• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM?

    2016-12-05 00:43:20LuYAN閆璐
    關(guān)鍵詞:振華

    Lu YAN(閆璐)

    Xingzhi College,Xi’an University of Finance and Economics,Xi’an 710038,ChinaE-mail:xiaolu 4002@163.com

    Zhenhua SHI(時(shí)振華) Hao WANG(王昊)

    School of Mathematics,Northwest University,Xi’an 710069,ChinaE-mail:andy szh@163.com;610191181@qq.com

    Jing KANG(康靜)?

    Center for Nonlinear Studies and School of Mathematics,Northwest University,Xi’an 710069,ChinaE-mail:jingkang@nwu.edu.cn

    INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM?

    Lu YAN(閆璐)

    Xingzhi College,Xi’an University of Finance and Economics,Xi’an 710038,China
    E-mail:xiaolu 4002@163.com

    Zhenhua SHI(時(shí)振華) Hao WANG(王昊)

    School of Mathematics,Northwest University,Xi’an 710069,China
    E-mail:andy szh@163.com;610191181@qq.com

    Jing KANG(康靜)?

    Center for Nonlinear Studies and School of Mathematics,Northwest University,Xi’an 710069,China
    E-mail:jingkang@nwu.edu.cn

    Invariant subspace method is exploited to obtain exact solutions of the twocomponent b-family system.It is shown that the two-component b-family system admits the generalized functional separable solutions.Furthermore,blow up and behavior of those exact solutions are also investigated.

    invariant subspace;generalized conditional symmetry;generalized functional separable solution;Camassa-Holm equation;two-component b-family system 2010 MR Subject Classification37K05;37K35;35Q35

    1 Introduction

    In this paper,we apply the invariant subspace method to construct solutions of the following two-component b-family system

    Furthermore,if one sets ρ=0 in system(1.2),it reduces to the CH equation

    which was derived by Camassa and Holm[3]as a model for describing unidirectional propagation of the shallow water waves over a flat bottom(see also[5]).Remarkably,the peaked solitons of the CH equation were discovered[3].Indeed,the CH equation can be derived by using the recursion operator of the KdV equation[4].In an intriguing paper by Olver,Rosenau[1],they proposed the so-called tri-Hamiltonian duality approach,which was used to recover the CH equation from the bi-Hamiltonian structure of the KdV equation.The CH equation(1.3)can also be derived from the shallow water wave equation by using the asymptotic methods[11-13]through the Kodama transformation.Because of the several nontrivial properties,the CH equation was studied in a huge number of literatures(see for example[14-19]and the references therein).Similarly,if one applies the tri-Hamiltonian duality approach[1]to the Ito equation[20]

    the resulting equation is the two-component CH equation(1.2).If ρ=0,and k1=3 in(1.1),it becomes Degasperis-Procesi equation[21,22]

    Its well-posedness and blow-up phenomena were also discussed[23].Note that the two-component CH equation(1.2)and the two-component b-family system (1.1)admit the symmetry v= u?u+x?x.So they possess the particular similarity solution of the form

    Furthermore,the perturbational method was used by Yuen[10,24,25]to construct exact solutions of the form

    to the two-component Camassa-Holm equation(1.2).In this paper,we shall prove that such solutions are associated with conditional symmetries of the system.The blow-up phenomena and behavior of solutions(1.6)and(1.7)were also discussed.

    The invariant subspace method is an effective method to construct exact solutions of nonlinear partial differential equations[26-28].Indeed,there were many examples of nonlinear evolution equations,whose exact solutions can be constructed by the invariant subspace method[26].In particular,the generalized functional separable solutions can be derived by using the invariant subspace method[29].The invariant subspace method is related to the generalized conditional symmetry(GCS)method[30,31].A key point for the invariant subspace method admitted by the evolutionary partial differential equations is the dimensional estimate[24,32].

    The object of this paper is to derive generalized functional separable solutions of(1.1)by using the invariant subspace method.The outline of the paper is as follows.In Section 2,we provide a brief account of the invariant subspace and the generalized conditional symmetry methods.The main results are presented and proved in Sections 3 and 4.

    2 Invariant Subspace Method

    Consider the systems of kth-order nonlinear PDEs

    are linearly independent.If a vector operator F satisfies[32]

    then the vector field F is said to admit the invariant subspace,which means that there existsuch that

    If the operator F[U]admits the subspace W,then system(2.1)possesses solutions of the form

    Notice that the invariant subspace W has the dimensionthen the system reduces to the-dimensional dynamical system.

    It was shown that the invariant subspace method can be explored by using the GCS method[29].The GCS method was introduced by Zhdanov[30]and Fokas and Liu[31],which was developed to deal with various nonlinear evolution equations,and a number of results were obtained(see[33-38]and the references therein).

    Let’s give a brief account of the generalized conditional symmetry(GCS)method[30,31]. Letbe an evolutionary vector field with the characteristic η(a smooth function of t,r,u,ur,···)and

    be a nonlinear evolution equation,where we use the following notations

    Definition 2.1The evolutionary vector field(2.2)is said to be a generalized symmetry of(2.3)if and only ifwhere L is the set of all differential consequences of the equation,that is

    Definition 2.2(see[30,31])The evolutionary vector field(2.2)is said to be a GCS of(2.3)if and only if V(ut-E)|L∩M=0,where L is given as in Definition 2.1,and M denotes the set of all differential consequences of equation η=0 with respect to r,that is

    Theorem 2.3(see[30,31])Equation(2.3)admits the CLBS(2.2)if there exists a function W(t,r,u,η)such that

    On the GCS of(2.5),we have the following result.

    Theorem 2.4System(2.5)admits the generalized conditional symmetry

    ProofWe can prove this theorem in terms of Theorem 2.4.A direct calculation,the details which we omit,verifies that η satisfies the following system

    It follows from Theorem 2.4 that system(2.5)admits the following formal exact solutions

    3 Solutions of System (1.1)

    In view of Theorem 2.1,we first have the following result.

    Theorem 3.1For the two-component b-family system (2.5),there exists a family of solutions

    In the following,we are concerned with the special case ofThe form of solutions and their blow-up phenomena are given in the next two theorems.

    Theorem 3.2Assume that the function a(s)is a solution of the Emden equation

    1)σ<0.

    2)σ>0;

    2.1)0<k<1.Solution(3.4)blows up if and only ifOtherwise,the solution exists globally.

    2.2)k≥1.Solution(3.4)exists globally.

    Theorem 3.3For the two-component b-family system(1.1)withAssume thatsatisfies(3.4)withThen the two-component b-family system(2.5)admits a family of solutions

    We now consider two cases regarding to the sign of σ.

    1)σ<0.

    1.1)0<k<1.Solution(3.5)blows up if and only ifIn the contrary case,it exists globally.

    1.2)k≥1.Solution exists globally.

    2)σ>0.

    2.1)0<k≤1.Solution(3.5)blows up in a finite time.

    2.2)k>1.Solution(3.5)blows up if and only ifOtherwise,it exists globally.

    Proof of Theorem 3.1We prove the theorem in three steps.

    Step 1Note that the velocity u is linear.The momentum equation(2.5)becomes

    Substituting the expression for u(t,x)in(2.6)into(3.6),we get

    which leads to

    Integrating(3.7)from 0 to x,we have

    and finally we get

    Step 2Next,we consider the mass equation in(2.5)

    Substituting(3.8)into(3.9),we arrive at

    which yields the equations involving

    Step 3As the third step,we solve the above system(3.10).First we consider the third equation in(3.10).Applying the Hubble’s transformation,

    where r is some constant to be determined later.Then the third equation in(3.10)is transformed to

    For simplicity,we set r=1+k1,so the above equation becomes

    Integrating the above equation,we find thatsatisfies the Emden equation(3.3)withare arbitrary constants.Next,for equation(3.10)aboutit can be further simplified in terms of the functionThanks to(3.11)and(3.3),the second equation in(3.10)reduces to the second equation in(3.2).

    Then the first equation in(3.10)becomes

    Let ρ(0,0)=β.Then the solution of(3.14)is

    It is inferred from(3.8)that the density function is given by

    4 The Generalized Functional Separable Solutions of the b-Family System

    To prove Theorems 3.2 and 3.3,we need the following lemmas.

    Lemma 4.1For the two-component b-family system(1.1),there exist the solutions

    Remark 4.2The solution constructed here depends on the auxiliary functionwhich satisfies the Emden equation and varies with choices of the four parameters

    The following three lemmas demonstrate the properties ofby which the corresponding blow-up and global existence of the analytical solution can be established.

    Lemma 4.3For the Emden equation

    (1)If λ<0,there exists a finite time s,such thatOtherwise the solution a(s)exists globally,and

    (2)If λ>0,the solution a(s)exists globally,and

    (3)If λ=0,a1<0,the solution a(s)vanishes at s=-a0/a1.Otherwise it exists globally and

    Lemma 4.4(see[10])For the Emden equation(4.1)with 0<k<1.

    (1)If λ<0,there exists a finite time s,such tha t

    (2)If λ>0,there exists a finite time s such that,if and only ifOtherwise,the solution exists globally and

    Lemma 4.5In the case of k=1,the solution of(4.1)satisfies

    (1)If λ<0,there exists a finite time s such that

    (2)If λ>0,the solution a(s)exists globally and there holds

    Proof of Lemma 4.3(k>1)

    (1)λ>0.The assumption λ>0 implies that the curve a(s)is convex.The existence of the solution guarantees that a(s)exists at least in some neighborhood of s=0.Multiplying equation(4.1)byand integrating the resulting equation leads to the energy conservation equation

    Therefore for any constant a1,the solution a(s)must increase after some finite time.Then there are two possibilities to consider:

    (1.1)a(s)exists only in some finite internal[0,s0]such that

    (1.2)a(s)exists globally,and

    We now claim that the first possibility does not exist.Because the time for traveling the intervalcan be estimated as

    Collecting the above analysis,we show that in this subcase the solutionexists globally, and

    (2)λ<0.First,the assumption λ<0 implies that the curveis concave upwards. Furthermore,in view of the energy conservation equation(4.1),we need to distinguish two subcase:E0≥0 and E0<0.

    (2.1)E≥0.It follows from(4.2)that

    (2.2)E0<0.Thanks to the energy conservation equation

    It follows from the analysis of the above two cases that if λ<0,there exists a finite time s.Such thatIf and only ifOtherwise,the solution exists globally and

    (3)λ=0.In this case,the Emden equation becomesIt is easy to show statement(3).Thus we complete the proof of Lemma 4.3.

    Proof of Lemma 4.5If k=1,it follows from the corresponding Emden equation

    (1)λ<0.By the assumption λ<0,we get lnwhich results inSo thatIt is clear that a(s)must vanish in some finite time s.Since

    (2)λ>0.First,we claim that if λ>0,the solution a(s)does not vanish at any s>0, that is a(s)>0 for any s>0.Indeed,if there exists a finite time s such thatthen,this contradicts the fact that the energy E0defined in equation(4.4)is finite.On the other hand,equation(4.4)implies the solution a(s)is uniformly bounded below. Moreover,

    Then three cases arise:

    (2b)a(s)only exists in some finite interval[0,s0],such that

    First,statement(2a)is not true since it contradicts to the Emden equation by noting that

    Next,from equation(4.4)and in view of,the time for traveling the intervalcan be estimated asTherefore statement(2b)is excluded,and we arrive at conclusion(2c).The proof is then completed.

    Now,we consider two cases on systemBy Theorems 3.2 and 3.3,the blow up and global existence for the analytic solutions of the corresponding system is given in the following theorem.

    Theorem 4.6For the 2-component b-family system(1.1),we have the following results:

    References

    [1]Olver P J,Rosenau P.Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support.Phys Rev E,1996,53:1900-1906

    [2]Constantin A,Ivanov R I.On an integrable two-component Camassa-Holm shallow water system.Phys Lett A,2008,372:7129-7132

    [3]Camassa R,Holm D.An integrable shallow water equation with peaked solitons.Phys Rev Lett,1993,71: 1661-1664

    [4]Fuchssteiner B,F(xiàn)okas A.Symplectic structures,their B¨acklund transformations and hereditary symmetries. Physica D,1981/1982,4:47-66

    [5]Constantin A,Lannes D.The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations.Arch Ration Mech Anal,2009,192:165-186

    [6]Chen M,Liu S Q,Zhang Y J.A two-component generalization of the Camassa-Holm equation and its solutions.Lett Math Phys,2006,75:1-14

    [7]Eschel J,Lechtenfeld O,Yin Z.Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation.Discrete Contin Dyn Syst Ser A,2007,19:493-513

    [8]Guan C X,Yin Z Y.Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system.J Diff Equat,2010,248:2003-2014

    [9]Gui G L,Liu Y.On the global existence and wave-breaking criteria for the two-component Camassa-Holm system.J Funct Anal,2010,258:4251-4278

    [10]Yuen M.Self-similar blow up solutions to the two-component Camassa-Holm equations.J Math Phys,2010,51:093524

    [11]Fokas A S,Liu Q M.Asymptotic integrability of water waves.Phys Rev Lett,1996,77:2347-2351

    [12]Dullin R,Gottwald G,Holm D D.An integrable shallow water equation with linear and nonlinear dispersion. Phys Rev Lett,2001,87:4501-4504

    [13]Johnson R S.Camassa-Holm,Korteweg-de Vries and related models for water waves.J Fluid Mech,2002,455:63-82

    [14]Fu Y G,Liu Z R,Tang H.Non-uniform dependence on initial data for the modified Camassa-Holm equation on the line.Acta Math Sci,2014,34B(6):1781-1794

    [15]Constantin A.Existence of permanent and breaking waves for a shallow water equation:a geometric approach.Ann Inst Fourier(Grenoble),2000,50:321-362

    [16]Constantin A,Escher J.Wave breaking for nonlinear nonlocal shallow water equations.Acta Math,1998,181:229-243

    [17]Constantin A,Escher J.Well-posedness,global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation.Comm Pure Appl Math,1998,51:475-504

    [18]Constantin A,Escher J.Global existence and blow-up for a shallow water equation.Ann Scuola Norm Sup Pisa,1998,26:303-328

    [19]Constantin A,Strauss W A.Stability of a class of solitary waves in compressible elastic rods.Phys Lett A,2000,270:140-148

    [20]Ito M.Symmetries and conservation laws of a coupled nonlinear wave equation.Phys Lett A,1982,91: 335-338

    [21]Degasperis A,Procesi M.Asymptotic integrability//Degasperis A,Gaeta G.Symmetry and Perturbation Theory.World Scientific,1999:23-37

    [22]Degasberis A,Holm D D,Hone A N W.A new integrable evolution equation with peakon solution.Theor Math Phys,2002,133:1461-1472

    [23]Liu Y,Yin Z Y.Global existence and blow-up phenomena for the Degasperis-Procesi equation.Comm Math Phys,2006,267:801-820

    [24]Yuen M.Self-similar blow up solutions to the Degasperis-Procesi shallow water system.Comm Non Sci Numer Simul,2011,16:3463-3469

    [25]Yuen M.Perturbed blow up solutions to the two-component Camassa-Holm equations.J Math Anal Appl,2012,390:596-602

    [26]Galaktionov V A,Svirshchevski S.Exact solutions and Invariant subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics.London:Chapman and Hall,2007

    [27]Galaktionov V A.Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities.Proc R Soc Edinburgh,1995,125:225-246

    [28]Svirshchevski S.Invariant linear spaces and exact solutions of nonlinear evolution equations.J Non Math Phys,1996,3:164-169

    [29]Ji L N,Qu C Z.Conditional Lie-B¨acklund symmetries and invariant subspaces to nonlinear diffusion equations with convection and source.Stud Appl Math,2013,131:266-301

    [30]Zhu C R,Qu C Z.Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators.J Math Phys,2011,52:043507

    [31]Zhdanov R Z.Conditional Lie-B¨acklund symmetries and reductions of evolution equations.J Phys A:Math Gen,1995,128:3841-3850

    [32]Fokas A S,Liu Q M.Nonlinear interaction of traveling waves of nonintegrable equations.Phys Rev Lett,1994,72:3293-3296

    [33]Qu C Z,Ji L N,Wang L Z.Conditional Lie-B¨acklund symmetries and sign-invarints to quasi-linear diffusion equations.Stud Appl Math,2007,119:355-391

    [34]Qu C Z.Group classification and generalized conditional symmetry reduction of the nonlinear diffusionconvection equation with a nonlinear source.Stud Appl Math,1997,99:107-136

    [35]Qu,C Z.Exact solutions to nonlinear diffusion equations obtained by a generalized conditional symmetry method.IMA J Appl Math,1999,62:283-302

    [36]Ji L N,Qu C Z,Ye Y J.Solutions and symmetry reductions of the n-dimensional nonlinear convectiondiffusion equations.IMA J Appl Math,2010,75:17-55

    [37]Basarab-Horwath P,Zhdanov R Z.Initial-value problems for evolutionary partial differential equations and higher-order conditional symmetries.J Math Phys,2000,42:376-389

    [38]Zhdanov R Z,Andreitsev A Y.Non-classical reductions of initial-value problems for a class of nonlinear evolution equations.J Phys A:Math Gen,2000,33:5763-5781

    ?March 31,2015;revised November 24,2015.This work is supported by NSFC(11471260)and the Foundation of Shannxi Education Committee(12JK0850).

    ?Jing Kang

    猜你喜歡
    振華
    Real-time dynamics in strongly correlated quantum-dot systems
    家住西安
    PDCPD材料在商用車上的應(yīng)用
    “三農(nóng)”政策需要體現(xiàn)利益包容——對(duì)龔春明和梁振華商榷文的思考與回應(yīng)
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    WSN Node Applied to Large-Scale Unattended Monitoring
    我的校園故事
    “杯”慘
    獻(xiàn)身民族教育事業(yè)的胡振華教授——祝賀胡振華教授從教60周年
    語言與翻譯(2014年1期)2014-07-10 13:06:14
    國醫(yī)大師李振華教授治呃逆驗(yàn)案1則
    69av精品久久久久久 | 夜夜骑夜夜射夜夜干| 一区二区三区乱码不卡18| 一本久久精品| 在线十欧美十亚洲十日本专区| 9热在线视频观看99| 老熟妇乱子伦视频在线观看 | 男女床上黄色一级片免费看| 亚洲中文av在线| 狠狠婷婷综合久久久久久88av| 欧美xxⅹ黑人| 最新的欧美精品一区二区| 中文字幕人妻熟女乱码| 亚洲国产av新网站| 可以免费在线观看a视频的电影网站| 国产精品 欧美亚洲| 脱女人内裤的视频| 午夜福利影视在线免费观看| 97人妻天天添夜夜摸| 亚洲精品在线美女| 丝瓜视频免费看黄片| 日韩电影二区| 国产精品二区激情视频| 亚洲性夜色夜夜综合| 久久人妻福利社区极品人妻图片| 国产精品av久久久久免费| 欧美精品一区二区大全| 欧美精品一区二区免费开放| 最黄视频免费看| 少妇的丰满在线观看| 成人影院久久| 真人做人爱边吃奶动态| 色婷婷久久久亚洲欧美| 精品国产超薄肉色丝袜足j| av天堂在线播放| 男女无遮挡免费网站观看| 18禁国产床啪视频网站| videosex国产| 亚洲国产精品一区二区三区在线| 黄片大片在线免费观看| 国产欧美日韩综合在线一区二区| 两人在一起打扑克的视频| 黑人猛操日本美女一级片| 一级毛片精品| 99国产精品一区二区三区| 亚洲精品中文字幕在线视频| 精品亚洲成国产av| 久久天堂一区二区三区四区| 国产精品一区二区在线观看99| 国产亚洲精品久久久久5区| 国产黄色免费在线视频| 热99re8久久精品国产| 国产激情久久老熟女| 日本av手机在线免费观看| 又黄又粗又硬又大视频| 久久久精品区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲第一青青草原| 国产精品av久久久久免费| 青草久久国产| 女人精品久久久久毛片| 国产日韩一区二区三区精品不卡| 99九九在线精品视频| 秋霞在线观看毛片| 十八禁高潮呻吟视频| 国产欧美日韩一区二区三 | 少妇人妻久久综合中文| 亚洲精品国产一区二区精华液| 色视频在线一区二区三区| 国产成+人综合+亚洲专区| 亚洲欧美激情在线| videos熟女内射| 亚洲第一青青草原| 精品国产乱码久久久久久男人| 国产成人影院久久av| 老司机午夜十八禁免费视频| 国产熟女午夜一区二区三区| 性少妇av在线| 制服人妻中文乱码| 久久精品国产综合久久久| 欧美成人午夜精品| 午夜福利视频在线观看免费| 欧美黑人欧美精品刺激| 免费观看av网站的网址| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美中文综合在线视频| 国产成人a∨麻豆精品| 日韩 亚洲 欧美在线| 狠狠精品人妻久久久久久综合| 久久亚洲精品不卡| 成人亚洲精品一区在线观看| 久久精品成人免费网站| 国产成人一区二区三区免费视频网站| 免费av中文字幕在线| 国产免费一区二区三区四区乱码| 久久久久国产精品人妻一区二区| 乱人伦中国视频| 国产91精品成人一区二区三区 | 一级,二级,三级黄色视频| 久久这里只有精品19| 搡老乐熟女国产| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久国内视频| 操出白浆在线播放| 欧美大码av| 老司机深夜福利视频在线观看 | 99香蕉大伊视频| 男女国产视频网站| 久久精品亚洲熟妇少妇任你| 男人舔女人的私密视频| 热99久久久久精品小说推荐| 国产精品自产拍在线观看55亚洲 | 日韩精品免费视频一区二区三区| 亚洲人成77777在线视频| 亚洲人成电影观看| 久久久精品国产亚洲av高清涩受| 欧美另类亚洲清纯唯美| 黑人操中国人逼视频| 麻豆乱淫一区二区| 新久久久久国产一级毛片| 亚洲,欧美精品.| 国产伦人伦偷精品视频| 桃红色精品国产亚洲av| 老司机午夜福利在线观看视频 | 亚洲人成电影免费在线| 男女国产视频网站| 精品久久久精品久久久| 在线观看www视频免费| 男女无遮挡免费网站观看| 一二三四社区在线视频社区8| 国内毛片毛片毛片毛片毛片| 久久精品亚洲av国产电影网| 日韩大片免费观看网站| 黄色a级毛片大全视频| 欧美激情久久久久久爽电影 | 欧美一级毛片孕妇| 脱女人内裤的视频| 国产精品1区2区在线观看. | 亚洲性夜色夜夜综合| 欧美成狂野欧美在线观看| av网站在线播放免费| 真人做人爱边吃奶动态| 天堂俺去俺来也www色官网| 精品亚洲成国产av| 亚洲中文av在线| 免费人妻精品一区二区三区视频| 日韩中文字幕视频在线看片| 丁香六月欧美| 欧美日韩精品网址| 99国产极品粉嫩在线观看| 国产精品二区激情视频| 色精品久久人妻99蜜桃| 亚洲免费av在线视频| 国精品久久久久久国模美| 久久国产精品影院| 国产精品久久久av美女十八| 五月开心婷婷网| 91国产中文字幕| 免费不卡黄色视频| 久久久久精品国产欧美久久久 | 成年av动漫网址| 国产又色又爽无遮挡免| 狠狠婷婷综合久久久久久88av| tocl精华| 中文字幕最新亚洲高清| 亚洲欧美精品综合一区二区三区| 国产成人系列免费观看| 国产精品自产拍在线观看55亚洲 | 高清视频免费观看一区二区| 一级,二级,三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜91福利影院| 久久久久久久国产电影| 中文字幕人妻丝袜一区二区| 免费高清在线观看视频在线观看| 法律面前人人平等表现在哪些方面 | 免费少妇av软件| 亚洲九九香蕉| 亚洲专区字幕在线| 国产亚洲av片在线观看秒播厂| 成人免费观看视频高清| 欧美日韩视频精品一区| 黑人欧美特级aaaaaa片| 欧美日韩av久久| 午夜福利乱码中文字幕| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 欧美 日韩 精品 国产| 久久av网站| 最新的欧美精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 美女国产高潮福利片在线看| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 色婷婷av一区二区三区视频| netflix在线观看网站| 国产精品影院久久| videosex国产| 国产欧美日韩综合在线一区二区| 日日爽夜夜爽网站| 丝袜在线中文字幕| 欧美黑人欧美精品刺激| 国产精品成人在线| 久久ye,这里只有精品| 亚洲欧美日韩另类电影网站| 精品一品国产午夜福利视频| 日本a在线网址| 在线av久久热| 亚洲欧美清纯卡通| 国产又爽黄色视频| 久久精品国产亚洲av高清一级| 亚洲第一欧美日韩一区二区三区 | 中国国产av一级| 一边摸一边做爽爽视频免费| 欧美午夜高清在线| 美女大奶头黄色视频| 夫妻午夜视频| 日韩一区二区三区影片| 亚洲男人天堂网一区| 一区二区三区精品91| 天堂8中文在线网| 亚洲精品在线美女| 精品人妻熟女毛片av久久网站| 中文欧美无线码| 人人澡人人妻人| 老熟妇仑乱视频hdxx| 日韩熟女老妇一区二区性免费视频| 亚洲欧美成人综合另类久久久| 国产99久久九九免费精品| 久久久久久人人人人人| 国产精品九九99| 国产一区二区在线观看av| 天天躁日日躁夜夜躁夜夜| 国产亚洲av片在线观看秒播厂| 日本a在线网址| www.精华液| 国产成人精品久久二区二区免费| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 亚洲av国产av综合av卡| 欧美国产精品一级二级三级| 久久久久国产精品人妻一区二区| 亚洲精品一二三| 香蕉国产在线看| 脱女人内裤的视频| 亚洲 国产 在线| 色94色欧美一区二区| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美一区二区三区黑人| 各种免费的搞黄视频| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 亚洲精品中文字幕一二三四区 | 中文字幕最新亚洲高清| 另类精品久久| 在线天堂中文资源库| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 好男人电影高清在线观看| 最近中文字幕2019免费版| 日韩中文字幕视频在线看片| 曰老女人黄片| 91麻豆精品激情在线观看国产 | 制服人妻中文乱码| 老汉色∧v一级毛片| 国产精品九九99| 日本撒尿小便嘘嘘汇集6| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美亚洲二区| 亚洲av欧美aⅴ国产| 久久国产精品人妻蜜桃| 亚洲 国产 在线| 精品免费久久久久久久清纯 | 国产精品一区二区在线观看99| 亚洲精品乱久久久久久| 久久久久网色| 他把我摸到了高潮在线观看 | 婷婷丁香在线五月| 一级a爱视频在线免费观看| 深夜精品福利| 日本一区二区免费在线视频| 一本综合久久免费| 午夜福利一区二区在线看| 国产av又大| 色播在线永久视频| avwww免费| 免费人妻精品一区二区三区视频| 国产免费视频播放在线视频| 精品亚洲成国产av| 1024视频免费在线观看| 脱女人内裤的视频| 精品亚洲成a人片在线观看| www.999成人在线观看| 国产av又大| 色视频在线一区二区三区| 狂野欧美激情性bbbbbb| 国产在线视频一区二区| e午夜精品久久久久久久| 一级a爱视频在线免费观看| 久久久久精品人妻al黑| 黄色视频不卡| 99久久精品国产亚洲精品| 黄色视频在线播放观看不卡| 国产一区二区三区综合在线观看| 两人在一起打扑克的视频| 一二三四在线观看免费中文在| 深夜精品福利| 女人精品久久久久毛片| 侵犯人妻中文字幕一二三四区| 国产欧美日韩精品亚洲av| 日韩大片免费观看网站| 亚洲五月色婷婷综合| 亚洲精品国产精品久久久不卡| 精品久久蜜臀av无| 国产日韩欧美视频二区| 国产精品一区二区在线观看99| av网站在线播放免费| 啦啦啦啦在线视频资源| 日韩视频一区二区在线观看| 亚洲国产中文字幕在线视频| 丝袜在线中文字幕| 大陆偷拍与自拍| 久久久国产一区二区| 动漫黄色视频在线观看| 黄色视频,在线免费观看| 亚洲欧洲日产国产| 久久久精品区二区三区| 欧美日韩亚洲综合一区二区三区_| 免费av中文字幕在线| 欧美+亚洲+日韩+国产| 久久精品国产亚洲av高清一级| 久久综合国产亚洲精品| 日本五十路高清| 国产成人影院久久av| 咕卡用的链子| 国产欧美日韩一区二区三 | 亚洲精品国产av成人精品| 1024香蕉在线观看| 亚洲av男天堂| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 中国国产av一级| 男女午夜视频在线观看| 免费看十八禁软件| 热re99久久国产66热| h视频一区二区三区| 欧美人与性动交α欧美精品济南到| av电影中文网址| 亚洲精品一二三| 操美女的视频在线观看| 久久国产精品影院| 国产成人精品在线电影| √禁漫天堂资源中文www| 久久人人97超碰香蕉20202| 国产精品久久久久久人妻精品电影 | 桃花免费在线播放| 久久久久久免费高清国产稀缺| 肉色欧美久久久久久久蜜桃| 国产成人av激情在线播放| 午夜影院在线不卡| 国产精品偷伦视频观看了| 欧美乱码精品一区二区三区| kizo精华| 一本色道久久久久久精品综合| 丰满饥渴人妻一区二区三| 亚洲精品中文字幕一二三四区 | 久久精品亚洲熟妇少妇任你| 久久久水蜜桃国产精品网| 亚洲综合色网址| 成年av动漫网址| 最近最新免费中文字幕在线| 丝袜美足系列| 国产免费av片在线观看野外av| 日韩制服骚丝袜av| 久久久精品区二区三区| 久久99一区二区三区| 国精品久久久久久国模美| 考比视频在线观看| 亚洲免费av在线视频| 欧美亚洲日本最大视频资源| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| 国产野战对白在线观看| 后天国语完整版免费观看| 女性被躁到高潮视频| 国产在线免费精品| 欧美精品av麻豆av| 国产日韩欧美在线精品| 中文欧美无线码| 国产精品久久久久久精品电影小说| 国产精品一区二区在线观看99| 国产一区二区 视频在线| 青春草视频在线免费观看| 视频区图区小说| 精品少妇一区二区三区视频日本电影| 免费观看人在逋| 一区二区三区四区激情视频| 久久久欧美国产精品| 在线av久久热| 三上悠亚av全集在线观看| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美软件| 亚洲精品粉嫩美女一区| 亚洲avbb在线观看| 十八禁高潮呻吟视频| 香蕉国产在线看| 欧美日韩精品网址| 欧美激情高清一区二区三区| 日日摸夜夜添夜夜添小说| 考比视频在线观看| 亚洲第一欧美日韩一区二区三区 | 精品一区二区三区av网在线观看 | 纯流量卡能插随身wifi吗| 亚洲精品自拍成人| 久久精品亚洲熟妇少妇任你| 99精国产麻豆久久婷婷| 高潮久久久久久久久久久不卡| 国产精品久久久av美女十八| 国产黄频视频在线观看| 老司机影院成人| 国产一区二区三区在线臀色熟女 | 一区二区三区四区激情视频| 午夜免费观看性视频| 女人精品久久久久毛片| 在线亚洲精品国产二区图片欧美| 日韩大码丰满熟妇| 99国产精品一区二区三区| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 午夜福利视频在线观看免费| 日韩有码中文字幕| 国产精品国产三级国产专区5o| 纵有疾风起免费观看全集完整版| 一本综合久久免费| 美女高潮到喷水免费观看| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 国产成人欧美在线观看 | 免费在线观看日本一区| 日韩欧美一区二区三区在线观看 | 国产精品麻豆人妻色哟哟久久| 成人三级做爰电影| 妹子高潮喷水视频| 亚洲精华国产精华精| 中文字幕精品免费在线观看视频| videosex国产| 亚洲欧美日韩高清在线视频 | 美女高潮到喷水免费观看| 天堂8中文在线网| 久久毛片免费看一区二区三区| 久久久国产一区二区| 亚洲欧美色中文字幕在线| 日韩有码中文字幕| 老汉色∧v一级毛片| 亚洲人成电影观看| 手机成人av网站| 肉色欧美久久久久久久蜜桃| 精品少妇内射三级| 久久久久精品人妻al黑| 精品国产乱子伦一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 午夜福利乱码中文字幕| 欧美一级毛片孕妇| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 老司机靠b影院| 国产成人精品无人区| 欧美 亚洲 国产 日韩一| 黑丝袜美女国产一区| 午夜日韩欧美国产| 久久久国产精品麻豆| 久久青草综合色| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 婷婷丁香在线五月| av在线app专区| e午夜精品久久久久久久| 丝瓜视频免费看黄片| 国产欧美日韩综合在线一区二区| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 亚洲精品第二区| a级毛片在线看网站| 国产精品一区二区精品视频观看| 国产免费福利视频在线观看| 欧美日韩国产mv在线观看视频| 性高湖久久久久久久久免费观看| 日日摸夜夜添夜夜添小说| 亚洲精品国产精品久久久不卡| av国产精品久久久久影院| 亚洲av美国av| 国产成人av激情在线播放| 在线精品无人区一区二区三| 国产精品一区二区在线不卡| 欧美午夜高清在线| av天堂久久9| 久久天堂一区二区三区四区| 中国国产av一级| 国产伦理片在线播放av一区| 伦理电影免费视频| 欧美午夜高清在线| 久久国产精品人妻蜜桃| 国产91精品成人一区二区三区 | 亚洲成人手机| 精品久久久久久久毛片微露脸 | 欧美在线黄色| 老司机福利观看| h视频一区二区三区| 夫妻午夜视频| 国产欧美日韩一区二区三 | 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久小说| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区久久| 少妇粗大呻吟视频| 久9热在线精品视频| 999久久久国产精品视频| 久久这里只有精品19| 丁香六月天网| 十分钟在线观看高清视频www| av在线老鸭窝| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品熟女亚洲av麻豆精品| 久久久国产一区二区| 国产av一区二区精品久久| 一级毛片电影观看| 国产又色又爽无遮挡免| 制服人妻中文乱码| 91精品三级在线观看| 免费在线观看日本一区| 欧美激情极品国产一区二区三区| 亚洲中文日韩欧美视频| 国产一区二区三区在线臀色熟女 | 欧美av亚洲av综合av国产av| 777米奇影视久久| avwww免费| 久久ye,这里只有精品| 亚洲男人天堂网一区| 国产99久久九九免费精品| 亚洲av日韩精品久久久久久密| 男男h啪啪无遮挡| 丝袜美腿诱惑在线| 久久久久网色| 免费看十八禁软件| 动漫黄色视频在线观看| 免费观看a级毛片全部| 久久人人97超碰香蕉20202| 桃花免费在线播放| 啦啦啦免费观看视频1| 国产精品 欧美亚洲| 久久av网站| 国产1区2区3区精品| 俄罗斯特黄特色一大片| 免费在线观看视频国产中文字幕亚洲 | 一本色道久久久久久精品综合| 美女中出高潮动态图| 国产精品一区二区在线不卡| 捣出白浆h1v1| 中文字幕高清在线视频| 肉色欧美久久久久久久蜜桃| 欧美日韩精品网址| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| 日本撒尿小便嘘嘘汇集6| 国产xxxxx性猛交| 久久久久精品国产欧美久久久 | 久9热在线精品视频| 亚洲伊人色综图| 老司机福利观看| 亚洲成人国产一区在线观看| 亚洲色图综合在线观看| 俄罗斯特黄特色一大片| 下体分泌物呈黄色| 国产色视频综合| 成人国产一区最新在线观看| 精品久久蜜臀av无| 他把我摸到了高潮在线观看 | 欧美 亚洲 国产 日韩一| 男女边摸边吃奶| 国产无遮挡羞羞视频在线观看| 久久久精品国产亚洲av高清涩受| 天天躁狠狠躁夜夜躁狠狠躁| 夫妻午夜视频| 欧美日本中文国产一区发布| 丝袜美足系列| 交换朋友夫妻互换小说| 啦啦啦啦在线视频资源| 国产一区二区在线观看av| 日韩视频在线欧美| 国产一区二区 视频在线| 久久久国产精品麻豆| 成年人午夜在线观看视频| 欧美日韩成人在线一区二区| 91字幕亚洲| 18禁裸乳无遮挡动漫免费视频| avwww免费| 黄色a级毛片大全视频| 黑丝袜美女国产一区| 黄色视频在线播放观看不卡| 如日韩欧美国产精品一区二区三区| 日本五十路高清| 国产精品 欧美亚洲| 欧美日本中文国产一区发布| 中文字幕精品免费在线观看视频| 亚洲精华国产精华精| 国产成人欧美| 一本色道久久久久久精品综合| 蜜桃在线观看..| 中文字幕高清在线视频| 久久99一区二区三区| 国产精品久久久久久精品古装| 精品一区二区三区四区五区乱码|