• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DYNAMICS OF NEW CLASS OF HOPFIELD NEURAL NETWORKS WITH TIME-VARYING AND DISTRIBUTED DELAYS?

    2016-12-05 00:43:51AdneneARBIFaroukCHERIFChaoukiAOUITIAbderrahmenTOUATIDepartmentofMathematicsFacultdesSciencesdeBizerteUniversityofCarthageJarzouna70BizerteTunisiaDepartmentofComputerScienceISSATSLaboratoryofMathPhysicsUniversityofSousseS

    Adn`ene ARBIFarouk CH′ERIF Chaouki AOUITIAbderrahmen TOUATI.Department of Mathematics,F(xiàn)acult′e des Sciences de Bizerte,University of Carthage,Jarzouna 70,Bizerte,Tunisia.Department of Computer Science,ISSATS,Laboratory of Math Physics,University of Sousse;Specials Functions and Applications LRES35,Ecole Sup′erieure des Sciences et de Technologie,Sousse 400,TunisiaE-mail:adnen.arbi@enseignant.edunet.tn;faroukcheriff@yahoo.fr;chaouki.aouiti@fsb.rnu.tn;Abder.Touati@fsb.rnu.tn

    DYNAMICS OF NEW CLASS OF HOPFIELD NEURAL NETWORKS WITH TIME-VARYING AND DISTRIBUTED DELAYS?

    Adn`ene ARBI1?Farouk CH′ERIF2Chaouki AOUITI1Abderrahmen TOUATI1
    1.Department of Mathematics,F(xiàn)acult′e des Sciences de Bizerte,University of Carthage,Jarzouna 7021,Bizerte,Tunisia
    2.Department of Computer Science,ISSATS,Laboratory of Math Physics,University of Sousse;Specials Functions and Applications LR11ES35,Ecole Sup′erieure des Sciences et de Technologie,Sousse 4002,Tunisia
    E-mail:adnen.arbi@enseignant.edunet.tn;faroukcheriff@yahoo.fr;
    chaouki.aouiti@fsb.rnu.tn;Abder.Touati@fsb.rnu.tn

    In this paper,we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays.In fact,the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution,which is also its derivative pseudo almost periodic.This results are without resorting to the theory of exponential dichotomy. Furthermore,by employing the suitable Lyapunov function,some delay-independent sufficient conditions are derived for exponential convergence.The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly,two examples are given to demonstrate the validity of the proposed theoretical results.

    delayed functional differential equations;neural networks;pseudo-almost periodic solution;global exponential stability;time-varying and distributed delays; fixed point theorem

    2010 MR Subject Classification34K05;92B20;34C27;34D20;34K40;47H10

    1 Introduction

    On the other hand,the study of the existence periodic solutions,as well as its numerous generalizations to almost periodic solutions[11,22-27],pseudo almost periodic solutions,weighted pseudo almost periodic solutions,almost automorphic solutions[13],and so forth[12],is one of the most attracting topics in the qualitative theory of differential equations due both to its mathematical interest as well as to their applications in various areas of applied science. In[7],Bai investigated the almost periodic solutions of the following HNNs:

    By means of a suitable fixed point theorem and differential inequality techniques he obtained sufficient conditions for the existence and exponential stability of almost periodic solutions for(1.1).As we all know,many phenomena in nature have oscillatory character and their mathematical models have led to the introduction of certain classes of functions to describe them. Such a class which is formed by pseudo almost periodic functions is a natural generalization of the concept of almost periodicity.A natural problem is to ask whether the results expressed in[7]and[17]can be extended to pseudo almost periodic solutions.In particular,we are concerned with the study of the existence,uniqueness and the behavior of the solutions of the considered model in the space PAP(1)(R,Rn).Roughly speaking,in this paper,and in order to give answer to the above question we shall investigate the continuously differentiable pseudo almost periodic solution for a more general model;that is,the following HNNs with mixed delays(continuously time-varying and distributed delays):

    To the best of our knowledge,no paper in the literature has investigated the globallyexponential stability,existence and uniqueness of PAP(1)(R,Rn)solution for system(1.2).Our goal in this paper is to study the dynamics of Hopfield model(1.2).Hence,by applying fixed point theorem and differential inequality techniques,we give some sufficient conditions ensuring the existence,uniqueness and globally exponential stability of a continuously differentiable pseudo almost periodic solution of system(1.2),which are new and complement the previously known results.

    The remainder of this paper is organized as follows:In Section 2,we will introduce some necessary notations,definitions and fundamental properties of the space PAP(1)(R,Rn)which will be used in the paper.In Section 3,some sufficient conditions are derived ensuring the existence of the continuously differentiable pseudo almost periodic solution.Section 4 is devoted to the exponential stability of the continuously differentiable pseudo almost periodic solution of(1.2).At last,two illustrative examples are given.It should be mentioned that the main results of this paper include Theorem 3.4,Theorem 4.2 and Theorem 4.4.

    2 Preliminaries and Function Spaces

    In this paper,we denote by Rn(R=R1)the set of all n-dimensional real vectors(real numbers).Now,we introduce necessary notations,definitions and fundamental properties of the space PAP(1)(R,Rn)which will be used later.

    2.1The Classical Almost Periodic Functions

    Denote by BC(0)(R,Rn),the set of bounded continued functions from R to Rn.Note thatis a Banach space wheredenotes the sup norm.When,we setthe set of functions defined from R to Rnsuch that all the derivative in order i(0≤i≤k),are continuous.Besides,we define

    Definition 2.1(see[2,13])LetWe say that f is almost periodic or uniformly almost periodic(u.a.p),when the following property is satisfied

    A set D of R is called relatively dense in R when

    And so,introducing the sets

    we can formulate the definition of the Bohr almost periodicity of f∈C(0)(R,Rn)in the following manner:for each∈>0,the set E(f,∈)is relatively dense in R.An element of E(f,∈)is calledan∈-period of f.Consequently,a Bohr almost periodic function is a continuous function which possesses very much almost periods.We denote bythe set of the Bohr A.P. functions from

    2.2The C(1)Almost Periodic Functions

    Define

    It is easy to check that endowed with the norm

    Remark 2.2Directly from definition it follows that the spacecontains strictlyFor instance,the function(see[9],Example 4.5)

    For some preliminary results on almost periodic functions,we refer the reader to(see[8]and[12]).

    2.3The C(1)-Pseudo Almost Periodic Functions

    The concept of pseudo almost periodicity(PAP)was introduced by Zhang(see for example[28])in the early nineties.It is a natural generalization of the classical almost periodicity. Define the class of functionsas follows:

    Definition 2.3(see[2,13]) A functionis called continuously differentiable pseudo almost periodic if it can be expressed as

    Remark 2.4The functions h and φ in above definition are respectively called the almost periodic component and the ergodic perturbation of the continuously differentiable pseudo almost periodic function f.Besides the decomposition given in definition above is unique.

    2.4The Model

    Hence,we will consider the model

    Denote:

    Let us list some assumptions which will be used in this paper.

    (H1)For all,the functionis almost periodic,the functionis continuously differentiable almost periodic and the functionsare continuously differentiable pseudo almost periodic.

    (H2)The functionsare continuously differentiable and satisfy the Lipschitz condition,i.e.,there are constantssuch that for alland forone has

    (H3)For allthe delay kernelsare continuous, integrable and satisfy

    The initial conditions associated with system(1.2),are of the form:

    3 Existence and Uniqueness of Continuously Differentiable Pseudo Almost Periodic Solution

    In order to prove the first main result we shall state the following lemmas.

    Lemma 3.1Suppose that assumption(H3)holds anddu belongs to

    ProofWe see in fact,immediately,that the function φijsatisfies

    which proves that the improper integral)ds is absolutely convergent and the function φijis bounded.Now,we have to prove the continuity of the function φij.Letbe a sequence of real numbers such that The continuity of the function θ implies that for all∈>0,there exists N∈N such that

    Thus,for all n≥N,one has

    Let us end the proof,we show that the function φijbelongs to PAP(1)(R,R).In fact,note that according to the well-known composition theorem of pseudo-almost periodic functions[3]and Lemma 3.1,we obtain immediately the following:for all1≤i,j≤n the functionbelongs toHence,for all 1≤j≤n,one has

    Let us prove the almost periodicity of the functionwe consider,in view of the almost periodicity of uj,a number Lεsuch that in any intervalone finds a number δ,with property that:

    Afterwards,we can write

    On the other hand,by the Fubini’s theorem,one has

    By applying the dominated convergence theorem to the right-hand side of the above inequality,we get immediately

    Similarly,one has

    Lemma 3.2Suppose that assumption(H1)holds andthendu belongs to

    Now,we prove the generalized result for translation invariance of continuously differentiable pseudo almost periodic property.

    ProofFrom the uniform continuity of,one can choose,for any,a constant

    Besides,from the theory of almost periodic functions it follows that for δ>0,it is possible to find a real numberfor any interval with length l,there exists a numberin this interval such that for all

    Combining(3.1)and(3.2),we obtain

    Now,we shall prove that

    By the following change of variablewe can obtain

    Theorem 3.4Assume that assumptions(H1)-(H4)are fulfilled.Then the generalized Hopfield neural network(1.2)has a unique continuously differentiable pseudo almost periodic solution in the convex set

    Therefore the space B defined in Theorem 3.4 is a closed convex subset ofand for any,we can obtain this estimation

    For φ in B,define the nonlinear operator Γ by:for each

    Now,we have proven that this operator(Γφ)belongs precisely to

    Now,let us prove the almost periodicity ofwe consider,in view of the almost periodicity of,a number lεsuch that in any interval)one finds a number δ,with property that

    Afterwards,we can write

    On the other hand

    So we can write

    Consequently,Γφ∈B.At this stage we are nearer to the end of the proof.For φ,ψ∈B,one hasAccording to the well-known contraction principle there exists a unique fixed pointsuch thatis a continuously differentiable pseudo almost periodic solution of model(1.2).This completes the proof.

    4 The Stability of the Continuously Differentiable Pseudo Almost Periodic Solution

    In this section,we establish some results for the stability of the pseudo almost periodic solution of(1.2).In fact,the first result extends a very interesting result of(see[7])concerning the global exponential stability of solutions of(1.2).In the next step we shall explain and prove a result concerning asymptotic behavior of solutions of(1.2).

    Theorem 4.2If conditions(H1)-(H4)hold,then the unique continuously differentiable pseudo almost periodic solution of system(1.2)is globally exponentially stable.

    Remark 4.3The proof is similar to Theorem 3.4 in[7]and Theorem 3 in[4].Notice that the continuously differentiable pseudo almost periodicity is without importance in the proof of the above theorem.

    Theorem 4.4Suppose that assumptions(H1)-(H4)hold.Letbe a continuously differentiable pseudo almost periodic solution of system(1.2).If

    then all solutions φ of(1.2)satisfying

    converge to its unique continuously differentiable pseudo almost periodic solution x?.

    ProofLet x?(·)be a solution of(1.2)and φ be a continuously differentiable pseudo almost periodic solution of(1.2).First,one verifies without difficulty that

    Now,consider the following(ad-hoc)Lyapunov Function

    Let us calculate the upper right Dini derivative D+V(t)of V along the solution of the equation above.Then we get

    Reasoning in a similar way to the above we obtain the following estimate

    By using the inequality

    By integrating the above inequality from t0to t,we get

    Now,we remark that V(t)>0.It follows that

    The proof of this theorem is now completed.

    Remark 4.5If we let aij=0 system(1.2)changes into the model of reference[7]and if cij=0 system(1.2)changes into the model of reference[4].If we let cij=aij=0 system(1.2)changes into the model of reference[17].Besides,our model is a natural continuation of references[4]and[18].Due to the difference in the methods discussed,the results in this paper and those in the above references are different.Therefore,our results are novel and have some significance in theories as well as in applications of almost periodic oscillatory neural networks. On the other hand,these results generalize the theorems in[16]:a different approach is used to obtain several sufficient conditions for the existence and attractively of almost periodic solution for a new class of recurrent neural networks similar to(1.1).

    Remark 4.6One can partially extend this line of reasoning from PAP(1)(R,Rn)toand prove similar results.

    5 Numerical Examples

    In order to illustrate some features of our main results,in this section,we will apply our main results to some special two-dimensional system and three-dimensional system.These examples demonstrate the efficiencies of our criteria.In the numerical simulations,the fourthorder Runge-Kutta numerical scheme is used to solve the systems.

    Example 5.1

    Let us consider the following matrices

    Therefore,all conditions of our results(Theorem 3.4,Theorem 4.2 and Theorem 4.4)are satisfied,then the delayed two-dimensional Hopfield neural network(5.1)has a unique continuously differentiable pseudo almost periodic solution in the region

    Fig.1 Transient response of state variables x1and x2for system(5.1)for t∈[0,50]

    Fig.2 The orbits of x1-x2for system(5.1)for t∈[0,500]

    Fig.3 The phase trajectory of x1-x2according to t for system(5.1)for t∈[0,500]

    For numerical simulation of system(5.1),the initial states are given by the random function. Fig.1 depicts the time responses of state variables of x1(t)and x2(t)with step h=0.02 of system(5.1).Figs.2 and 3 depict the phase responses state variables of x1and x2.It confirms that the proposed conditions in our theoretical results are effective for model(5.1).

    Example 5.2

    Let us consider the following matrices

    Therefore,all conditions of our results(Theorem 3.4,Theorem 4.2 and Theorem 4.4)are satisfied,then the delayed three-dimensional Hopfield neural network(5.2)has a unique continuously differentiable pseudo almost periodic solution in the region

    For numerical simulation of system(5.2),the initial states are given by the random function. Figure 4 depicts the time responses of state variables of x1(t),x2(t)and x3(t)with step h=0.02 of system(5.2).Figs.5 and 6 depict the phase responses state variables of x1-x2,x1-x3,x2-x3and x1-x2-x3,respectively.It confirms that the proposed conditions in our theoretical results are effective for model(5.2).

    Fig.4 Transient response of state variables x1,x2and x3in system(5.2)at the interval[0,20]

    Fig.5 In the left figure,the orbits of x1-x3for system(5.2)for t∈[0,100].In the right figure,the orbits of x1-x2for system(5.2)for t∈[0,100]

    Fig.6 In the left figure,the orbits of x2-x3for system(5.2)for t∈[0,100].In the right figure,the orbits of x1-x2-x3for system(5.2)for t∈[0,100]

    6 Conclusion and Future Works

    The concept of pseudo almost periodicity is very well studied by many physical and natural systems.In recent years,many mathematicians and scientists argued that a more general class of functions is more suitable to explain many complicated processes which show behavior which is”almost”periodic but not purely periodic.In fact,the pseudo almost periodic functions generalize the almost periodic functions and the periodic functions.The main purpose of this paper is to study the existence and the global exponential stability of a continuously differentiable pseudo almost periodic solution of a new class of HNNs.Several novel sufficient conditions are obtained ensuring the existence and uniqueness of the continuously differentiable pseudo almost periodic solution for this model based on a special functional and analysis technique.Further,without resorting to the theory of dichotomy exponential,we will discuss the exponential stability of the continuously differentiable pseudo almost periodic solution by constructing suitable Lyapunov functions.The only restriction for the activation function is the lipschitz property. Finally,two illustrative examples are given to demonstrate the effectiveness of the obtained results.Notice that the method of this paper may be extended to study some other systems[1,16,20,21,27].Besides,this work can be extended for a class of fractional order ordinary and delay differential equations.Also,our approach can be used to study and investigate the PAP(k)(R,Rn)-solutions of(1.2)(for k∈N{0,1}).

    References

    [1]Abbas,S.,Existence and attractivity of k-almost automorphic sequence solution of a model of cellular neural networks with delay.Acta Mathematica Scientia,2013,33B(1):290-302

    [2]Amerio L,Prouse G.Almost-Periodic Functions and Functional Equations.New York:von Nostrand Reinhold Co,1971

    [3]Amir B,Maniar L.Composition of pseudo almost periodic functions and cauchy problems with operators of non dense domain.Ann Math Blaise Pascal,1999,6:1-11

    [4]Ammar B,Ch′erif F,Alimi M A.Existence and uniqueness of pseudo almost-periodic solutions of recurrent neural networks with time-varying coefficients and mixed delays.IEEE Transactions On Neural Networks and Learning Systems,2012,23(1):109-118

    [5]Arbi A,Aouiti C,Ch′erif F,Touati A,Alimi A M.Stability analysis of delayed Hopfield neural networks with impulses via inequality techniques.Neurocomputing,2015,158:281-294

    [6]Arbi A,Aouiti C,Ch′erif F,Touati A,Alimi A M.Stability analysis for delayed high-order type of hopfield neural networks with impulses.Neurocomputing,2015,165:312-329

    [7]Bai C.Existence and stability of almost periodic solutions of Hopfield neural networks with continuously distributed delays.Nonlinear Analysis:Theory,Methods&Applications,2009,71:5850-5859

    [8]Besicovitch A S.Almost Periodic Functions.Cambridge University Press,1932

    [9]Bugajewski D,N’Gu′er′ekata G M.On some classes of almost periodic functions in abstract spaces.Int J Math Math Sci,2004,61:3237-3247

    [10]Cao J.Global exponential stability of Hopfield neural networks.Int J Syst Sci,2010,32:233-236

    [11]Cao J,Chen A,Huang X.Almost periodic attractor of delayed neural networks with variable coefficients. Phys Lett A,2005,340:104-120

    [12]Ch′erif F.A various Types of almost periodic functions on Banach spaces:Part II.Int Math Forum(Journal for Theory and Applications),2011,6(20):953-985

    [13]Diagana T.Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces.Switzerland:Springer International Publishing,2013

    [14]Fa H Li,Li Ji-Y.Composition of pseudo almost-periodic functions and semilinear differential equations.J Math Anal Appl,2001,255:436-446

    [15]Hopfield J.Neurons with graded response have collective computational properties like those of two-state neurons.Proc Nat Acad Sci USA,1984,81(984):3088-3092

    [16]Huang X,Cao J,Ho W C.Existence and attractivity of almost periodic solution for recurrent neural networks with unbounded delays and variable coefficients.Nonlinear Dynamics,2006,45:337-351

    [17]Liu B.Almost periodic solutions for Hopfield neural networks with continuously distributed delays.Math Comput Simul,2007,73:327-335

    [18]Liu Y,Zhisheng Y,Cao L.On the almost periodic solutions of generalised Hopfield neural with time-varying delays.Neurocomputing,2006,69:1760-1767

    [19]Liu Z,Chen A,Cao J,Huang L.Existence and global exponential stability of almost periodic solutions of BAM neural networks with continuously distributed delays.Phys Lett A,2003,319:305-316

    [20]Rakkiyappan R,Chandrasekar A,Lakshmanan S.Park Ju H.Exponential stability of Markovian jumping stochastic Cohen-Grossberg neural networks with mode-dependent probabilistic time-varying delays and impulses.Neurocomputing,2014,131:265-277

    [21]Rakkiyappan R,Zhu Q,Chandrasekar A.Stability of stochastic neural networks of neutral type with Markovian jumping parameters:a delay-fractioning approach.J Franklin Inst,2014,351:1553-1570

    [22]Xia Y,Cao J,Huang Z.Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses.Chaos,Solitons and Fractals,2007,34:1599-1607

    [23]Xia Y,Cao J,Lin M.New results on the existence and uniqueness of almost periodic solution for BAM neural networks with continuously distributed delays.Chaos,Solitons and Fractals,2007,31:928-936

    [24]Xiang H,Cao J.Almost periodic solutions of recurrent neural networks with continuously distributed delays.Nonlinear Analysis,2009,71:6097-6108

    [25]Xiang H,Cao J.Almost periodic solution of Cohen-Grossberg neural networks with bounded and unbounded delays.Nonlinear Analysis:Real World Applications,2009,10:2407-2419

    [26]Xiang H,Wang J,Cao J.Almost periodic solution to Cohen-Grossberg-type BAM networks with distributed delays.Neurocomputing,2009,72:3751-3759

    [27]Yang X,Cao J,Huang C,Long Y.Existence and global exponential stability of almost periodic solutions for SICNNs with nonlinear behaved functions and mixed delays.Abs Appl Anal,2010,Article ID:915451

    [28]Zhang C.Pseudo Almost Periodic Functions and Their Applications[D].University of Western Ontario,1992

    In the past two decades,neural networks considerable attention,and there were extensive research results presented about the stability analysis of neural network and its applications(see,e.g.,[4,7,12,17,19]).In particular,the dynamical behaviors of delayed Hopfield neural networks(HNNs)point is globally asymptotically stable so as to avoid the risk of having spurious equilibria and local minima.In the case of global stability,there is no need to be specific about the initial conditions for the system since all trajectories starting from anywhere settle down at the same unique equilibrium.For these reasons,the stability research related to HNNs was extensively studied and developed in recent years[5,6,10].

    much attention due to their applications in many areas,we refer the reader to[5,15]and the references cited therein.In order to solve problems in the fields of associated memory,parallel computing,signal processing,pattern recognition,static image processing,and especially for solving some difficult optimization problems,neural networks have to be designed such that there is only one equilibrium point and this equilibrium

    ?January 25,2015;revised July 17,2015.

    ?Adn`ene ARBI.

    √禁漫天堂资源中文www| 久久热在线av| 五月天丁香电影| 中文字幕制服av| 黄片小视频在线播放| 国产精品一区二区在线观看99| 免费高清在线观看视频在线观看| 国产亚洲午夜精品一区二区久久| 国产黄色视频一区二区在线观看| 欧美变态另类bdsm刘玥| 亚洲av国产av综合av卡| 久久影院123| 女性被躁到高潮视频| 十八禁高潮呻吟视频| 在线天堂中文资源库| 国产精品国产三级专区第一集| 大片电影免费在线观看免费| 国产精品久久久久成人av| 久久精品国产a三级三级三级| 十八禁网站网址无遮挡| 观看av在线不卡| 欧美久久黑人一区二区| 美女国产高潮福利片在线看| 欧美人与善性xxx| 电影成人av| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美精品济南到| 亚洲图色成人| 欧美变态另类bdsm刘玥| 人体艺术视频欧美日本| 69精品国产乱码久久久| 一区二区av电影网| xxx大片免费视频| 可以免费在线观看a视频的电影网站 | 午夜影院在线不卡| 亚洲第一青青草原| 欧美xxⅹ黑人| 免费在线观看黄色视频的| 国产国语露脸激情在线看| 婷婷色综合大香蕉| 国产精品三级大全| 黄片播放在线免费| 丝袜美足系列| 丁香六月欧美| 狂野欧美激情性bbbbbb| 天堂俺去俺来也www色官网| 一二三四中文在线观看免费高清| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠躁躁| 无遮挡黄片免费观看| 1024香蕉在线观看| 精品酒店卫生间| 国产精品 国内视频| 国产精品一国产av| 国产成人欧美在线观看 | 久久99一区二区三区| 欧美日韩成人在线一区二区| 最黄视频免费看| 亚洲成国产人片在线观看| 激情五月婷婷亚洲| 日日摸夜夜添夜夜爱| 日韩免费高清中文字幕av| 秋霞在线观看毛片| 熟妇人妻不卡中文字幕| 国产色婷婷99| 国产精品二区激情视频| 国产男女超爽视频在线观看| 亚洲欧美一区二区三区黑人| 69精品国产乱码久久久| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| 高清在线视频一区二区三区| 日韩电影二区| 成年人免费黄色播放视频| 国产高清不卡午夜福利| 丝袜人妻中文字幕| 成人国语在线视频| 91老司机精品| 老司机影院成人| 人人妻,人人澡人人爽秒播 | 秋霞在线观看毛片| 久久久久久人妻| 美女午夜性视频免费| 亚洲第一青青草原| videosex国产| 亚洲av中文av极速乱| bbb黄色大片| 日本猛色少妇xxxxx猛交久久| 国产成人a∨麻豆精品| 国产精品久久久久久精品电影小说| 女人被躁到高潮嗷嗷叫费观| 在线观看一区二区三区激情| 人人妻人人爽人人添夜夜欢视频| 99国产综合亚洲精品| 免费高清在线观看视频在线观看| 成人国语在线视频| 啦啦啦在线免费观看视频4| a 毛片基地| 国产精品99久久99久久久不卡 | 中文乱码字字幕精品一区二区三区| 亚洲一区中文字幕在线| 日韩中文字幕欧美一区二区 | 亚洲美女搞黄在线观看| 免费少妇av软件| 国产一卡二卡三卡精品 | 一边亲一边摸免费视频| 青青草视频在线视频观看| a级毛片黄视频| 亚洲国产精品国产精品| 亚洲国产日韩一区二区| 1024视频免费在线观看| 亚洲一级一片aⅴ在线观看| 热99国产精品久久久久久7| 日韩视频在线欧美| 青草久久国产| 日韩欧美精品免费久久| 宅男免费午夜| 国产极品粉嫩免费观看在线| 一本久久精品| 亚洲精品久久成人aⅴ小说| 久久天躁狠狠躁夜夜2o2o | 另类精品久久| 成人亚洲欧美一区二区av| 亚洲精品乱久久久久久| 婷婷色av中文字幕| 亚洲第一区二区三区不卡| 欧美国产精品一级二级三级| 久久人人97超碰香蕉20202| 精品国产一区二区三区久久久樱花| 国产成人欧美在线观看 | 亚洲成人手机| 在线观看人妻少妇| 亚洲精品久久久久久婷婷小说| 最近中文字幕高清免费大全6| www.自偷自拍.com| 男女边摸边吃奶| 久久久久久久久免费视频了| 涩涩av久久男人的天堂| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 国产淫语在线视频| 日本av免费视频播放| 王馨瑶露胸无遮挡在线观看| 考比视频在线观看| 亚洲av成人精品一二三区| 久久韩国三级中文字幕| 亚洲第一av免费看| 制服诱惑二区| 国产免费视频播放在线视频| 日韩视频在线欧美| 在线观看免费日韩欧美大片| 久久精品国产综合久久久| 乱人伦中国视频| 国产精品av久久久久免费| 中国三级夫妇交换| 亚洲一区中文字幕在线| 熟女av电影| 少妇被粗大猛烈的视频| 国产精品久久久久成人av| 精品人妻在线不人妻| 男女下面插进去视频免费观看| 亚洲精品视频女| 亚洲国产看品久久| 亚洲精华国产精华液的使用体验| 精品酒店卫生间| 麻豆av在线久日| 中文字幕色久视频| 久久国产亚洲av麻豆专区| 9热在线视频观看99| 免费黄网站久久成人精品| 另类亚洲欧美激情| 成人亚洲欧美一区二区av| 在线观看免费日韩欧美大片| 熟女少妇亚洲综合色aaa.| 日日摸夜夜添夜夜爱| 国产乱来视频区| 亚洲精品一二三| 国产精品 国内视频| 9色porny在线观看| 97在线人人人人妻| 青草久久国产| 9191精品国产免费久久| 人妻 亚洲 视频| 只有这里有精品99| 亚洲欧美清纯卡通| 亚洲在久久综合| 久久这里只有精品19| 久久久久网色| 午夜福利免费观看在线| 亚洲国产中文字幕在线视频| 男女午夜视频在线观看| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 男女无遮挡免费网站观看| 国产伦人伦偷精品视频| 99香蕉大伊视频| 国产精品一区二区在线观看99| 国产毛片在线视频| 午夜福利在线免费观看网站| 欧美日韩视频精品一区| 亚洲av电影在线观看一区二区三区| 99久国产av精品国产电影| 亚洲精品中文字幕在线视频| 亚洲精品一二三| 在线观看免费日韩欧美大片| 制服人妻中文乱码| 免费观看性生交大片5| 午夜日韩欧美国产| 91精品伊人久久大香线蕉| 国语对白做爰xxxⅹ性视频网站| 国产乱人偷精品视频| 国产一区二区激情短视频 | 亚洲精品中文字幕在线视频| 宅男免费午夜| 国产精品无大码| av卡一久久| 极品少妇高潮喷水抽搐| 老汉色av国产亚洲站长工具| 美女午夜性视频免费| 日本黄色日本黄色录像| 国产精品一国产av| 毛片一级片免费看久久久久| 天天躁夜夜躁狠狠躁躁| 制服丝袜香蕉在线| 2018国产大陆天天弄谢| 99热全是精品| www.av在线官网国产| 亚洲国产av新网站| 一级毛片我不卡| 国产精品久久久av美女十八| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 777久久人妻少妇嫩草av网站| 国产日韩欧美在线精品| 99精国产麻豆久久婷婷| 极品人妻少妇av视频| 日本爱情动作片www.在线观看| 久久久久久免费高清国产稀缺| 国产毛片在线视频| 街头女战士在线观看网站| 亚洲色图综合在线观看| 婷婷成人精品国产| 国产精品二区激情视频| 69精品国产乱码久久久| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| 夫妻性生交免费视频一级片| 亚洲国产av影院在线观看| 国产精品久久久久成人av| 美女中出高潮动态图| 久久精品久久久久久噜噜老黄| 少妇 在线观看| 免费高清在线观看日韩| 日韩成人av中文字幕在线观看| 精品一区二区三卡| 亚洲国产av影院在线观看| 久久久精品区二区三区| 国产精品 国内视频| 精品久久久精品久久久| 90打野战视频偷拍视频| 久久久久人妻精品一区果冻| 国产淫语在线视频| av又黄又爽大尺度在线免费看| 国产淫语在线视频| 国产免费一区二区三区四区乱码| 女人高潮潮喷娇喘18禁视频| 免费女性裸体啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩另类电影网站| 考比视频在线观看| 91国产中文字幕| 我的亚洲天堂| 老司机靠b影院| 波野结衣二区三区在线| 精品午夜福利在线看| 久久久久网色| 欧美黑人精品巨大| 午夜av观看不卡| 多毛熟女@视频| 97精品久久久久久久久久精品| 久热这里只有精品99| 亚洲国产欧美一区二区综合| 免费av中文字幕在线| av不卡在线播放| 精品一区二区三卡| 亚洲精品,欧美精品| 色视频在线一区二区三区| 老汉色∧v一级毛片| 日本黄色日本黄色录像| 国产一区二区在线观看av| 老司机亚洲免费影院| 精品人妻一区二区三区麻豆| 男女免费视频国产| 亚洲欧洲精品一区二区精品久久久 | 国精品久久久久久国模美| 老熟女久久久| 狠狠婷婷综合久久久久久88av| 国产精品三级大全| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 一边亲一边摸免费视频| 麻豆乱淫一区二区| av有码第一页| 久久人人爽av亚洲精品天堂| 熟女av电影| 国产精品欧美亚洲77777| 国产一区有黄有色的免费视频| 99热国产这里只有精品6| 热re99久久精品国产66热6| 色精品久久人妻99蜜桃| 狂野欧美激情性bbbbbb| 男女边摸边吃奶| 在线 av 中文字幕| 男女之事视频高清在线观看 | 亚洲欧美中文字幕日韩二区| 天天操日日干夜夜撸| 天天躁日日躁夜夜躁夜夜| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 亚洲久久久国产精品| www.熟女人妻精品国产| 精品人妻在线不人妻| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成a人片在线观看| 操出白浆在线播放| 久久人人97超碰香蕉20202| 日本午夜av视频| 婷婷色综合www| 精品亚洲成a人片在线观看| 亚洲av成人不卡在线观看播放网 | 国产99久久九九免费精品| 高清在线视频一区二区三区| 亚洲av欧美aⅴ国产| 黄片播放在线免费| videos熟女内射| 男女边摸边吃奶| av卡一久久| 在线观看免费视频网站a站| 最黄视频免费看| 下体分泌物呈黄色| 国产毛片在线视频| 亚洲成国产人片在线观看| 黄网站色视频无遮挡免费观看| 天天添夜夜摸| 久久热在线av| 少妇精品久久久久久久| 91国产中文字幕| 我要看黄色一级片免费的| 亚洲,欧美精品.| 日韩制服骚丝袜av| 嫩草影院入口| 大片免费播放器 马上看| 日日啪夜夜爽| 中文天堂在线官网| 久久午夜综合久久蜜桃| 97在线人人人人妻| 免费人妻精品一区二区三区视频| 咕卡用的链子| 亚洲欧美成人精品一区二区| 日韩制服骚丝袜av| 婷婷色av中文字幕| 精品福利永久在线观看| 欧美日韩国产mv在线观看视频| 国产成人精品在线电影| 精品国产国语对白av| 欧美日本中文国产一区发布| 久久久精品94久久精品| 久久久国产欧美日韩av| av网站免费在线观看视频| 国产精品熟女久久久久浪| 精品国产乱码久久久久久男人| netflix在线观看网站| 国产男女超爽视频在线观看| 欧美人与性动交α欧美软件| 亚洲av欧美aⅴ国产| 丝袜脚勾引网站| 国产精品 国内视频| 日韩 亚洲 欧美在线| 亚洲精品视频女| 一级黄片播放器| 亚洲精品视频女| 国产日韩欧美视频二区| 日本色播在线视频| 亚洲五月色婷婷综合| 欧美日韩一区二区视频在线观看视频在线| 美女主播在线视频| 免费av中文字幕在线| 无遮挡黄片免费观看| 亚洲熟女精品中文字幕| 五月天丁香电影| 深夜精品福利| 性少妇av在线| 欧美成人午夜精品| 国产精品av久久久久免费| 青青草视频在线视频观看| 国产色婷婷99| 亚洲欧洲国产日韩| 国产无遮挡羞羞视频在线观看| 伊人亚洲综合成人网| 夜夜骑夜夜射夜夜干| 精品国产乱码久久久久久男人| 2021少妇久久久久久久久久久| 国产成人精品无人区| 日韩 亚洲 欧美在线| 国产精品国产三级专区第一集| 妹子高潮喷水视频| 精品国产一区二区久久| 午夜福利视频在线观看免费| www.精华液| 赤兔流量卡办理| 中文字幕最新亚洲高清| 久久鲁丝午夜福利片| 亚洲成人手机| 亚洲国产精品一区二区三区在线| 亚洲综合精品二区| 亚洲中文av在线| 久久久久精品国产欧美久久久 | 天堂中文最新版在线下载| 观看美女的网站| 两个人免费观看高清视频| 99久久精品国产亚洲精品| 超碰97精品在线观看| 亚洲一码二码三码区别大吗| 中文字幕高清在线视频| 国产成人一区二区在线| 国产精品免费大片| 新久久久久国产一级毛片| 亚洲色图 男人天堂 中文字幕| 曰老女人黄片| 亚洲精品自拍成人| 蜜桃国产av成人99| 国产国语露脸激情在线看| 91成人精品电影| 大片电影免费在线观看免费| 亚洲第一青青草原| 中文字幕高清在线视频| 男女免费视频国产| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 极品少妇高潮喷水抽搐| 亚洲欧洲日产国产| 不卡视频在线观看欧美| av电影中文网址| 国产精品久久久久久人妻精品电影 | 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 国产av精品麻豆| 日本欧美国产在线视频| 国产精品国产三级专区第一集| 飞空精品影院首页| 日韩大片免费观看网站| 国产午夜精品一二区理论片| 国产av国产精品国产| 波野结衣二区三区在线| 美女国产高潮福利片在线看| 青草久久国产| av在线app专区| 自拍欧美九色日韩亚洲蝌蚪91| 国产午夜精品一二区理论片| 中文字幕av电影在线播放| 国产av码专区亚洲av| www日本在线高清视频| 色精品久久人妻99蜜桃| 久久久久久人人人人人| 国产精品人妻久久久影院| 久久精品aⅴ一区二区三区四区| 国产精品一区二区在线不卡| 久久精品人人爽人人爽视色| av女优亚洲男人天堂| 久久精品亚洲av国产电影网| 亚洲精品一区蜜桃| 亚洲欧洲日产国产| 在线天堂中文资源库| 中文字幕av电影在线播放| 亚洲av日韩精品久久久久久密 | 麻豆精品久久久久久蜜桃| 久久精品久久久久久噜噜老黄| 少妇精品久久久久久久| 亚洲av电影在线观看一区二区三区| 美女高潮到喷水免费观看| 我要看黄色一级片免费的| 亚洲av中文av极速乱| 纯流量卡能插随身wifi吗| 亚洲成国产人片在线观看| 久久久欧美国产精品| 精品少妇久久久久久888优播| 欧美日韩综合久久久久久| 老司机在亚洲福利影院| 最黄视频免费看| 亚洲欧美色中文字幕在线| 中国国产av一级| 波野结衣二区三区在线| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩一区二区视频在线观看视频在线| 两个人看的免费小视频| 热re99久久国产66热| 十八禁网站网址无遮挡| 日本av手机在线免费观看| 精品酒店卫生间| 日本爱情动作片www.在线观看| 中文字幕人妻熟女乱码| av在线播放精品| 日韩欧美一区视频在线观看| 久久久国产一区二区| 在线观看一区二区三区激情| 一级毛片 在线播放| 国产日韩欧美亚洲二区| 极品人妻少妇av视频| 日日啪夜夜爽| 国产97色在线日韩免费| 少妇精品久久久久久久| 国产精品人妻久久久影院| 亚洲第一av免费看| 爱豆传媒免费全集在线观看| 欧美精品高潮呻吟av久久| 亚洲综合色网址| 亚洲精品美女久久久久99蜜臀 | 天堂俺去俺来也www色官网| 日本wwww免费看| 国产av一区二区精品久久| 日韩成人av中文字幕在线观看| 黄频高清免费视频| 久久久精品区二区三区| 视频区图区小说| 人妻 亚洲 视频| 91精品国产国语对白视频| 美女大奶头黄色视频| 黄色 视频免费看| 爱豆传媒免费全集在线观看| 亚洲久久久国产精品| 亚洲四区av| 亚洲天堂av无毛| 精品一区二区三卡| 高清不卡的av网站| 欧美在线一区亚洲| 久久人人97超碰香蕉20202| 男女边吃奶边做爰视频| 90打野战视频偷拍视频| 一级黄片播放器| 日日撸夜夜添| 欧美黑人欧美精品刺激| 亚洲精品国产av成人精品| 青草久久国产| 国产色婷婷99| 啦啦啦在线免费观看视频4| 中文天堂在线官网| 丝瓜视频免费看黄片| 男女边吃奶边做爰视频| 十八禁网站网址无遮挡| 亚洲国产精品成人久久小说| 亚洲欧美成人综合另类久久久| 赤兔流量卡办理| 久久精品国产综合久久久| av在线观看视频网站免费| tube8黄色片| 最近中文字幕高清免费大全6| 永久免费av网站大全| 男人舔女人的私密视频| 多毛熟女@视频| 国产男女超爽视频在线观看| 建设人人有责人人尽责人人享有的| 日韩大片免费观看网站| 老汉色av国产亚洲站长工具| 下体分泌物呈黄色| 亚洲国产av影院在线观看| 欧美激情 高清一区二区三区| 欧美人与性动交α欧美软件| 美女主播在线视频| 考比视频在线观看| 美国免费a级毛片| 波多野结衣一区麻豆| 一区福利在线观看| 国产免费一区二区三区四区乱码| 久久99精品国语久久久| 午夜影院在线不卡| 国产成人免费无遮挡视频| 午夜日本视频在线| av在线老鸭窝| xxxhd国产人妻xxx| 国产女主播在线喷水免费视频网站| 中文字幕亚洲精品专区| 国产成人啪精品午夜网站| 成人亚洲欧美一区二区av| 另类精品久久| 亚洲国产中文字幕在线视频| 天天添夜夜摸| 婷婷成人精品国产| √禁漫天堂资源中文www| 国产av精品麻豆| 国产成人欧美| 男女高潮啪啪啪动态图| 免费观看人在逋| 悠悠久久av| 精品一区在线观看国产| 欧美日韩亚洲综合一区二区三区_| 亚洲精品在线美女| 日本猛色少妇xxxxx猛交久久| 色网站视频免费| 国产一级毛片在线| 欧美另类一区| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产av蜜桃| 久久午夜综合久久蜜桃| 在线看a的网站| 久久人人97超碰香蕉20202| 丰满迷人的少妇在线观看| 永久免费av网站大全| 亚洲少妇的诱惑av| 最近中文字幕高清免费大全6| 麻豆av在线久日| 天天影视国产精品| 99久久综合免费| 亚洲熟女精品中文字幕| 久久毛片免费看一区二区三区| 国产精品熟女久久久久浪|