• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MECHANISM FOR THE TRANSITION FROM A REGULAR REFLECTION TO A MACH REFLECTION OR A VON NEUMANN REFLECTION?

    2016-12-05 00:44:01FaWUHuihuiDAIDexingKONG

    Fa WUHuihui DAIDexing KONG

    1.Department of Mathematics,Zhejiang University,Hangzhou 310027,China;2.Department of Mathematics,City University of Hong Kong,83 Tat Chee Avenue,Kowloon Tong,Hong Kong;3.Department of Mathematics,Zhongyuan University of Technology,Zhengzhou 450007,ChinaE-mail:wufa85zju.edu.cn;mahhdai@cityu.edu.hk;dkong@zju.edu.cn

    MECHANISM FOR THE TRANSITION FROM A REGULAR REFLECTION TO A MACH REFLECTION OR A VON NEUMANN REFLECTION?

    1.Department of Mathematics,Zhejiang University,Hangzhou 310027,China;
    2.Department of Mathematics,City University of Hong Kong,83 Tat Chee Avenue,Kowloon Tong,Hong Kong;
    3.Department of Mathematics,Zhongyuan University of Technology,Zhengzhou 450007,China
    E-mail:wufa85zju.edu.cn;mahhdai@cityu.edu.hk;dkong@zju.edu.cn

    In this paper,by taking into account the thickness of the incident shock as well as the influence of the boundary layer,we point out that even in a regular reflection there should be present a contact discontinuity.By using the smallest energy criterion,the inclined angle of this contact discontinuity can be determined for differen incident angle.Then,with this inclined contact discontinuity,together with the law of conservation of mass,the mechanism for the transition from a regular reflection to a Mach reflection or a von Neumann reflection becomes clear.The important roles played by the leftest point in the reflected shock polar are identified.

    steady flows,shock wave;shock polar;regular reflection;Mach reflection;von Neumann reflection

    2010 MR Subject Classification35L65;76L05

    1 Introduction

    It is well-known that the reflection of a plane shock at a rigid wall will be a regular reflection(RR)(some time also called a simple reflection)if its angle of incidence is comparatively small,but that it will be a more complicated irregular(for example,Mach reflection(MR)or von Neumann reflection(NR))for a larger incident angle.There are a lot of works on the transition between regular reflection and irregular one,in particular,Mach reflection and von Neumann reflection(see e.g.,[1,2,5,7]).The criterion commonly used to predict the transition RR←→MR or NR between the two wave systems makes use of the boundary condition that the flow downstream of the reflection must be parallel to the wall.Henderson and Lozzi[5]presented detailed experimental data on the transition between regular and Mach reflections.Datawere obtained for steady,pseudo-steady and unsteady flows.Experimental data also included a study of the continuous and discontinuous transitions predicted by other researchers.

    In the literature,the discussions on the transition of a RR to a MR or NR are usually based on that a shock is thickless.Here,we shall consider the thickness of a shock in the reflection process.Due to such a thickness,naturally there is a“geometrical stem”in the wave configuration(cf.Fig.12).Also,the interaction between the reflected shock and the boundary layer is taken into account to a certain extent.Then,we offer the explanation why there is a contact discontinuity even in a regular reflection.Evidences of experimental results done by others which support our conclusion are also provided.The orientation of this contact discontinuity is dependent on the angle of the incident shock.A theorem is established to determine the orientation of this contact discontinuity for the energy being smallest.It is found that in a regular reflection(the incident angle is smaller than αe,the extreme incident angle αe),this contact discontinuity is parallel to the wall.If the incident angle is larger than αe,then this contact discontinuity has to decline an angle β(>0)towards the wall,where β corresponds the leftest point in the R-polar(cf.Figs.11 and 9).Then,the geometrical stem,the contact discontinuity and the boundary layer form a triangle.As there are fluids entering this triangle through the geometrical stem,the triple point(or,the top point of this triangle)has to start moving upward,so the wave configuration of a Mach or von Neumann reflection is formed.The importance of the position of the leftest point is made clear by us.

    The paper is organized as follows.In Section 2,we briefly recall classical results for thickless shocks.The arguments that a contact discontinuity is present in a regular reflection are provided in Section 3.Transition mechanism from a regular reflection to a Mach reflection is discussed in Section 4,where we also prove a theorem which can be used to determine the inclined angle of the contact discontinuity.In Section 5,we give the explanation for the formation of a von Neumann reflection.Finally,based on the position of the leftest point of the R-polar,two conjectures are made.

    2 Some Main Results of Standard Shock Dynamics

    In the theory of standard shock dynamics,a shock is treated as a thickless line across which physical quantities can experience jumps.Also,when there presents a solid boundary,usually the boundary layer effect is also neglected.Here,we review some classical results.A more comprehensive review can be found in Hornung[7].

    2.1The Jump Conditions on Shock and Shock Polars

    Throughout this paper we study the stationary compressible flow in R2.The corresponding Euler system in two-dimensional space readswhere(u,v),p,ρ and S represent the velocity,pressure,density and entropy,respectively.In the case of polytropic gas considered in the present paper,the state equation is

    in which A(S)is a positive function of S and γ>1 is the adiabatic exponent.In a steady flow through an oblique shock wave(see Fig.1),the conservation equations may be used to relate the state downstream of the shock(subscript 2)to the state upstream(subscript 1):

    where M1is the flow Mach number in the state 1,γ is the adiabatic exponent of the gas.

    Fig.1 An oblique shock wave

    For fixed γ and M1>1,by(2.1)-(2.4)we can draw the shock polars in the(θ,α)-plane and the(θ,p)-plane;see Figs.2-3.

    Fig.2 Shock polar in the(θ,α)-plane

    Fig.3 Shock polar in the(θ,p)-plane

    Property 2.1Fig.2 shows that the deflection angle θ is a function of the shock angle α. As α increases from arcsindecreases from M1to the value 1(sonic point)just before θ reaches the maximum value(Maximum-deflection point).Further increase of α causes M2and θ to decrease until(normal shock).

    Remark 2.1Fig.2 comes from(2.4)directly.Eliminating α between(2.2)and(2.4),we can draw Fig.3.Both curves in Figs.2-3 are symmetrical about θ=0.

    Remark 2.2For the details on the jump conditions and shock polars,we refer the classical papers[7,8]and book[3].

    2.2Regular Reflection

    Consider a plane shock being reflected off a wall or symmetry plane parallel to→q1;see Figs.4-5.

    Fig.4 Regular reflection in a steady flow

    Fig.5 shock polar in the(θ,p)-plane for a regular reflection

    Obviously,the incident shock I deflects the flow to an angle θ2,and the reflected shock R is needed to deflect it back to θ3=0.It is better to represent this situation in the(θ,p)-plane: the state 2 lies on the incident shock polar.From this new state we may draw the second(reflected)shock polar with M=M2from the state 2:(θ2,p2).Thus,the deflection is taken from 0 to θ2by the incident shock I,and from θ2to 0 by the reflected shock R.When θ2is not so large(i.e.,α is not so large),there are two intersection points,denoted by 3 and?3 respectively,of the reflected shock polar with the p-axis.The point 3 stands for the state given by the weak reflected shock,while?3 stands for the state given by the strong reflected shock. Physically,the weak reflected shock is stable,but the strong one is unstable.

    When the incident angle α is increased(in this case,θ2is also increased),there exists a value α=αe(correspondingly,there is a value θe)such that the two intersection points 3 and ?3 coincide(i.e.,the leftest point in the R-polar is in contact with the vertical axis),and beyond which the reflected shock polar does not reach the p-axis any more;see Fig.6.

    Fig.6 The extreme case of the regular reflection:θ2=θe

    The configuration mentioned above is called a regular reflection;αeis called the extreme incident angle of the regular reflection,while θeis said the extreme deflection angle of the regular reflection.The physical picture of the regular reflection is given in Fig.4.

    2.3Mach Reflection

    As mentioned above,when the incident angle α is increased and becomes larger than αe(correspondingly,the deflection angle θ2is also increased and becomes larger than θe),in this case we observe that the reflected shock polar does not reach the p-axis any more;see Fig.7.

    Fig.7 Mach reflection in the(θ,p)-plane

    Fig.8 Mach reflection in the physical plane

    In the present situation,the deflection in the region 3 is still toward the wall.In order to accommodate the transition from θ>0 to θ=0,there is also a contact discontinuity CD and a near-normal shock,called the Mach stem and denoted by MS,which allows the triple shock point P to move away from the wall.The density,velocity and the entropy are discontinuous across CD,but the pressure and the streamline deflection are continuous.As a result,in the shock polar of the(θ,p)-plane,the points representing the states 3 and 4 coincide with each other.The upper intersection of I and R in Fig.8 gives the triple point condition,and the curved Mach stem MS is represented by the part of 4-5 of the curve I.

    The reflection configuration mentioned above is called a Mach reflection.By the way,the wall-jetting effect in the Mach reflection is investigated by Henderson et al.[6].

    2.4von Neumann Reflection

    Fig.9?。╬,θ)-solution of a von Neumann reflection

    Fig.10 The wave configuration of a von Neumann reflection

    Besides the Mach reflection,for some M1and a suitable incident angle α,another kind of irregular reflection,the so-called von Neumann reflection can also appear(see[2]).For this reflection,the wave configuration consists of an incident shock wave,i,a band of selfsimilar reflected compression wave,c,a reflected shock wave,r,a Mach stem,m,and a contact discontinuity,s;see Fig.10.In this case,the shock polar corresponding to the reflected shock wave,the R-polar,does not intercept either the-axis or the upper branch of the incident shock polar,the I-polar;see Fig.9.However,since the boundary condition at the wall must be satisfied(which needs θ=0),the R-polar should be somehow connected to the upper branch of the I-polar(which intercepts the-axis,i.e.,θ=0).This can be achieved through a C-polar of a compression wave which starts at a point in the R-polar,where this point is,in our view,still an open issue.Here,we take the point of view that it should start at the leftest point of the R-polar;see Fig.9.The justification will be given in Section 5.

    3 The Presence of a Contact Discontinuity in a Regular Reflection

    Currently,there are no satisfactory explanations why the wave configuration of a regular reflection should becomes that of a Mach reflection or a von Neumann reflection if the incident Mach number and the incident angle α vary.One important difference between a regular reflection(as we understand it as far)and a Mach reflection or a von Neumann reflection is that the latter two have a contact discontinuity in the wave configurations while the former does not have one.Here we argue that there should be a contact discontinuity even in a regular reflection.The explanation is given below.

    As mentioned earlier,in the theory of standard shock dynamics,a shock is treated as a thickless line and the boundary layer effect near the wall is also neglected.Here,we shall consider the thickness of a shock purely from the geometrical point of view and further somehow take into account the boundary layer effect1The thickness assumption on the shock results in the viscosity in the ideal gas.In other words,the thickness assumption on the shock implies the assumption on the viscosity in the gas(at least near boundary layer),namely,the thickness of the shock is due to the viscosity in the gas..When an incident shock with a geometrical thickness is reflected from the wall,then automatically a stem(we call it a geometrical stem)is formed above the boundary layer;see Fig.12.Denote the contact point of the geometrical stem and the boundary layer by C.Then,at C,the normal velocity vCshould be zero.However,its tangential velocity uCis unknown.But,it is clear that uCwill depend on the viscosity of the gas;say,uC=uC(ν),where ν is the fluid viscosity.Incidently,it was observed in the experiment by Dewey and McMillin[4]that the foot of the Mach stem was thicker.This could imply that the influence of the viscosity on the point C is important.

    We use A to denote the point near the triple point on the side of the reflected shock.If there is no any kind discontinuity between the point A and the point C,due to the closeness of A and C(the geometrical stem is very short),we can regard that

    where vAand uAare the normal and tangential velocities at the point A,respectively.However,by using the jump conditions(or the shock polar)and(3.1),uAcan be determined completelyin terms of the incident Mach number M1and the incident angle α,so uAis independent of the fluid viscosity.This then shows the contradiction of(3.2).As a result,there should be some kind of discontinuity between the point A and the point C.A natural choice is that there is a contact discontinuity between the point A and the point C such that(3.1)still holds but(3.2)does not need to be satisfied.

    We also point out that in many experiments one can observe that the thickness of a contact discontinuity is much less than that of a shock.Thus,there should be the geometrical space for a contact discontinuity lying in between the point A and the point C.

    It should be noted that the geometrical stem is very short due to the very smallness of the thickness of a shock.Because of this and also because the contact discontinuity could be short itself,this contact discontinuity is very difficult to be observed in experiments.Nevertheless,there are some experimental evidences to support our argument that there is a contact discontinuity in a regular reflection.The wave configuration of a regular reflection in our theory is equivalent to that of a Mach reflection with an almost zero-length Mach stem and a contact discontinuity parallel to the wall.Such a wave configuration has been observed in the experiments of the shock reflection over a concave wall,as reported in a presentation given by Sun et al.in the 23th International Symposium on Shock Waves(Fort Worth,Tenax,July 22-27,2001).The full paper can be found in the website:http://ceres.ifs.tohoku.ac.jp/~swrc/papers/issw23/55889.pdf. Recently,Sudani et al.[9]studied the irregular effects on the transition from regular to Mach reflection.In the picture taken by them(see Figs.13(a)and 13(h)in[9]),a dark line in the middle,in the case of a regular reflection,was clearly visible,which appeared to be a contact discontinuity.Sudani and Hornug et al.gave a presentation in the 15th International Mach Reflection Symposium(Aachen,Germany,September 15-19,2002).Their work was not formally published.Interested readers can find the slides of the presentation in the website: www.galcit.caltech.edu/~hans/slides.pdf.In one experiment,they inserted a needle near the reflection point.From the picture taken by them in the regular reflection,it appeared that there was a contact discontinuity.

    With the presence of a contact discontinuity in a regular reflection,then it is easy to explain the transition to the wave configuration of a Mach reflection and that of a von Neumann reflection.

    4 Mechanism of the Transition to a Mach Reflection

    Note that the solution discussed in this paper is piecewise constant in the domains corresponding to the states 1-3.So,to understand the transition mechanism,we need to determine the inclined angle βcof the contact discontinuity with the horizontal direction in a regular reflection.The deflection angle across the reflected shock is θ2-βc;see Fig.13.We impose that θ2-βc≤θ2(i.e.,βc≥0)such that the transition to an inverted Mach reflection(one needs to impose some restrictions downstream in order for it to appear)will not happen.The angle βcwill depend on the incident angle α of the incident shock.

    Theorem 4.1If α≤αe,the energy in the state 3 is the smallest for βc=0,where αeis the detachment angle;if α>αe,the energy in the state 3 is the smallest for βc=β,where β is the smallest angle in the reflected R-polar;see Fig.11.

    Fig.11 The definition of β

    Fig.12 Physical picture at the moment before the Mach reflection appears

    Fig.13 Physical picture at the moment when the Mach reflection appears

    Proof of Theorem 4.1For simplicity,we consider the perfect gas,that is,the state equation of gas reads

    where p is the pressure,ρ is the density,S is the entropy,A>0 is a constant,γ>1 is the adiabatic exponent,and cν>0 is the specific heat capacity.

    By(2.1)-(2.4),p2,ρ2,M2in the state 2 and the deflection angle θ2can be solved once p1,ρ1,M1in the state 1 and the incident angle α are given.Denote the pressure,the density,the entropy and Mach number in the state 3 by p,ρ,S,M.Similar to(2.1)-(2.4),on the reflected shock R we have

    where φ is the incident angle in the state 2,i.e.,the deflection angle in the state 3;see Fig.13.

    We now calculate the entropy S in the state 3.

    By(4.2)-(4.3),it follows from(4.1)that

    where φ2is the incident angle in the state 2 corresponding to the caseCombining(4.6)and(4.8),we observe that the entropy S is an increasing function of x,that is,S is an increasing function of sinφ and then it is also an increasing function ofOn one hand,it follows from(4.5)that φ is an increasing function of(also see Fig.2).Summarizing the above arguments leads to the following fact:the entropy S is an increasing function ofOn the other hand,it is well-known that the physical entropy,denoted by Sphysics,satisfies

    and then Sphysicsis a decreasing function ofWe note that if α≤αe,as βc≥0,the largest value ofTherefore the physical entropy takes its minimum at βc=0.This implies that the energy of gas in the state 3 is the smallest when βc=0.If α>αe(in this case β>0),as βc≥β,the largest value offor which βc=β.This implies that the energy of gas is the smallest.Thus,the proof is completed.

    If we use the smallest energy as the selection criterion for the angle of the contact discontinuity,from the above theorem,we can conclude that:

    1.If the incident angle α≤αe,the contact discontinuity is horizontal(parallel to the wall);

    2.If the incident angle α>αe,the contact discontinuity will decline an angle β towards the wall.

    Consider a process that the incident angle is gradually increased from a value less than αeto a value larger that αe.When α≤αe,the wave configuration is one with an incident shock,a reflected shock and a horizontal contact discontinuity.After α>αe(we are considering the onset of the transition),the contact discontinuity starts declining an angle β towards the wall. Then,for the triangle bounded by the geometrical stem,the boundary layer and the contact discontinuity,as there are fluid particles entering this triangle through the geometrical stem,to conserve the mass,the triple point has to start moving.As a result,a Mach reflection will be formed.

    It should be noted that the geometrical stem should not be treated as a shock stem as it is too close to the boundary layer.Thus,in the onset of the transition the state at the point E(see Fig.13)and the state 1 should not in the same shock polar.However,as the triple point is moving away from the wall and the stem becomes taller and taller,the influence of the boundary layer on the top portion of the stem should become smaller and smaller,and that part of the stem can then be treated as a shock stem(i.e.,the Mach stem).

    5 Mechanism of the Transition to a von Neumann Reflection

    Consider the case that in a regular reflection the R-polar does not intersect the I-polar. Then,the incident angle is gradually increased to a value larger than the detachment angle.At this stage,the R-polar and I-polar is connected by a C-polar of a compression wave;see the discussion in the Subsection 2.4.In this section,we shall give the justification where the C-polar should intersect the R-polar and give an explanation why the original horizontal contact discontinuity in the regular reflection has to decline an angle towards the wall.

    The physical picture of a von Neumann reflection is shown in Fig.14.As for the Mach reflection,we use the smallest energy as the selection criterion.In Fig.9,the state 3 and state 4 are connected by a compression wave,across which the entropy does not change.On the other hand,the state 3 is on the R-polar,so Theorem 4.1 still applies.Thus,for the smallest energy state,the deflection angle from the state 2 to the state 3 should be θ2-β,i.e.,the state 3 corresponds the leftest point of the R-polar.So,the velocity at the state 3 is not horizontal but instead has an angle β with the horizontal line.Across the compression wave,i.e.,from the state 3 to the state 4,for a simple gas,by(2.2)-(2.4)we obtain

    As p4>p3,we have θ4>θ3.Thus,the velocity at the state 4 has an angle(i.e.,β?in Fig.9)with the horizontal line,which is larger than β.This angle is also the angle between the contact discontinuity and the horizontal line.

    From the above discussion,we can see that once the incident angle is increased to a value larger than the detachment angle αe,a compression wave will appear and at the meantime the contact discontinuity(which is horizontal for θ≤αe)will decline an angle β?(>β>0)with the horizontal line.Then,as there are fluid particles crossing the geometrical stem to enter the triangle bounded by the contact discontinuity,the boundary layer and the geometrical stem,due to the conservation of mass,the triple point has to start moving,so the von Neumann reflection is formed.

    Fig.14 The mechanism of formation of von Neumann reflection

    6 Mach Reflection or von Neumann Reflection?

    In experiments,for a given incident Mach number and incident angle,sometimes a Mach reflection is observed and sometimes a von Neumann reflection is observed;see[8]and[2].Here,based on the results of Sections 4-5,where the importance of the leftest point of the R-polar has been made clear,we make some conjectures on when a Mach reflection or von Neumann reflection can appear.Clearly,if this leftest point is at the left side of the vertical axis,there is a regular reflection,and if this leftest point is at the right side of the vertical axis,there is an irregular reflection.Here,we consider the latter situation.

    Fig.15 Mach reflection

    Fig.16 Mach reflection-continuity

    Conjecture 1After the incident angle is larger than αe,if the leftest point of the R-polar is above/on the upper branch of the I-polar,only a Mach reflection can appear;see Figs.15-16.

    We take the view that the wave configuration should be as simple as possible.In this case,the R-polar must intersect the I-polar,and there is no need for a C-polar(representing a compression wave)to connect the R-polar and the I-polar,so a von Neumann reflection will not appear.

    Conjecture 2After the incident angle is larger than αe,if the leftest point of the R-polar is below the upper branch of the I-polar and the R-polar also intersect the I-polar,then both a Mach reflection and a von Neumann reflection can appear;see Figs.17-18.

    Fig.17 Mach reflection and von Neumann reflection

    Fig.18 Mach reflection and von Neumann reflection-continuity

    In this case,from the point of view of the smallest energy criterion,a von Neumann reflection is preferred.On the other hand,from the point of view of a simpler wave configuration,a Mach reflection is preferred.Here,we take the view that both are possible.

    In the case that the leftest point of the R-polar is below the upper branch of the I-polar and the R-polar does not intersect the I-polar,as discussed in Subsection 2.4 and Section 5,a von Neumann reflection will appear.

    References

    [1]Ben-Dor Gabi.Shock Wave Reflection Phenonmena.New York:Springer-Verlag,1992

    [2]Colella P,Henderson L F.The von Neumann paradox for the diffraction of weak shock waves.J Fluid Mech,1990,213:71-94

    [3]Courant R,F(xiàn)riedrichs K O.Supersonic Flow and Shock Waves.New York:Interscience Publishers,1948

    [4]Dewey J M,McMillin D J.Observation and analysis of the Mach reflection of weak uniform plane shock waves.Part1.Observations.J Fluid Mech,1985,152:49-66

    [5]Henderson L F,Lozzi A.Experiments on transition of Mach reflection.J Fluid Mech,1975,68:139-155

    [6]Henderson L F,Vasilev E I,Ben-Dor G,Elperin T.The wall-jetting effect in Mach reflection:theoretical consideration and numerical investigation.J Fluid Mech,2003,479:259-286

    [7]Hornung H.Regular and Mach reflection of shock waves.Ann Rev Fluid Mech,1986,18:33-58

    [8]von Neumann.Oblique Reflection of Shocks.Explos Res Rep 12,Navy Dept,Bureau of Ordnace,Washington,DC,USA,1943

    [9]Sudani N,Sato M,Karasawa T,Noda J,Tate A,Watanabe M.Irregular effects on the trasition regular to Mach reflection of shock waves in wind tunnel flows.J Fluid Mech,2002,459:167-185

    ?January 18,2015;revised July 2,2015.Wu and Kong are supported by the NNSF of China(11271323,91330105)and the Zhejiang Provincial Natural Science Foundation of China(LZ13A010002);Dai is supported by a GRF grant(CityU 11303015)from the Research Grants Council of Hong Kong SAR,China.

    ?Huihui DAI.

    男女视频在线观看网站免费| 他把我摸到了高潮在线观看| 日韩欧美国产一区二区入口| 午夜免费成人在线视频| 亚洲自拍偷在线| 男女下面进入的视频免费午夜| 22中文网久久字幕| 3wmmmm亚洲av在线观看| 亚洲熟妇熟女久久| 亚洲国产欧美人成| 欧美一区二区亚洲| 在线观看午夜福利视频| 热99re8久久精品国产| 午夜激情福利司机影院| 国产精品久久久久久久久免| 久久精品国产亚洲av天美| 国产综合懂色| 搡老熟女国产l中国老女人| 免费看光身美女| 国产老妇女一区| 91久久精品电影网| 五月伊人婷婷丁香| 国产欧美日韩精品亚洲av| 久久久久久久午夜电影| 男女视频在线观看网站免费| 一进一出抽搐动态| 国产精品永久免费网站| 天堂av国产一区二区熟女人妻| 成人永久免费在线观看视频| 久久精品91蜜桃| 国产伦在线观看视频一区| 不卡一级毛片| 神马国产精品三级电影在线观看| 欧美不卡视频在线免费观看| 亚洲第一电影网av| 国产真实乱freesex| 性色avwww在线观看| 久久久久久伊人网av| 国产黄片美女视频| 国产aⅴ精品一区二区三区波| 啦啦啦啦在线视频资源| 亚洲最大成人手机在线| 午夜福利成人在线免费观看| 人妻丰满熟妇av一区二区三区| 国产亚洲精品av在线| 国产老妇女一区| 亚洲 国产 在线| 久久婷婷人人爽人人干人人爱| 九色成人免费人妻av| 欧美日韩中文字幕国产精品一区二区三区| 国产精品嫩草影院av在线观看 | 麻豆av噜噜一区二区三区| 内地一区二区视频在线| 日韩大尺度精品在线看网址| 日韩国内少妇激情av| 夜夜爽天天搞| 我要搜黄色片| 国产成人aa在线观看| 亚洲av不卡在线观看| 国产成人a区在线观看| 久久久久久久久久成人| 欧美日韩黄片免| 国产午夜精品久久久久久一区二区三区 | 欧美黑人巨大hd| 国内精品宾馆在线| 免费看日本二区| 国产综合懂色| 午夜精品一区二区三区免费看| 亚洲,欧美,日韩| 久久香蕉精品热| 亚洲专区中文字幕在线| 国产精品久久久久久精品电影| 国产欧美日韩精品亚洲av| 美女xxoo啪啪120秒动态图| 免费观看人在逋| 国国产精品蜜臀av免费| 夜夜爽天天搞| 99热这里只有是精品在线观看| 亚洲av电影不卡..在线观看| 亚洲av中文字字幕乱码综合| 国产乱人伦免费视频| 色哟哟哟哟哟哟| av国产免费在线观看| 美女高潮喷水抽搐中文字幕| 午夜福利在线观看吧| 乱系列少妇在线播放| 精品日产1卡2卡| 国产aⅴ精品一区二区三区波| 中国美白少妇内射xxxbb| h日本视频在线播放| www日本黄色视频网| 免费高清视频大片| 亚洲欧美清纯卡通| 久久草成人影院| 国产大屁股一区二区在线视频| 99热精品在线国产| 又紧又爽又黄一区二区| 久久久成人免费电影| 国产一区二区三区在线臀色熟女| 精品一区二区三区视频在线| 天堂影院成人在线观看| 伦精品一区二区三区| 久久久午夜欧美精品| 国产精品av视频在线免费观看| 琪琪午夜伦伦电影理论片6080| 性插视频无遮挡在线免费观看| aaaaa片日本免费| 久久人妻av系列| 国产精品乱码一区二三区的特点| 大型黄色视频在线免费观看| 免费高清视频大片| 国内精品宾馆在线| 亚洲美女搞黄在线观看 | 国产亚洲精品久久久久久毛片| 99国产极品粉嫩在线观看| 国产精品国产三级国产av玫瑰| 天美传媒精品一区二区| 成人性生交大片免费视频hd| 国产久久久一区二区三区| 真人做人爱边吃奶动态| 欧美区成人在线视频| 欧美日韩精品成人综合77777| 久久精品综合一区二区三区| 国产精品嫩草影院av在线观看 | 精品不卡国产一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 成人特级av手机在线观看| 美女cb高潮喷水在线观看| 色视频www国产| 真人做人爱边吃奶动态| 免费在线观看影片大全网站| 男女做爰动态图高潮gif福利片| 俄罗斯特黄特色一大片| 成人性生交大片免费视频hd| 成人欧美大片| 亚洲成人久久性| 黄色女人牲交| 日韩欧美免费精品| 免费看美女性在线毛片视频| 国产伦一二天堂av在线观看| 99热只有精品国产| 精品人妻1区二区| 欧美日韩综合久久久久久 | 搡老妇女老女人老熟妇| 99在线人妻在线中文字幕| 欧美一区二区亚洲| 中文字幕熟女人妻在线| 精品久久久久久久末码| 亚洲成人久久爱视频| 午夜免费激情av| 搡女人真爽免费视频火全软件 | 精品不卡国产一区二区三区| 国产精品久久久久久亚洲av鲁大| av国产免费在线观看| 免费看光身美女| 亚洲电影在线观看av| 亚洲成人精品中文字幕电影| 午夜福利欧美成人| 国产不卡一卡二| 久久久久性生活片| 成人二区视频| 国产单亲对白刺激| 可以在线观看的亚洲视频| 高清毛片免费观看视频网站| 能在线免费观看的黄片| 一区二区三区免费毛片| 亚洲va在线va天堂va国产| 欧美成人a在线观看| 精品一区二区三区视频在线| 国内精品久久久久久久电影| 美女cb高潮喷水在线观看| 国产69精品久久久久777片| 极品教师在线视频| 欧美日韩亚洲国产一区二区在线观看| 日本在线视频免费播放| 窝窝影院91人妻| 亚洲av电影不卡..在线观看| 国产成人影院久久av| 日本免费a在线| 国产精品精品国产色婷婷| 校园人妻丝袜中文字幕| 91在线精品国自产拍蜜月| 天天躁日日操中文字幕| 熟女人妻精品中文字幕| 精品人妻熟女av久视频| 啦啦啦啦在线视频资源| 极品教师在线视频| 又黄又爽又刺激的免费视频.| 免费av观看视频| 天天一区二区日本电影三级| 成人特级黄色片久久久久久久| 黄片wwwwww| 亚洲性夜色夜夜综合| 亚洲精品国产成人久久av| 1024手机看黄色片| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看| 亚洲欧美日韩无卡精品| 欧美性猛交黑人性爽| 亚洲va在线va天堂va国产| 在线播放国产精品三级| 国产精品亚洲美女久久久| 国产三级在线视频| 亚洲欧美日韩卡通动漫| 久久精品国产99精品国产亚洲性色| 日韩欧美在线乱码| 欧美又色又爽又黄视频| 欧美一区二区国产精品久久精品| 桃红色精品国产亚洲av| 在线播放国产精品三级| 一级黄色大片毛片| 我的女老师完整版在线观看| 性插视频无遮挡在线免费观看| 国产v大片淫在线免费观看| 亚洲成av人片在线播放无| 男女啪啪激烈高潮av片| 免费不卡的大黄色大毛片视频在线观看 | 成人性生交大片免费视频hd| 午夜视频国产福利| 亚洲真实伦在线观看| 成人特级av手机在线观看| 久99久视频精品免费| 美女被艹到高潮喷水动态| 欧美激情久久久久久爽电影| 午夜福利欧美成人| 久久久久久久精品吃奶| 小蜜桃在线观看免费完整版高清| 日韩欧美一区二区三区在线观看| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 久久这里只有精品中国| 能在线免费观看的黄片| 在线观看66精品国产| АⅤ资源中文在线天堂| 国产精品一区www在线观看 | 国产黄a三级三级三级人| 国产成人影院久久av| aaaaa片日本免费| 尾随美女入室| av中文乱码字幕在线| 超碰av人人做人人爽久久| 欧美色欧美亚洲另类二区| 真人做人爱边吃奶动态| 波多野结衣高清无吗| 久久久久久久午夜电影| 干丝袜人妻中文字幕| 伦精品一区二区三区| 村上凉子中文字幕在线| 日韩av在线大香蕉| 女的被弄到高潮叫床怎么办 | 午夜影院日韩av| 欧美性猛交黑人性爽| 亚洲人与动物交配视频| 看黄色毛片网站| 成年女人看的毛片在线观看| 99热只有精品国产| 99精品久久久久人妻精品| 窝窝影院91人妻| 99久久久亚洲精品蜜臀av| 亚洲av美国av| 免费观看的影片在线观看| 老师上课跳d突然被开到最大视频| 婷婷精品国产亚洲av| 久久亚洲精品不卡| 校园人妻丝袜中文字幕| 国产久久久一区二区三区| 白带黄色成豆腐渣| 黄色女人牲交| 亚洲av免费高清在线观看| 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 日本一二三区视频观看| 午夜福利成人在线免费观看| av天堂中文字幕网| 亚洲熟妇熟女久久| 免费在线观看成人毛片| 亚洲国产精品合色在线| 免费搜索国产男女视频| 日韩一区二区视频免费看| 日韩精品青青久久久久久| 我要看日韩黄色一级片| 欧美高清性xxxxhd video| 熟女电影av网| 欧美性猛交黑人性爽| 欧美中文日本在线观看视频| 网址你懂的国产日韩在线| 丰满人妻一区二区三区视频av| 国产亚洲精品久久久com| 国产av麻豆久久久久久久| 日本与韩国留学比较| 亚洲熟妇中文字幕五十中出| 久久国内精品自在自线图片| 午夜视频国产福利| 国产不卡一卡二| 亚洲欧美日韩卡通动漫| 精品久久久久久久久久久久久| 日本黄色视频三级网站网址| 黄色视频,在线免费观看| 91精品国产九色| 免费无遮挡裸体视频| 一进一出好大好爽视频| 免费观看的影片在线观看| a级一级毛片免费在线观看| 亚洲美女黄片视频| 亚洲欧美日韩卡通动漫| 成人美女网站在线观看视频| 国内少妇人妻偷人精品xxx网站| 舔av片在线| 老司机福利观看| 欧美日韩瑟瑟在线播放| 丰满人妻一区二区三区视频av| 精品人妻熟女av久视频| 国产精品一区二区三区四区免费观看 | 久久久久久久久久久丰满 | 久久久久久久久久黄片| 午夜精品在线福利| 亚洲午夜理论影院| 美女免费视频网站| 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 简卡轻食公司| 欧美激情久久久久久爽电影| 精品一区二区免费观看| 午夜精品久久久久久毛片777| 小蜜桃在线观看免费完整版高清| 亚洲自拍偷在线| 狠狠狠狠99中文字幕| 高清在线国产一区| 人妻夜夜爽99麻豆av| 久久久精品欧美日韩精品| 如何舔出高潮| 精品一区二区三区视频在线观看免费| 久久久久久久午夜电影| 日韩欧美在线二视频| 天天一区二区日本电影三级| 国产黄a三级三级三级人| 熟女人妻精品中文字幕| 黄色日韩在线| 国产一区二区在线av高清观看| 欧美中文日本在线观看视频| 永久网站在线| 久久久精品欧美日韩精品| 尤物成人国产欧美一区二区三区| 欧美日本亚洲视频在线播放| 97热精品久久久久久| a级一级毛片免费在线观看| 亚洲精品一区av在线观看| 男女之事视频高清在线观看| 99热这里只有是精品50| 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 中文字幕高清在线视频| 国产伦精品一区二区三区视频9| 桃红色精品国产亚洲av| 色综合婷婷激情| 国内揄拍国产精品人妻在线| 乱系列少妇在线播放| 99久久精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 国内毛片毛片毛片毛片毛片| 国产精品野战在线观看| 亚州av有码| 亚洲国产精品久久男人天堂| 久久精品夜夜夜夜夜久久蜜豆| 夜夜夜夜夜久久久久| 成人毛片a级毛片在线播放| a在线观看视频网站| 天天一区二区日本电影三级| 超碰av人人做人人爽久久| 成人精品一区二区免费| 国国产精品蜜臀av免费| 国产精品野战在线观看| 精品久久久久久久久av| 午夜精品一区二区三区免费看| 色综合亚洲欧美另类图片| 中文字幕免费在线视频6| 村上凉子中文字幕在线| 欧美丝袜亚洲另类 | 欧美日韩亚洲国产一区二区在线观看| 日本与韩国留学比较| 国产成人av教育| 国产一区二区三区视频了| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看 | 国产精品久久久久久av不卡| 色综合色国产| 岛国在线免费视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品精品国产色婷婷| 看片在线看免费视频| 亚洲精品色激情综合| 国产av一区在线观看免费| 男人舔女人下体高潮全视频| 久久草成人影院| 国产精品福利在线免费观看| 久久久久性生活片| 亚洲精品一区av在线观看| 51国产日韩欧美| 三级国产精品欧美在线观看| 亚洲欧美日韩高清专用| 国产熟女欧美一区二区| 在线观看午夜福利视频| 精品不卡国产一区二区三区| 一边摸一边抽搐一进一小说| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 国产探花极品一区二区| 国产精品精品国产色婷婷| 色综合婷婷激情| 国产精品日韩av在线免费观看| 中文字幕久久专区| 天堂动漫精品| 天堂网av新在线| 99热只有精品国产| 日本一本二区三区精品| 国产高清视频在线观看网站| 亚洲三级黄色毛片| 国产高清视频在线观看网站| 大又大粗又爽又黄少妇毛片口| 国产精品,欧美在线| 色尼玛亚洲综合影院| 精品国产三级普通话版| 国内久久婷婷六月综合欲色啪| 色噜噜av男人的天堂激情| 中出人妻视频一区二区| 亚洲精品日韩av片在线观看| 日韩 亚洲 欧美在线| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| av在线蜜桃| 亚洲四区av| 午夜福利在线观看免费完整高清在 | 国产精品av视频在线免费观看| 亚洲人成网站在线播| 亚洲精品成人久久久久久| 欧美3d第一页| 日本五十路高清| aaaaa片日本免费| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 久久热精品热| 亚洲欧美激情综合另类| 久久国产乱子免费精品| 亚洲avbb在线观看| 在线观看一区二区三区| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 日本在线视频免费播放| 热99在线观看视频| 国内久久婷婷六月综合欲色啪| 久久精品久久久久久噜噜老黄 | 波多野结衣高清作品| 久久99热6这里只有精品| 成人高潮视频无遮挡免费网站| 女人十人毛片免费观看3o分钟| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 欧美区成人在线视频| 国产亚洲精品久久久com| 麻豆久久精品国产亚洲av| 久久午夜亚洲精品久久| 欧美一区二区精品小视频在线| 99精品久久久久人妻精品| 成人国产一区最新在线观看| 午夜激情福利司机影院| 深夜a级毛片| 国产v大片淫在线免费观看| 久久精品国产自在天天线| 国产精品永久免费网站| 美女黄网站色视频| 日韩大尺度精品在线看网址| 九九热线精品视视频播放| 91在线观看av| 欧美性感艳星| 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 白带黄色成豆腐渣| 亚洲aⅴ乱码一区二区在线播放| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 亚洲无线观看免费| 日本爱情动作片www.在线观看 | 亚洲综合色惰| 精品久久久久久久久久免费视频| 九色成人免费人妻av| 人人妻人人看人人澡| 极品教师在线免费播放| 人妻制服诱惑在线中文字幕| 中亚洲国语对白在线视频| 在线观看免费视频日本深夜| 1024手机看黄色片| 婷婷精品国产亚洲av在线| 老司机午夜福利在线观看视频| 最新中文字幕久久久久| 国产大屁股一区二区在线视频| 长腿黑丝高跟| 日日摸夜夜添夜夜添av毛片 | 全区人妻精品视频| 熟女人妻精品中文字幕| 日韩欧美精品v在线| 亚洲美女搞黄在线观看 | 1024手机看黄色片| 国产精品一区二区性色av| 国产真实乱freesex| av在线观看视频网站免费| 成人二区视频| 波多野结衣高清无吗| 很黄的视频免费| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 欧美bdsm另类| 国产av一区在线观看免费| 欧美精品国产亚洲| 小蜜桃在线观看免费完整版高清| 一个人免费在线观看电影| 欧美不卡视频在线免费观看| 成年人黄色毛片网站| 成人国产一区最新在线观看| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 精品人妻一区二区三区麻豆 | 亚洲精品国产成人久久av| 免费看光身美女| 日韩欧美精品免费久久| 国产一区二区三区视频了| 国产精品一区www在线观看 | 亚洲人成网站高清观看| 狂野欧美激情性xxxx在线观看| 内射极品少妇av片p| 夜夜爽天天搞| 久久精品91蜜桃| 欧美xxxx性猛交bbbb| 国产午夜精品久久久久久一区二区三区 | 在现免费观看毛片| 久久欧美精品欧美久久欧美| 成人二区视频| 婷婷六月久久综合丁香| 亚洲在线观看片| 亚洲av日韩精品久久久久久密| 免费看光身美女| 日韩高清综合在线| 亚洲第一区二区三区不卡| 免费在线观看成人毛片| 亚洲美女视频黄频| 国产在线精品亚洲第一网站| 深夜精品福利| 联通29元200g的流量卡| 噜噜噜噜噜久久久久久91| 亚洲av五月六月丁香网| 精品久久久久久久末码| 亚洲一区二区三区色噜噜| bbb黄色大片| 国产真实伦视频高清在线观看 | 有码 亚洲区| 久久精品国产亚洲av涩爱 | 亚洲av第一区精品v没综合| 国产乱人伦免费视频| 久久久国产成人免费| 国产三级在线视频| 天堂影院成人在线观看| 淫秽高清视频在线观看| 婷婷精品国产亚洲av| 人妻少妇偷人精品九色| eeuss影院久久| 成人美女网站在线观看视频| 一级毛片久久久久久久久女| 欧美日韩综合久久久久久 | 国产一区二区三区视频了| 麻豆av噜噜一区二区三区| 日日撸夜夜添| 国产精品不卡视频一区二区| 久久亚洲真实| 在线观看av片永久免费下载| 中出人妻视频一区二区| 国产91精品成人一区二区三区| 窝窝影院91人妻| 亚洲av熟女| 亚洲成人久久性| 99久国产av精品| 美女黄网站色视频| 色5月婷婷丁香| 桃红色精品国产亚洲av| 2021天堂中文幕一二区在线观| 国产在视频线在精品| 日韩强制内射视频| 国产黄片美女视频| 国产麻豆成人av免费视频| 久久精品夜夜夜夜夜久久蜜豆| 黄色欧美视频在线观看| 亚洲av第一区精品v没综合| av福利片在线观看| 久99久视频精品免费| 国内揄拍国产精品人妻在线| 免费一级毛片在线播放高清视频| 91在线精品国自产拍蜜月| 国产一区二区三区视频了| 国产精品伦人一区二区| 深夜精品福利| 日韩国内少妇激情av| 好男人在线观看高清免费视频| 18禁黄网站禁片免费观看直播| 男女那种视频在线观看| 欧美性感艳星| 日本-黄色视频高清免费观看| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出| 日本熟妇午夜| 麻豆国产av国片精品| 一级a爱片免费观看的视频| 中文在线观看免费www的网站| 欧美性感艳星| 国产极品精品免费视频能看的| 美女高潮的动态| 亚洲国产欧洲综合997久久,|