• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermally Radiative Rotating Magneto-Nano fl uid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation:A Comparative Study

    2018-05-14 01:05:17SagheerBilalHussainandAhmed
    Communications in Theoretical Physics 2018年3期

    M.Sagheer,M.Bilal,S.Hussain,and R.N.Ahmed

    Department of Mathematics,Capital University of Science and Technology,Islamabad,Pakistan

    Nomenclature

    ?

    1 Introduction

    In the present fast growing and developing computer age,the transportation,communication,heavy mechanical industries,electronics industries and house hold appliances,all are running by some mechanical and electronic devices.Almost in all such devices,according to the requirements of devices,a system of cooling or heating is built-in,by which a fl uid fl ows through or around the device to prevent these devices from overheating or cooling down from certain temperature threshold.To meet the human requirements and demand of the market,it is essential that these devices work round the clock.To keep the devices at a constant temperature,the heat dissipated must be equal to the heat generated.The conventional fl uids with low thermal conductivity do not meet the temperature requirements of many mechanical and electronics devices,which results in poor performance of these devices and reduces their efficiency and working age.Therefore,it is imperative to improve the thermal conductivity of the conventional fl uids.

    The conventional fl uids used for the transfer of heat energy were first time replaced by the nano fl uids by Choi[1]followed by many researchers.A nano fl uid is a mixture of nanoparticles in a conventional heat transfer fl uid.The nanoparticles(1–100 nm)in size are usually metals,metallic oxides,nano fibers,etc.Choi[1]experimentally found that the nanoparticles when added to the base fl uids,considerably improve the thermal conductivity of the base fl uid.Magyari and Keller[2]focused on the heat and mass transfer analysis in the boundary layer fl ow due to an exponentially continuous stretching sheet.Eastmanet al.[3]observed that the thermal conductivity of pure ethylene glycol is much increased when copper nanoparticles are added to it.Liet al.[4]investigated the MHD nano fl uid fl ow in a thin film through unsteady stretching sheet with additional effects of thermal radiation,heat generation,Brownian motion,and thermophoresis.They used theMATLABbuilt-in bvp4c solver to solve their ODEs.It is found form their investigation that temperature and nanoparticle concentration have opposite behavior for the thermophoresis parameter.Nadeemet al.[5]analyzed the in fl uence of nanoparticles on the two-dimensional fl ow of Maxwell nano fl uid over a stretching sheet for the heat and mass transfer effects.By applying the boundarylayer approximation,they also incorporated the effects of MHD and elasticity parameter.Sheikholeslamiet al.[6]presented an analysis focusing on the unsteady squeezing fl ow of electrically conducting nano fl uid using the homotopy perturbation method.Two phase simulation model for the nano fl uid is considered along with the magnetohydrodynamics effects.They concluded that the Nusselt number is a decreasing function of the squeezing parameter.Another useful contribution of Sheikholeslami and Ganji,[7]is a review work addressing both the single and the double phase models for the nano fl uids.They describe brie fl y the various attempts of different scientists on heat transfer of convective nano fl uids.It is further analyzed that while increasing the Reynolds number and Rayleigh number,the rate of heat transfer is increased.Sheikholeslamiet al.[8]discussed the thermal radiation on MHD free convection of Al2O3-water nano fl uid.Chopkaret al.[9]studied the effect of the size of the nanoparticles on the thermal conductivity of nano fl uid and found that the thermal conductivity decreases by increasing the size of the particles.In last half decade,many articles related to the nano fl uid dynamics are published in literature.[10?24]

    A reasonable number of applications emphasizing the role of steady and unsteady rotating fl ows may be found in chemical and geophysical fl uid mechanics.These all are of applied nature like in the thermal power generating systems,food processing,the skins of high speed air crafts and in rotor stator systems.The pioneering work highlighting the rotating fl ow was done by Wang.[25]Takharet al.[26]discussed the effects of magnetohydrodynamic in a rotating fl ow.They concluded that the skin friction along thex-axis increases for the higher values of the magnetic parameter and has a reverse relation for they-axis skin friction coefficient.Zaimiet al.[27]applied the numerical technique to examine the rotating fl ow of viscoelastic fl uid.Turkyilmazoglu[28]applied the spectral numerical integration method for the problem related to the shrinking rotating disk with the effect of magnetohydrodynamic.Some recent attempts emphasizing the rotating fl ow can be found in Refs.[29–31].

    During the study of nano fl uid,the thermal radiative properties of Newtonian and non-Newtonian fl uids for the heat transfer phenomenon have got much attention.Because of the insertion of the nanoparticles in the base fl uid,the thermal properties are enhanced which resultantly rises the temperature of the nano fl uids and for the higher temperature differences,the effects of the thermal radiation cannot be neglected.The operating systems performing the energy conversion at high temperature show a comparable effect of the thermal radiation.In other engineering and chemical processes such as solar water technology,fossil fuel combustion,astrophysical fl ows,hypersonic fl ights,gas turbines,space vehicles,nuclear reactors etc.,the effects of thermal radiations are quite phenomenal.Many researchers have considered the in fl uence of thermal radiation on the boundary layer fl ow of Newtonian and non-Newtonian fl uids.Mushtaqet al.[32]considered the nonlinear thermal radiation in the two-dimensional stagnation point fl ow with additional effects of Joule heating and viscous dissipation over a convectively heated surface.They deduced that both the temperature and its gradient are increasing functions of thermal radiation parameter.Pourmehranet al.[33]numerically investigated the MHD boundary layer fl ow of nano fl uid through convectively heated vertical stretching sheet.During the study,the in fl uence of thermal radiation and buoyancy effects got special attention.Pourmehran et al.considered three different types of base fl uid i.e.,pure water,ethylene glycol 30%and ethylene glycol 50%while the four types of nanoparticles i.e.,copper,silver,alumina,and titanium oxide.

    Motivated by the above mentioned literature,the primary objective of the present study is to examine the effects of thermal radiation and viscous dissipation on heat transfer fl ow over a bi-directional convectively heated exponentially stretching sheet in the presence of transverse magnetic field and volumetric rate of heat generation.Five different nanoparticles(silver,copper,copper oxide,titanium oxide,alumina)are assumed to be suspended in the pure water.A detailed comparative study of these nano fl uids for the fl ow and heat transfer is presented and discussed graphically and numerically.Boundary layer approximations are used to govern the partial differential equations,which are then transformed to the ordinary differential equations with the help of transformations.The modeled problem is solved numerically by the shooting method using Runga-Kutta integration scheme of order 4.Effects of emerging parameters on velocity and temperature pro files are discussed in detail.Nusselt number and skin friction coefficient are also calculated.In the limiting case,the results are veri fied by reproducing the results of previously published article[34?35]

    2 Mathematical Formulation

    A laminar,incompressible and steady water-based electrically conducted nano fl uid fl ow over an exponentially bidirectional stretching sheet is considered.Sheet temperatureTfis controlled via convection by considering hot fl uid below it.The temperature faraway from the surface where its difference is negligible is known as the ambient temperature and is denoted byT∞.The fl uid is assumed to rotate with angular velocityalongz-axis having the coriolis effect.A transverse variable magnetic fieldis applied alongz-axis with the assumption of small Reynolds number,ignoring the induced magnetic field.The fl uid has internal volumetric rate of heat generationIn thexdirection,the velocity of the sheet is taken asas shown in Fig.1.

    Fig.1 Geometry of the Problem.

    Further the effects of the thermal radiation,Joule heating and viscous dissipation are considered in the formulation of energy equation.For the nano fl uid model,the Tiwari and Das model.[36]has been utilized.Applying the boundary layer by incorporating the Boussinesq approximations,the conservation equations of mass,momentum and energy in the mathematical form can be expressed as

    In Table 1,the thermo-physical properties of different nanoparticles and pure water are shown.The following dimensionless variables are used to convert the system of the non-linear PDEs to the system of ODEs.

    In Eq.(4),qris a radiative heat fl ux which is de fined as

    Furthermore,the temperature difference within the fl ow is assumed such thatT4may be expanded in a Taylor series.Hence,expandingT4aboutT∞and neglecting the higher order terms,we get

    Using the similarity transformation de fined in Eq.(9),Eq.(1)is identically satis fied while Eqs.(2)–(5)are converted into the following nonlinear ordinary differential equations:

    Table 1 Thermo-physical properties of H2O and nanoparticles.

    The transformed boundary conditions are:

    3 Solution Methodology

    An efficient numerical technique,namely the shooting method has been employed to solve the transformed ordinary differential equations along with the boundary con-ditions for different values of the emerging parameters.While applying the shooting method,[42]first the higher order boundary value problem is converted to a system of first order initial value problem(IVP).During the conversion,fis denoted byy1,gbyy4andθbyy6.The missing initial conditions are supposed to be?1,?2and?3.The converted first order IVP takes the following form

    Fourth order Runge-Kutta method is utilized to solve this IVP.The re finement of initial guesses is carried out by the Newton’s method.Because the numerical solution cannot be computed on the unbounded domain[0,∞),a bounded domain[0,η∞]has been considered,whereη∞is an appropriate real number.After performing a number of computational experiments,η∞is set to 4,because there is no signi ficant variation in the results forη∞>4.The stoping criteria set for the Newton’s iterative process is

    Throughout this article,?is chosen as 10?6.For the validation of theMATLABcode of the shooting method,it is affectively applied to reproduce the numerical results of Javedet al.[35]and Ahmad and Mustafa.[34]The successful comparison has been presented in Table 2.

    Table 2 Comparison of present results with those of Javed et al.[35]and Ahmad and Mustafa.[34]

    4 Results and Discussions

    In this section,we discuss the in fl uence of different parameters such as nanoparticles volume fraction?,rotational parameterλ,magnetic parameterM,thermal radiation parameterR,Eckert numberEc,heat generation/absorption parameterQhon the velocity,temperature,skin-friction and Nusselt number,both graphically and numerically in the tabular form.

    In Table 3,the in fl uence of the nanoparticle volume fraction?,rotational parameterλand magnetic parameterMon the skin friction coefficient alongx-axis is presented for different nanoparticles.It is observed that due to the addition of more nanoparticles in the base fl uid,the skin-friction is enhanced.This enhancement is more rapid in Ag-H2O nano fl uid whereas in case of Al2O3-H2O,the increase in the skin-friction is less as compared to the other nanolfuids.Quite similar behavior is noticed for the rotational parameterλ.When the magnetic field is intensi fied along thez-axis,the skin-friction escalates along thex-axis due to the presence of the Lorentz force.Again,Ag-H2O nano fl uid has more frictional force as compared to the other nano fl uids.

    Table 3 Effect of ?,λ and M on the skin friction coefficient along x-axis when Qh=0.1,Bi=0.6,Pr=6.2,n=3.0,R=0.2,Ec=0.01.

    Table 4 Numerical values of skin friction coefficient along y-axis for different values of parameters when Qh=0.1,R=0.2,Ec=0.01.

    Table 5 Numerical values of local Nusselt for different values of parameters when ? =0.01,λ =0.2,M=0.3.

    Table 3 shows the effect of variation of nanoparticles volume fraction?,rotational parameterλ,and magnetic parameterMon the skin friction coefficient alongyaxis. From the table,it is highlighted that fractional force between the fl uid and the solid surface in theydirection is enhanced when the nanoparticles volume fraction is increased.However this increase in skin friction is very small. Again it is observed that Al2O3water base nano fl luid has least increase when compared with the other nano fl uids.By escalating the angular velocity of the nanoparticles,the skin friction rises along they-axis.The effect of magnetic fieldMon the skin friction along they-axis is quite similar as already shown in Table 3.By enhancing the magnetic parameter,the surface fractional force also increased.

    Fig.2 In fl uence of ?,λ,and M on f′(η)for Al2O3-H2O nano fl uid.

    Fig.3 In fl uence of ?, λ,and M on f′(η)for CuO-H2O nano fl uid.

    Fig.4 In fl uence of ?, λ and M on f′(η)for TiO2-H2O nano fl uid.

    The effect of thermal radiation parameterR,Eckert numberEc,heat generation/absorption parameterQhand Biot number on Nusselt number is shown in Table 5.From this table,it is observed that these parameters have increasing effect on the Nusselt number.The comparison among different nanoparticles exhibits that Al2O3-H2O nano fl uid possesses the highest value of Nusselt number for thermal radiation parameter.It is also perceived that Ag-H2O nano fl uid has more heat transfer rate as compared to the other nano fl uids for the increasing values of Eckert number and heat generation/absorption parameterQh.Nusselt number is also enhanced for the higher values of the Biot numberBi.It happens because for the higher values of the Biot number,a stronger convection is produced which causes higher rate of change in the temperature.

    Fig.5 In fl uence of ?,λ and M on f′(η)for Cu-H2O nano fl uid.

    Fig.6 In fl uence of ?,λ and M on f′(η)for Ag-H2O nano fl uid.

    Fig.7 In fl uence of Bi,Ec and Qhon θ(η)for Al2O3-H2O nano fl uid.

    Fig.8 In fl uence of Bi,Ec and Qhon θ(η)for CuO-H2O nano fl uid.

    Fig.9 In fl uence of Bi,Ec and Qhon θ(η)for TiO2-H2O nano fl uid.

    Fig.10 In fl uence of Bi,Ec and Qhon θ(η)for Cu-H2O nano fl uid.

    Fig.11 In fl uence of Bi,Ec and Qhon θ(η)for Ag-H2O nano fl uid.

    Fig.12 In fl uence of R,M and ? on θ(η)for Al2O3-H2O nano fl uid.

    Fig.13 In fl uence of R,M and ? on θ(η)for CuO-H2O nano fl uid.

    Fig.14 In fl uence of R,M and ? on θ(η)for TiO2-H2O nano fl uid.

    Fig.15 In fl uence of R,M and ? on θ(η)for Cu-H2O nano fl uid.

    Fig.16 In fl uence of R,M and ? on θ(η)for Ag-H2O nano fl uid.

    To visualize the effect of different physical parameters on the velocityf′(η)and the temperature pro fileθ(η),Figs.2–6 are plotted.In Figs.2–6,the effects of nanoparticle volume fraction?,rotational parameterλand magnetic parameterMon the velocity pro file for alumina,copper oxide,titanium oxide,copper and silver based nano fl uids are displayed.For all the nano fl uids,it is observed that the velocity as well as the boundary layer thickness of the nano fl uid decreases when the quantity of the nanoparticles in the base fl uid is increased.Velocity distribution is dominant at the surface of the sheet.The effect of rotational parameterλwhich is the associated with the angular velocity of the fl uid,on velocity pro file is displayed in Figs.2–6.From these figures,it is noticed that the velocity pro file and its momentum boundary layer thickness is reduced for the increasing values ofλ.Hence,the rotational effects resist the fl uid fl ow in thex-direction.For higher values of rotational parameter,the velocity becomes negative in some part of the boundary layer thickness and an interesting phenomenon of oscillatory decaying pro file are also observed.The Lorentz forces,which are resistive in nature are produced when the magnetic field is applied across the fl uid fl ow.These forces are responsible for the reduction in the fl uid particle’s motion for the higher values of magnetic parameterM.Hence for all the nano fl uids,the speed of the fl uid decreases for the increasing values of magnetic parameter.

    To observe the effect of the variation in the Biot numberBi,Eckert numberEc,and heat generation parameterQhon the temperature distribution Figs.7–11 are plotted.It is observed that the higher values of the Biot number escalate the temperature distribution and the thermal boundary layer thickness.The same observation is preserved for all the nano fl uids.The strength of the convected heating is signi fied for the higher values of the Biot number which resultantly rise the temperature distribution.The temperature is enhanced when the Eckert number is increased.Eckert number appears in the energy equation because of the consideration of the viscous dissipation effects in the fl uid motion.It is inversely proportional to the difference between the fl uid temperature on the surface and the ambient temperature.An increase in the Eckert number means there is a slight temperature difference between the surface and the thermal boundary layer and hence the rate of heat transfer is reduced.This reduction in heat transfer rate leads to escalate the temperature of the nano fl uid as shown in Figs.7–11.The effect of heat generation parameterQhis also displayed in the same figures.It is quite obvious that if heat is generated from any external or internal source the temperature of the fl uid is increased.In Figs.12–16,the in fl uence of the thermal radiation parameterR,magnetic parameterMand nanoparticle volume fraction?is displayed for the temperature distribution.Higher values of thermal radiation produces more heat in the working fl uid which rises the temperature and the thermal boundary layer thickness of the nano fl uid as shown in these figures.By increasing the magnetic field across the fl uid,the resistive forces are enhanced.Temperature is increased due to these resistive forces.Lastly,by inserting the more quantity of nanopartices in the base fl uid,the thermal properties of the fl uid go up and hence the temperature of the fl uid is increased.

    5 Concluding Remarks

    This article encompasses the three-dimensional MHD rotating fl ow of electrically conducting nano fl uid over an exponentially stretching sheet.The effect of heat generation,viscous dissipation and thermal radiation for five different nanoparticles is analyzed graphically and numerically.The main findings of the investigation are as follows.

    ?Al2O3-H2O nano fl uid has more capacity to transfer heat as compared to the other discussed nano fl uids when the thermal radiation is enhanced.

    ?The skin friction coefficient is maximum for Ag-H2O nano fl uid.

    ?An increase in the Eckert numberEcand the heat generation parameterQhreduces the Nusselt number.This reduction in the heat transfer rate is much lower for Ag-H2O nano fl uid.

    ?The velocity pro file diminishes for increasing values of the magnetic parameterM.

    ?Ag-H2O and Cu-H2O nano fl uids have greater values of the Nusselt number as compared to Al2O3-H2O and TiO2-H2O nano fl uids.

    [1]S.U.S.Choi,ASME Int.Mech.Engr.Cong.Exp.78(1995)99.

    [2]E.Magyari and B.Keller,J.Phys.D 32(1999)577.

    [3]J.A.Eastman,S.U.S.Choi,S.Li,et al.,Appl.Phys.Let.78(2001)718.

    [4]J.Li,L.Liu,L.Zheng,and B.B.Mohsin,J.Taiwan Inst.Chem.Engr.67(2016)226.

    [5]S.Nadeem,R.U.Haq,and Z.H.Khan,J.Taiwan Inst.Chem.Engr.45(2014)121.

    [6]M.Sheikholeslami,M.Hatami,and G.Domairry,J.Taiwan Inst.Chem.Engr.46(2015)43.

    [7]M.Sheikholeslami and D.D.Ganji,J.Taiwan Inst.Chem.Engr.65(2016)43.

    [8]M.Sheikholeslami,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Transfer 96(2016)513.

    [9]M.Chopkar,S.Sudarshan,P.K.Das,and I.Manna,Metall.Matter.Trans.A 39(2009)1535.

    [10]M.Ramzan and M.Bilal,PLoS ONE 10(2015)e0124929.

    [11]M.Ramzan and M.Bilal,J.Mol.Liq.215(2016)212.

    [12]M.Bilal,M.Sagheer,and S.Hussain,Alex.Engr.J.,doi.org/10.1016/j.aej.2017.03.039,(2017).

    [13]M.Sheikholeslami and S.A.Shehzad,Int.J.Heat Mass Transfer 109(2017)82.

    [14]M.Bilal,S.Hussain,and M.Sagheer,Bull.Po.Acad.Sci.Tech.Sci.65(2017)383.

    [15]M.Sheikholeslami and S.A.Shehzad,Int.J.Heat Mass Transfer 113(2017)796.

    [16]M.Sheikholeslami,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Transfer 108(2017)1870.

    [17]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 109(2017)115.

    [18]M.Sheikholeslami and H.B.Rokni,Int.J.Heat Mass Transfer 107(2017)288.

    [19]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 111(2017)1039.

    [20]M.Sheikholeslami and M.K.Sadoughi,Int.J.Heat Mass Transfer 116(2018)909.

    [21]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 111(2017)1039.

    [22]M.Sheikholeslami,Phys.B 516(2017)55.

    [23]M.Sheikholeslami,Eur.Phys.J.Plus.132(2017)55.

    [24]M.Sheikholeslami and H.B.Rokni,Int.J.Heat Mass Transfer 115(2017)1203.

    [25]C.Y.Wang,Zeitschrift für angewandte Math-ematik und Physik ZAMP 39(1988)177.

    [26]H.S.Takhar,A.J.Chamkha,and G.Nath,Int.J.Therm.Sci.42(2003)23.

    [27]K.Zaimi,A.Ishak,and I.Pop,Appl.Math.Mech.34(2013)945.

    [28]M.Turkyilmazoglu,Comp.&Fluids 90(2014)51.

    [29]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,Comp.&Fluids 27(2016)2223.

    [30]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,Adv.Powder Technol.27(2017)2223.

    [31]A.U.Rehman,R.Mehmood,and S.Nadeem,Appl.Therm.Engr.112(2017)832.

    [32]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,J.Taiwan Inst.Chem.Engr.45(2014)1176.

    [33]O.Pourmehran,M.Rahimi-Gorji,and D.D.Ganji,J.Taiwan Inst.Chem.Engr.65(2016)162.

    [34]R.Ahmed and M.Mustafa,J.Mol.Liq.220(2016)635.

    [35]T.Javed,M.Sajid,Z.Abbas,and N.Ali,Int.J.Num.Meth.Heat&Fluid Flow 21(2011)903.

    [36]R.Tiwari and S.Das,Int.J.Heat Mass Trans.50(2007)2002.

    [37]H.C.Brinkman,J.Chem.Phys.20(1952)571.

    [38]M.Sheikholeslami,J.Mol.Liq.234(Supplement C):(2017)364.

    [39]Mohsen Sheikholeslami,Magnetic Int.J.Hydrogen Energy 42(2017)19611.

    [40]M.Sheikholeslami and A.Zeeshan,Comput.Methods Appl.Mech.Eng.320(Supplement C):(2017)68.

    [41]R.L.Hamilton and O.K.Crosser,Ind.Engr.Chem.Fund.1(1962)187.

    [42]T.Y.Na,Computational Methods in Engineering Boundary Value Problem,Acad.Press,New York(1979)pp.71–76.

    男女下面进入的视频免费午夜| 久久精品夜色国产| 国产免费又黄又爽又色| 精品熟女少妇av免费看| 日日撸夜夜添| 精品久久久精品久久久| 国产乱人偷精品视频| 亚洲欧美成人精品一区二区| 2021天堂中文幕一二区在线观| 日韩av免费高清视频| 亚洲国产最新在线播放| 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 在线观看一区二区三区| 久久久久久久精品精品| 欧美极品一区二区三区四区| 成年版毛片免费区| 久久99热这里只有精品18| 色视频在线一区二区三区| 秋霞在线观看毛片| 尾随美女入室| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 建设人人有责人人尽责人人享有的 | 麻豆国产97在线/欧美| 美女cb高潮喷水在线观看| 99久久人妻综合| 大香蕉久久网| 一级av片app| 91狼人影院| 午夜日本视频在线| 精品一区在线观看国产| 人妻少妇偷人精品九色| 欧美日本视频| 黄片wwwwww| 国产精品爽爽va在线观看网站| 一本一本综合久久| 成年女人在线观看亚洲视频 | 最近的中文字幕免费完整| 大又大粗又爽又黄少妇毛片口| 日本-黄色视频高清免费观看| 99热网站在线观看| 18禁裸乳无遮挡免费网站照片| av线在线观看网站| 国产欧美日韩精品一区二区| 另类亚洲欧美激情| 国产精品99久久久久久久久| 国产精品.久久久| 五月开心婷婷网| 免费大片黄手机在线观看| 天堂中文最新版在线下载 | 国产成人精品婷婷| 成人特级av手机在线观看| 亚洲欧美中文字幕日韩二区| 在线播放无遮挡| 汤姆久久久久久久影院中文字幕| av在线播放精品| 免费在线观看成人毛片| 亚洲欧美日韩另类电影网站 | 国精品久久久久久国模美| 亚洲色图综合在线观看| 欧美日韩视频高清一区二区三区二| 嫩草影院入口| 人妻少妇偷人精品九色| 日韩成人伦理影院| 免费播放大片免费观看视频在线观看| 午夜福利视频精品| 真实男女啪啪啪动态图| 国产高潮美女av| xxx大片免费视频| 婷婷色综合www| 老师上课跳d突然被开到最大视频| 黄色日韩在线| 大码成人一级视频| 中文乱码字字幕精品一区二区三区| 亚洲av成人精品一区久久| 免费观看在线日韩| 2018国产大陆天天弄谢| 男人爽女人下面视频在线观看| 99热这里只有是精品50| 在线观看av片永久免费下载| 视频中文字幕在线观看| 精品亚洲乱码少妇综合久久| 你懂的网址亚洲精品在线观看| 成人亚洲精品一区在线观看 | 亚洲国产高清在线一区二区三| 精品人妻偷拍中文字幕| 最新中文字幕久久久久| 69av精品久久久久久| 亚洲av不卡在线观看| 久久女婷五月综合色啪小说 | 美女视频免费永久观看网站| 国产欧美亚洲国产| 亚州av有码| 好男人在线观看高清免费视频| 午夜免费观看性视频| 日韩一本色道免费dvd| 国产男人的电影天堂91| 午夜免费鲁丝| 一区二区三区四区激情视频| 麻豆乱淫一区二区| tube8黄色片| 大话2 男鬼变身卡| 国产精品国产三级国产av玫瑰| 亚洲国产欧美在线一区| 在线观看三级黄色| 成人特级av手机在线观看| 久久韩国三级中文字幕| 久久精品夜色国产| 极品少妇高潮喷水抽搐| 国产有黄有色有爽视频| 美女主播在线视频| 国产成人福利小说| 国产成人a∨麻豆精品| 亚洲婷婷狠狠爱综合网| 国产一级毛片在线| 中文字幕久久专区| 欧美97在线视频| 国产精品人妻久久久久久| 亚洲国产日韩一区二区| 国产乱人视频| 99热网站在线观看| 超碰av人人做人人爽久久| 亚洲国产精品成人综合色| 人妻少妇偷人精品九色| 高清毛片免费看| 中文资源天堂在线| 国产永久视频网站| 3wmmmm亚洲av在线观看| 亚洲精品国产成人久久av| 亚洲精品国产av成人精品| 国产精品99久久99久久久不卡 | 亚洲精品一二三| 深夜a级毛片| 观看美女的网站| 亚洲人成网站在线播| 国产男女超爽视频在线观看| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 亚洲成色77777| 免费电影在线观看免费观看| a级毛色黄片| 国产精品.久久久| 亚洲精品日本国产第一区| 男女那种视频在线观看| 日本色播在线视频| 男人和女人高潮做爰伦理| 80岁老熟妇乱子伦牲交| 免费播放大片免费观看视频在线观看| 禁无遮挡网站| 高清视频免费观看一区二区| 亚洲天堂av无毛| 久久午夜福利片| 欧美一级a爱片免费观看看| 天天躁夜夜躁狠狠久久av| 少妇裸体淫交视频免费看高清| 女的被弄到高潮叫床怎么办| 精品国产一区二区三区久久久樱花 | 日产精品乱码卡一卡2卡三| 亚洲aⅴ乱码一区二区在线播放| 国产日韩欧美亚洲二区| 久久热精品热| 成人漫画全彩无遮挡| 香蕉精品网在线| 欧美最新免费一区二区三区| 国产精品爽爽va在线观看网站| 嘟嘟电影网在线观看| 夜夜看夜夜爽夜夜摸| 九色成人免费人妻av| 三级国产精品片| 国产又色又爽无遮挡免| 久久精品国产自在天天线| 大香蕉97超碰在线| 91精品一卡2卡3卡4卡| 亚洲熟女精品中文字幕| 美女cb高潮喷水在线观看| 看黄色毛片网站| eeuss影院久久| 免费观看的影片在线观看| 看黄色毛片网站| 日韩精品有码人妻一区| 国产精品久久久久久精品电影小说 | 国产毛片a区久久久久| 国产精品人妻久久久影院| 麻豆乱淫一区二区| 免费观看在线日韩| 在线观看免费高清a一片| 一级爰片在线观看| 在线看a的网站| 日本wwww免费看| 91在线精品国自产拍蜜月| 少妇熟女欧美另类| 色5月婷婷丁香| 亚洲精品乱码久久久久久按摩| 日韩精品有码人妻一区| 欧美国产精品一级二级三级 | 中文欧美无线码| 国产亚洲最大av| 久久国内精品自在自线图片| 国产久久久一区二区三区| 黄色一级大片看看| 国产精品人妻久久久影院| 女人被狂操c到高潮| 高清午夜精品一区二区三区| 最近中文字幕高清免费大全6| 国产日韩欧美在线精品| 国产伦精品一区二区三区视频9| av女优亚洲男人天堂| 亚洲国产日韩一区二区| 久久久精品欧美日韩精品| 伊人久久国产一区二区| 美女主播在线视频| 人妻系列 视频| 老司机影院毛片| 噜噜噜噜噜久久久久久91| 欧美成人午夜免费资源| 少妇人妻一区二区三区视频| 午夜激情福利司机影院| 精品熟女少妇av免费看| 天天躁日日操中文字幕| 十八禁网站网址无遮挡 | 搡女人真爽免费视频火全软件| 国产精品久久久久久精品电影小说 | 全区人妻精品视频| 亚洲色图综合在线观看| 亚洲国产精品999| 中国三级夫妇交换| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 国产免费视频播放在线视频| 国产精品人妻久久久久久| 中国三级夫妇交换| 国产久久久一区二区三区| freevideosex欧美| av女优亚洲男人天堂| 看十八女毛片水多多多| 国产精品精品国产色婷婷| 老女人水多毛片| 亚洲精品日韩av片在线观看| 水蜜桃什么品种好| 老司机影院毛片| 欧美一区二区亚洲| 国产又色又爽无遮挡免| 国产成人福利小说| 国产在线一区二区三区精| 2022亚洲国产成人精品| 亚洲欧美清纯卡通| 亚洲经典国产精华液单| 亚洲欧美日韩卡通动漫| 国产毛片在线视频| 久久精品综合一区二区三区| 国产乱人偷精品视频| 街头女战士在线观看网站| 2021少妇久久久久久久久久久| 欧美激情久久久久久爽电影| 色视频在线一区二区三区| 一级毛片aaaaaa免费看小| 国产精品av视频在线免费观看| 天堂俺去俺来也www色官网| 亚洲电影在线观看av| 嫩草影院新地址| 久久久精品免费免费高清| 在线观看一区二区三区| 亚洲精品国产av成人精品| 在线观看一区二区三区激情| 大话2 男鬼变身卡| 国产男人的电影天堂91| 2021少妇久久久久久久久久久| 免费黄频网站在线观看国产| 黄色一级大片看看| 亚洲国产av新网站| 久久久久九九精品影院| 中文字幕人妻熟人妻熟丝袜美| 色网站视频免费| 亚洲av.av天堂| 国产亚洲av嫩草精品影院| 黄色欧美视频在线观看| 肉色欧美久久久久久久蜜桃 | av在线app专区| 天堂中文最新版在线下载 | 欧美3d第一页| 国产成人精品福利久久| 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| 一级爰片在线观看| 国产精品一区二区性色av| 久久久国产一区二区| 国内揄拍国产精品人妻在线| 特大巨黑吊av在线直播| 亚洲欧美精品专区久久| 韩国高清视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲国产色片| 身体一侧抽搐| 日本一二三区视频观看| 国产精品久久久久久久电影| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| av在线天堂中文字幕| 亚洲丝袜综合中文字幕| 国产男女内射视频| 成人一区二区视频在线观看| 亚洲自偷自拍三级| 久久久久久久久久久丰满| 91aial.com中文字幕在线观看| 国产人妻一区二区三区在| 一级毛片黄色毛片免费观看视频| 午夜老司机福利剧场| 特级一级黄色大片| 亚洲一级一片aⅴ在线观看| 国产成人aa在线观看| 极品少妇高潮喷水抽搐| 国产欧美亚洲国产| 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| 免费少妇av软件| 国产精品成人在线| 欧美xxxx黑人xx丫x性爽| a级一级毛片免费在线观看| 亚洲一区二区三区欧美精品 | 一级爰片在线观看| 亚洲精品久久久久久婷婷小说| 久久久精品欧美日韩精品| 欧美 日韩 精品 国产| 国产有黄有色有爽视频| 亚洲精品影视一区二区三区av| 精品少妇黑人巨大在线播放| 久久久久久久精品精品| 亚洲最大成人中文| 最近中文字幕高清免费大全6| 亚洲精品一二三| 丰满乱子伦码专区| 亚洲精品一二三| 一级毛片电影观看| 美女被艹到高潮喷水动态| 各种免费的搞黄视频| 亚洲av在线观看美女高潮| 欧美bdsm另类| 亚洲精品乱码久久久v下载方式| 五月伊人婷婷丁香| 国产爽快片一区二区三区| eeuss影院久久| 91精品国产九色| 亚洲自拍偷在线| 少妇熟女欧美另类| 午夜日本视频在线| 性色avwww在线观看| 国产伦精品一区二区三区四那| 国产精品秋霞免费鲁丝片| 99热全是精品| 国产极品天堂在线| 免费看av在线观看网站| 午夜福利网站1000一区二区三区| 久久久久久久精品精品| 国产 一区 欧美 日韩| 久久久亚洲精品成人影院| 欧美zozozo另类| 国产伦精品一区二区三区四那| 久久久久久伊人网av| 最近的中文字幕免费完整| 中国美白少妇内射xxxbb| 免费播放大片免费观看视频在线观看| 亚洲精品国产av成人精品| 国产成人午夜福利电影在线观看| 久久久成人免费电影| 在线免费观看不下载黄p国产| 久久精品国产亚洲av涩爱| 少妇人妻 视频| 丝袜脚勾引网站| 不卡视频在线观看欧美| 大片电影免费在线观看免费| 精品视频人人做人人爽| 亚洲精品国产成人久久av| 久久久欧美国产精品| 欧美另类一区| 亚洲国产精品999| 久久综合国产亚洲精品| 免费看光身美女| 色视频在线一区二区三区| 精品少妇黑人巨大在线播放| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看| 好男人视频免费观看在线| 国产男女超爽视频在线观看| 日本一二三区视频观看| 国产高潮美女av| 亚洲成人久久爱视频| 亚洲一区二区三区欧美精品 | 99热国产这里只有精品6| 中文字幕免费在线视频6| 亚洲av成人精品一二三区| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 国产色婷婷99| 丰满乱子伦码专区| 十八禁网站网址无遮挡 | 欧美性感艳星| 亚洲最大成人中文| 能在线免费看毛片的网站| 亚洲国产高清在线一区二区三| 国产亚洲av嫩草精品影院| 身体一侧抽搐| 少妇熟女欧美另类| 精品久久久久久久久亚洲| 欧美极品一区二区三区四区| 国产精品久久久久久精品电影| 亚洲国产成人一精品久久久| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 尾随美女入室| 精品午夜福利在线看| 久久久久久久久久久丰满| 精品人妻视频免费看| 国产人妻一区二区三区在| 欧美区成人在线视频| 欧美少妇被猛烈插入视频| 别揉我奶头 嗯啊视频| 亚洲精品自拍成人| 91久久精品国产一区二区成人| 久久精品熟女亚洲av麻豆精品| 搡女人真爽免费视频火全软件| 人妻系列 视频| 成人毛片a级毛片在线播放| 一级黄片播放器| 成人毛片a级毛片在线播放| 亚洲va在线va天堂va国产| 尾随美女入室| 欧美日韩视频精品一区| 女人十人毛片免费观看3o分钟| av在线app专区| 亚洲激情五月婷婷啪啪| 日本一二三区视频观看| 国产成人精品福利久久| 欧美性猛交╳xxx乱大交人| 国产探花在线观看一区二区| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 久久久亚洲精品成人影院| 一区二区三区四区激情视频| 国产黄片视频在线免费观看| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 国产欧美日韩一区二区三区在线 | 免费看不卡的av| 一级片'在线观看视频| 亚洲不卡免费看| 久久久久精品久久久久真实原创| 99热这里只有是精品在线观看| 大香蕉久久网| 丰满乱子伦码专区| 国产毛片a区久久久久| 中文天堂在线官网| 毛片女人毛片| 男插女下体视频免费在线播放| 91精品一卡2卡3卡4卡| xxx大片免费视频| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 亚洲欧美日韩另类电影网站 | 久久鲁丝午夜福利片| 亚洲av电影在线观看一区二区三区 | 在线免费十八禁| 制服丝袜香蕉在线| 久久精品国产亚洲网站| 欧美bdsm另类| 国产免费又黄又爽又色| 欧美性猛交╳xxx乱大交人| 国产精品.久久久| 国内精品宾馆在线| 2022亚洲国产成人精品| 高清毛片免费看| 国产成人精品婷婷| 人人妻人人爽人人添夜夜欢视频 | 一级毛片 在线播放| 99久久精品一区二区三区| 午夜免费鲁丝| 日本免费在线观看一区| 97精品久久久久久久久久精品| 五月伊人婷婷丁香| 国产日韩欧美在线精品| 听说在线观看完整版免费高清| kizo精华| 激情五月婷婷亚洲| 超碰av人人做人人爽久久| 成年女人在线观看亚洲视频 | 中文字幕免费在线视频6| 午夜福利在线在线| 下体分泌物呈黄色| 制服丝袜香蕉在线| 性色avwww在线观看| 人人妻人人澡人人爽人人夜夜| 一级二级三级毛片免费看| 国产成人午夜福利电影在线观看| 国产一区二区亚洲精品在线观看| 男人添女人高潮全过程视频| 自拍欧美九色日韩亚洲蝌蚪91 | 麻豆精品久久久久久蜜桃| 精品国产三级普通话版| 国产欧美日韩精品一区二区| 亚洲欧美日韩卡通动漫| 人妻夜夜爽99麻豆av| 婷婷色av中文字幕| 亚洲精品乱久久久久久| 高清视频免费观看一区二区| 春色校园在线视频观看| 蜜臀久久99精品久久宅男| 亚洲人成网站在线播| 国产av不卡久久| 欧美人与善性xxx| 最近手机中文字幕大全| 蜜臀久久99精品久久宅男| 久久精品国产鲁丝片午夜精品| 97在线视频观看| 女人久久www免费人成看片| 亚洲国产色片| 26uuu在线亚洲综合色| 男女无遮挡免费网站观看| 免费观看性生交大片5| 亚洲第一区二区三区不卡| 久久99热6这里只有精品| 一级毛片 在线播放| 国产精品不卡视频一区二区| 免费观看无遮挡的男女| 欧美精品人与动牲交sv欧美| 熟妇人妻不卡中文字幕| 久久精品综合一区二区三区| 成人亚洲精品一区在线观看 | 精品99又大又爽又粗少妇毛片| 久久久国产一区二区| 国产欧美亚洲国产| 国产 精品1| 日韩不卡一区二区三区视频在线| 成人午夜精彩视频在线观看| 六月丁香七月| 久久精品人妻少妇| 高清在线视频一区二区三区| 亚洲av电影在线观看一区二区三区 | 亚洲最大成人av| 国产高清不卡午夜福利| 一级黄片播放器| 亚洲av男天堂| 国产伦在线观看视频一区| 大香蕉97超碰在线| 欧美日韩精品成人综合77777| 精品一区二区三卡| 国产免费视频播放在线视频| 男女啪啪激烈高潮av片| 免费黄网站久久成人精品| 成人特级av手机在线观看| 老司机影院毛片| 青春草国产在线视频| 亚州av有码| 天天一区二区日本电影三级| 男人爽女人下面视频在线观看| 日韩伦理黄色片| 亚洲丝袜综合中文字幕| 嫩草影院入口| 国产黄色免费在线视频| 久久久a久久爽久久v久久| 色视频在线一区二区三区| 国产免费一级a男人的天堂| 极品教师在线视频| 亚洲国产欧美人成| 最近中文字幕2019免费版| 热re99久久精品国产66热6| 黑人高潮一二区| 国产欧美亚洲国产| 97精品久久久久久久久久精品| 日日撸夜夜添| 一个人看视频在线观看www免费| 久久久久网色| 亚洲av成人精品一二三区| 国产精品不卡视频一区二区| 亚洲四区av| 男女下面进入的视频免费午夜| 国产精品国产av在线观看| 国产在视频线精品| 欧美日韩视频精品一区| 秋霞伦理黄片| 一区二区三区乱码不卡18| 深夜a级毛片| 秋霞伦理黄片| 午夜老司机福利剧场| 精品人妻视频免费看| 亚洲三级黄色毛片| 大片免费播放器 马上看| 亚洲精品久久久久久婷婷小说| 又黄又爽又刺激的免费视频.| av在线播放精品| 男女边摸边吃奶| 新久久久久国产一级毛片| 日本av手机在线免费观看| 精品人妻偷拍中文字幕| 国产大屁股一区二区在线视频| 国产黄片视频在线免费观看| 22中文网久久字幕| 国产亚洲av片在线观看秒播厂| 91在线精品国自产拍蜜月| 亚洲精品自拍成人| 99热这里只有是精品50| 亚洲国产精品成人综合色| 欧美亚洲 丝袜 人妻 在线| 夜夜爽夜夜爽视频| 王馨瑶露胸无遮挡在线观看| 日韩欧美精品v在线| a级一级毛片免费在线观看| 国产在视频线精品| 少妇丰满av| 日日摸夜夜添夜夜添av毛片| 中文乱码字字幕精品一区二区三区| 国产精品秋霞免费鲁丝片| 欧美激情国产日韩精品一区| 亚洲欧美一区二区三区国产| 免费不卡的大黄色大毛片视频在线观看| 国产成人精品福利久久|