• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time dynamics in strongly correlated quantum-dot systems

    2023-12-15 11:48:14YongXiCheng程永喜ZhenHuaLi李振華JianHuaWei魏建華andHongGangLuo羅洪剛
    Chinese Physics B 2023年12期
    關(guān)鍵詞:振華建華

    Yong-Xi Cheng(程永喜), Zhen-Hua Li(李振華), Jian-Hua Wei(魏建華), and Hong-Gang Luo(羅洪剛)

    1Department of Science,Taiyuan Institute of Technology,Taiyuan 030008,China

    2Lanzhou Center for Theoretical Physics,Key Laboratory of Theoretical Physics of Gansu Province,and Key Laboratory of Quantum Theory and Applications of the Ministry of Education,Lanzhou University,Lanzhou 730000,China

    3Beijing Computational Science Research Center,Beijing 100193,China 4Department of Physics,Renmin University of China,Beijing 100872,China

    Keywords: quantum dots,mesoscopic transport,decoherence

    1.Introduction

    Quantum dots are small regions defined in a semiconductor material with a size of order 100 nm.[1]The wide range of novel physical phenomena of quantum dots lead to a very active and fruitful research topic, such as artificial atoms,coherent time-dependent effect of single-molecule magnets,[2,3]Kondo effect and non-Fermi-liquid behavior,[4]and bulk Kondo insulators.[5]Strongly correlated quantumdot systems are of great interests because of their fundamental physics as well as potential applications.[6]And strongly correlated electron materials exhibit fascinating collective behavior which has long challenged our understanding.[7]The notable phenomena of the strongly correlated quantum-dot systems are helpful,such as quantum criticality in heavy fermion systems,[8]Mott metal-insulator transition in transition metal oxides,[9]and high-temperature superconductivity in copper oxides.[10]While the prominent one is the dynamical properties of the strongly correlated quantum-dot systems, both of excited states near the Fermi energy and at highly excited energies.[7]

    The practical importance of real-time dynamics in quantum-dot systems for quantum computing was emphasized by Elzermanet al.,[11]the temporal response to gate-voltage pulses for a single-shot is used to detect the spin configuration of a quantum dot in an external magnetic field.[11,12]Quantum dynamics is discussed in terms of quantum information theory, which indeed facilitates discussions between physicists, chemists, mathematicians, and quantum engineers.[13]The real-time dynamical property in quantum-dot systems is primely important for understanding the quantum transport through the nanodevices and successfully be used to track individual glycine receptors in the neuronal membrane of living cells in biology.[14]

    Recent theoretical and experimental efforts aimed at observing and modeling nonequilibrium dynamical physics.The Keldysh technique[15]is succeeding in nonequilibrium dynamics.This approach to calculate the current bowing into and out of the interacting region treats the contacts as the systems separately in equilibrium in the distant past, possibly with different chemical potentials.[15-17]Jeremy Tayloret al.provided the first principle density functional theory for modeling quantum-dot dynamical properties.[18]Ping Zhang studied the dynamics of double quantum dots with the help of the Floquet formalism.The dynamical localization can be built up near the multi-photon resonances due to the structure exchange of the Floquet states at the avoided crossing.[19]However, the above mentioned methods are not capable enough to treat the strongly correlated effect accurately.The time-dependent density-matrix renormalizationgroup method (TD-DMRG) works well for one-dimensional quantum systems in finite size and short time, but is unsuitable for tackling long time scales own to the accumulated error proportional to the time elapsed.[20-23]Wilson’s numerical renormalization-group method is a prominent numerical tool for describing the equilibrium Kondo regime.[24,25]Furthermore,Anders and Schiller developed a time-dependent numerical renormalization-group approach(TD-NRG)to investigate the nonequilibrium dynamics of quantum-dot systems.[12]But there is also a deviation in occupancy from the new equilibrium state at the large time due to the difference between the time-evolved density matrix in a finite-size system and the equilibrium density matrix.[12]Overall,when considering both the electron-electron interaction of quantum-dot and the finite bandwidth of leads for practical cases, the accurate description of the long-time dynamical behaviors of quantum-dot systems is still an open question.

    In this work, we study the real-time dynamics of quantum-dot systems by means of the hierarchical equations of motion approach(HEOM).[26-30]We consider respectively single quantum-dot system and serial coupling double quantum-dot system.The transient behavior of real-time dynamics and time-dependent occupancy response of a sudden change of gate voltage are presented.These results are closely relevant for experiments involving potentially important technological applications of quantum dots and quantum wires.[20]

    The paper is organized as follows.In Section 2 we briefly review the HEOM approach, give the common formalism for real-time dynamics in quantum-dot systems, and present the relevant results for electron occupancy.Then we exhibit the time-dependent occupancy for the resonant-level model driven by a gate voltage,the results are consistent with by the exact analytical solution (EAS) of Keldysh formalism in Ref.[12].In Section 3 with taking into account the strongly correlated electron-electron interaction(U),firstly, we investigate the time-dependent occupancy in single quantum-dot systems with different factors, then the time-dependent occupancy in serial coupling double quantum-dot system.Distinct time evolution phenomena which can be realized experimentally are presented.In Section 4 we will give a summary of our work.

    2.General formalism of HEOM in quantum-dot system

    The hierarchical equations of motion approach (HEOM)is potentially useful for addressing quantum-dot systems especially for the interacting strong correlation systems.The outstanding characterizing both equilibrium and nonequilibrium properties achieved in our previous work are referred to Refs.[26,31-33].The HEOM approach has been employed to study dynamical properties, for instance, the dynamical Coulomb blockade and dynamical Kondo memory phenomena in quantum dots.[29,30]It is essential to adopt an appropriate truncated level to close the coupled equations.The numerical results are considered to be quantitatively accurate with increasing the truncated level and converge.In Ref.[31], it has been demonstrated that the HEOM approach achieves the same level of accuracy as the latest NRG method for the prediction of various dynamical properties at equilibrium and nonequilibrium.[34]Here,we solve the real-time dynamics problem and focus on the nonequilibrium dynamics of quantum-dot systems based on the HEOM.The local quantum dot constitutes the open system of primary interest, and the surrounding reservoirs of itinerant electrons are treated as environment.The total Hamiltonian for the quantum-dot systems

    Now, to test our method, we consider a resonant-level model(RLM),describing the hybridization of a localized level with a band of spinless conduction electrons calculated in Ref.[12] by TD-NRG approach and EAS in the wide band limit.The total Hamiltonian of the system

    We calculate the occupancynμ(t) =〈 ?d??d〉(t) of the RLM.It can be solved exactly in closed analytical form using the Keldysh formalism in the wide band limit.[12]

    Figure 1 depicts the calculated time-dependent occupancynμ(t)at different temperatures by the HEOM approach in response to a sudden change in the energy of the level fromE0μ=0 toE1μ=-?, and the converged tier level (L=4) is adopted.To compare the results of the EAS and TD-NRG approach described in Fig.2(b)in Ref.[12],we adopt the same parameters.Furthermore,we calculate the time-dependent occupancynμ(t) at seven different temperaturesT/?=0.015,T/?= 0.03,T/?= 0.1,T/?= 0.5,T/?= 1,T/?= 2,andT/?=5.In comparison with the results in Ref.[12],we find that at short-time scale,all three methods(HEOM,EAS,and TD-NRG)give the perfect solution of the time-dependent occupancy.In particular,nμ(t →0+) coincides with the initial equilibrium state occupancy of RLM.The value of occupancy isnμ(0)=0.5 for all the temperatures at the time oft=0.While,at the large-time scale,there is a deviation from the new equilibrium occupancy between the EAS and the TDNRG approach.Anderset al.presented an explanation for the occupancy deviation.The long-time deviations innμ(t)using TD-NRG approach stem from a difference between the time-evolved density matrix in the finite logarithmic discrete state and the equilibrium density matrix ?ρwhen approachedΛ →1+.[12]

    Fig.1.Time-dependent occupancy nμ(t) of the RLM versus time t calculated by the HEOM approach at different temperatures T/?=0.015,0.03,0.1,0.5,1,2,5 for the log10 abscissas.The inset is the timedependent occupancy nμ(t) for the linear abscissas.The parameters adopted are E0μ =0,E1μ =-?,and W =20?.

    Not only the short-time dynamics but also the long-time behavior is well described by our HEOM approach.The occupancynμ(t) of the new equilibrium state at the temperatureT/?= 0.1,T/?= 0.5,T/?= 1, andT/?= 5 are 0.75, 0.71, 0.65, and 0.55, those are the same values calculated by EAS.But the TD-NRG approach cannot get the same results.The occupancy deviation is developed at large-time scale.Those are greatly reduced by averaging over the differentz’s in TD-NRG approach.[12]Obviously,part of our calculations also cover the same parameters of Fig.2(b)in Ref.[12].The HEOM accurately reproduces the exact results by EAS at all the time scales at different temperatures.Our result exhibits the same dynamical behavior in short-time scale with EAS, and avoids the deviation in long-time scale appearing in TD-NRG.For more comparisons between those methods,please see our previous work in Ref.[35].Moreover,HEOM is an accurate and universal approach and is capable of addressing a variety of equilibrium and nonequilibrium, static and dynamical properties of strongly correlated quantum-dot systems.The method is essentially nonperturbative.In practical implements,an appropriate truncated level is taken to meet the limited computation resource.However, the high precision can be achieved by the convergence with increasing the truncation level.[35-37]

    3.Occupancy of strongly correlated quantumdot systems

    In this section we present two applications of the formalism developed above.Firstly, we investigate the timedependent occupancy with several factors in the strongly correlated single quantum-dot system by using HEOM approach,such as temperature and bandwidth of the leads.As the electron-electron interaction (U) is taken into account in the Hamiltonian of the device, the physical properties of realtime dynamics approach to the actual case.It is helpful to understand the Kondo effect, Mott metal-insulator, hightemperature superconductivity, and so on.To better understand and explore the real-time dynamical properties of the many-body systems,we also focus on the serial coupling double quantum-dot system case.The physical properties of dynamics under different temperatures and tunneling couplings between the two dots are presented.

    3.1.Single quantum-dot system

    We first consider the single quantum-dot systems modeled by the Hamiltonian

    Here, ?d?σand ?dσdenote the creation and annihilation operators for spin-up and spin-down electrons on the dot,Uis the electron-electron interaction, and ?nσ=↑,↓= ?d?σ?dσis the number operator.To investigate the relaxation in the spin,we consider the following stepwise change in the energy of the levelEμ(t)=θ(-t)E0μ+θ(t)E1μ.We begin with a degenerate spin stateE0μ=?/2.At the timet=0, the energy of the level is shifted toE1μ=-U/2-?/2.The resulting time evolution of the quantum-dot occupancy isnμ(t)=〈?n↑+?n↓〉(t).[12]

    Figure 2 depicts the occupancynμ(t) of the single quantum-dot system for the different values of electronelectron interactionU.With the electron-electron interactionUincreases, the quantum-dot system changes into a strongly correlated regime.The initial occupancy of the system at the timet=0 decreases with the electron-electron interactionU.The time scales for the relaxation of system are clearly visible.Thenμ(t) equilibrates on a time scaletch∝1/?, and the Rabi-type oscillations are developed for|E1μ|>?.The Rabi-type oscillations are enhanced by the electron-electron interactionU,and the time when the occupancy oscillates becomes earlier with the system correlating strongly.Fort ?tch,the quantum-dot system will get a new steady state,and the occupancy must saturate at its new equilibrium valuenμ(t)=1(Fig.2(a)).[12]To emphasize the real-time dynamical behavior of the quantum-dot system, we slice thenμ(t) curve forU=18?in Fig.2(b).We find that the occupancynμ(t) of the quantum-dot system firstly shows a distinct oscillating behavior and finally reaches a new equilibrium steady state value scaling with the time.

    Fig.2.Time-dependent occupancy of the single quantum-dot system versus time t at different values of U/?= 2, 4, 6, 8, 10, 12, 18.The parameters adopted are T =0.015?, W =20?, E0μ =?/2, and E1μ =-U/2-?/2.

    To compare with the RLM, we calculate the timedependent occupancynμ(t)of the single quantum-dot system for different temperatures.Figure 3 plots the dynamical behavior of the occupancy under the same electron-electron interactionU=18?and bandwidthW=20?.Unlike the RLM,the occupancy of the strongly correlated single quantum-dot system oscillates at the low temperature(see the lines ofT=0.015?,T=0.03?,T=0.1?,T=0.5?in Fig.3).Because the strongly correlated system changes into the Kondo regime at low temperatures, the Kondo memory effects are expected to be more prominent.So the occupancynμ(t) at the initial equilibrium state shows a nonmonotonic transition behavior.The occupancynμ(t)firstly decreases and then increases with increasing temperature.At high temperaturesT= 1?andT=2?,the oscillation vanishes and the occupancy increases linearly with the timetbefore the system gets the new equilibrium state.In RLM,the oscillation behavior is absent and the occupancy increases linearly with the timetfor all the temperatures.The values of the occupancy in new equilibrium state decrease monotonously with the temperature increasing(Fig.1).While in the strongly correlated single quantum-dot system, the values of the occupancy in new equilibrium state saturate almost atnμ=1.

    Fig.3.Time-dependent occupancy of the single quantum-dot system versus time t at different values of T/?=0.015, 0.03, 0.1, 0.5, 1,2.The parameters adopted are W =20?,E0μ =?/2,E1μ =-U/2-?/2,and U =18?.

    The real-time dynamical properties of the quantum-dot system are presented by EAS approach,only applicable in the case ofU=0, with the calculation of the wideband limit approximation.Here we can study the dynamical properties of the quantum-dot system in a finite bandwidth.In Fig.4, we show the evolution of the time-dependent occupancynμ(t)-tcurves at several bandwidthsWin Kondo regime.We find that the narrow bandwidth enhances the Rabi-type oscillation of the occupancy.At large bandwidth, the occupancynμ(t) oscillates several times and gets a new equilibrium state quickly after the time scales for the relaxationtch∝1/?.At the narrower bandwidth,the occupancynμ(t)displays very sharp oscillations and owns a larger oscillation frequency.This behavior mainly results from the bandwidth enhancement of the capacitive contributions from the accumulation and depletion of electrons layering on either side of the quantum-dot system leads.[35]The narrow bandwidth does not have sufficient time to follow the stepwise change in the energy of the level.The temporal coherence of electrons tunneling through the quantum-dot system leads to the oscillations more obviously with decreasing the bandwidth.Moreover, the initial equilibrium state occupancy of the single quantum-dot system also increases with the bandwidth.Those outstanding behaviors of real-time dynamics in narrow bandwidth cannot be acquired by TD-NRG with wideband limit approximation.

    Summarizing Figs.2-4, one can conclude that the Rabitype oscillation of the occupancy is strongly dependent on the electron-electron interactionU,temperatureT,and bandwidthW.The Rabi-type oscillation can be enhanced by strong electron-electron interactionU, low temperatureT, and narrow bandwidthW.

    Fig.4.Time-dependent occupancy of the single quantum-dot system versus time t at different bandwidths W/?=20, 12, 4, 2.The parameters adopted are T =0.015?,E0μ =?/2,E1μ =-U/2-?/2,and U =18?.

    3.2.Double quantum-dot system

    Double quantum-dot systems can be considered to some extent as artificial molecules,it is useful for the study of many novel phenomena involving the strong Coulomb interaction,antiferromagnetic spin coupling, and time-dependent coherence for realizing solid state quantum bits.[19,38-40]The coherent dynamics of a single charge qubit in a double quantumdot system is discussed with full one-qubit manipulation.[13]Several experiments on photon-assisted tunneling through the double quantum-dot system have been carried out.[19]Here,we focus on the real-time dynamical properties through the serial coupling double quantum-dot system.The Hamiltonian for the system

    Here,we firstly focus on the different temperaturesTfor non-interaction and then finite interactions between the two dots, respectively.Figure 5 depicts the time-dependent occupancy of the serial coupling double quantum-dot system versus timetat different values ofT/?=0.015,0.1,0.5,1 for the electron-electron interaction between the two dotsU12=0(a) andU12=4?(b).We find that the Rabi-type oscillation of the occupancy is distinct forU12=0 at low temperatures.This oscillating behavior is suppressed by increasing temperatures.This Rabi-type oscillation vanishes and the occupancy grows monotonically and linearly with time at high temperatures.The above transition behaviors are equal to the single quantum-dot system case.Moreover,the occupancy of the serial coupling double quantum-dot system in new equilibrium state reachesnμ=2 as the double value of the single quantumdot system(Fig.5(a)).However,the oscillating behavior of the occupancy vanishes atU12=4?.The occupancy increases monotonically with time for all the temperatures (Fig.5(b)).Here, the coherence bonding state forming between the two quantum dots dominates the dynamical transport behavior of the serial coupling double quantum-dot system.It causes the oscillation of the occupancy disappearing atU12=4?.

    Fig.5.Time-dependent occupancy of the serial coupling double quantum-dot system versus time t at different values of T/?=0.015,0.1,0.5,1 for the electron-electron interaction between the two dots U12 = 0 (a) and U12 = 4?(b).The parameters adopted are W =18?,E0μ =?/2,E1μ =-U/2-?/2,and U1=U2=-2Eμ.

    To further understand how the electron-electron interaction between the two dotsU12affects the real-time dynamical properties of the serial coupling double quantum-dot system, we then calculate the time-dependent occupancynμ(t)of the serial coupling double quantum-dot system with differentU12.Figure 6 presents the numerical result of occupancynμ(t) for the serial coupling double quantum-dot system.We find that the Rabi-type oscillations of the occupancynμ(t)are strongly dependent on the electron-electron interaction between the two dotsU12.The oscillating behavior of the serial coupling double quantum-dot system is suppressed by the electron-electron interaction between the two dotsU12.AtU12=0, the occupancy owns a distinct oscillating behavior associated with a larger amplitude.This behavior becomes faintish with increasing the electron-electron interaction between the two dotsU12.TheU12-dependent oscillating behavior of the serial coupling double quantum-dot system can be understood as follows.When a stepwise changes the energy level, it accompanies the change of the electron numbers.However, with increasing the electron-electron interactionU12, the variation of the electron number at either of the dots is suppressed.So the Rabi-type oscillation of the serial coupling double quantum-dot system becomes attenuated with increasingU12.Moreover, the frequency of Rabi-type oscillations decreases sharply fromU12=0 toU12=2?.AtU12=2?,the occupancynμ(t)only owns a wriggle behavior as timetincreases.

    Fig.6.Time-dependent occupancy nμ(t)-t curves of the serial coupling double quantum-dot system with different electron-electron interactions between the two dots U12.The parameters adopted are T =0.015?, E0μ =?/2, E1μ =-U/2-?/2, U1 =U2 =-2Eμ, and W =2?.

    Fig.7.Time-dependent occupancy nμ(t)-t curves of the serial coupling double quantum-dot system with different bandwidths W for the electron-electron interaction between the two dots U12 = 0 (a) and U12 =4?(b).The parameters adopted are T =0.015?, E0μ =?/2,E1μ =-U/2-?/2,and U1=U2=-2Eμ.

    Finally,we explore the oscillating behavior of occupancy of the serial coupling double quantum-dot system with different bandwidths of the leadsWat two values of the electronelectron interaction between the two dotsU12.Figure 7 shows the time-dependent occupancynμ(t) of the serial coupling double quantum-dot system with different bandwidthsWfor the electron-electron interaction between the two dotsU12=0(a) andU12= 4?(b), respectively.We find that the distinct oscillating behavior of occupancy at narrower bandwidth becomes attenuated with increasing the bandwidth for bothU12=0 andU12=4?.For the electron-electron interaction between the two dotsU12=0,the frequency of Rabi-type oscillations decreases regularly.However,the oscillation shows an irregular transition behavior forU12=4?.Here, both the bandwidthWand the electron-electron interaction between the two dotsU12manipulate the oscillating behavior of the serial coupling double quantum-dot system.It leads that the frequency of Rabi-type oscillations decreases sharply with increasing the bandwidth.

    4.Summary

    In summary,we calculated accurately the time-dependent occupancy of the strongly correlated single quantum-dot system and serial coupling double quantum-dot system subject to a sudden change of gate voltage.The Rabi-type oscillation of the strongly correlated single quantum-dot system can be enhanced by strong electron-electron interaction, low temperature, and narrow bandwidth.Moreover, the timedependent occupancy of the serial coupling double quantumdot system shows an irregular transition behavior, when both the bandwidth and the electron-electron interaction between the two dots manipulate the oscillating behavior.The oscillating behavior of the serial coupling double quantum-dot system is suppressed by the electron-electron interaction between the two dots.Those characteristics of strongly correlated quantum-dot systems may be observed in experiments.And we believe our results are helpful for investigating the real-time dynamical properties of driven quantum many-body systems and will lead to significant new insights in the future.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11804245,11747098,11774418,12247101,and 12047501),the Scientific and Technologial Innovation Programs of Higher Education Institutions of Shanxi Province, China (Grant No.2021L534), and the Fund from the Ministry of Science and Technology of China (Grant No.2022YFA1402704).

    猜你喜歡
    振華建華
    家住西安
    倒立奇奇
    變來(lái)變?nèi)サ臉?shù)
    米沙在書(shū)里
    可怕的事
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    變變變
    阿嗚想做貓
    WSN Node Applied to Large-Scale Unattended Monitoring
    “杯”慘
    亚洲一区高清亚洲精品| 中文字幕亚洲精品专区| 亚洲精品456在线播放app| 亚洲精品一区蜜桃| 日韩,欧美,国产一区二区三区 | 亚洲人与动物交配视频| 亚洲在线自拍视频| 精品国产一区二区三区久久久樱花 | 亚洲精品日韩在线中文字幕| 97在线视频观看| 一本久久精品| 一级爰片在线观看| 三级国产精品欧美在线观看| 亚洲精品乱久久久久久| 日本欧美国产在线视频| 成年av动漫网址| 欧美人与善性xxx| 亚洲精品自拍成人| 国产亚洲91精品色在线| 美女cb高潮喷水在线观看| 91精品国产九色| 国产伦理片在线播放av一区| 国产真实伦视频高清在线观看| 欧美一区二区国产精品久久精品| 免费黄色在线免费观看| 国产激情偷乱视频一区二区| 成年女人看的毛片在线观看| 国产亚洲91精品色在线| 狂野欧美白嫩少妇大欣赏| 大又大粗又爽又黄少妇毛片口| 亚洲中文字幕日韩| 长腿黑丝高跟| 国产真实乱freesex| 亚洲在线观看片| 国产熟女欧美一区二区| 日本wwww免费看| 两个人视频免费观看高清| 成年免费大片在线观看| 国产午夜精品论理片| 日日啪夜夜撸| 中国国产av一级| 国产精品久久久久久av不卡| 18禁裸乳无遮挡免费网站照片| 我的女老师完整版在线观看| 亚洲精品aⅴ在线观看| 国产三级中文精品| 免费播放大片免费观看视频在线观看 | 精品久久久久久电影网 | 国产色婷婷99| 特级一级黄色大片| 亚洲电影在线观看av| 亚洲乱码一区二区免费版| 国产伦精品一区二区三区视频9| 亚洲国产欧美在线一区| 精品免费久久久久久久清纯| 午夜免费激情av| 亚洲天堂国产精品一区在线| 两个人的视频大全免费| 男女边吃奶边做爰视频| 建设人人有责人人尽责人人享有的 | 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx在线观看| 国产黄色视频一区二区在线观看 | 久久99热这里只频精品6学生 | 日韩人妻高清精品专区| 亚洲av一区综合| 女人被狂操c到高潮| 久久久久久久久久成人| 日本午夜av视频| 免费观看性生交大片5| 国产一级毛片在线| 成人亚洲欧美一区二区av| 久久久久久久久大av| 最后的刺客免费高清国语| 老女人水多毛片| 熟女电影av网| 国产精品三级大全| 国产中年淑女户外野战色| 成人午夜精彩视频在线观看| 日本五十路高清| 亚洲av电影在线观看一区二区三区 | 国产三级中文精品| 日本免费a在线| 91精品国产九色| 国产精品国产高清国产av| 亚洲欧洲国产日韩| 在现免费观看毛片| 99久久精品一区二区三区| 日韩av不卡免费在线播放| 激情 狠狠 欧美| 韩国高清视频一区二区三区| 不卡视频在线观看欧美| 久久婷婷人人爽人人干人人爱| 午夜福利在线观看吧| 99久久成人亚洲精品观看| 国产高清不卡午夜福利| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 免费av观看视频| 2021天堂中文幕一二区在线观| 我要搜黄色片| 午夜福利成人在线免费观看| 白带黄色成豆腐渣| 国产男人的电影天堂91| 国产视频内射| 在线观看66精品国产| 美女黄网站色视频| 久久人人爽人人片av| 高清视频免费观看一区二区 | 亚洲欧美日韩卡通动漫| av在线老鸭窝| 日日啪夜夜撸| av国产久精品久网站免费入址| 亚洲人成网站高清观看| 国产三级在线视频| 一区二区三区乱码不卡18| 亚洲av成人精品一区久久| 中文天堂在线官网| 亚洲aⅴ乱码一区二区在线播放| 亚洲美女搞黄在线观看| 午夜福利在线观看免费完整高清在| АⅤ资源中文在线天堂| 久久久久性生活片| 欧美一级a爱片免费观看看| a级一级毛片免费在线观看| 免费观看在线日韩| 国产一区二区亚洲精品在线观看| 老司机福利观看| 亚洲成色77777| 免费电影在线观看免费观看| 免费在线观看成人毛片| 亚洲成色77777| 国产亚洲91精品色在线| 嘟嘟电影网在线观看| 国语自产精品视频在线第100页| 亚洲av男天堂| 三级国产精品片| 国内精品一区二区在线观看| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区国产| 欧美不卡视频在线免费观看| 少妇的逼好多水| 久久精品国产亚洲网站| 精品少妇黑人巨大在线播放 | 日韩视频在线欧美| 亚洲欧美精品专区久久| 99国产精品一区二区蜜桃av| 久久精品久久久久久久性| 成人午夜精彩视频在线观看| 亚洲精品日韩av片在线观看| 国产精品嫩草影院av在线观看| 午夜视频国产福利| 欧美日韩在线观看h| 91久久精品国产一区二区成人| av黄色大香蕉| 亚洲精品,欧美精品| 久久6这里有精品| 中文在线观看免费www的网站| 欧美精品一区二区大全| 69av精品久久久久久| 国产大屁股一区二区在线视频| 99久久九九国产精品国产免费| 国产精品.久久久| 成人性生交大片免费视频hd| 午夜爱爱视频在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲精品456在线播放app| 国产亚洲一区二区精品| 老女人水多毛片| 成人综合一区亚洲| 永久网站在线| 在线免费观看的www视频| 嫩草影院入口| 免费看av在线观看网站| 青春草视频在线免费观看| 不卡视频在线观看欧美| 你懂的网址亚洲精品在线观看 | 国产一区二区在线av高清观看| 男女视频在线观看网站免费| 男人狂女人下面高潮的视频| 秋霞伦理黄片| 久久精品91蜜桃| 亚洲欧美成人精品一区二区| 国产精品爽爽va在线观看网站| 成人特级av手机在线观看| 嫩草影院精品99| 日韩 亚洲 欧美在线| 久久久久久久久中文| 人人妻人人澡欧美一区二区| 有码 亚洲区| av在线天堂中文字幕| 久久韩国三级中文字幕| 欧美极品一区二区三区四区| 大香蕉久久网| eeuss影院久久| 69av精品久久久久久| 丝袜喷水一区| 日韩一本色道免费dvd| 国产视频首页在线观看| 干丝袜人妻中文字幕| 亚洲国产精品合色在线| 久久亚洲精品不卡| 亚洲国产最新在线播放| 日本欧美国产在线视频| 日本免费在线观看一区| 久久精品国产自在天天线| 午夜福利在线观看吧| 国产av一区在线观看免费| 色网站视频免费| 天天一区二区日本电影三级| 麻豆久久精品国产亚洲av| 高清日韩中文字幕在线| 美女cb高潮喷水在线观看| 久久久精品大字幕| 日本免费一区二区三区高清不卡| 亚洲怡红院男人天堂| 99久国产av精品国产电影| 啦啦啦韩国在线观看视频| 三级国产精品欧美在线观看| 免费看美女性在线毛片视频| 直男gayav资源| 日本-黄色视频高清免费观看| 在线免费观看的www视频| 国产片特级美女逼逼视频| 久久久精品大字幕| 国语自产精品视频在线第100页| eeuss影院久久| 春色校园在线视频观看| 久久人妻av系列| 1000部很黄的大片| 久久这里只有精品中国| 国产亚洲av嫩草精品影院| 国产精品电影一区二区三区| 国产极品天堂在线| 免费观看性生交大片5| 亚洲天堂国产精品一区在线| 国产乱人视频| 狂野欧美激情性xxxx在线观看| 久久久久网色| 亚洲性久久影院| 九九久久精品国产亚洲av麻豆| av国产久精品久网站免费入址| 亚洲天堂国产精品一区在线| 高清午夜精品一区二区三区| 亚州av有码| 国产人妻一区二区三区在| 亚洲人成网站在线观看播放| 91午夜精品亚洲一区二区三区| 国产精品女同一区二区软件| 极品教师在线视频| 亚洲成人av在线免费| 国产精品久久久久久精品电影| 老司机影院成人| 国产精品人妻久久久久久| 亚洲精品成人久久久久久| av国产久精品久网站免费入址| 黄色欧美视频在线观看| 国产三级在线视频| 免费av不卡在线播放| 国产精品99久久久久久久久| 精品人妻一区二区三区麻豆| 亚洲电影在线观看av| 久久精品影院6| 三级毛片av免费| 观看免费一级毛片| 国产毛片a区久久久久| 亚洲怡红院男人天堂| 最近的中文字幕免费完整| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 国产精品蜜桃在线观看| 精品熟女少妇av免费看| 亚洲最大成人av| 亚洲图色成人| 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 欧美xxxx性猛交bbbb| 久久精品熟女亚洲av麻豆精品 | av国产久精品久网站免费入址| 国产又黄又爽又无遮挡在线| 国产激情偷乱视频一区二区| 精品人妻偷拍中文字幕| 美女国产视频在线观看| 亚洲综合精品二区| 大又大粗又爽又黄少妇毛片口| ponron亚洲| 国产成人精品婷婷| 国产人妻一区二区三区在| 天堂网av新在线| 久久久亚洲精品成人影院| 日韩强制内射视频| 乱系列少妇在线播放| 欧美日本视频| 九九久久精品国产亚洲av麻豆| 水蜜桃什么品种好| 国产成人午夜福利电影在线观看| 国产一区二区在线观看日韩| 一边摸一边抽搐一进一小说| 国产精品野战在线观看| 国产乱人视频| 亚洲精品国产成人久久av| 午夜激情欧美在线| 看十八女毛片水多多多| 日韩大片免费观看网站 | 成人亚洲精品av一区二区| 亚洲人成网站在线观看播放| 国产av在哪里看| 岛国在线免费视频观看| av线在线观看网站| 秋霞伦理黄片| 日韩制服骚丝袜av| 中文乱码字字幕精品一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄 | 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 日韩大片免费观看网站 | 一级毛片aaaaaa免费看小| 天天躁夜夜躁狠狠久久av| 色综合亚洲欧美另类图片| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 国产亚洲5aaaaa淫片| av卡一久久| 精品久久久噜噜| eeuss影院久久| 成人av在线播放网站| 国产精品电影一区二区三区| 久久久久精品久久久久真实原创| 亚洲最大成人手机在线| 99久久成人亚洲精品观看| 久久久久久九九精品二区国产| 一级二级三级毛片免费看| 国产黄色视频一区二区在线观看 | 亚洲av福利一区| 建设人人有责人人尽责人人享有的 | 女人被狂操c到高潮| 黄色一级大片看看| 日韩欧美三级三区| 久久国内精品自在自线图片| 伊人久久精品亚洲午夜| 亚洲av成人av| 国产精品久久久久久精品电影小说 | 亚洲在线自拍视频| 国产一级毛片七仙女欲春2| av视频在线观看入口| 联通29元200g的流量卡| 日韩中字成人| av卡一久久| 成人一区二区视频在线观看| 国产精品久久久久久久电影| 色综合站精品国产| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 久久99热这里只频精品6学生 | 免费观看在线日韩| 嫩草影院新地址| 日本一本二区三区精品| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 最近最新中文字幕大全电影3| 国产三级中文精品| 91久久精品国产一区二区成人| 老师上课跳d突然被开到最大视频| 亚洲精品乱码久久久久久按摩| 国产在视频线精品| 91狼人影院| 在线免费观看的www视频| 亚洲成人久久爱视频| 人人妻人人澡人人爽人人夜夜 | av.在线天堂| 天美传媒精品一区二区| 精品久久久久久久久久久久久| 91午夜精品亚洲一区二区三区| 性色avwww在线观看| 91狼人影院| 九色成人免费人妻av| 国产精品美女特级片免费视频播放器| 欧美激情久久久久久爽电影| 久久久久久久午夜电影| 蜜桃亚洲精品一区二区三区| 国产午夜福利久久久久久| 日本av手机在线免费观看| 亚洲av中文字字幕乱码综合| 日本wwww免费看| a级毛色黄片| 日韩国内少妇激情av| 久久精品影院6| 国产在视频线在精品| 深夜a级毛片| 亚洲欧美日韩高清专用| 亚洲欧美日韩东京热| 高清av免费在线| 亚洲欧美精品综合久久99| 亚洲电影在线观看av| 69av精品久久久久久| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看 | av在线亚洲专区| 亚州av有码| 如何舔出高潮| 亚洲精品亚洲一区二区| 大香蕉97超碰在线| 三级男女做爰猛烈吃奶摸视频| 日本爱情动作片www.在线观看| 色尼玛亚洲综合影院| 国产亚洲5aaaaa淫片| 国内精品宾馆在线| 国产高清不卡午夜福利| 99九九线精品视频在线观看视频| 久久久精品大字幕| 亚洲伊人久久精品综合 | 亚洲成av人片在线播放无| 久久久久久久久大av| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜 | 男女国产视频网站| 久久精品国产鲁丝片午夜精品| 国产av码专区亚洲av| 在线观看美女被高潮喷水网站| 国产大屁股一区二区在线视频| 成人三级黄色视频| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区 | 国产淫语在线视频| 看非洲黑人一级黄片| 久久久国产成人精品二区| 日韩人妻高清精品专区| 99久国产av精品国产电影| 一级黄色大片毛片| 国产一区二区亚洲精品在线观看| 国产综合懂色| 免费观看a级毛片全部| 51国产日韩欧美| 精品不卡国产一区二区三区| 校园人妻丝袜中文字幕| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 亚洲国产日韩欧美精品在线观看| 亚洲成人精品中文字幕电影| 在现免费观看毛片| 欧美日韩综合久久久久久| 一区二区三区四区激情视频| 日韩欧美在线乱码| 国产男人的电影天堂91| 亚洲精品乱码久久久v下载方式| 黄片wwwwww| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 日本一二三区视频观看| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频 | 插阴视频在线观看视频| 网址你懂的国产日韩在线| 青青草视频在线视频观看| 国产成人午夜福利电影在线观看| 少妇的逼好多水| 久久人妻av系列| 国产精品久久久久久精品电影| 久久国内精品自在自线图片| av天堂中文字幕网| 97热精品久久久久久| 欧美日韩综合久久久久久| 久久6这里有精品| av在线亚洲专区| 亚洲内射少妇av| videos熟女内射| 日本与韩国留学比较| 三级毛片av免费| 我的老师免费观看完整版| 男人的好看免费观看在线视频| 中文亚洲av片在线观看爽| 午夜福利在线观看吧| 日本熟妇午夜| 国产精品日韩av在线免费观看| 精品久久久噜噜| 日韩大片免费观看网站 | 国产白丝娇喘喷水9色精品| 久久综合国产亚洲精品| 波多野结衣巨乳人妻| 精品午夜福利在线看| 国产乱人偷精品视频| 亚洲综合色惰| 欧美高清性xxxxhd video| 亚洲欧美日韩无卡精品| 少妇人妻精品综合一区二区| 国产免费福利视频在线观看| 亚洲欧美日韩高清专用| 国产女主播在线喷水免费视频网站 | 久久久久久伊人网av| 久热久热在线精品观看| 日韩中字成人| 久久草成人影院| 久久精品国产自在天天线| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 只有这里有精品99| 午夜激情欧美在线| 国产精品国产三级专区第一集| 干丝袜人妻中文字幕| 国产亚洲5aaaaa淫片| 日韩一区二区三区影片| 自拍偷自拍亚洲精品老妇| 免费在线观看成人毛片| 2022亚洲国产成人精品| 久久精品国产亚洲网站| 又粗又爽又猛毛片免费看| 最近的中文字幕免费完整| 男人舔奶头视频| 三级毛片av免费| 自拍偷自拍亚洲精品老妇| 少妇熟女欧美另类| 国产精品福利在线免费观看| 久久久国产成人精品二区| 波多野结衣高清无吗| 久久精品国产亚洲网站| 日日啪夜夜撸| 亚洲一区高清亚洲精品| 国产精品福利在线免费观看| 免费看av在线观看网站| 亚洲真实伦在线观看| 韩国高清视频一区二区三区| 午夜日本视频在线| 少妇熟女欧美另类| 2021天堂中文幕一二区在线观| 成人鲁丝片一二三区免费| 国产真实伦视频高清在线观看| 免费看日本二区| 久久精品国产自在天天线| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 免费在线观看成人毛片| 亚洲成人中文字幕在线播放| 国产69精品久久久久777片| 国产极品天堂在线| 国产麻豆成人av免费视频| 日韩精品青青久久久久久| 人妻系列 视频| av国产免费在线观看| 亚洲国产精品国产精品| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品久久久久久av不卡| 九九在线视频观看精品| 毛片女人毛片| 插逼视频在线观看| 国产亚洲av嫩草精品影院| 成人毛片60女人毛片免费| 国产麻豆成人av免费视频| 只有这里有精品99| 国产v大片淫在线免费观看| 男人舔女人下体高潮全视频| 亚洲精品乱码久久久v下载方式| 久久久久精品久久久久真实原创| videos熟女内射| 国产成人福利小说| 赤兔流量卡办理| 日本免费a在线| www.av在线官网国产| 日韩欧美精品免费久久| 精品酒店卫生间| 亚洲欧美精品专区久久| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠久久av| 国产单亲对白刺激| 国产不卡一卡二| 日本一本二区三区精品| 激情 狠狠 欧美| 免费无遮挡裸体视频| 禁无遮挡网站| 男的添女的下面高潮视频| 久久精品夜色国产| 日本色播在线视频| 成年av动漫网址| 久久久久久久久久黄片| 成人欧美大片| 午夜亚洲福利在线播放| 国产精品国产高清国产av| 最后的刺客免费高清国语| 波野结衣二区三区在线| 春色校园在线视频观看| 亚洲av日韩在线播放| 麻豆精品久久久久久蜜桃| 男人舔女人下体高潮全视频| 国产91av在线免费观看| 亚洲成人精品中文字幕电影| 国产精品永久免费网站| 免费不卡的大黄色大毛片视频在线观看 | 在线免费观看不下载黄p国产| 亚洲乱码一区二区免费版| av线在线观看网站| 国产男人的电影天堂91| 99热精品在线国产| 免费观看人在逋| 免费无遮挡裸体视频| 2021少妇久久久久久久久久久| 午夜日本视频在线| 极品教师在线视频| 久久婷婷人人爽人人干人人爱| 国产高清三级在线| 久久久精品欧美日韩精品| 国产伦一二天堂av在线观看| 少妇猛男粗大的猛烈进出视频 | 色视频www国产| 九九久久精品国产亚洲av麻豆| 一级爰片在线观看| 激情 狠狠 欧美| 国产毛片a区久久久久| 国产精华一区二区三区| 永久免费av网站大全| 麻豆乱淫一区二区| 热99在线观看视频| 成人午夜精彩视频在线观看| 美女xxoo啪啪120秒动态图|