• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FIXED POINTS OF α-TYPE F-CONTRACTIVE MAPPINGS WITH AN APPLICATION TO NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION?

    2016-12-05 00:44:05DhananjayGOPALDepartmentofAppliedMathematicsHumanitiesNationalInstituteofTechnologySurat395007GujaratIndiaEmaildgashdsvnitacingopaldhananjayyahooin

    Dhananjay GOPALDepartment of Applied Mathematics&Humanities,S.V.National Institute of Technology,Surat-395007,Gujarat,IndiaE-mail:dg@ashd.svnit.ac.in;gopaldhananjay@yahoo.in

    Mujahid ABBASDepartment of Mathematics and Applied Mathematics,University of Pretoria,Lynnwood Road,Pretoria 0002,South Africa;Department of Mathematics,King AbdulAziz University,P.O.Box 80203 Jeddah 21589,Saudi ArabiaE-mail:Mujahid.Abbas@up.ac.za;abbas.muajahid@gmail.com

    Deepesh Kumar PATELDepartment of Mathematics Visvesvaraya National Institute of Technology,Nagpur-440010,Maharashtra,IndiaE-mail:deepesh456@gmail.com

    Calogero VETROUniversit`a degli Studi di Palermo,Dipartimento di Matematica e Informatica,Via Archirafi,34-90123 Palermo,ItalyE-mail:calogero.vetro@unipa.it

    FIXED POINTS OF α-TYPE F-CONTRACTIVE MAPPINGS WITH AN APPLICATION TO NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION?

    Dhananjay GOPAL?
    Department of Applied Mathematics&Humanities,S.V.National Institute of Technology,Surat-395007,Gujarat,India
    E-mail:dg@ashd.svnit.ac.in;gopaldhananjay@yahoo.in

    Mujahid ABBAS
    Department of Mathematics and Applied Mathematics,University of Pretoria,Lynnwood Road,Pretoria 0002,South Africa;Department of Mathematics,King AbdulAziz University,P.O.Box 80203 Jeddah 21589,Saudi Arabia
    E-mail:Mujahid.Abbas@up.ac.za;abbas.muajahid@gmail.com

    Deepesh Kumar PATEL
    Department of Mathematics Visvesvaraya National Institute of Technology,Nagpur-440010,Maharashtra,India
    E-mail:deepesh456@gmail.com

    Calogero VETRO
    Universit`a degli Studi di Palermo,Dipartimento di Matematica e Informatica,Via Archirafi,34-90123 Palermo,Italy
    E-mail:calogero.vetro@unipa.it

    In this paper,we introduce new concepts of α-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in[21,22]and different from α-GF-contractions given in[8].Then,sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings,in the setting of complete metric space.Consequently,the obtained results encompass various generalizations of the Banach contraction principle.Moreover,some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.

    fixed points;nonlinear fractional differential equations;periodic points

    2010 MR Subject Classification37C25;34A08

    1 Introduction

    The contraction mapping principle appeared in explicit form in Banach’s thesis in 1922[3],where it was used to establish the existence of a solution for an integral equation.Since then,because of its simplicity and usefulness,this fixed point theorem became a very popular tool in solving existence problems in many branches of mathematical analysis.Consequently,it was largely studied and generalized;see[4-7,11,14,17,20]and others.

    Recently,Wardowski[21,22]introduced the concepts of F-contraction and F-weak contraction to generalize the Banach’s contraction in many ways,see also[19].On the other hand,Hussain et al.[8]introduced the concept of α-GF-contraction as a generalization of F-contraction and obtained some interesting fixed point results.

    Following this direction of research,we introduce new concepts of α-type F-contractive mappings and prove some fixed point and periodic point theorems concerning such contractions. Moreover,some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.

    2 Preliminaries

    The aim of this section is to present some notions and results used in the paper.Throughout the article N,R+and R will denote the set of natural numbers,non-negative real numbers and real numbers respectively.

    Definition 2.1(see[21])Let Fbe a mapping satisfying:

    (F1)F is strictly increasing,that is

    We denote with F the family of all functions F that satisfy conditions(F1)-(F3).

    Example 2.2The following functionbelongs to F:

    Definition 2.3(see[21])Let (X,d)be a metric space.A mapping f:X→X is called an F-contraction on X if there exist F∈F and τ>0 such that for all x,y∈X with d(fx,fy)>0,we have

    Definition 2.4(see[22])Let(X,d)be a metric space.A mapping f:X→X is called an F-weak contraction on X if there exist F∈F and τ>0 such that,for all x,y∈X with d(fx,fy)>0,we have

    Remark 2.5(see[22])Every F-contraction is an F-weak contraction but converse is not necessarily true.

    Definition 2.6Let ΔGdenote the set of all functions G:(R+)4→R+satisfying the condition:

    Example 2.7The following functionbelongs to

    Definition 2.8(see[8])Let(X,d)be a metric space and f:X→X.Also suppose thatare two functions.We say that f is an α-GF-contraction if for all x,with,we have

    Definition 2.9(see[18])A mappingis α-admissible if there exists a functionsuch that

    3 Fixed Point Results for α-type F-contractions

    In this section,we first introduce the concepts of α-type F-contractions and then we prove some fixed point theorems for these contractions in a complete metric space.For convenience,we assume that an expression-∞·0 has value-∞.

    We begin with the following definitions:

    Definition 3.1Let(X,d)be a metric space.A mapping f:X→X is said to be an α-type F-contraction on X if there exist τ>0 and two functionssuch that for all,the following inequality holds

    Definition 3.2Let(X,d)be a metric space.A mapping f:X → X is said to be an α-type F-weak contraction on X if there exists τ>0 and two functions F ∈F andsuch that,for all xsatisfying,the following inequality holds

    Remark 3.3Every α-type F-contraction is an α-type F-weak contraction,but converse is not necessarily true.

    Then,for x=0 and y=1,by puttingwe get

    Further,since

    therefore,inequality(2.1)reduces to

    a contradiction and hence f is not an F-weak contraction.

    However,since

    then f is an α-type F-weak contraction for the choice

    Remark 3.5Definition 3.1(respectively,Definition 3.2)reduces to F-contraction(respectively,F(xiàn)-weak contraction)for α(x,y)=1.

    The next two examples demonstrate that α-type F-contractions(defined above)and α-GF-contractions[8]are independent.

    Example 3.6Let X=[0,1]and d be the usual metric on X.Define f:X→X by

    Then f is an α-type F-weak contraction with α(x,y)=1 for all xsuch thatBut f is not an α-GF-contraction[8].To see this,considersuch that

    and hence f is not an α-GF-contraction.

    Then,one can easily verify by simple calculations that f is an α-GF-contraction;but it is not an α-type F-weak contraction.To see this consider x=0 and y=2,then we get

    and so the inequality 6≤4e-τdoes not hold for any τ>0.Hence f is not an α-type F-weak contraction.

    Now,we prove our first result.

    Theorem 3.8Let(X,d)be a complete metric space and f:X→X be an α-type-F-weak contraction satisfying the following conditions:

    (i)f is α-admissible,

    (ii)there exists x0∈X such that α(x0,fx0)≥1,

    (iii)f is continuous.

    By induction we get

    Since f is an α-type F-weak contraction,then,for every n∈N,we write

    Consequently,we have

    If there exists n∈N such thatthen(3.3)becomes

    This implies that

    Taking limit as n→+∞in(3.4),we get

    that together with(F2)gives us

    From(3.4),for all n∈N,we deduce that

    Next using(3.5),(3.6)and taking limit as n→+∞in(3.7),we get

    Since X is complete,there existsFinally,the continuity of f yields

    i.e.,x?is a fixed point of f.

    In the next theorem we omit the continuity hypothesis of f.

    Theorem 3.9Let(X,d)be a metric space and f:X → X be an α-type F-weak contraction satisfying the following conditions:

    (ii)f is α-admissible,

    (iv)F is continuous.

    that is x?is a fixed point of f.

    By(3.9),we get

    Example 3.4 above satisfies all the hypothesis of Theorem 3.9,consequently f has at least a fixed point.Hereare two fixed point of f.

    To ensure the uniqueness of the fixed point,we will consider the following hypothesis:

    Theorem 3.10Adding condition(H)to the hypotheses of Theorem 3.8(respectively,Theorem 3.9)the uniqueness of the fixed point is obtained.

    ProofSuppose that y?is an another fixed point of f,soThen,we get easily

    a contradiction,which implies that

    Example 3.6 above satisfies all the hypothesis of Theorem 3.10,hence f has unique fixed point

    From Remark 3.3,we deduce the following corollary.

    Corollary 3.11Let(X,d)be a complete metric space and f:X → X be an α-type F-contraction satisfying the hypotheses of Theorem 3.10,then f has unique fixed point.

    Finally,we conclude that many existing results in the literature can be deduced easily from our Theorem 3.10.In fact,taking in Theorem 3.10,we obtain the following fixed point result.

    Corollary 3.12(see[22])Let(X,d)be a complete metric space and f:X→X be an F-weak contraction.If F is continuous,then f has a unique fixed point x?in X.

    Since the above Corollary 3.12 implies the corresponding theorems in Wardowski[21],′Ciri′c[6],Hardy and Rogers[7],thus these results are consequences of our Theorem 3.10.

    4 Periodic Point Results

    It is an obvious fact that,if f is a mapping which has a fixed point x,then x is also a fixed point of fnfor every n∈N.However,the converse is false.Indeed,let X=[0,1]andThen f has a unique fixed point atbut fn=I(identity map on X)for each even n>1,has every point of X as a fixed point. On the other hand,ifgiven by fx=cosx for all,is nonexpansive and every iterative of f has the same fixed point as f.

    In this section we prove some periodic point results for self-mappings on a complete metric space.In the sequel,we need the following definition.

    Definition 4.1A mapping f:X→X is said to have property(P)iffor every

    For further details on these property,we refer to[10].

    Theorem 4.2Let(X,d)be a complete metric space and f:X → X be a mapping satisfying the following conditions

    (i)there exists τ>0 and two functionsthat

    holds for all x∈X with d(fx,f2x)>0,

    (iii)f is α-admissible,

    (v)if w∈Fix(fn)and w/∈Fix(f),then α(fn-1w,fnw)≥1. Then f has property(P).

    and by induction we write

    If there exists n0∈N such thatis a fixed point of f and the proof is finished.Hence,we assume

    From(4.1)and(i),we have

    By using a similar reasoning as in the proof of Theorem 3.8,we get that the sequenceis a Cauchy sequence and hence the completeness of(X,d)ensures that there existssuch that

    Corollary 4.3Let(X,d)be a complete metric space andbe a continuous mapping satisfying

    5 Application

    In this section,we present an application of Theorem 3.9 to establishing the existence of solutions for a nonlinear fractional differential equation considered in[2].

    We will study the existence of solutions for the nonlinear fractional differential problem

    via the integral boundary conditions

    Note that,for a continuous function g:R+→R,the Caputo derivative of fractional order β is defined as

    where[β]denotes the integer part of the real number β.Also,the Riemann-Liouville fractional derivatives of order β for a continuous function g:R+→R is defined by

    provided the right-hand side is point-wise defined on(0,+∞),see for instance[15].

    Now,we prove the following existence theorem.

    Theorem 5.1Suppose that

    (i)there exist a function ξ:R×R→R and τ>0 such that

    Then,problem(5.1)has at least one solution.

    Then,problem(5.1)is equivalent to findwhich is a fixed point of T.

    By passing to logarithm,we write

    Therefore

    This implies that T is an α-type F-contraction.Next,by using condition(iii),we get

    is an easy example of function suitable for Theorem 5.1,whereis given by

    6 Conclusion

    Taking into account its interesting applications,searching for fixed point and periodic point theorems involving contractive type conditions received considerable attention through the last few decades.In this connection,the main aim of our paper is to present new concepts of α-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in[21,22]and different from α-GF-contractions given in[8].For these type of contractions,the existence and uniqueness of fixed point in complete metric space are established.An application to nonlinear fractional differential equation illustrates the usability of the obtained results for studying problems arising in pure and applied sciences.The new concepts lead to further investigations and applications.For instance,using the recent ideas in the literature[12,13,16],it is possible to extend our results to the case of coupled and cyclical fixed points in partially ordered metric spaces.It will be also interesting to apply these concepts in a metric space having graphical structure on it,see[9].

    References

    [1]Abbas M,Ali B,Romaguera S.Fixed and periodic points of generalized contractions in metric space. Fixed Point Theory Appl,2013,2013:243

    [2]Baleanu D,Rezapour Sh,Mohammadi M.Some existence results on nonlinear fractional differential equations.Philos Trans R Soc A,Math Phys Eng Sci,2013,371(1990):Article ID 20120144

    [3]Banach S.Sur les op′erations dans les ensembles abstraits et leur application aux′equations int′egrales. Fund Math,1922,3:133-181

    [4]Boyd D W,Wong J S.On nonlinear contractions.Proc Amer Math Soc,1969,20:458-462

    [5]Caristi J.Fixed point theorems for mappings satisfying inwardness conditions.Trans Amer Math Soc,1976,215:241-251

    [6]′Ciri′c Lj B.A generalization of Banach’s contraction principle.Proc Amer Math Soc,1974,45:267-273

    [7]Hardy G E,Rogers T D.A generalization of a fixed point theorem of Reich.Canadian Math Bull,1973,16:201-206

    [8]Hussain N,Salimi P.Suzuki-Wardowski type fixed point theorems for α-GF-contractions.Taiwanese J Math,2014,18:1879-1895

    [9]Jachymski J.The contraction principle for mapping on a metric space with a graph.Proc Amer Math Soc,2008,136:1359-1373

    [10]Jeong G S,Rhoades B E.Maps for which F(T)=F(Tn).Fixed Point Theory Appl,2005,6:87-131

    [11]Khan M S,Swaleh M,Sessa S.Fixed point theorems by altering distances between the points.Bull Aust Math Soc,1984,30:1-9

    [12]Kirk W A,Srinivasan P S,Veeramani P.Fixed points for mappings satisfying cyclical contractive conditions.Fixed Point Theory,2003,4:79-89

    [13]Lakshmikantham V,′Ciri′c Lj B.Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces.Nonlinear Anal,2009,70:4341-4349

    [14]Meir A,Keeler E.A theorem on contraction mappings.J Math Anal Appl,1969,28:326-329

    [15]Podlubny I.Fractional Differential Equations.Academic Press,1999

    [16]Ran A C M,Reurings M C B.A fixed point theorem in partially ordered sets and some applications to matrix equations.Proc Amer Math Soc,2004,132:1435-1443

    [17]Reich S.Some remarks concerning contraction mappings.Canadian Math Bull,1971,14:121-124

    [18]Samet B,Vetro C,Vetro P.Fixed point theorems for α-ψ-contractive type mappings.Nonlinear Anal,2012,75:2154-2165

    [19]Sgroi M,Vetro C.Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat,2013,27:1259-1268

    [20]Suzuki T.A generalized Banach contraction principle that characterizes metric completeness.Proc Amer Math Soc,2008,136:1861-1869

    [21]Wardowski D.Fixed points of new type of contractive mappings in complete metric space.Fixed Point Theory Appl,2012,doi:10.1186/1687-1812-2012-94

    [22]Wardowski D,Van Dung N.Fixed points of F-weak contractions on complete metric space.Demonstratio Math,2014,47:146-155

    ?August 26,2015;revised December 6,2015.

    ?Dhananjay GOPAL.

    AcknowledgementsThe thanks for the support of CSIR,Govt.of India,Grant No.-25(0215)/13/EMR-II and C.Vetro is member of the Gruppo Nazionale per l’Analisi Matematica,la Probabilit`a e le loro Applicazioni(GNAMPA)of the Istituto Nazionale di Alta Matematica(INdAM).

    亚洲国产欧美网| 悠悠久久av| 国产精品一区二区精品视频观看| 99国产精品99久久久久| 国产精品一区二区免费欧美| 久久人妻av系列| 一本精品99久久精品77| 午夜福利成人在线免费观看| 亚洲av电影不卡..在线观看| 亚洲男人的天堂狠狠| 老司机午夜福利在线观看视频| 99久久国产精品久久久| 非洲黑人性xxxx精品又粗又长| av福利片在线| 男人的好看免费观看在线视频 | 久久这里只有精品19| 久久久精品国产亚洲av高清涩受| 一本久久中文字幕| 在线观看美女被高潮喷水网站 | av天堂在线播放| 男人舔女人的私密视频| 亚洲乱码一区二区免费版| 一a级毛片在线观看| 国产高清激情床上av| 18禁观看日本| 一级毛片精品| 在线十欧美十亚洲十日本专区| 一进一出抽搐gif免费好疼| 不卡一级毛片| 国产一区二区在线观看日韩 | 欧美成人一区二区免费高清观看 | 欧美一级毛片孕妇| 国产成人av教育| 日本三级黄在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产aⅴ精品一区二区三区波| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址| 欧美不卡视频在线免费观看 | 宅男免费午夜| 国产成年人精品一区二区| 亚洲男人天堂网一区| 中文字幕熟女人妻在线| 亚洲欧美一区二区三区黑人| 日韩av在线大香蕉| 国产精品久久久久久人妻精品电影| 国产精品久久久久久人妻精品电影| 日韩av在线大香蕉| 亚洲av熟女| 人成视频在线观看免费观看| 在线观看午夜福利视频| 久久九九热精品免费| 久久精品91无色码中文字幕| av福利片在线| 欧美中文日本在线观看视频| 狂野欧美激情性xxxx| 欧美一级毛片孕妇| 欧洲精品卡2卡3卡4卡5卡区| 精品第一国产精品| 亚洲成av人片在线播放无| 成人永久免费在线观看视频| 婷婷精品国产亚洲av| 成年版毛片免费区| 曰老女人黄片| 三级男女做爰猛烈吃奶摸视频| 变态另类成人亚洲欧美熟女| av免费在线观看网站| 国产精品久久久久久久电影 | 午夜精品久久久久久毛片777| 亚洲成av人片免费观看| 无遮挡黄片免费观看| 一级a爱片免费观看的视频| 亚洲成人精品中文字幕电影| 天天躁狠狠躁夜夜躁狠狠躁| 12—13女人毛片做爰片一| 99国产极品粉嫩在线观看| 亚洲av成人不卡在线观看播放网| 亚洲精品在线观看二区| 18禁黄网站禁片免费观看直播| 天堂√8在线中文| 丝袜美腿诱惑在线| 高清毛片免费观看视频网站| 在线观看免费午夜福利视频| 在线看三级毛片| 精品午夜福利视频在线观看一区| 亚洲国产中文字幕在线视频| 俺也久久电影网| 亚洲一卡2卡3卡4卡5卡精品中文| 久久性视频一级片| 免费高清视频大片| 一二三四社区在线视频社区8| 国产三级中文精品| 国内揄拍国产精品人妻在线| 91麻豆精品激情在线观看国产| 久久天堂一区二区三区四区| 99精品欧美一区二区三区四区| 黄色视频不卡| 亚洲精品中文字幕一二三四区| 免费看十八禁软件| 日韩有码中文字幕| 国内精品久久久久久久电影| 色综合欧美亚洲国产小说| 正在播放国产对白刺激| 国产精品电影一区二区三区| 亚洲av五月六月丁香网| 久久婷婷成人综合色麻豆| 美女免费视频网站| 国产精品一及| 亚洲国产欧美人成| 俄罗斯特黄特色一大片| 欧美zozozo另类| 俺也久久电影网| 午夜激情福利司机影院| 欧洲精品卡2卡3卡4卡5卡区| 怎么达到女性高潮| 国产精品亚洲美女久久久| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久亚洲av鲁大| 国产欧美日韩一区二区三| 九色成人免费人妻av| 制服丝袜大香蕉在线| 亚洲欧美日韩高清专用| 少妇的丰满在线观看| 久久久精品大字幕| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看 | av有码第一页| 精品免费久久久久久久清纯| 国产精品 国内视频| 别揉我奶头~嗯~啊~动态视频| 可以在线观看的亚洲视频| 亚洲avbb在线观看| 波多野结衣巨乳人妻| 久久久久国产精品人妻aⅴ院| 国产一级毛片七仙女欲春2| 美女免费视频网站| 老汉色av国产亚洲站长工具| 岛国在线免费视频观看| 久久香蕉激情| 欧美中文综合在线视频| 国产熟女xx| 不卡一级毛片| 亚洲专区国产一区二区| 一本精品99久久精品77| 国产野战对白在线观看| 在线看三级毛片| www.自偷自拍.com| 99久久精品国产亚洲精品| 日韩高清综合在线| 日本一区二区免费在线视频| www国产在线视频色| 欧美最黄视频在线播放免费| 777久久人妻少妇嫩草av网站| 又粗又爽又猛毛片免费看| 国产精品久久久人人做人人爽| 久久久久久大精品| 18禁裸乳无遮挡免费网站照片| 97超级碰碰碰精品色视频在线观看| 国产在线精品亚洲第一网站| www日本在线高清视频| 亚洲一区二区三区色噜噜| 亚洲美女视频黄频| 国产精品精品国产色婷婷| 99在线视频只有这里精品首页| 成人18禁在线播放| 欧美高清成人免费视频www| 成人特级黄色片久久久久久久| 巨乳人妻的诱惑在线观看| 亚洲国产欧美人成| 嫁个100分男人电影在线观看| e午夜精品久久久久久久| 50天的宝宝边吃奶边哭怎么回事| 国产黄片美女视频| 在线视频色国产色| 欧美黑人欧美精品刺激| 日韩av在线大香蕉| 亚洲一区高清亚洲精品| 精品一区二区三区av网在线观看| av免费在线观看网站| 精华霜和精华液先用哪个| 亚洲av日韩精品久久久久久密| 高清毛片免费观看视频网站| 午夜福利成人在线免费观看| 午夜日韩欧美国产| 亚洲成人免费电影在线观看| 久久九九热精品免费| 久久草成人影院| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 国产欧美日韩精品亚洲av| 一级片免费观看大全| 国产成人欧美在线观看| 中文资源天堂在线| 男人舔女人的私密视频| 欧美黄色片欧美黄色片| 两个人视频免费观看高清| 99热6这里只有精品| 日韩中文字幕欧美一区二区| 精华霜和精华液先用哪个| 久久久久久国产a免费观看| 午夜精品在线福利| 日本三级黄在线观看| 成人高潮视频无遮挡免费网站| 久久久久亚洲av毛片大全| 久久这里只有精品中国| 性色av乱码一区二区三区2| 久久久精品国产亚洲av高清涩受| 久久午夜综合久久蜜桃| 亚洲欧美日韩东京热| 久久欧美精品欧美久久欧美| 亚洲中文av在线| 亚洲人成电影免费在线| 日本一本二区三区精品| 女同久久另类99精品国产91| 宅男免费午夜| 18美女黄网站色大片免费观看| 国产片内射在线| 日本成人三级电影网站| 久久国产乱子伦精品免费另类| 在线免费观看的www视频| 最近最新免费中文字幕在线| 夜夜夜夜夜久久久久| 可以在线观看毛片的网站| 亚洲 欧美 日韩 在线 免费| 美女午夜性视频免费| 听说在线观看完整版免费高清| 亚洲成av人片免费观看| 久久久久精品国产欧美久久久| 亚洲成av人片在线播放无| 欧美+亚洲+日韩+国产| 色综合站精品国产| 女警被强在线播放| 麻豆一二三区av精品| 久久欧美精品欧美久久欧美| 视频区欧美日本亚洲| 午夜精品在线福利| 熟女少妇亚洲综合色aaa.| 老司机深夜福利视频在线观看| 成人国产一区最新在线观看| 中文字幕人妻丝袜一区二区| 99riav亚洲国产免费| 亚洲av电影不卡..在线观看| 曰老女人黄片| 久久精品aⅴ一区二区三区四区| 岛国在线免费视频观看| 精品欧美一区二区三区在线| 欧美乱码精品一区二区三区| 午夜福利18| 香蕉丝袜av| 欧美3d第一页| 一本综合久久免费| 精品人妻1区二区| 午夜福利免费观看在线| 国产成人aa在线观看| 麻豆一二三区av精品| 国内少妇人妻偷人精品xxx网站 | 国产免费av片在线观看野外av| 人成视频在线观看免费观看| 午夜成年电影在线免费观看| 亚洲国产精品合色在线| 五月伊人婷婷丁香| 欧美在线一区亚洲| 婷婷丁香在线五月| 国产精品亚洲美女久久久| 国产伦一二天堂av在线观看| 亚洲精品一区av在线观看| 午夜亚洲福利在线播放| 老司机午夜福利在线观看视频| 成人高潮视频无遮挡免费网站| 男人舔女人下体高潮全视频| 69av精品久久久久久| 国产精品永久免费网站| 亚洲人成网站在线播放欧美日韩| 亚洲,欧美精品.| 99精品久久久久人妻精品| 99国产精品99久久久久| 婷婷精品国产亚洲av在线| 久久中文字幕人妻熟女| aaaaa片日本免费| 不卡av一区二区三区| 18禁黄网站禁片免费观看直播| 69av精品久久久久久| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 国产精品一及| tocl精华| 一区二区三区国产精品乱码| 亚洲自拍偷在线| a级毛片在线看网站| 91大片在线观看| 午夜视频精品福利| 天天添夜夜摸| 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 免费电影在线观看免费观看| 最近在线观看免费完整版| 麻豆一二三区av精品| 国产亚洲精品第一综合不卡| 一夜夜www| 亚洲第一电影网av| 老汉色∧v一级毛片| 国产一区二区激情短视频| 久久久精品国产亚洲av高清涩受| 搡老熟女国产l中国老女人| 在线视频色国产色| 亚洲五月天丁香| 黄色a级毛片大全视频| 婷婷精品国产亚洲av在线| 亚洲av第一区精品v没综合| 色尼玛亚洲综合影院| 精品国产超薄肉色丝袜足j| 亚洲无线在线观看| 成年女人毛片免费观看观看9| 国产精品乱码一区二三区的特点| 中文字幕人成人乱码亚洲影| 狠狠狠狠99中文字幕| 欧美最黄视频在线播放免费| 日本五十路高清| 亚洲一码二码三码区别大吗| 亚洲第一电影网av| 久久精品91蜜桃| 嫩草影院精品99| 色av中文字幕| 欧美日韩黄片免| 91av网站免费观看| 国产人伦9x9x在线观看| 国产精品久久久久久亚洲av鲁大| 久久精品91无色码中文字幕| 色综合婷婷激情| 19禁男女啪啪无遮挡网站| 久久人妻av系列| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看| 日韩精品免费视频一区二区三区| 午夜成年电影在线免费观看| 黄色女人牲交| 制服人妻中文乱码| 1024香蕉在线观看| 两个人看的免费小视频| 天堂动漫精品| 国产精品永久免费网站| 亚洲精品一区av在线观看| 男人的好看免费观看在线视频 | 一本久久中文字幕| 动漫黄色视频在线观看| 国模一区二区三区四区视频 | 欧美三级亚洲精品| 啪啪无遮挡十八禁网站| 国产成人精品久久二区二区免费| 老汉色av国产亚洲站长工具| 日日摸夜夜添夜夜添小说| 国产av不卡久久| 精品国产乱子伦一区二区三区| 99精品欧美一区二区三区四区| 一本精品99久久精品77| 国产精品,欧美在线| 久久久久精品国产欧美久久久| 久久婷婷人人爽人人干人人爱| 亚洲男人的天堂狠狠| 五月伊人婷婷丁香| 成人av在线播放网站| 色哟哟哟哟哟哟| 制服诱惑二区| 日本黄大片高清| 91国产中文字幕| 久久精品91蜜桃| 成人手机av| 成人特级黄色片久久久久久久| www.www免费av| 女同久久另类99精品国产91| 久久九九热精品免费| 精品一区二区三区视频在线观看免费| 99在线视频只有这里精品首页| 亚洲一区二区三区色噜噜| 香蕉国产在线看| 不卡一级毛片| 亚洲人成电影免费在线| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色| 国产三级在线视频| 婷婷丁香在线五月| 99久久精品热视频| 两个人看的免费小视频| 床上黄色一级片| 国产精品野战在线观看| 听说在线观看完整版免费高清| 久久久久免费精品人妻一区二区| 日日干狠狠操夜夜爽| 国产精品乱码一区二三区的特点| 一级片免费观看大全| 一二三四在线观看免费中文在| 亚洲五月天丁香| 日本成人三级电影网站| 国产av又大| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 特大巨黑吊av在线直播| 国产主播在线观看一区二区| 一本精品99久久精品77| 天堂√8在线中文| 国产精品电影一区二区三区| 天天添夜夜摸| 日韩精品中文字幕看吧| 日韩高清综合在线| 我的老师免费观看完整版| 精品熟女少妇八av免费久了| 亚洲精品一区av在线观看| 久久精品国产99精品国产亚洲性色| 美女免费视频网站| 欧美中文综合在线视频| 亚洲男人天堂网一区| 99精品在免费线老司机午夜| 亚洲性夜色夜夜综合| 亚洲自偷自拍图片 自拍| 99国产精品一区二区蜜桃av| 麻豆成人av在线观看| 久久九九热精品免费| 国产高清视频在线播放一区| 很黄的视频免费| 此物有八面人人有两片| 久久久国产成人精品二区| 国产不卡一卡二| 黄色丝袜av网址大全| 亚洲成人国产一区在线观看| 日日摸夜夜添夜夜添小说| 中文字幕熟女人妻在线| 久久久久国产精品人妻aⅴ院| 99久久无色码亚洲精品果冻| 久久精品91蜜桃| 欧美色视频一区免费| 天天躁夜夜躁狠狠躁躁| 久久久国产成人精品二区| 日韩精品免费视频一区二区三区| 欧美久久黑人一区二区| 国产亚洲欧美在线一区二区| 无限看片的www在线观看| 我要搜黄色片| 亚洲av五月六月丁香网| 亚洲国产精品成人综合色| 中文在线观看免费www的网站 | 亚洲精品国产一区二区精华液| 国产三级在线视频| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 色精品久久人妻99蜜桃| 精品高清国产在线一区| 国产91精品成人一区二区三区| 亚洲av电影不卡..在线观看| 亚洲精品在线观看二区| 最近在线观看免费完整版| 亚洲精品一卡2卡三卡4卡5卡| 性色av乱码一区二区三区2| 国产av麻豆久久久久久久| 岛国视频午夜一区免费看| 日本三级黄在线观看| 国产成人系列免费观看| 夜夜夜夜夜久久久久| 午夜视频精品福利| 制服诱惑二区| 三级男女做爰猛烈吃奶摸视频| 99国产精品一区二区蜜桃av| 国产伦一二天堂av在线观看| 国产三级黄色录像| 中文字幕久久专区| 国产高清视频在线观看网站| 亚洲中文日韩欧美视频| 51午夜福利影视在线观看| 亚洲欧美精品综合一区二区三区| 香蕉国产在线看| 神马国产精品三级电影在线观看 | 国产91精品成人一区二区三区| 国产激情欧美一区二区| 国产精品av久久久久免费| 国产精品国产高清国产av| www.www免费av| 国内少妇人妻偷人精品xxx网站 | 不卡av一区二区三区| 国产精品久久视频播放| 国产精品综合久久久久久久免费| 成年免费大片在线观看| 国产精品香港三级国产av潘金莲| 午夜精品一区二区三区免费看| 90打野战视频偷拍视频| 少妇的丰满在线观看| 国产免费av片在线观看野外av| 啦啦啦韩国在线观看视频| 国产精品自产拍在线观看55亚洲| 手机成人av网站| 亚洲欧美日韩高清专用| 村上凉子中文字幕在线| 精品久久蜜臀av无| 丰满人妻一区二区三区视频av | 久久这里只有精品19| 美女免费视频网站| 91老司机精品| 欧美性猛交╳xxx乱大交人| 国产精品一区二区精品视频观看| 久99久视频精品免费| 色在线成人网| 九色国产91popny在线| 欧美性猛交黑人性爽| 久久久久国产精品人妻aⅴ院| 桃红色精品国产亚洲av| 国产三级中文精品| 婷婷丁香在线五月| 岛国视频午夜一区免费看| 韩国av一区二区三区四区| 母亲3免费完整高清在线观看| 99久久久亚洲精品蜜臀av| 国产精品亚洲av一区麻豆| 丰满的人妻完整版| 真人做人爱边吃奶动态| 日韩av在线大香蕉| 久久久久久九九精品二区国产 | 亚洲精品色激情综合| 欧美高清成人免费视频www| 亚洲国产精品成人综合色| 亚洲成人久久性| 91麻豆av在线| 亚洲熟妇中文字幕五十中出| 超碰成人久久| 欧美乱妇无乱码| 无遮挡黄片免费观看| 两个人看的免费小视频| 叶爱在线成人免费视频播放| 日韩中文字幕欧美一区二区| 亚洲一区高清亚洲精品| 国产精品免费一区二区三区在线| 国产午夜精品论理片| 亚洲精品久久国产高清桃花| 午夜免费成人在线视频| 日韩欧美国产在线观看| 90打野战视频偷拍视频| 黄色成人免费大全| 日本一区二区免费在线视频| 两个人免费观看高清视频| 成人精品一区二区免费| 免费搜索国产男女视频| 好男人电影高清在线观看| 亚洲avbb在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一区二区精品视频观看| 国产成人aa在线观看| 男女下面进入的视频免费午夜| 国产激情欧美一区二区| 亚洲av熟女| 一进一出抽搐gif免费好疼| 精品午夜福利视频在线观看一区| 九色成人免费人妻av| 手机成人av网站| 久99久视频精品免费| 男女做爰动态图高潮gif福利片| 中文字幕高清在线视频| 最近最新免费中文字幕在线| 日韩精品青青久久久久久| 精品久久久久久久久久久久久| 露出奶头的视频| 女同久久另类99精品国产91| 99久久精品国产亚洲精品| 黄片小视频在线播放| 国产精品亚洲美女久久久| 在线观看免费日韩欧美大片| 丁香欧美五月| 脱女人内裤的视频| 99久久无色码亚洲精品果冻| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久久久久久久| 久久中文字幕人妻熟女| 妹子高潮喷水视频| 久久久久国产一级毛片高清牌| 久久精品影院6| 欧美激情久久久久久爽电影| 国产精品美女特级片免费视频播放器 | 精品久久久久久,| 淫妇啪啪啪对白视频| 国产成人精品久久二区二区91| 99久久久亚洲精品蜜臀av| 欧美中文综合在线视频| 九九热线精品视视频播放| 精品不卡国产一区二区三区| 性欧美人与动物交配| 免费电影在线观看免费观看| 精品久久久久久久人妻蜜臀av| 舔av片在线| 成人国产综合亚洲| 久久婷婷人人爽人人干人人爱| 丝袜人妻中文字幕| 中文亚洲av片在线观看爽| 日韩有码中文字幕| 精华霜和精华液先用哪个| 久久午夜综合久久蜜桃| 亚洲狠狠婷婷综合久久图片| 欧美精品啪啪一区二区三区| 国产亚洲av嫩草精品影院| 大型黄色视频在线免费观看| 国产v大片淫在线免费观看| 免费电影在线观看免费观看| 午夜精品一区二区三区免费看| 久久中文字幕人妻熟女| 婷婷亚洲欧美| 最近在线观看免费完整版| 2021天堂中文幕一二区在线观| 日韩欧美在线二视频| 男女床上黄色一级片免费看| 亚洲一区二区三区不卡视频| 久久天躁狠狠躁夜夜2o2o| 国产三级中文精品| 高清在线国产一区| 久久久久久国产a免费观看| 亚洲一区中文字幕在线| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 高清在线国产一区| 国产精品日韩av在线免费观看|