• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?

    2018-05-14 01:05:20XiaoTongQi亓?xí)酝?/span>BaoChangShi施保昌andZhenHuaChai柴振華
    Communications in Theoretical Physics 2018年3期
    關(guān)鍵詞:振華

    Xiao-Tong Qi(亓?xí)酝?Bao-Chang Shi(施保昌)and Zhen-Hua Chai(柴振華)?

    1School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China

    2Hubei Key Laboratory of Engineering Modeling and Scienti fic Computing,Huazhong University of Science and Technology,Wuhan 430074,China

    1 Introduction

    Burgers’equation is a fundamental partial differential equation,and has gained increasing attention in the study of physical phenomenons in many fields,such as fl uid mechanics,[1]nonlinear acoustics,[2]traffic fl ow,[3]and so on.This equation is originally introduced by Bateman in 1915,[4]and later in 1947,it is also proposed by Burgers in a mathematical modeling of turbulence,[5]after whom such an equation is widely used as the Burgers’equation.

    Over past decades,many numerical methods have been proposed to solve Burgers’equation,[6?15]including the finite-difference(FD)method,[6?10]finite-element method,[11?12]boundary elements method,and direct variational methods.[13]Actually,these available approaches can be classi fied into two categories.The first one is to directly solve the nonlinear Burgers’equation[14]with the developed numerical methods. However,as pointed out in Ref.[15],in this approach,it is more difficult to balance the convection and the diffusion terms,which usually gives rise to nonlinear propagation effects and the appearance of dissipation layers.To overcome these problems,Cole[16]and Hopf[17]introduced the socalled the Cole-Hopf transformation to eliminate the nonlinear convection term in Burgers’equation,and consequently,the Burgers’equation can be converted to the linear diffusion equation.Then the second indirect approach,i.e.,the Cole-Hopf transformation based method,is also proposed to solve the converted linear diffusion equation.[10,13,15,18?19]

    The lattice Boltzmann(LB)method,as a promising technique in computational fl uid dynamics,has attracted widespread concern in recent years.[20?23]Unlike traditional numerical methods,the LB method has some distinct characteristics,including intrinsical parallelism,simplicity for programming,numerical efficiency and ease in incorporating complex boundaries.Except its applications in computational fl uid dynamics,the LB method has also been extended to solve some nonlinear partial differential equations,[24]such as Poisson equation,[25]wave equation,[26]diffusion equation,[27?28]and convectiondiffusion equation.[29?36]Recently,some LB models have been proposed for the Burgers’equation,[37?45]however,there are some nonlinear terms in the local equilibrium distribution function,[37?45]which are more complex and may also generate unstable solution.To overcome the problems inherited in these available LB models for Burgers’equation,a new Cole-Hopf transformation based LB model would be developed in this work.

    The rest of the paper is organized as follows.In Sec.2,the Cole-Hopf transformation based LB model for Burgers’equation is proposed.In Sec.3,some numerical simulations are performed to test present LB model,and finally some conclusions are given in Sec.4.

    2 Lattice Boltzmann Model for Burgers’Equation

    In this section,the Burgers’equation is first linearized by the Cole-Hopf transformation,and then the LB model for converted linear diffusion equation is developed.

    We first consider the following one-dimensional Burgers’equation,

    Now,we present an LB model for the linear diffusion equation(5).For simplicity but without losing generality,we only consider a simple D1Q3(three-discrete velocities in one dimension)lattice model,and three-discrete velocities in this lattice model can be given by

    We now perform a detailed Chapman-Enskog analysis to derive converted linear diffusion from present LB model.In the Chapman-Enskog analysis,the distribution function,the time and space derivatives can be expended as

    the linear diffusion equation(5)can be recovered exactly.

    Finally,we would like to point out that,after computing?with present LB model,we also need to adopt Eq.(4)to calculate velocityu,and for this reason,some other special methods are also needed to compute?x?.Actually in previous studies,the term?x?is usually calculated by the traditional nonlocal FD schemes(e.g.,Ref.[46]).However in the framework of LB method,it can also be computed by the non-equilibrium part of the distribution function with a second-order convergence rate.[35?36,47]If we multiplyεon both sides of Eq.(22),and utilize the relation,one can derive an expression for computing

    The initial value of equilibrium distribution functioncan be directly obtained through the initial condition(6),while the non-equilibrium partis unknown,and must be determined before performing any simulations.Based on Eq.(14),the initial value of nonequilibrium partcan be evaluated by

    where Eqs.(9),(16),and(20)have been used.Actually,once the initial condition of?is given,one can determineand also the initial value of distribution functionfi.In addition,it should be noted that the termcan not be neglected in the initialization since it is not equal to zero,and also plays an important role in the computation of the term?x?and velocityu.

    In summary,we developed a Cole-Hopf transformation based LB model for Burgers’equation and the algorithm can be found in the Appendix.

    3 Numerical Results and Discussion

    In this section,we conducted several numerical tests to validate present LB model,and to evaluate the accuracy of present model,the following global relative error(GRE)is adopted,

    where the Fourier coefficients are given by

    Fig.1 Numerical and analytical solutions at different time((a)ν=1.0,(b)ν=0.01;solid lines:analytical results,symbols:numerical results).

    Table 1 A comparison between present LB model and some existing numerical methods(ν=1.0).

    Table 2 A comparison between present LB model and some existing numerical methods(ν=0.01).

    In our simulations,the computational domain is fixed to be[0,2],and the half bounce-back scheme is adopted for Neumann boundary conditions.[33,47?48]

    We first carried out some simulations under different diffusion coefficients,and presented the result in Fig.1.As seen from this figure,the numerical results agree well with the corresponding analytical solutions.Then we also conducted a comparison between present LB model and some existing numerical methods,which are fully implicit finite-difference method(IFDM),[6]Douglas finite-difference method(DFDM),[8]B-spline finite element method(BFEM),[12]local discontinuous Galerkin method(LDG),[18]a mixed finite difference and boundary element method(BEM)[49]and Adomian’s decomposition method(ADM).[50]Based on the results listed in Tables 1 and 2,one can find that all numerical results are very close to the exact solutions,while the present model seems more accurate,especially for the case with a large diffusion coefficient.

    Fig.2 Numerical and analytical solutions under different diffusion coefficients((a)ν=1.0,(b)ν=1.0×10?2,(c)ν=1.0×10?4,(d)ν=1.0×10?6;solid lines:analytical results,symbols:numerical results).

    Table 3 GREs of two LB models for Example 2(?x=0.01,T=1.0).

    Example 2To further examine the accuracy of our LB model,we also consider the example with the following initial condition

    The exact solution to this problem can be expressed as[51]

    whereσis a parameter.

    Similarly,with the help of Cole-Hopf transformation,we can also derive the exact solution to Eq.(1),

    Fig.3 GREs of present LB model for Example 2(?x=1/10,1/20,1/25,1/40,1/50,1/80,1/100),the slope of the inserted line is 2.0,which indicates the present LB model has a second-order convergence rate.

    In the following simulations,σis set to be 2,and the periodic boundary condition is adopted.We first performed some simulations,and presented the results in Fig.2 where ?x=0.01,T=1.0,andνis varied from 1.0 to 1.0×10?6.From this figure,it is clear that the numerical results are in agreement with the exact solutions.Then a comparison between present LB model and the traditional one[38]is also conducted,and the results are shown in Table 3 where?x=0.025,T=1.0,andνis varied from 1.0 to 1.0×10?3.From this table,one can find that the present LB model is more accurate than the traditional one in solving the Burgers’equation.Finally,to test the convergence rate of present LB model,we also carried out some simulations,and measured the GREs under different lattice sizes.Based on the results shown in Fig.3 whereν=1.0(1/τ=0.8)andν=0.01(1/τ=1.97),we can conclude that the present LB model has a second-order convergence rate in space.

    4 Conclusions

    In this paper,a new Cole-Hopf transformation based LB model is proposed for Burgers’equation.Compared to some available LB models,the present LB model is more accurate since the difficulty and error caused by nonlinear convection term can be avoided.On the other hand,the present LB model is also more efficient since a linear equilibrium distribution function is adopted.In addition,the numerical results also show that the present LB model has a second-order convergence rate in space.

    In the next work,we would consider the Cole-Hopf transformation based LB models for two and threedimensional Burgers’equations.

    Appdenix

    In this appendix,we would present the algorithm of Cole-Hopf transformation based LB model.

    #1.Computethrough Eq.(4).

    #2.Computefi(x,0)at all points by Eq.(26),and the initial value of non-equilibrium partis calculated through Eq.(28).

    #3.Conduct the collision process,and obtain the post-collision distribution functionat all points.

    #4. Perform propagation at all points and derive

    #5.Compute?xfrom Eq.(25),and calculatethrough Eq.(4).

    #6.Implement steps#3–#5,and output the results at the speci fied timeT.

    [1]L.Debnath,Sir James Lighthill and Modern Fluid Mechanics,Imperial College Press,London(2008).

    [2]D.G.Crighton,Annu.Rev.Fluid Mech.11(2003)11.

    [3]T.Nagatani,Rep.Prog.Phys.65(2002)1331.

    [4]H.Bateman,Mon.Weather Rev.43(1915)163.

    [5]J.M.Burgers,Adv.Appl.Mech.1(1947)171.

    [6]BahadIr and A.Re fik,Int.J.Appl.Math.1(1999)897.

    [7]W.Y.Liao,Appl.Math.Comput.206(2008)755.

    [8]K.Pandey,L.Verma,and A.K.Verma,Appl.Math.Comput.215(2009)2206.

    [9]Q.J.Li,Z.Zheng,and S.Wang,J.Appl.Math.14(2012)2607.

    [10]S.Kutluay,A.R.Bahadir,and A.?zde?s,J.Comput.Appl.Math.103(1999)251.

    [11]J.Caldwell,P.Wanless,and A.E.Cook,Appl.Math.Model.5(1981)189.

    [12]S.Kutluay,A.Esen,and I.Dag,J.Comput.Appl.Math.167(2004)21.

    [13]T.Ozis and A.Ozdes,J.Comput.Appl.Math.71(1996)163.

    [14]W.Liao and J.Zhu,Int.J.Comput.Math.88(2011)2575.

    [15]M.K.Kadalbajoo and A.Awasthi,Appl.Math.Comput.182(2006)1430.

    [16]J.D.Cole,Q.Appl.Math.9(1951)225.

    [17]E.Hopf,Commun.Pure Appl.Math.3(1950)201.

    [18]R.P Zhang,X.Yu,and G.Zhao,Appl.Math.Comput.218(2012)8773.

    [19]L.Shao,X.L.Feng,and Y.N.He,Math.Comput.Model.54(2011)2943.

    [20]T.Krüger,H.Kusumaatmaja,A.Kuzmin,et al.,The Lattice Boltzmann Method—Princples and Practice,Springer,Switzerland(2017).

    [21]S.Chen and G.Doolen,Annu.Rev.Fluid.Mech.30(1998)329.

    [22]Z.L.Guo and C.Shu,Lattice Boltzmann Method and Its Applications in Engineering,World Scienti fic,Singapore(2013).

    [23]S.Succi,The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,Oxford University Press,Oxford(2001).

    [24]Z.H.Chai,B.C.Shi,and L.Zheng,Chaos,Solitons&Fractals 36(2008)874.

    [25]Z.H.Chai and B.C.Shi,Appl.Math.Model.32(2008)2050.

    [26]G.W.Yan,J.Comput.Phys.161(2000)61.

    [27]D.Wolf-Gladrow,J.Stat.Phys.79(1995)1023.

    [28]C.Huber,B.Chopard,and M.Manga,J.Comput.Phys.229(2010)7956.

    [29]B.C.Shi,B.Deng,R.Du,and X.W.Chen,Comput.Math.Appl.55(2008)1568.

    [30]Z.H.Chai,B.C.Shi,and Z.L.Guo,J.Sci.Comput.69(2016)355.

    [31]H.L.Wang,B.C.Shi,H.Liang,and Z.H.Chai,Appl.Math.Comput.309(2017)334.

    [32]J.Huang and W.A.Yong,J.Comput.Phys.300(2015)70.

    [33]H.Yoshida and M.Nagaoka,J.Comput.Phys.229(2010)7774.

    [34]Q.H.Li,Z.H.Chai,and B.C.Shi,J.Sci.Comput.61(2014)308.

    [35]Z.H.Chai and T.S.Zhao,Phys.Rev.E 90(2014)013305.

    [36]Z.H.Chai and T.S.Zhao,Phys.Rev.E.87(6)(2013)063309.

    [37]X.M.Yu and B.C.Shi,Chin.Phys.15(2006)1441.

    [38]Y.Gao,L.H.Le,and B.C.Shi,Appl.Math.Comput.219(2013)7685.

    [39]H.L.Lai and C.F.Ma,Physica A 395(2014)445.

    [40]Q.H.Li,Z.H.Chai,and B.C.Shi,Appl.Math.Comput.250(2015)948-957.

    [41]J.Y.Zhang and G.W.Yan,Physica A 387(2008)4771.

    [42]Y.B.He and X.H.Tang,J.Stat.Mech.-Theory Exp.2016(2016)023208.

    [43]Y.L.Duan and R.X.Liu,J.Comput.Appl.Math.206(2007)432.

    [44]F.Liu and W.Shi,Commun.Nonlinear Sci.Numer.Simul.16(2011)150.

    [45]A.C.Velivelli and K.M.Bryden,Physica A 362(2006)139.

    [46]J.Wang,D.Wang,P.Lallemand,et al.,Comput.Math.Appl.65(2013)262.

    [47]Z.H.Chai,C.S.Huang,B.C.Shi,and Z.L.Guo,Int.J.Heat Mass Transf.98(2016)687.

    [48]I.Ginzburg,Adv.Water Resour.28(2005)1196.

    [49]A.R.Bahadir and M.Saglam,Appl.Math.Comput.160(2005)663.

    [50]S.Abbasbandy and M.T.Darvishi,Appl.Math.Comput.163(2005)1265.

    [51]W.L.Wood,Int.J.Numer.Meth.Eng.22(2006)797.

    猜你喜歡
    振華
    Real-time dynamics in strongly correlated quantum-dot systems
    家住西安
    PDCPD材料在商用車上的應(yīng)用
    “三農(nóng)”政策需要體現(xiàn)利益包容——對龔春明和梁振華商榷文的思考與回應(yīng)
    INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM?
    WSN Node Applied to Large-Scale Unattended Monitoring
    我的校園故事
    “杯”慘
    獻(xiàn)身民族教育事業(yè)的胡振華教授——祝賀胡振華教授從教60周年
    語言與翻譯(2014年1期)2014-07-10 13:06:14
    國醫(yī)大師李振華教授治呃逆驗案1則
    国产成人免费无遮挡视频| 日韩欧美在线二视频| 久久久久久大精品| 少妇粗大呻吟视频| xxxhd国产人妻xxx| 如日韩欧美国产精品一区二区三区| 国产欧美日韩一区二区三| 欧美激情久久久久久爽电影 | 大型av网站在线播放| 日本欧美视频一区| 欧美激情久久久久久爽电影 | 视频区图区小说| 99国产综合亚洲精品| 搡老岳熟女国产| 妹子高潮喷水视频| 91精品国产国语对白视频| 国产国语露脸激情在线看| 久久久精品欧美日韩精品| 嫩草影视91久久| 久久精品亚洲精品国产色婷小说| 国产精品香港三级国产av潘金莲| 亚洲欧洲精品一区二区精品久久久| 欧美在线一区亚洲| 免费高清视频大片| 悠悠久久av| 高清欧美精品videossex| 国产精品永久免费网站| 久久久久久久久久久久大奶| 99热只有精品国产| 亚洲av成人不卡在线观看播放网| 欧美精品啪啪一区二区三区| 国产精品一区二区免费欧美| 精品无人区乱码1区二区| 亚洲黑人精品在线| 80岁老熟妇乱子伦牲交| 自线自在国产av| 色婷婷久久久亚洲欧美| 成熟少妇高潮喷水视频| 国产色视频综合| 亚洲狠狠婷婷综合久久图片| 日韩 欧美 亚洲 中文字幕| 亚洲成人免费电影在线观看| 看片在线看免费视频| 精品午夜福利视频在线观看一区| 18禁黄网站禁片午夜丰满| 精品福利永久在线观看| 欧美日本中文国产一区发布| 在线观看一区二区三区激情| 精品国产亚洲在线| 韩国av一区二区三区四区| 日本三级黄在线观看| 国产欧美日韩综合在线一区二区| av超薄肉色丝袜交足视频| 久久香蕉国产精品| 日韩精品免费视频一区二区三区| 免费在线观看影片大全网站| 在线十欧美十亚洲十日本专区| 制服人妻中文乱码| 国产区一区二久久| 亚洲一区二区三区欧美精品| 久久久久久大精品| 丰满的人妻完整版| 日韩成人在线观看一区二区三区| 波多野结衣高清无吗| 嫩草影视91久久| 亚洲欧美日韩无卡精品| 久久久久亚洲av毛片大全| 悠悠久久av| ponron亚洲| 身体一侧抽搐| 亚洲自偷自拍图片 自拍| 丁香六月欧美| 最近最新中文字幕大全电影3 | 欧美日韩精品网址| 亚洲午夜理论影院| 9191精品国产免费久久| 欧美久久黑人一区二区| 在线播放国产精品三级| 成人18禁在线播放| 黑人猛操日本美女一级片| 国内久久婷婷六月综合欲色啪| 天堂影院成人在线观看| www.精华液| 亚洲第一欧美日韩一区二区三区| 久久久久国产一级毛片高清牌| 99久久国产精品久久久| 十八禁人妻一区二区| 少妇裸体淫交视频免费看高清 | 久久青草综合色| 可以免费在线观看a视频的电影网站| 色精品久久人妻99蜜桃| 久久中文字幕一级| 黑丝袜美女国产一区| www.999成人在线观看| 88av欧美| 在线观看一区二区三区激情| 国产欧美日韩一区二区三区在线| 国产无遮挡羞羞视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 在线国产一区二区在线| 亚洲色图综合在线观看| 国产精品永久免费网站| 正在播放国产对白刺激| 国产成人啪精品午夜网站| 亚洲免费av在线视频| 一级作爱视频免费观看| 中国美女看黄片| √禁漫天堂资源中文www| 亚洲黑人精品在线| 丝袜美腿诱惑在线| 啦啦啦 在线观看视频| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三卡| 在线观看一区二区三区| 成年人免费黄色播放视频| 久久99一区二区三区| 日本精品一区二区三区蜜桃| 国产精品九九99| 成人免费观看视频高清| 琪琪午夜伦伦电影理论片6080| 国产精品二区激情视频| 丰满的人妻完整版| 99热只有精品国产| 久久久水蜜桃国产精品网| 欧美老熟妇乱子伦牲交| 久久天堂一区二区三区四区| 日本精品一区二区三区蜜桃| 婷婷六月久久综合丁香| 日本五十路高清| 99国产极品粉嫩在线观看| 欧美日本亚洲视频在线播放| 色在线成人网| 国产精品影院久久| 国产深夜福利视频在线观看| 大型黄色视频在线免费观看| 纯流量卡能插随身wifi吗| 久久香蕉精品热| 丰满饥渴人妻一区二区三| 麻豆久久精品国产亚洲av | 99热只有精品国产| 亚洲av美国av| 国产av一区二区精品久久| 精品人妻在线不人妻| 99re在线观看精品视频| 久久人人精品亚洲av| 亚洲美女黄片视频| 婷婷精品国产亚洲av在线| 亚洲国产毛片av蜜桃av| 国产三级黄色录像| 久久中文字幕人妻熟女| 日本a在线网址| 精品国产乱码久久久久久男人| 99riav亚洲国产免费| 女人精品久久久久毛片| 亚洲欧洲精品一区二区精品久久久| 欧美黄色淫秽网站| 免费不卡黄色视频| www国产在线视频色| 欧美日韩亚洲国产一区二区在线观看| 高清av免费在线| 久久久国产一区二区| 99久久综合精品五月天人人| 最新在线观看一区二区三区| 老司机午夜十八禁免费视频| 极品人妻少妇av视频| 一进一出抽搐动态| 国产成人一区二区三区免费视频网站| 精品国产一区二区久久| 免费不卡黄色视频| 成人三级做爰电影| 丰满人妻熟妇乱又伦精品不卡| 国产aⅴ精品一区二区三区波| 自拍欧美九色日韩亚洲蝌蚪91| 免费久久久久久久精品成人欧美视频| 国内久久婷婷六月综合欲色啪| 91大片在线观看| 怎么达到女性高潮| 丝袜美足系列| 国产熟女xx| 手机成人av网站| 曰老女人黄片| 一级a爱视频在线免费观看| 黑人巨大精品欧美一区二区mp4| 久热爱精品视频在线9| 激情视频va一区二区三区| 黄网站色视频无遮挡免费观看| 国产精品1区2区在线观看.| 午夜两性在线视频| 成人av一区二区三区在线看| 80岁老熟妇乱子伦牲交| 国产精品日韩av在线免费观看 | 日本 av在线| 国产精品一区二区三区四区久久 | 在线观看免费午夜福利视频| 国产亚洲欧美98| 欧洲精品卡2卡3卡4卡5卡区| 级片在线观看| 国产99久久九九免费精品| 日韩精品中文字幕看吧| 久久人人97超碰香蕉20202| 国产av在哪里看| 丁香欧美五月| 久久中文看片网| 中文字幕人妻丝袜制服| 这个男人来自地球电影免费观看| tocl精华| 久久久久国内视频| 无人区码免费观看不卡| 精品国产一区二区久久| 亚洲欧洲精品一区二区精品久久久| 在线国产一区二区在线| 欧美日韩精品网址| 老司机靠b影院| 国产又爽黄色视频| 男女床上黄色一级片免费看| 中文字幕人妻丝袜制服| 午夜福利在线观看吧| 色尼玛亚洲综合影院| a级毛片黄视频| 黑人巨大精品欧美一区二区蜜桃| 日本欧美视频一区| 免费在线观看完整版高清| 日本a在线网址| bbb黄色大片| aaaaa片日本免费| 免费av中文字幕在线| 国产精品乱码一区二三区的特点 | 在线观看www视频免费| 亚洲男人天堂网一区| 久久久国产成人免费| xxxhd国产人妻xxx| 亚洲全国av大片| 男女床上黄色一级片免费看| 香蕉国产在线看| 男女高潮啪啪啪动态图| 亚洲精品成人av观看孕妇| av在线播放免费不卡| 嫩草影院精品99| 欧美乱妇无乱码| 国产精品亚洲av一区麻豆| 极品人妻少妇av视频| 国产成人啪精品午夜网站| 看片在线看免费视频| 美女国产高潮福利片在线看| 丝袜在线中文字幕| av天堂在线播放| 精品乱码久久久久久99久播| 国产精品九九99| 满18在线观看网站| 久9热在线精品视频| 中文字幕色久视频| 99精品在免费线老司机午夜| 搡老熟女国产l中国老女人| 一级黄色大片毛片| 涩涩av久久男人的天堂| 国产精品国产av在线观看| 国产亚洲欧美在线一区二区| 日韩欧美免费精品| 这个男人来自地球电影免费观看| 日本vs欧美在线观看视频| 亚洲精品国产色婷婷电影| netflix在线观看网站| 国产精品免费视频内射| 神马国产精品三级电影在线观看 | 午夜精品国产一区二区电影| 国产精品香港三级国产av潘金莲| 久久久久久大精品| 别揉我奶头~嗯~啊~动态视频| 黑人欧美特级aaaaaa片| 午夜激情av网站| 少妇粗大呻吟视频| 久久精品国产亚洲av香蕉五月| 日韩视频一区二区在线观看| 男人的好看免费观看在线视频 | 99香蕉大伊视频| 校园春色视频在线观看| 免费在线观看日本一区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜a级毛片| 十八禁网站免费在线| 国产免费现黄频在线看| 叶爱在线成人免费视频播放| 在线观看午夜福利视频| 成人国语在线视频| 99精品在免费线老司机午夜| 欧美不卡视频在线免费观看 | 黑人操中国人逼视频| 国产视频一区二区在线看| 欧美日本亚洲视频在线播放| 国产精品一区二区三区四区久久 | tocl精华| √禁漫天堂资源中文www| 美国免费a级毛片| 久久香蕉精品热| 国产不卡一卡二| 国产成人精品在线电影| 在线观看免费日韩欧美大片| 一级片'在线观看视频| 成人精品一区二区免费| 亚洲精品成人av观看孕妇| 国产野战对白在线观看| 亚洲第一青青草原| 亚洲一码二码三码区别大吗| 性少妇av在线| 日日爽夜夜爽网站| 亚洲中文日韩欧美视频| 美女福利国产在线| 久热爱精品视频在线9| 国产一区在线观看成人免费| 亚洲av电影在线进入| 麻豆国产av国片精品| 久久久国产一区二区| 美国免费a级毛片| 欧美亚洲日本最大视频资源| 午夜福利一区二区在线看| 午夜福利免费观看在线| 亚洲人成电影观看| 成人亚洲精品av一区二区 | 99国产精品免费福利视频| 交换朋友夫妻互换小说| 精品无人区乱码1区二区| av国产精品久久久久影院| 精品国产超薄肉色丝袜足j| 午夜福利一区二区在线看| 亚洲一码二码三码区别大吗| 在线av久久热| 免费一级毛片在线播放高清视频 | 老司机亚洲免费影院| 韩国精品一区二区三区| 久久久久久久午夜电影 | 又紧又爽又黄一区二区| 久久亚洲精品不卡| 亚洲av熟女| 欧美中文日本在线观看视频| 咕卡用的链子| 国产亚洲精品第一综合不卡| 大陆偷拍与自拍| 女人精品久久久久毛片| 欧美人与性动交α欧美软件| 无遮挡黄片免费观看| 免费高清在线观看日韩| e午夜精品久久久久久久| 欧美最黄视频在线播放免费 | 精品一品国产午夜福利视频| 国产亚洲精品久久久久5区| 亚洲成国产人片在线观看| 咕卡用的链子| 国产三级在线视频| 黑丝袜美女国产一区| 99久久精品国产亚洲精品| 色播在线永久视频| 少妇粗大呻吟视频| 一个人免费在线观看的高清视频| 久久久精品国产亚洲av高清涩受| 色综合婷婷激情| 欧美+亚洲+日韩+国产| 黑丝袜美女国产一区| 操美女的视频在线观看| 亚洲av片天天在线观看| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 午夜久久久在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲久久久国产精品| 成年人黄色毛片网站| 怎么达到女性高潮| 亚洲少妇的诱惑av| 极品教师在线免费播放| 制服诱惑二区| 两人在一起打扑克的视频| 日日摸夜夜添夜夜添小说| 成年版毛片免费区| 精品国产一区二区三区四区第35| 电影成人av| 高清在线国产一区| 精品国产亚洲在线| 久久久久久大精品| 桃色一区二区三区在线观看| 老司机深夜福利视频在线观看| 亚洲少妇的诱惑av| av有码第一页| 久久久久久亚洲精品国产蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 欧美日本亚洲视频在线播放| 最近最新中文字幕大全免费视频| 黑人猛操日本美女一级片| 老熟妇乱子伦视频在线观看| 99热只有精品国产| 久9热在线精品视频| 午夜福利影视在线免费观看| 欧美在线黄色| a在线观看视频网站| 国产1区2区3区精品| 国产又爽黄色视频| 国产精品偷伦视频观看了| 热re99久久国产66热| 美女大奶头视频| 国产黄色免费在线视频| 久久久久久久久中文| 搡老岳熟女国产| 电影成人av| 久久 成人 亚洲| 日韩成人在线观看一区二区三区| 色精品久久人妻99蜜桃| 淫妇啪啪啪对白视频| ponron亚洲| 国产有黄有色有爽视频| www.精华液| 悠悠久久av| 香蕉丝袜av| 久久人妻av系列| 国产视频一区二区在线看| 亚洲精品一二三| 中国美女看黄片| 国产成人免费无遮挡视频| 无遮挡黄片免费观看| 日韩大码丰满熟妇| 精品国产国语对白av| 免费看a级黄色片| 免费观看人在逋| 丰满人妻熟妇乱又伦精品不卡| 国产成人欧美| 久久中文字幕一级| 成人影院久久| 午夜精品国产一区二区电影| 免费女性裸体啪啪无遮挡网站| 国内久久婷婷六月综合欲色啪| 99久久久亚洲精品蜜臀av| 日韩视频一区二区在线观看| 老司机福利观看| 妹子高潮喷水视频| 成在线人永久免费视频| 精品日产1卡2卡| 久久婷婷成人综合色麻豆| 香蕉丝袜av| av天堂久久9| 婷婷精品国产亚洲av在线| 一级片免费观看大全| xxxhd国产人妻xxx| 国产1区2区3区精品| 在线观看免费视频网站a站| 亚洲色图 男人天堂 中文字幕| 国产伦一二天堂av在线观看| 另类亚洲欧美激情| 日本一区二区免费在线视频| 色婷婷久久久亚洲欧美| 另类亚洲欧美激情| 国产成人av教育| 热99国产精品久久久久久7| 在线永久观看黄色视频| 精品一区二区三区四区五区乱码| 亚洲精品久久午夜乱码| 亚洲国产毛片av蜜桃av| 亚洲五月婷婷丁香| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产清高在天天线| 少妇 在线观看| 一级黄色大片毛片| 亚洲av日韩精品久久久久久密| 亚洲国产中文字幕在线视频| 久久久久久人人人人人| 满18在线观看网站| 在线观看免费高清a一片| 久久天堂一区二区三区四区| 精品久久久久久电影网| 国产亚洲精品久久久久久毛片| 国产精品av久久久久免费| 制服人妻中文乱码| 国产真人三级小视频在线观看| 国产精品成人在线| 曰老女人黄片| 午夜福利在线免费观看网站| 中文字幕最新亚洲高清| 一级a爱片免费观看的视频| 久9热在线精品视频| 九色亚洲精品在线播放| 欧美日韩亚洲综合一区二区三区_| 两个人看的免费小视频| 免费少妇av软件| 国产极品粉嫩免费观看在线| 丰满饥渴人妻一区二区三| 香蕉丝袜av| 人人妻人人添人人爽欧美一区卜| 成人三级黄色视频| 69精品国产乱码久久久| 亚洲av五月六月丁香网| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频| 日本 av在线| 可以免费在线观看a视频的电影网站| 久久久久久人人人人人| 18禁裸乳无遮挡免费网站照片 | 变态另类成人亚洲欧美熟女 | 亚洲人成77777在线视频| 怎么达到女性高潮| 91麻豆精品激情在线观看国产 | 91成人精品电影| 国产熟女午夜一区二区三区| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 午夜免费鲁丝| 99热只有精品国产| 国产aⅴ精品一区二区三区波| 午夜福利欧美成人| 成年女人毛片免费观看观看9| 大型黄色视频在线免费观看| 91国产中文字幕| 亚洲欧美精品综合一区二区三区| 久久人妻熟女aⅴ| 亚洲精品av麻豆狂野| 91麻豆精品激情在线观看国产 | 少妇粗大呻吟视频| 1024视频免费在线观看| www日本在线高清视频| 女生性感内裤真人,穿戴方法视频| 亚洲情色 制服丝袜| 午夜a级毛片| e午夜精品久久久久久久| 少妇粗大呻吟视频| 超色免费av| 久久国产精品影院| 久久精品国产亚洲av高清一级| 日日爽夜夜爽网站| 天堂动漫精品| 国产aⅴ精品一区二区三区波| 国产又爽黄色视频| 首页视频小说图片口味搜索| 国产欧美日韩一区二区三区在线| 国产精华一区二区三区| 老熟妇乱子伦视频在线观看| 久久中文字幕一级| 9191精品国产免费久久| 久久久久久大精品| 日日爽夜夜爽网站| 亚洲熟妇中文字幕五十中出 | 国产在线观看jvid| 亚洲人成伊人成综合网2020| 麻豆久久精品国产亚洲av | 一二三四在线观看免费中文在| 交换朋友夫妻互换小说| 久久精品亚洲熟妇少妇任你| 亚洲性夜色夜夜综合| 欧美乱码精品一区二区三区| 成人亚洲精品一区在线观看| 在线播放国产精品三级| 在线观看免费视频网站a站| 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 久久午夜亚洲精品久久| 国产视频一区二区在线看| 亚洲五月天丁香| 国产精品国产高清国产av| 日韩欧美免费精品| 色播在线永久视频| 午夜福利免费观看在线| 亚洲中文日韩欧美视频| 成人免费观看视频高清| 免费在线观看日本一区| 国产精品二区激情视频| av天堂久久9| 欧美激情 高清一区二区三区| 两个人看的免费小视频| 18禁国产床啪视频网站| 50天的宝宝边吃奶边哭怎么回事| 99热只有精品国产| 人人澡人人妻人| 国产成年人精品一区二区 | 美女午夜性视频免费| 少妇的丰满在线观看| 亚洲美女黄片视频| 操美女的视频在线观看| 久久欧美精品欧美久久欧美| 日韩有码中文字幕| 欧美一区二区精品小视频在线| 久9热在线精品视频| 天堂俺去俺来也www色官网| 黄色丝袜av网址大全| 精品国产一区二区三区四区第35| 亚洲第一欧美日韩一区二区三区| 天天影视国产精品| 亚洲第一欧美日韩一区二区三区| 色在线成人网| 亚洲一区高清亚洲精品| 亚洲成人免费av在线播放| 国产亚洲欧美98| 久久久国产欧美日韩av| 精品久久蜜臀av无| 精品国产一区二区三区四区第35| 婷婷丁香在线五月| 精品国产一区二区三区四区第35| 大码成人一级视频| 欧美在线黄色| 一级片'在线观看视频| 精品一区二区三卡| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久人人做人人爽| 国产精品一区二区在线不卡| 宅男免费午夜| 人妻丰满熟妇av一区二区三区| 天堂动漫精品| 国产99久久九九免费精品| 亚洲精品美女久久久久99蜜臀| 日日爽夜夜爽网站| 国产精品自产拍在线观看55亚洲| 欧美 亚洲 国产 日韩一| 日本免费a在线| 757午夜福利合集在线观看| 少妇裸体淫交视频免费看高清 | 久久久国产成人精品二区 | 99久久精品国产亚洲精品| 91成人精品电影| 成人国语在线视频| 久久国产精品男人的天堂亚洲| 美女扒开内裤让男人捅视频| 久久精品aⅴ一区二区三区四区|