]Tsai H C,Pai W J.Simplified stiffness formulae for elastic layers bonded between rigid plates[J].Engineering Structures, 2003,25:1443-1454.

    [11]Lindley P B.Load-compression relationships of rubber units[J].J Strain Anal.,1966,1:190-195.

    [12]Hill J M.A review of partial solutions of finite elasticity and their applications[J].International Journal of Non-Linear Mechanics,2001,36:447-463.

    [13]Huang Z P.Fundamentals of continuum mechanics[M].Beijing:Higher Education Press,2011.

    粘結(jié)橡膠環(huán)的載荷—壓縮關(guān)系

    鄭軼刊1,張世聯(lián)2

    (1上海振華重工(集團(tuán))股份有限公司,海上重工設(shè)計研究院,上海200125;2上海交通大學(xué)船舶海洋與建筑工程學(xué)院,上海 200240)

    粘結(jié)橡膠環(huán)在很多工程領(lǐng)域被廣泛應(yīng)用于緩沖沖擊。這些應(yīng)用一般都要求掌握橡膠墊準(zhǔn)確的載荷壓縮關(guān)系。但以往的研究僅討論了橡膠柱體而忽略了橡膠環(huán),而且僅少數(shù)研究是基于連續(xù)介質(zhì)力學(xué)理論的。文章推導(dǎo)了剛性板間不可壓縮橡膠環(huán)在三種邊界條件下的載荷—壓縮關(guān)系,考慮了Mooney-Rivlin材料,并基于連續(xù)介質(zhì)力學(xué)理論進(jìn)行了推導(dǎo)。文中將推導(dǎo)公式的計算結(jié)果與有限元計算結(jié)果進(jìn)行了比較,證明了這些公式有足夠的精度,適用于各種形狀系數(shù)和材料參數(shù),在有限應(yīng)變下仍然適用。最后,文中還給出了典型橡膠環(huán)的載荷—壓縮曲線,并對不同邊界條件下的壓縮剛度特性進(jìn)行了討論。

    載荷—壓縮關(guān)系;橡膠環(huán);Mooney-Rivlin;邊界條件;有限應(yīng)變

    O342

    :A

    鄭軼刊(1983-),男,上海振華重工(集團(tuán))股份有限公司,海上重工設(shè)計研究院博士,通訊作者;

    O342

    A

    10.3969/j.issn.1007-7294.2016.03.012

    1007-7294(2016)03-0363-17

    張世聯(lián)(1952-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    Received date:2015-07-18

    Biography:ZHENG Yi-kan(1983-),male,Ph.D.,E-mail:zykorzht@sjtu.edu.cn;

    ZHANG Shi-lian(1952-),male,professor/tutor.

    猜你喜歡
    振華上海交通大學(xué)重工
    山金重工有限公司
    黃金(2023年12期)2023-12-21 05:37:40
    家住西安
    上海交通大學(xué)
    電氣自動化(2022年2期)2023-01-07 03:51:56
    三一重工股份有限公司
    中國公路(2020年16期)2020-10-14 06:33:40
    三一重工股份有限公司
    中國公路(2020年9期)2020-05-26 08:17:12
    上海交通大學(xué)參加機(jī)器人比賽
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    “杯”慘
    現(xiàn)代重工獲2艘VLGC訂單
    廣東造船(2013年5期)2013-04-29 00:44:03
    《疾風(fēng)圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    久久午夜亚洲精品久久| 欧美性猛交╳xxx乱大交人| 午夜精品久久久久久毛片777| 国产av一区在线观看免费| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻1区二区| 日韩三级视频一区二区三区| 久久久国产成人免费| 久久人妻av系列| 在线观看66精品国产| 精华霜和精华液先用哪个| 久久中文字幕人妻熟女| 久久久久国产一级毛片高清牌| 欧美日本视频| 无遮挡黄片免费观看| 美女高潮到喷水免费观看| tocl精华| 看免费av毛片| 麻豆久久精品国产亚洲av| 国产私拍福利视频在线观看| av福利片在线| 亚洲中文日韩欧美视频| 成人国产一区最新在线观看| 亚洲狠狠婷婷综合久久图片| 免费看日本二区| 无限看片的www在线观看| 国产精品影院久久| 久久中文字幕一级| 久久久久国产一级毛片高清牌| 一本综合久久免费| 91成人精品电影| 波多野结衣高清作品| 91国产中文字幕| 中文字幕最新亚洲高清| 熟女电影av网| 十八禁网站免费在线| 日韩视频一区二区在线观看| 老司机午夜福利在线观看视频| 亚洲专区字幕在线| 在线观看一区二区三区| 又大又爽又粗| 99精品在免费线老司机午夜| 日本五十路高清| 国产精品自产拍在线观看55亚洲| 91麻豆av在线| 亚洲午夜精品一区,二区,三区| 99re在线观看精品视频| 99国产综合亚洲精品| 日韩一卡2卡3卡4卡2021年| 看片在线看免费视频| 18禁观看日本| 制服丝袜大香蕉在线| 国产成人av教育| 99国产精品99久久久久| 亚洲欧美日韩无卡精品| 两个人视频免费观看高清| 成人三级做爰电影| 搞女人的毛片| 午夜福利一区二区在线看| 最近最新免费中文字幕在线| xxx96com| 嫩草影视91久久| 淫秽高清视频在线观看| 很黄的视频免费| 99久久99久久久精品蜜桃| 日本五十路高清| 亚洲性夜色夜夜综合| 99热6这里只有精品| 黑人操中国人逼视频| 亚洲精品一区av在线观看| 亚洲九九香蕉| 日本在线视频免费播放| 老司机靠b影院| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 窝窝影院91人妻| 伊人久久大香线蕉亚洲五| 久久香蕉国产精品| 三级毛片av免费| 精品卡一卡二卡四卡免费| 国产精品久久久久久亚洲av鲁大| 免费女性裸体啪啪无遮挡网站| 免费看日本二区| 亚洲自偷自拍图片 自拍| 啦啦啦免费观看视频1| 国产成人精品久久二区二区91| 91麻豆av在线| 精品国产亚洲在线| 婷婷六月久久综合丁香| 色综合站精品国产| 性欧美人与动物交配| 亚洲欧洲精品一区二区精品久久久| 亚洲av五月六月丁香网| 免费在线观看完整版高清| 久久性视频一级片| 久久精品国产综合久久久| 国产三级在线视频| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 嫩草影视91久久| 久久中文字幕一级| 久久久久精品国产欧美久久久| 午夜两性在线视频| av有码第一页| 校园春色视频在线观看| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 一级作爱视频免费观看| 99国产精品一区二区三区| 日韩精品免费视频一区二区三区| 91国产中文字幕| 成人欧美大片| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 91九色精品人成在线观看| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 国产激情欧美一区二区| 亚洲第一av免费看| 18禁裸乳无遮挡免费网站照片 | 色哟哟哟哟哟哟| 久久久久久国产a免费观看| 日韩一卡2卡3卡4卡2021年| 两性午夜刺激爽爽歪歪视频在线观看 | 男人舔女人下体高潮全视频| 后天国语完整版免费观看| 亚洲精品av麻豆狂野| 最好的美女福利视频网| 这个男人来自地球电影免费观看| 色播在线永久视频| 亚洲片人在线观看| 日韩有码中文字幕| 亚洲av五月六月丁香网| 久久精品影院6| 欧美色欧美亚洲另类二区| 日韩国内少妇激情av| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 精品卡一卡二卡四卡免费| 中文字幕人成人乱码亚洲影| 亚洲一卡2卡3卡4卡5卡精品中文| 两性午夜刺激爽爽歪歪视频在线观看 | 岛国视频午夜一区免费看| 精品熟女少妇八av免费久了| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 手机成人av网站| 亚洲精品色激情综合| 国产麻豆成人av免费视频| 无限看片的www在线观看| 婷婷六月久久综合丁香| 国产国语露脸激情在线看| 欧美绝顶高潮抽搐喷水| 88av欧美| 成熟少妇高潮喷水视频| 精品电影一区二区在线| 搡老妇女老女人老熟妇| 50天的宝宝边吃奶边哭怎么回事| 天天添夜夜摸| 国产精品永久免费网站| 欧美又色又爽又黄视频| 欧美黑人巨大hd| 一级毛片女人18水好多| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲七黄色美女视频| 精品久久久久久久久久久久久 | 精品久久久久久久末码| 99精品在免费线老司机午夜| 国内揄拍国产精品人妻在线 | 美女国产高潮福利片在线看| 国产欧美日韩精品亚洲av| 十分钟在线观看高清视频www| 国产精品一区二区精品视频观看| 国产精品爽爽va在线观看网站 | 国产亚洲精品第一综合不卡| 一本一本综合久久| 日韩精品中文字幕看吧| 国产一区二区激情短视频| 91麻豆av在线| 自线自在国产av| 日日干狠狠操夜夜爽| 久久国产精品人妻蜜桃| 国产真人三级小视频在线观看| 国产亚洲av嫩草精品影院| netflix在线观看网站| 一区二区日韩欧美中文字幕| xxxwww97欧美| 欧美亚洲日本最大视频资源| 亚洲黑人精品在线| 亚洲国产日韩欧美精品在线观看 | 日韩大尺度精品在线看网址| 国产又色又爽无遮挡免费看| 精品一区二区三区四区五区乱码| 黑人巨大精品欧美一区二区mp4| 成人免费观看视频高清| 两个人看的免费小视频| 99re在线观看精品视频| 操出白浆在线播放| 白带黄色成豆腐渣| 亚洲人成77777在线视频| 久久伊人香网站| 一进一出抽搐gif免费好疼| 国产高清有码在线观看视频 | 欧美乱码精品一区二区三区| 国产欧美日韩精品亚洲av| 中出人妻视频一区二区| 天天躁夜夜躁狠狠躁躁| 国产成人影院久久av| 91九色精品人成在线观看| 久久精品国产清高在天天线| 狂野欧美激情性xxxx| 亚洲精品国产区一区二| 亚洲精华国产精华精| 人人妻人人看人人澡| 男女做爰动态图高潮gif福利片| 国产极品粉嫩免费观看在线| 在线观看www视频免费| 免费看美女性在线毛片视频| 中文字幕av电影在线播放| 一区福利在线观看| 女人被狂操c到高潮| 黄网站色视频无遮挡免费观看| 极品教师在线免费播放| 窝窝影院91人妻| 国产高清激情床上av| 午夜老司机福利片| 不卡一级毛片| 精品久久久久久久末码| 中文字幕精品免费在线观看视频| av有码第一页| 亚洲欧美日韩高清在线视频| 91麻豆精品激情在线观看国产| 亚洲人成伊人成综合网2020| 丝袜在线中文字幕| 十八禁人妻一区二区| 成人永久免费在线观看视频| 亚洲国产欧洲综合997久久, | 亚洲熟妇中文字幕五十中出| 久久伊人香网站| 亚洲精品一区av在线观看| 一区二区三区精品91| 熟妇人妻久久中文字幕3abv| 欧美性猛交黑人性爽| 亚洲第一电影网av| 18禁黄网站禁片免费观看直播| 国产真实乱freesex| av免费在线观看网站| 亚洲人成77777在线视频| 欧美久久黑人一区二区| 精品久久久久久,| 国产真实乱freesex| 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 免费一级毛片在线播放高清视频| 天堂动漫精品| 一本精品99久久精品77| 日本 av在线| 国产日本99.免费观看| 国产99白浆流出| 满18在线观看网站| 香蕉久久夜色| 嫩草影院精品99| 久久久久久久久免费视频了| 国产精品久久久久久精品电影 | 在线永久观看黄色视频| 亚洲成国产人片在线观看| ponron亚洲| 中国美女看黄片| 不卡av一区二区三区| 久久久久久国产a免费观看| 国产人伦9x9x在线观看| 午夜福利一区二区在线看| 国产成人欧美在线观看| 男女午夜视频在线观看| 欧美日韩一级在线毛片| 侵犯人妻中文字幕一二三四区| 亚洲九九香蕉| 91九色精品人成在线观看| 老汉色av国产亚洲站长工具| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品电影 | 深夜精品福利| 久久午夜综合久久蜜桃| 一进一出好大好爽视频| 在线播放国产精品三级| 男女做爰动态图高潮gif福利片| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 久久这里只有精品19| 欧美亚洲日本最大视频资源| 两性夫妻黄色片| 国产精品免费视频内射| 99久久无色码亚洲精品果冻| 757午夜福利合集在线观看| a级毛片a级免费在线| 日韩大尺度精品在线看网址| 亚洲国产欧洲综合997久久, | 90打野战视频偷拍视频| 久久国产亚洲av麻豆专区| 国产成年人精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| av欧美777| 首页视频小说图片口味搜索| 村上凉子中文字幕在线| 免费在线观看成人毛片| 91字幕亚洲| 国产av又大| 黄色成人免费大全| 午夜福利在线观看吧| 超碰成人久久| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 亚洲中文av在线| 久久久久久久久免费视频了| 男女床上黄色一级片免费看| 高潮久久久久久久久久久不卡| 国产精品久久久久久精品电影 | 哪里可以看免费的av片| 夜夜躁狠狠躁天天躁| 亚洲成人国产一区在线观看| 国产aⅴ精品一区二区三区波| 美国免费a级毛片| 哪里可以看免费的av片| 看免费av毛片| 国产精品九九99| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 精品久久久久久久久久久久久 | 在线av久久热| 国产一区二区三区视频了| 日韩高清综合在线| 日韩中文字幕欧美一区二区| 午夜福利视频1000在线观看| 999久久久精品免费观看国产| 午夜福利在线观看吧| 激情在线观看视频在线高清| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲| 极品教师在线免费播放| 国产免费男女视频| 欧美成人性av电影在线观看| 日韩精品中文字幕看吧| 国产精品 国内视频| 757午夜福利合集在线观看| 国产亚洲精品久久久久5区| 女人爽到高潮嗷嗷叫在线视频| or卡值多少钱| 中文资源天堂在线| 午夜亚洲福利在线播放| 亚洲专区字幕在线| av视频在线观看入口| 国产精品乱码一区二三区的特点| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 夜夜爽天天搞| 黑人巨大精品欧美一区二区mp4| 午夜福利在线观看吧| 国产精品98久久久久久宅男小说| www.www免费av| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 亚洲电影在线观看av| 国产精华一区二区三区| 黄色 视频免费看| 制服诱惑二区| 午夜视频精品福利| 非洲黑人性xxxx精品又粗又长| 嫩草影视91久久| 中文字幕精品亚洲无线码一区 | 91国产中文字幕| 欧美三级亚洲精品| 一级作爱视频免费观看| 波多野结衣高清无吗| 国产麻豆成人av免费视频| 欧美+亚洲+日韩+国产| 美女 人体艺术 gogo| 亚洲全国av大片| 日本一区二区免费在线视频| 免费看a级黄色片| 久久久久久亚洲精品国产蜜桃av| 美女午夜性视频免费| 国产v大片淫在线免费观看| 啦啦啦免费观看视频1| 午夜福利成人在线免费观看| 丰满的人妻完整版| 黄色丝袜av网址大全| 香蕉av资源在线| 国产aⅴ精品一区二区三区波| 日韩欧美三级三区| 99久久精品一区二区三区| 国产精品日韩av在线免费观看| 小蜜桃在线观看免费完整版高清| 舔av片在线| 国产精品亚洲美女久久久| 国产黄色小视频在线观看| 看黄色毛片网站| 亚洲自偷自拍三级| 一级黄片播放器| av在线蜜桃| 国产精品美女特级片免费视频播放器| 97碰自拍视频| 免费看av在线观看网站| 精品国产三级普通话版| 真实男女啪啪啪动态图| 久久久久久国产a免费观看| 人人妻人人看人人澡| 深爱激情五月婷婷| 伦理电影大哥的女人| 欧美xxxx黑人xx丫x性爽| 你懂的网址亚洲精品在线观看 | videossex国产| 在线天堂最新版资源| 久久国内精品自在自线图片| 91久久精品电影网| 国产麻豆成人av免费视频| av在线蜜桃| 一区二区三区免费毛片| 亚洲综合色惰| 熟女人妻精品中文字幕| 99久久九九国产精品国产免费| 欧美一区二区国产精品久久精品| 淫妇啪啪啪对白视频| 亚洲美女视频黄频| 欧美中文日本在线观看视频| 男人舔奶头视频| 午夜爱爱视频在线播放| 亚洲国产高清在线一区二区三| av在线播放精品| 日韩欧美在线乱码| 国产男人的电影天堂91| 成年av动漫网址| 欧美日本亚洲视频在线播放| 简卡轻食公司| 精品熟女少妇av免费看| 两个人视频免费观看高清| 久久久久免费精品人妻一区二区| 国产欧美日韩精品亚洲av| 久久久a久久爽久久v久久| 美女免费视频网站| 午夜激情欧美在线| 国产女主播在线喷水免费视频网站 | eeuss影院久久| 成人亚洲精品av一区二区| av国产免费在线观看| 一级黄片播放器| 免费在线观看影片大全网站| 国产精华一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲性夜色夜夜综合| 国产av麻豆久久久久久久| 国产成人福利小说| 国产精品电影一区二区三区| 麻豆国产97在线/欧美| 成人美女网站在线观看视频| 午夜a级毛片| 99热全是精品| 波多野结衣高清无吗| а√天堂www在线а√下载| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩在线观看h| 久久久久性生活片| 日韩一本色道免费dvd| 99在线视频只有这里精品首页| 你懂的网址亚洲精品在线观看 | 2021天堂中文幕一二区在线观| 欧美xxxx性猛交bbbb| 国产高清视频在线播放一区| 禁无遮挡网站| 亚洲中文字幕日韩| 亚洲婷婷狠狠爱综合网| 欧美不卡视频在线免费观看| 女人十人毛片免费观看3o分钟| 不卡视频在线观看欧美| 成人午夜高清在线视频| 日本熟妇午夜| 最近中文字幕高清免费大全6| 亚洲国产日韩欧美精品在线观看| 噜噜噜噜噜久久久久久91| 午夜视频国产福利| a级毛片免费高清观看在线播放| 国产激情偷乱视频一区二区| 亚洲精品粉嫩美女一区| av专区在线播放| 搡老妇女老女人老熟妇| 亚洲电影在线观看av| 一级黄片播放器| 最新中文字幕久久久久| 99精品在免费线老司机午夜| 91在线精品国自产拍蜜月| 欧美日韩一区二区视频在线观看视频在线 | 日日摸夜夜添夜夜爱| av在线播放精品| 网址你懂的国产日韩在线| 1024手机看黄色片| 亚洲欧美日韩无卡精品| 国产在线精品亚洲第一网站| 久久综合国产亚洲精品| 全区人妻精品视频| 国产视频内射| 我的女老师完整版在线观看| 在线国产一区二区在线| 久久午夜福利片| 中文字幕av成人在线电影| 成人亚洲精品av一区二区| 波多野结衣高清作品| 欧美人与善性xxx| 亚洲精品国产av成人精品 | 亚洲美女搞黄在线观看 | 看免费成人av毛片| 亚洲四区av| 亚洲成人精品中文字幕电影| 观看免费一级毛片| 国产精品女同一区二区软件| 在线观看免费视频日本深夜| 日本撒尿小便嘘嘘汇集6| www.色视频.com| 久久久久久久久中文| av卡一久久| 大型黄色视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| a级毛片免费高清观看在线播放| 婷婷亚洲欧美| 精品人妻熟女av久视频| 亚洲欧美成人综合另类久久久 | 亚洲在线自拍视频| 观看美女的网站| 亚洲第一区二区三区不卡| 美女高潮的动态| 日韩欧美三级三区| 国产精品99久久久久久久久| 午夜精品在线福利| 亚洲精品成人久久久久久| 欧美一级a爱片免费观看看| 一个人免费在线观看电影| 亚洲欧美精品自产自拍| 91精品国产九色| 久久人人爽人人爽人人片va| 黄色一级大片看看| 熟女人妻精品中文字幕| 国产伦精品一区二区三区视频9| 波多野结衣巨乳人妻| 亚洲高清免费不卡视频| 午夜福利在线在线| 老女人水多毛片| 我要搜黄色片| 不卡一级毛片| 成人亚洲精品av一区二区| 精品久久国产蜜桃| 波野结衣二区三区在线| 麻豆精品久久久久久蜜桃| 丰满人妻一区二区三区视频av| 国产伦一二天堂av在线观看| 亚洲最大成人手机在线| 欧美日韩精品成人综合77777| 成人一区二区视频在线观看| 国产精品久久久久久av不卡| 亚洲精品在线观看二区| 最近最新中文字幕大全电影3| 亚洲av一区综合| 色哟哟哟哟哟哟| 亚洲av电影不卡..在线观看| 欧美一区二区国产精品久久精品| 一级黄色大片毛片| 欧美3d第一页| 哪里可以看免费的av片| h日本视频在线播放| 免费在线观看成人毛片| 日韩欧美三级三区| 少妇熟女aⅴ在线视频| 久99久视频精品免费| 男女做爰动态图高潮gif福利片| 欧美高清成人免费视频www| 一边摸一边抽搐一进一小说| 国产精品无大码| 青春草视频在线免费观看| 男女视频在线观看网站免费| av中文乱码字幕在线| 99热这里只有是精品50| 亚洲av熟女| 久久精品人妻少妇| 国产又黄又爽又无遮挡在线| 91在线精品国自产拍蜜月| 在线观看av片永久免费下载| 国产在视频线在精品| 天美传媒精品一区二区| 国内少妇人妻偷人精品xxx网站| 国产精品永久免费网站| 免费大片18禁| 人妻夜夜爽99麻豆av| 亚洲图色成人| 我要搜黄色片| 久久久久久九九精品二区国产| 国产乱人偷精品视频| 日韩成人av中文字幕在线观看 | 色av中文字幕| 日韩强制内射视频| 日本-黄色视频高清免费观看| 美女高潮的动态| 有码 亚洲区| 小说图片视频综合网站| 蜜桃亚洲精品一区二区三区| 97在线视频观看| 欧美日韩一区二区视频在线观看视频在线 | 热99re8久久精品国产| 在线免费观看的www视频| 国产精品一区二区三区四区免费观看 | 你懂的网址亚洲精品在线观看 | 成人鲁丝片一二三区免费| 亚洲内射少妇av| 国产亚洲精品久久久久久毛片| 国产精品伦人一区二区| a级毛片免费高清观看在线播放| 欧美三级亚洲精品| 国产精品久久电影中文字幕|