• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermally Radiative Rotating Magneto-Nano fl uid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation:A Comparative Study

    2018-05-14 01:05:17SagheerBilalHussainandAhmed
    Communications in Theoretical Physics 2018年3期

    M.Sagheer,M.Bilal,S.Hussain,and R.N.Ahmed

    Department of Mathematics,Capital University of Science and Technology,Islamabad,Pakistan

    Nomenclature

    ?

    1 Introduction

    In the present fast growing and developing computer age,the transportation,communication,heavy mechanical industries,electronics industries and house hold appliances,all are running by some mechanical and electronic devices.Almost in all such devices,according to the requirements of devices,a system of cooling or heating is built-in,by which a fl uid fl ows through or around the device to prevent these devices from overheating or cooling down from certain temperature threshold.To meet the human requirements and demand of the market,it is essential that these devices work round the clock.To keep the devices at a constant temperature,the heat dissipated must be equal to the heat generated.The conventional fl uids with low thermal conductivity do not meet the temperature requirements of many mechanical and electronics devices,which results in poor performance of these devices and reduces their efficiency and working age.Therefore,it is imperative to improve the thermal conductivity of the conventional fl uids.

    The conventional fl uids used for the transfer of heat energy were first time replaced by the nano fl uids by Choi[1]followed by many researchers.A nano fl uid is a mixture of nanoparticles in a conventional heat transfer fl uid.The nanoparticles(1–100 nm)in size are usually metals,metallic oxides,nano fibers,etc.Choi[1]experimentally found that the nanoparticles when added to the base fl uids,considerably improve the thermal conductivity of the base fl uid.Magyari and Keller[2]focused on the heat and mass transfer analysis in the boundary layer fl ow due to an exponentially continuous stretching sheet.Eastmanet al.[3]observed that the thermal conductivity of pure ethylene glycol is much increased when copper nanoparticles are added to it.Liet al.[4]investigated the MHD nano fl uid fl ow in a thin film through unsteady stretching sheet with additional effects of thermal radiation,heat generation,Brownian motion,and thermophoresis.They used theMATLABbuilt-in bvp4c solver to solve their ODEs.It is found form their investigation that temperature and nanoparticle concentration have opposite behavior for the thermophoresis parameter.Nadeemet al.[5]analyzed the in fl uence of nanoparticles on the two-dimensional fl ow of Maxwell nano fl uid over a stretching sheet for the heat and mass transfer effects.By applying the boundarylayer approximation,they also incorporated the effects of MHD and elasticity parameter.Sheikholeslamiet al.[6]presented an analysis focusing on the unsteady squeezing fl ow of electrically conducting nano fl uid using the homotopy perturbation method.Two phase simulation model for the nano fl uid is considered along with the magnetohydrodynamics effects.They concluded that the Nusselt number is a decreasing function of the squeezing parameter.Another useful contribution of Sheikholeslami and Ganji,[7]is a review work addressing both the single and the double phase models for the nano fl uids.They describe brie fl y the various attempts of different scientists on heat transfer of convective nano fl uids.It is further analyzed that while increasing the Reynolds number and Rayleigh number,the rate of heat transfer is increased.Sheikholeslamiet al.[8]discussed the thermal radiation on MHD free convection of Al2O3-water nano fl uid.Chopkaret al.[9]studied the effect of the size of the nanoparticles on the thermal conductivity of nano fl uid and found that the thermal conductivity decreases by increasing the size of the particles.In last half decade,many articles related to the nano fl uid dynamics are published in literature.[10?24]

    A reasonable number of applications emphasizing the role of steady and unsteady rotating fl ows may be found in chemical and geophysical fl uid mechanics.These all are of applied nature like in the thermal power generating systems,food processing,the skins of high speed air crafts and in rotor stator systems.The pioneering work highlighting the rotating fl ow was done by Wang.[25]Takharet al.[26]discussed the effects of magnetohydrodynamic in a rotating fl ow.They concluded that the skin friction along thex-axis increases for the higher values of the magnetic parameter and has a reverse relation for they-axis skin friction coefficient.Zaimiet al.[27]applied the numerical technique to examine the rotating fl ow of viscoelastic fl uid.Turkyilmazoglu[28]applied the spectral numerical integration method for the problem related to the shrinking rotating disk with the effect of magnetohydrodynamic.Some recent attempts emphasizing the rotating fl ow can be found in Refs.[29–31].

    During the study of nano fl uid,the thermal radiative properties of Newtonian and non-Newtonian fl uids for the heat transfer phenomenon have got much attention.Because of the insertion of the nanoparticles in the base fl uid,the thermal properties are enhanced which resultantly rises the temperature of the nano fl uids and for the higher temperature differences,the effects of the thermal radiation cannot be neglected.The operating systems performing the energy conversion at high temperature show a comparable effect of the thermal radiation.In other engineering and chemical processes such as solar water technology,fossil fuel combustion,astrophysical fl ows,hypersonic fl ights,gas turbines,space vehicles,nuclear reactors etc.,the effects of thermal radiations are quite phenomenal.Many researchers have considered the in fl uence of thermal radiation on the boundary layer fl ow of Newtonian and non-Newtonian fl uids.Mushtaqet al.[32]considered the nonlinear thermal radiation in the two-dimensional stagnation point fl ow with additional effects of Joule heating and viscous dissipation over a convectively heated surface.They deduced that both the temperature and its gradient are increasing functions of thermal radiation parameter.Pourmehranet al.[33]numerically investigated the MHD boundary layer fl ow of nano fl uid through convectively heated vertical stretching sheet.During the study,the in fl uence of thermal radiation and buoyancy effects got special attention.Pourmehran et al.considered three different types of base fl uid i.e.,pure water,ethylene glycol 30%and ethylene glycol 50%while the four types of nanoparticles i.e.,copper,silver,alumina,and titanium oxide.

    Motivated by the above mentioned literature,the primary objective of the present study is to examine the effects of thermal radiation and viscous dissipation on heat transfer fl ow over a bi-directional convectively heated exponentially stretching sheet in the presence of transverse magnetic field and volumetric rate of heat generation.Five different nanoparticles(silver,copper,copper oxide,titanium oxide,alumina)are assumed to be suspended in the pure water.A detailed comparative study of these nano fl uids for the fl ow and heat transfer is presented and discussed graphically and numerically.Boundary layer approximations are used to govern the partial differential equations,which are then transformed to the ordinary differential equations with the help of transformations.The modeled problem is solved numerically by the shooting method using Runga-Kutta integration scheme of order 4.Effects of emerging parameters on velocity and temperature pro files are discussed in detail.Nusselt number and skin friction coefficient are also calculated.In the limiting case,the results are veri fied by reproducing the results of previously published article[34?35]

    2 Mathematical Formulation

    A laminar,incompressible and steady water-based electrically conducted nano fl uid fl ow over an exponentially bidirectional stretching sheet is considered.Sheet temperatureTfis controlled via convection by considering hot fl uid below it.The temperature faraway from the surface where its difference is negligible is known as the ambient temperature and is denoted byT∞.The fl uid is assumed to rotate with angular velocityalongz-axis having the coriolis effect.A transverse variable magnetic fieldis applied alongz-axis with the assumption of small Reynolds number,ignoring the induced magnetic field.The fl uid has internal volumetric rate of heat generationIn thexdirection,the velocity of the sheet is taken asas shown in Fig.1.

    Fig.1 Geometry of the Problem.

    Further the effects of the thermal radiation,Joule heating and viscous dissipation are considered in the formulation of energy equation.For the nano fl uid model,the Tiwari and Das model.[36]has been utilized.Applying the boundary layer by incorporating the Boussinesq approximations,the conservation equations of mass,momentum and energy in the mathematical form can be expressed as

    In Table 1,the thermo-physical properties of different nanoparticles and pure water are shown.The following dimensionless variables are used to convert the system of the non-linear PDEs to the system of ODEs.

    In Eq.(4),qris a radiative heat fl ux which is de fined as

    Furthermore,the temperature difference within the fl ow is assumed such thatT4may be expanded in a Taylor series.Hence,expandingT4aboutT∞and neglecting the higher order terms,we get

    Using the similarity transformation de fined in Eq.(9),Eq.(1)is identically satis fied while Eqs.(2)–(5)are converted into the following nonlinear ordinary differential equations:

    Table 1 Thermo-physical properties of H2O and nanoparticles.

    The transformed boundary conditions are:

    3 Solution Methodology

    An efficient numerical technique,namely the shooting method has been employed to solve the transformed ordinary differential equations along with the boundary con-ditions for different values of the emerging parameters.While applying the shooting method,[42]first the higher order boundary value problem is converted to a system of first order initial value problem(IVP).During the conversion,fis denoted byy1,gbyy4andθbyy6.The missing initial conditions are supposed to be?1,?2and?3.The converted first order IVP takes the following form

    Fourth order Runge-Kutta method is utilized to solve this IVP.The re finement of initial guesses is carried out by the Newton’s method.Because the numerical solution cannot be computed on the unbounded domain[0,∞),a bounded domain[0,η∞]has been considered,whereη∞is an appropriate real number.After performing a number of computational experiments,η∞is set to 4,because there is no signi ficant variation in the results forη∞>4.The stoping criteria set for the Newton’s iterative process is

    Throughout this article,?is chosen as 10?6.For the validation of theMATLABcode of the shooting method,it is affectively applied to reproduce the numerical results of Javedet al.[35]and Ahmad and Mustafa.[34]The successful comparison has been presented in Table 2.

    Table 2 Comparison of present results with those of Javed et al.[35]and Ahmad and Mustafa.[34]

    4 Results and Discussions

    In this section,we discuss the in fl uence of different parameters such as nanoparticles volume fraction?,rotational parameterλ,magnetic parameterM,thermal radiation parameterR,Eckert numberEc,heat generation/absorption parameterQhon the velocity,temperature,skin-friction and Nusselt number,both graphically and numerically in the tabular form.

    In Table 3,the in fl uence of the nanoparticle volume fraction?,rotational parameterλand magnetic parameterMon the skin friction coefficient alongx-axis is presented for different nanoparticles.It is observed that due to the addition of more nanoparticles in the base fl uid,the skin-friction is enhanced.This enhancement is more rapid in Ag-H2O nano fl uid whereas in case of Al2O3-H2O,the increase in the skin-friction is less as compared to the other nanolfuids.Quite similar behavior is noticed for the rotational parameterλ.When the magnetic field is intensi fied along thez-axis,the skin-friction escalates along thex-axis due to the presence of the Lorentz force.Again,Ag-H2O nano fl uid has more frictional force as compared to the other nano fl uids.

    Table 3 Effect of ?,λ and M on the skin friction coefficient along x-axis when Qh=0.1,Bi=0.6,Pr=6.2,n=3.0,R=0.2,Ec=0.01.

    Table 4 Numerical values of skin friction coefficient along y-axis for different values of parameters when Qh=0.1,R=0.2,Ec=0.01.

    Table 5 Numerical values of local Nusselt for different values of parameters when ? =0.01,λ =0.2,M=0.3.

    Table 3 shows the effect of variation of nanoparticles volume fraction?,rotational parameterλ,and magnetic parameterMon the skin friction coefficient alongyaxis. From the table,it is highlighted that fractional force between the fl uid and the solid surface in theydirection is enhanced when the nanoparticles volume fraction is increased.However this increase in skin friction is very small. Again it is observed that Al2O3water base nano fl luid has least increase when compared with the other nano fl uids.By escalating the angular velocity of the nanoparticles,the skin friction rises along they-axis.The effect of magnetic fieldMon the skin friction along they-axis is quite similar as already shown in Table 3.By enhancing the magnetic parameter,the surface fractional force also increased.

    Fig.2 In fl uence of ?,λ,and M on f′(η)for Al2O3-H2O nano fl uid.

    Fig.3 In fl uence of ?, λ,and M on f′(η)for CuO-H2O nano fl uid.

    Fig.4 In fl uence of ?, λ and M on f′(η)for TiO2-H2O nano fl uid.

    The effect of thermal radiation parameterR,Eckert numberEc,heat generation/absorption parameterQhand Biot number on Nusselt number is shown in Table 5.From this table,it is observed that these parameters have increasing effect on the Nusselt number.The comparison among different nanoparticles exhibits that Al2O3-H2O nano fl uid possesses the highest value of Nusselt number for thermal radiation parameter.It is also perceived that Ag-H2O nano fl uid has more heat transfer rate as compared to the other nano fl uids for the increasing values of Eckert number and heat generation/absorption parameterQh.Nusselt number is also enhanced for the higher values of the Biot numberBi.It happens because for the higher values of the Biot number,a stronger convection is produced which causes higher rate of change in the temperature.

    Fig.5 In fl uence of ?,λ and M on f′(η)for Cu-H2O nano fl uid.

    Fig.6 In fl uence of ?,λ and M on f′(η)for Ag-H2O nano fl uid.

    Fig.7 In fl uence of Bi,Ec and Qhon θ(η)for Al2O3-H2O nano fl uid.

    Fig.8 In fl uence of Bi,Ec and Qhon θ(η)for CuO-H2O nano fl uid.

    Fig.9 In fl uence of Bi,Ec and Qhon θ(η)for TiO2-H2O nano fl uid.

    Fig.10 In fl uence of Bi,Ec and Qhon θ(η)for Cu-H2O nano fl uid.

    Fig.11 In fl uence of Bi,Ec and Qhon θ(η)for Ag-H2O nano fl uid.

    Fig.12 In fl uence of R,M and ? on θ(η)for Al2O3-H2O nano fl uid.

    Fig.13 In fl uence of R,M and ? on θ(η)for CuO-H2O nano fl uid.

    Fig.14 In fl uence of R,M and ? on θ(η)for TiO2-H2O nano fl uid.

    Fig.15 In fl uence of R,M and ? on θ(η)for Cu-H2O nano fl uid.

    Fig.16 In fl uence of R,M and ? on θ(η)for Ag-H2O nano fl uid.

    To visualize the effect of different physical parameters on the velocityf′(η)and the temperature pro fileθ(η),Figs.2–6 are plotted.In Figs.2–6,the effects of nanoparticle volume fraction?,rotational parameterλand magnetic parameterMon the velocity pro file for alumina,copper oxide,titanium oxide,copper and silver based nano fl uids are displayed.For all the nano fl uids,it is observed that the velocity as well as the boundary layer thickness of the nano fl uid decreases when the quantity of the nanoparticles in the base fl uid is increased.Velocity distribution is dominant at the surface of the sheet.The effect of rotational parameterλwhich is the associated with the angular velocity of the fl uid,on velocity pro file is displayed in Figs.2–6.From these figures,it is noticed that the velocity pro file and its momentum boundary layer thickness is reduced for the increasing values ofλ.Hence,the rotational effects resist the fl uid fl ow in thex-direction.For higher values of rotational parameter,the velocity becomes negative in some part of the boundary layer thickness and an interesting phenomenon of oscillatory decaying pro file are also observed.The Lorentz forces,which are resistive in nature are produced when the magnetic field is applied across the fl uid fl ow.These forces are responsible for the reduction in the fl uid particle’s motion for the higher values of magnetic parameterM.Hence for all the nano fl uids,the speed of the fl uid decreases for the increasing values of magnetic parameter.

    To observe the effect of the variation in the Biot numberBi,Eckert numberEc,and heat generation parameterQhon the temperature distribution Figs.7–11 are plotted.It is observed that the higher values of the Biot number escalate the temperature distribution and the thermal boundary layer thickness.The same observation is preserved for all the nano fl uids.The strength of the convected heating is signi fied for the higher values of the Biot number which resultantly rise the temperature distribution.The temperature is enhanced when the Eckert number is increased.Eckert number appears in the energy equation because of the consideration of the viscous dissipation effects in the fl uid motion.It is inversely proportional to the difference between the fl uid temperature on the surface and the ambient temperature.An increase in the Eckert number means there is a slight temperature difference between the surface and the thermal boundary layer and hence the rate of heat transfer is reduced.This reduction in heat transfer rate leads to escalate the temperature of the nano fl uid as shown in Figs.7–11.The effect of heat generation parameterQhis also displayed in the same figures.It is quite obvious that if heat is generated from any external or internal source the temperature of the fl uid is increased.In Figs.12–16,the in fl uence of the thermal radiation parameterR,magnetic parameterMand nanoparticle volume fraction?is displayed for the temperature distribution.Higher values of thermal radiation produces more heat in the working fl uid which rises the temperature and the thermal boundary layer thickness of the nano fl uid as shown in these figures.By increasing the magnetic field across the fl uid,the resistive forces are enhanced.Temperature is increased due to these resistive forces.Lastly,by inserting the more quantity of nanopartices in the base fl uid,the thermal properties of the fl uid go up and hence the temperature of the fl uid is increased.

    5 Concluding Remarks

    This article encompasses the three-dimensional MHD rotating fl ow of electrically conducting nano fl uid over an exponentially stretching sheet.The effect of heat generation,viscous dissipation and thermal radiation for five different nanoparticles is analyzed graphically and numerically.The main findings of the investigation are as follows.

    ?Al2O3-H2O nano fl uid has more capacity to transfer heat as compared to the other discussed nano fl uids when the thermal radiation is enhanced.

    ?The skin friction coefficient is maximum for Ag-H2O nano fl uid.

    ?An increase in the Eckert numberEcand the heat generation parameterQhreduces the Nusselt number.This reduction in the heat transfer rate is much lower for Ag-H2O nano fl uid.

    ?The velocity pro file diminishes for increasing values of the magnetic parameterM.

    ?Ag-H2O and Cu-H2O nano fl uids have greater values of the Nusselt number as compared to Al2O3-H2O and TiO2-H2O nano fl uids.

    [1]S.U.S.Choi,ASME Int.Mech.Engr.Cong.Exp.78(1995)99.

    [2]E.Magyari and B.Keller,J.Phys.D 32(1999)577.

    [3]J.A.Eastman,S.U.S.Choi,S.Li,et al.,Appl.Phys.Let.78(2001)718.

    [4]J.Li,L.Liu,L.Zheng,and B.B.Mohsin,J.Taiwan Inst.Chem.Engr.67(2016)226.

    [5]S.Nadeem,R.U.Haq,and Z.H.Khan,J.Taiwan Inst.Chem.Engr.45(2014)121.

    [6]M.Sheikholeslami,M.Hatami,and G.Domairry,J.Taiwan Inst.Chem.Engr.46(2015)43.

    [7]M.Sheikholeslami and D.D.Ganji,J.Taiwan Inst.Chem.Engr.65(2016)43.

    [8]M.Sheikholeslami,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Transfer 96(2016)513.

    [9]M.Chopkar,S.Sudarshan,P.K.Das,and I.Manna,Metall.Matter.Trans.A 39(2009)1535.

    [10]M.Ramzan and M.Bilal,PLoS ONE 10(2015)e0124929.

    [11]M.Ramzan and M.Bilal,J.Mol.Liq.215(2016)212.

    [12]M.Bilal,M.Sagheer,and S.Hussain,Alex.Engr.J.,doi.org/10.1016/j.aej.2017.03.039,(2017).

    [13]M.Sheikholeslami and S.A.Shehzad,Int.J.Heat Mass Transfer 109(2017)82.

    [14]M.Bilal,S.Hussain,and M.Sagheer,Bull.Po.Acad.Sci.Tech.Sci.65(2017)383.

    [15]M.Sheikholeslami and S.A.Shehzad,Int.J.Heat Mass Transfer 113(2017)796.

    [16]M.Sheikholeslami,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Transfer 108(2017)1870.

    [17]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 109(2017)115.

    [18]M.Sheikholeslami and H.B.Rokni,Int.J.Heat Mass Transfer 107(2017)288.

    [19]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 111(2017)1039.

    [20]M.Sheikholeslami and M.K.Sadoughi,Int.J.Heat Mass Transfer 116(2018)909.

    [21]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 111(2017)1039.

    [22]M.Sheikholeslami,Phys.B 516(2017)55.

    [23]M.Sheikholeslami,Eur.Phys.J.Plus.132(2017)55.

    [24]M.Sheikholeslami and H.B.Rokni,Int.J.Heat Mass Transfer 115(2017)1203.

    [25]C.Y.Wang,Zeitschrift für angewandte Math-ematik und Physik ZAMP 39(1988)177.

    [26]H.S.Takhar,A.J.Chamkha,and G.Nath,Int.J.Therm.Sci.42(2003)23.

    [27]K.Zaimi,A.Ishak,and I.Pop,Appl.Math.Mech.34(2013)945.

    [28]M.Turkyilmazoglu,Comp.&Fluids 90(2014)51.

    [29]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,Comp.&Fluids 27(2016)2223.

    [30]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,Adv.Powder Technol.27(2017)2223.

    [31]A.U.Rehman,R.Mehmood,and S.Nadeem,Appl.Therm.Engr.112(2017)832.

    [32]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,J.Taiwan Inst.Chem.Engr.45(2014)1176.

    [33]O.Pourmehran,M.Rahimi-Gorji,and D.D.Ganji,J.Taiwan Inst.Chem.Engr.65(2016)162.

    [34]R.Ahmed and M.Mustafa,J.Mol.Liq.220(2016)635.

    [35]T.Javed,M.Sajid,Z.Abbas,and N.Ali,Int.J.Num.Meth.Heat&Fluid Flow 21(2011)903.

    [36]R.Tiwari and S.Das,Int.J.Heat Mass Trans.50(2007)2002.

    [37]H.C.Brinkman,J.Chem.Phys.20(1952)571.

    [38]M.Sheikholeslami,J.Mol.Liq.234(Supplement C):(2017)364.

    [39]Mohsen Sheikholeslami,Magnetic Int.J.Hydrogen Energy 42(2017)19611.

    [40]M.Sheikholeslami and A.Zeeshan,Comput.Methods Appl.Mech.Eng.320(Supplement C):(2017)68.

    [41]R.L.Hamilton and O.K.Crosser,Ind.Engr.Chem.Fund.1(1962)187.

    [42]T.Y.Na,Computational Methods in Engineering Boundary Value Problem,Acad.Press,New York(1979)pp.71–76.

    亚洲狠狠婷婷综合久久图片| 亚洲av电影不卡..在线观看| 国产精品二区激情视频| 国产乱人伦免费视频| 伦理电影免费视频| 国产av又大| 女性生殖器流出的白浆| 成人国产一区最新在线观看| 美国免费a级毛片| 亚洲第一电影网av| 国产极品粉嫩免费观看在线| 精品国产乱码久久久久久男人| 日韩 欧美 亚洲 中文字幕| 97人妻精品一区二区三区麻豆 | 757午夜福利合集在线观看| 亚洲第一电影网av| 欧美丝袜亚洲另类 | a级毛片在线看网站| 久久精品国产亚洲av香蕉五月| 一区二区三区激情视频| 日日夜夜操网爽| 91麻豆av在线| 禁无遮挡网站| 叶爱在线成人免费视频播放| 两个人免费观看高清视频| 男人舔女人的私密视频| 777久久人妻少妇嫩草av网站| 欧美最黄视频在线播放免费| 日本撒尿小便嘘嘘汇集6| 欧美人与性动交α欧美精品济南到| 成人午夜高清在线视频 | 亚洲国产欧美网| 亚洲av中文字字幕乱码综合 | 91麻豆精品激情在线观看国产| 亚洲欧美日韩无卡精品| 好男人电影高清在线观看| 午夜福利高清视频| 无遮挡黄片免费观看| 18禁国产床啪视频网站| 啦啦啦 在线观看视频| 狠狠狠狠99中文字幕| 18禁裸乳无遮挡免费网站照片 | 日日爽夜夜爽网站| 亚洲自偷自拍图片 自拍| 在线观看66精品国产| 色哟哟哟哟哟哟| 亚洲国产精品sss在线观看| 99热只有精品国产| 亚洲av第一区精品v没综合| www.www免费av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品综合一区二区三区| 国产成年人精品一区二区| 男人的好看免费观看在线视频 | 欧美激情久久久久久爽电影| 国产av一区二区精品久久| 欧美zozozo另类| 国产v大片淫在线免费观看| 国产亚洲精品av在线| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 日韩高清综合在线| 日日夜夜操网爽| 精品电影一区二区在线| 精品国产乱码久久久久久男人| 三级毛片av免费| 真人做人爱边吃奶动态| 国产av在哪里看| 国产欧美日韩精品亚洲av| 真人一进一出gif抽搐免费| 精品久久久久久久久久免费视频| 欧美一区二区精品小视频在线| 变态另类丝袜制服| 可以在线观看的亚洲视频| 怎么达到女性高潮| 久久精品91蜜桃| 亚洲男人天堂网一区| 91国产中文字幕| 中文在线观看免费www的网站 | 国产又色又爽无遮挡免费看| 99riav亚洲国产免费| 两个人看的免费小视频| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 给我免费播放毛片高清在线观看| xxx96com| av天堂在线播放| 日韩视频一区二区在线观看| 亚洲国产毛片av蜜桃av| 一夜夜www| 成年女人毛片免费观看观看9| 亚洲最大成人中文| 久久中文看片网| 大香蕉久久成人网| 成人精品一区二区免费| 国产av在哪里看| 性色av乱码一区二区三区2| 欧美一级毛片孕妇| 国产99白浆流出| 99在线人妻在线中文字幕| 亚洲成人久久爱视频| 波多野结衣巨乳人妻| 午夜福利在线在线| 色综合站精品国产| 人妻久久中文字幕网| 欧美国产精品va在线观看不卡| 久久狼人影院| 午夜福利免费观看在线| 久久精品国产亚洲av高清一级| 大型黄色视频在线免费观看| 午夜福利欧美成人| 国产精品免费一区二区三区在线| a级毛片a级免费在线| 老汉色∧v一级毛片| 亚洲国产看品久久| 国产亚洲av高清不卡| 日本一本二区三区精品| 制服人妻中文乱码| 亚洲中文av在线| 中文字幕精品亚洲无线码一区 | 成人免费观看视频高清| 一进一出抽搐动态| 美女午夜性视频免费| 丰满的人妻完整版| 欧美成狂野欧美在线观看| 中文字幕最新亚洲高清| 中文在线观看免费www的网站 | 欧美日韩福利视频一区二区| 国产精品二区激情视频| 两个人免费观看高清视频| 久久亚洲真实| 国产精品美女特级片免费视频播放器 | 日韩精品中文字幕看吧| 久久精品国产99精品国产亚洲性色| 国产成人精品久久二区二区91| 成人免费观看视频高清| 精品乱码久久久久久99久播| 精品一区二区三区视频在线观看免费| 亚洲国产毛片av蜜桃av| 中国美女看黄片| 亚洲天堂国产精品一区在线| 99久久久亚洲精品蜜臀av| 女生性感内裤真人,穿戴方法视频| 一进一出抽搐动态| 久久久久国产精品人妻aⅴ院| 午夜影院日韩av| 丝袜美腿诱惑在线| 国产成人啪精品午夜网站| 久久国产精品影院| av有码第一页| 精品日产1卡2卡| 国产精品一区二区精品视频观看| 亚洲av成人av| 亚洲七黄色美女视频| 免费在线观看影片大全网站| 美女免费视频网站| 色精品久久人妻99蜜桃| 丁香六月欧美| 亚洲国产看品久久| 后天国语完整版免费观看| 99精品在免费线老司机午夜| 人人妻人人看人人澡| 免费在线观看日本一区| 伦理电影免费视频| 色综合婷婷激情| 欧美日韩黄片免| 18禁观看日本| 一级片免费观看大全| 亚洲久久久国产精品| 亚洲专区国产一区二区| 中文亚洲av片在线观看爽| 99久久99久久久精品蜜桃| 99久久99久久久精品蜜桃| 韩国av一区二区三区四区| 麻豆一二三区av精品| 久久天躁狠狠躁夜夜2o2o| 欧美一区二区精品小视频在线| 国产伦一二天堂av在线观看| 国产成人精品无人区| 色综合站精品国产| 国产男靠女视频免费网站| 亚洲精品一区av在线观看| 国产伦人伦偷精品视频| 久久热在线av| 午夜影院日韩av| 最近最新免费中文字幕在线| 真人做人爱边吃奶动态| 午夜a级毛片| 青草久久国产| 亚洲自偷自拍图片 自拍| 日韩欧美一区视频在线观看| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看| 午夜老司机福利片| 一二三四在线观看免费中文在| 亚洲成av片中文字幕在线观看| 亚洲欧美激情综合另类| 在线观看免费视频日本深夜| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 久久精品91无色码中文字幕| 极品教师在线免费播放| 757午夜福利合集在线观看| 99精品欧美一区二区三区四区| 色播在线永久视频| 欧美日韩瑟瑟在线播放| 免费高清视频大片| 老司机福利观看| 国产99白浆流出| 久久久精品欧美日韩精品| 亚洲av电影不卡..在线观看| 日韩欧美 国产精品| 国产精品九九99| 在线av久久热| 国产一区二区三区视频了| 99国产综合亚洲精品| 狂野欧美激情性xxxx| 亚洲五月色婷婷综合| 亚洲精品美女久久久久99蜜臀| bbb黄色大片| 曰老女人黄片| 久久久水蜜桃国产精品网| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| 久久久久久久午夜电影| 黄色丝袜av网址大全| ponron亚洲| 亚洲精品中文字幕一二三四区| 高清在线国产一区| 人人妻,人人澡人人爽秒播| 日本a在线网址| xxx96com| 啦啦啦免费观看视频1| 桃红色精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 国产欧美日韩精品亚洲av| 日韩一卡2卡3卡4卡2021年| 成年版毛片免费区| 岛国视频午夜一区免费看| 在线看三级毛片| 一边摸一边做爽爽视频免费| 国产精品野战在线观看| 亚洲第一av免费看| 午夜精品久久久久久毛片777| 中文字幕精品免费在线观看视频| 久久久水蜜桃国产精品网| 亚洲av电影不卡..在线观看| 午夜福利在线在线| 国产精华一区二区三区| 免费无遮挡裸体视频| 国产精品日韩av在线免费观看| 91麻豆av在线| 嫩草影视91久久| 啪啪无遮挡十八禁网站| 人人妻人人看人人澡| 1024香蕉在线观看| 精品欧美一区二区三区在线| 亚洲 国产 在线| 啪啪无遮挡十八禁网站| 中文字幕精品免费在线观看视频| 91麻豆精品激情在线观看国产| 在线观看日韩欧美| 女同久久另类99精品国产91| 搡老妇女老女人老熟妇| 亚洲国产欧美网| 欧美午夜高清在线| 可以免费在线观看a视频的电影网站| 不卡一级毛片| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 亚洲性夜色夜夜综合| 欧美大码av| 欧美日本亚洲视频在线播放| 国产国语露脸激情在线看| 欧美日韩精品网址| 91av网站免费观看| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜 | 亚洲第一电影网av| 韩国精品一区二区三区| 99在线视频只有这里精品首页| 老熟妇乱子伦视频在线观看| 亚洲九九香蕉| 久久 成人 亚洲| 91麻豆精品激情在线观看国产| 女人被狂操c到高潮| 成人特级黄色片久久久久久久| 欧美成人性av电影在线观看| 国产精品亚洲美女久久久| 亚洲熟妇熟女久久| 精品一区二区三区av网在线观看| 18禁国产床啪视频网站| 色尼玛亚洲综合影院| 久久久国产欧美日韩av| 18禁黄网站禁片午夜丰满| 午夜两性在线视频| 视频在线观看一区二区三区| 欧美日韩精品网址| 欧美黑人巨大hd| 国产伦一二天堂av在线观看| 免费看美女性在线毛片视频| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全电影3 | 在线观看免费午夜福利视频| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 日本成人三级电影网站| 亚洲国产欧美日韩在线播放| 一区二区三区精品91| 欧美不卡视频在线免费观看 | 国产精品亚洲av一区麻豆| 国产爱豆传媒在线观看 | 50天的宝宝边吃奶边哭怎么回事| 丰满的人妻完整版| 亚洲天堂国产精品一区在线| 国产精品,欧美在线| 亚洲avbb在线观看| 国产不卡一卡二| 久久久精品国产亚洲av高清涩受| 每晚都被弄得嗷嗷叫到高潮| 禁无遮挡网站| 一级黄色大片毛片| 大型av网站在线播放| 无限看片的www在线观看| 久久久精品欧美日韩精品| 我的亚洲天堂| 亚洲久久久国产精品| 最近最新中文字幕大全电影3 | 国产单亲对白刺激| 午夜福利18| 精品无人区乱码1区二区| 18禁观看日本| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| 精品熟女少妇八av免费久了| 欧美一区二区精品小视频在线| www.www免费av| 亚洲色图av天堂| 国产成人精品无人区| 欧美乱色亚洲激情| 欧美性猛交╳xxx乱大交人| 看片在线看免费视频| 一二三四社区在线视频社区8| www.精华液| 精华霜和精华液先用哪个| 国产视频内射| 亚洲美女黄片视频| 成人国语在线视频| 欧美av亚洲av综合av国产av| www国产在线视频色| 久久久国产欧美日韩av| 特大巨黑吊av在线直播 | 伦理电影免费视频| 亚洲av美国av| 欧美一级a爱片免费观看看 | 国产真实乱freesex| 999久久久精品免费观看国产| 亚洲精品久久国产高清桃花| 色老头精品视频在线观看| 19禁男女啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 国产精品1区2区在线观看.| 男女下面进入的视频免费午夜 | 国产片内射在线| 好男人电影高清在线观看| 日日干狠狠操夜夜爽| 国产成人av激情在线播放| 美女大奶头视频| 精品欧美国产一区二区三| 香蕉久久夜色| 黄片小视频在线播放| 99久久精品国产亚洲精品| 精品少妇一区二区三区视频日本电影| 亚洲狠狠婷婷综合久久图片| www.熟女人妻精品国产| 精品人妻1区二区| 黄片大片在线免费观看| 超碰成人久久| 国产精品九九99| 国产aⅴ精品一区二区三区波| 亚洲自拍偷在线| 一级作爱视频免费观看| 亚洲欧美精品综合一区二区三区| 90打野战视频偷拍视频| 两个人看的免费小视频| 亚洲美女黄片视频| cao死你这个sao货| 桃红色精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 亚洲av电影在线进入| 久久久久九九精品影院| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av电影不卡..在线观看| 妹子高潮喷水视频| av视频在线观看入口| 午夜久久久久精精品| 99国产极品粉嫩在线观看| 给我免费播放毛片高清在线观看| 亚洲专区字幕在线| 波多野结衣高清作品| 久久精品国产99精品国产亚洲性色| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影| 亚洲av中文字字幕乱码综合 | 国产久久久一区二区三区| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 久久精品国产综合久久久| 久久精品国产清高在天天线| 国产片内射在线| 国产一卡二卡三卡精品| 怎么达到女性高潮| 成在线人永久免费视频| 欧美国产精品va在线观看不卡| 满18在线观看网站| 中文亚洲av片在线观看爽| tocl精华| 91字幕亚洲| e午夜精品久久久久久久| 无遮挡黄片免费观看| 欧美一级毛片孕妇| 两个人免费观看高清视频| 久久热在线av| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱码精品一区二区三区| 两个人视频免费观看高清| 亚洲色图av天堂| 俺也久久电影网| 亚洲成人久久性| 国产麻豆成人av免费视频| 女人高潮潮喷娇喘18禁视频| 精品久久久久久成人av| 国产精品,欧美在线| 成人一区二区视频在线观看| 黑丝袜美女国产一区| 欧美乱色亚洲激情| 欧美成人一区二区免费高清观看 | 香蕉久久夜色| 亚洲国产欧美一区二区综合| 亚洲精品在线美女| 国产成人av教育| 最好的美女福利视频网| 日本三级黄在线观看| 亚洲,欧美精品.| 国产1区2区3区精品| 国产精品精品国产色婷婷| 色老头精品视频在线观看| www.www免费av| 国产精品综合久久久久久久免费| 国产成人欧美在线观看| 草草在线视频免费看| 淫妇啪啪啪对白视频| 90打野战视频偷拍视频| 又黄又爽又免费观看的视频| 午夜免费激情av| 999久久久国产精品视频| 成年免费大片在线观看| av欧美777| 日本一本二区三区精品| 天天添夜夜摸| 亚洲欧美精品综合一区二区三区| 别揉我奶头~嗯~啊~动态视频| 日本 欧美在线| 99国产精品一区二区三区| 国产精品 国内视频| 黑人巨大精品欧美一区二区mp4| 午夜精品久久久久久毛片777| 午夜影院日韩av| svipshipincom国产片| 精品乱码久久久久久99久播| 窝窝影院91人妻| 国产伦人伦偷精品视频| 欧美成人午夜精品| 午夜精品久久久久久毛片777| 久久人人精品亚洲av| 色尼玛亚洲综合影院| 国产精品一区二区三区四区久久 | 亚洲熟妇中文字幕五十中出| 精品国产国语对白av| 成人午夜高清在线视频 | 两人在一起打扑克的视频| 巨乳人妻的诱惑在线观看| svipshipincom国产片| 啦啦啦 在线观看视频| 好看av亚洲va欧美ⅴa在| av超薄肉色丝袜交足视频| 亚洲国产高清在线一区二区三 | 动漫黄色视频在线观看| 三级毛片av免费| 波多野结衣av一区二区av| 中文字幕最新亚洲高清| 亚洲无线在线观看| 婷婷亚洲欧美| 国产亚洲av嫩草精品影院| 日韩精品青青久久久久久| 成人三级做爰电影| 18禁国产床啪视频网站| 久久精品国产综合久久久| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区色噜噜| 女警被强在线播放| 日韩 欧美 亚洲 中文字幕| 级片在线观看| 日韩三级视频一区二区三区| 亚洲一区二区三区不卡视频| 18美女黄网站色大片免费观看| 在线观看www视频免费| 国内精品久久久久久久电影| 99re在线观看精品视频| 91老司机精品| 亚洲成av片中文字幕在线观看| 最新美女视频免费是黄的| 国产蜜桃级精品一区二区三区| www.精华液| 99热只有精品国产| av电影中文网址| 啪啪无遮挡十八禁网站| 国产视频一区二区在线看| 久久久久国内视频| 黑人操中国人逼视频| 亚洲人成网站在线播放欧美日韩| 视频区欧美日本亚洲| 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| 最近最新中文字幕大全电影3 | 精品国产乱码久久久久久男人| 99精品在免费线老司机午夜| 亚洲久久久国产精品| 亚洲欧洲精品一区二区精品久久久| 男女做爰动态图高潮gif福利片| 91麻豆av在线| 国产又色又爽无遮挡免费看| 精品久久久久久成人av| 一区二区日韩欧美中文字幕| 国内久久婷婷六月综合欲色啪| 男人舔女人下体高潮全视频| 精品久久久久久成人av| 午夜a级毛片| 中文在线观看免费www的网站 | 久久精品影院6| 怎么达到女性高潮| 99在线人妻在线中文字幕| 窝窝影院91人妻| 嫩草影院精品99| 成人永久免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| 国产伦一二天堂av在线观看| 成人午夜高清在线视频 | 日韩av在线大香蕉| 国产精品一区二区精品视频观看| 亚洲人成伊人成综合网2020| 亚洲成人国产一区在线观看| 熟妇人妻久久中文字幕3abv| 好男人在线观看高清免费视频 | 精品久久久久久久久久免费视频| 黑丝袜美女国产一区| 日本熟妇午夜| 香蕉国产在线看| 悠悠久久av| 人妻久久中文字幕网| 久久久久久国产a免费观看| 一级a爱视频在线免费观看| 三级毛片av免费| 久久精品国产清高在天天线| 香蕉久久夜色| 1024手机看黄色片| 精品国产一区二区三区四区第35| 国产精品电影一区二区三区| 久久精品国产亚洲av高清一级| 色哟哟哟哟哟哟| 亚洲男人的天堂狠狠| 久久久水蜜桃国产精品网| 国产精品一区二区精品视频观看| 亚洲欧美激情综合另类| 欧美激情 高清一区二区三区| 日韩国内少妇激情av| 精品熟女少妇八av免费久了| 亚洲片人在线观看| 中文字幕高清在线视频| 欧美成人一区二区免费高清观看 | svipshipincom国产片| 久久久精品欧美日韩精品| 亚洲精品在线美女| 91麻豆av在线| 国产精品日韩av在线免费观看| 国产亚洲av高清不卡| 老司机午夜福利在线观看视频| АⅤ资源中文在线天堂| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲欧美98| 国产精品免费一区二区三区在线| 熟妇人妻久久中文字幕3abv| 亚洲人成电影免费在线| 男女下面进入的视频免费午夜 | 在线天堂中文资源库| 欧美激情久久久久久爽电影| 国产极品粉嫩免费观看在线| 他把我摸到了高潮在线观看| 国产伦一二天堂av在线观看| 男人操女人黄网站| 国产蜜桃级精品一区二区三区| 黑人操中国人逼视频| 真人一进一出gif抽搐免费| 18禁黄网站禁片免费观看直播| 可以在线观看毛片的网站| 国产精品久久视频播放| 国产亚洲精品第一综合不卡| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久人妻精品电影| 男人舔奶头视频| 中文字幕最新亚洲高清| 搡老妇女老女人老熟妇|