• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three Dimension Electromagnetic-Thermal-Mechanical Coupling Finite Element Model for High Frequency Induction Mobile Heating Formation of Steel Plate

    2016-05-16 02:42:06WANGZhixingWANGShuiLIUZiyng
    船舶力學 2016年3期
    關鍵詞:碩士生工程學院熱源

    ,,WANG Zhi-xing,,WANG Shui,LIU Zi-yng

    (a.School of Mechantronics&Vehicle Engineering;b.Chongqing Engineering Research Center for Special Ship Digital Design and Manufacturing,Chongqing Jiaotong University,Chongqing 400074,China)

    Three Dimension Electromagnetic-Thermal-Mechanical Coupling Finite Element Model for High Frequency Induction Mobile Heating Formation of Steel Plate

    ZHANG Ji-xianga,b,XU Yua,WANG Zhi-xianga,b,ZHONG Lia,WANG Shuaia,LIU Zi-yanga

    (a.School of Mechantronics&Vehicle Engineering;b.Chongqing Engineering Research Center for Special Ship Digital Design and Manufacturing,Chongqing Jiaotong University,Chongqing 400074,China)

    An electromagnetic-thermal-stress coupling finite element model of multi physics fields is established using the ANSYS-APDL language,in which a coil unit selection method is adopted to realize the mobile induction heating source,a physical environment indirect coupling method to realize electromagnetic thermal coupling,and an equivalent substitution indirect coupling method to realize thermal stress coupling.The high frequency induction heating process of the steel plate is simulated using this model,and the main conclusions were as follows:Firstly,in the intial stage and termination stage apparent end effect of heating temperature,internal stress and bending deformation are observed.Secondly,in stable heating stage,the heating zone below coil has the highest temperature,and in the thickness direction and width direction pointing to the heating area front there are large temperature gradient and stress gradient.And thirdly,on the surface of the steel plate,the compressive stress of heating area and front heat affected zone reaches high temperature yield strength of Q345 steel,so a permanent compression plastic deformation is acquired,then the plate will bend into a concave after cooling.The increase of heating power can make steel plate heating temperature increase,the temperature gradient increases in the direction of plate width,and decreases in the direction of thickness,which will prompt larger bending deformation.The above simulation results agree with those of the experimental measurement.

    thermal stress forming;frequency induction heating;FEA;coupling model

    0 Introduction

    Thermal stress forming is a kind of metal forming method,which depends on the thermal stress caused by uneven distribution of internal temperature field to drive the steel plate bending deformation[1-2].There are two conventional methods for large ship steel sheet thermal stress forming.One is oxy-acetylene flame heating forming,the other is the laser heating forming. The oxy-acetylene flame heating forming is the most widely method in ship manufacturing.However,this method has low precision,poor stability,and is difficult to realize production automation[3].Laser heating is easier to control the heating region and the heating power[4],but the equipment fee is expensive and the heating power is weak that is not able to meet the requirement of the thick steel plate forming.Because of the disadvantages of the oxy-acetylene torch heating and laser heating,the high-frequency induction heating was proposed.

    A lot of achievements have been obtained in study of high-frequency induction heating,especially the outstanding contribution of finite element analysis[5-24].The finite element model of ship plate static induction heating elastic-plastic deformation were simulated and analyzed by Japanese Ishikawajima-Harima Heavy Industries I.Neki,Jun-ichiro Ogawa et al in 1993[5]. The idea of plate deformation prediction with the computer analysis technology is proposed by Jang Chang-Doo in Korea University in 2002[6].Now,three kinds of the finite element simulation model built for high frequency induction heating plate forming are as follows:

    (1)Steel plate thermal elastic-plastic deformation of static induction heating was analysed in Ref.[5],and the simulated results were compared with the experimental results.A two-dimensional electromagnetic-thermal-mechanical coupling static finite element model was established in Refs.[1-2].A two-dimensional static finite element model with weight constraints was established in Refs.[13-14],As shown in Fig.1.

    (2)A heat source direct loading type three-dimensional mobile finite element model was established in Ref.[15-16].Without electromagnetic-thermal coupling calculation,a fitting characteristic function of the measured heat flux distribution was loaded into the surface of steel plate as the heat source in the model,as shown in Figs.2-3.Another similar finite element model was built in Ref.[7],which heat source form is similar to the welding heat source model.

    Fig.1 Two dimensional static model

    Fig.2 The heat source characteristic function

    Fig.3 Temperature field finite element model

    (3)A three-dimensional static finite element model was established in Refs.[17-20],as shown in Fig.4,in which three dimension electromagnetic-thermal-mechanical coupling was realized,while its heat source is stationary,so the model can not simulate mobile heating.

    Based on the above problem,this paper uses APDL language to build an electromagnetic-thermal-stress coupled multi-physics finite element model with three-dimensional mobile source in order to realize the simulation of ship moving induction heating deforming.

    Fig.4 Three dimensional static finite element model

    1 FEM modeling

    1.1 Model simplification

    The sample of 480 mm long,240 mm wide,10 mm thick Q345 ship steel plate,with a diameter of 6 mm,wall thickness of 1mm tube wound into a circular coil with 40 mm.Moving the heating coil in the middle of the steel sheet,the spacing between the upper surface and the lower surface of the steel sheet coil is 2 mm,as shown in Fig.5(a).To facilitate the finite element modeling,based on the principle of equal area,circular coil will be reduced to a thickness of 6mm,length and width of 34 mm×34 mm cube coil.The simplified excitation current direction of rectangular coil section and the excitation current direction of circle coil section were consistent.Since the model has a high degree of symmetry,half of the sample can be taken as the research object,as shown in Fig.5(b).

    Fig.5 High frequency induction heating model

    1.2 FEM element type

    Selection SOLID117 20-node hexahedral magnetic vector unit calculates the moving harmonic magnetic field,SOLID70 8-node hexahedral thermal unit calculates the temperature field,SOLID45 eight-node hexahedral structure unit calculates structural stress and strain fields(see Fig.6).

    1.3 Realization of mobile heating

    Fig.6 Three-dimensional finite element model

    In this model,the moving heating of the induc-tion coil through the following calculation process to achieve:

    (1)Create a 310 mm×34 mm×6 mm rectangular on the coil moving path.Both ends of the rectangular extended 34 mm,as shown in Fig.7(a);

    (2)The rectangular along Z axis direction is evenly divided into 155 small cuboids,each rectangular with dimensions of 2 mm×34mm×6mm,and respectively to 1,2,...155 code;

    (3)Let Δt=tC/155,where,tC=310 mm/v,v is the moving speed of the coil;

    (4)At the time t=0 s,let i=0,select the small rectangular of number 1,2…,17.A total of 17 small rectangular form a cube(Fig.7(b)below).The electric current density will be loaded into the cube,continuous time after Δt,calculating the excitation current of the steel plate and the temperature field,stress field and strain field produced by the excitation current;

    Fig.7 The selection of coil unit

    (5)Let t=t+Δt,i=i+1,select the small rectangular of number 1,2…,17.A total of 17 small rectangular form a cube(Fig.7(c)below),The electric current density will be loaded into the cube twice,continuous time after Δt,calculating the excitation current of the steel plate and the temperature field,stress field and strain field produced by the excitation current;

    (6)Repeat step(5),until the end of i+17=155(Fig.7(f)).

    1.4 Electromagnetic-thermal coupling method

    Using physical environment indirect coupling method to achieve electromagnetic-coupled heat,the process is as follows:

    (1)Firstly,the physical environment of electromagnetic field and the temperature field was established;

    (2)Create a 310 mm×34 mm×6 mm rectangular on the coil moving path.Both ends of the rectangular extend 34 mm;

    (3)The rectangular along Z axis direction is evenly divided into 155 small cuboids,each rectangular with dimensions of 2 mm×34 mm×6 mm,and respectively to 1,2,…,155 code;

    (4)Let Δt=tC/155,where,tC=310 mm/v,v is the moving speed of the coil;

    (5)When t=5 s,reading the electromagnetic environment,make j=0,Select the cube coil composed by a small rectangular numbered 1,2…,17,and then current density was loaded into it;

    (6)Duration Δt,calculating the magnetic field so as to obtain the heat generation rate of steel plate,then calculate the temperature field by the heat generation rate of steel plate;

    (7)Let t=t+Δt,updating electromagnetic parameters based on the calculated temperature field,let j=j+1,select the cube coil composed by a small rectangular numbered j+1,j+2…, j+17 twice,and then current density was loaded into it;

    (8)Repeat steps(6)-(7),until the end of i+17=155;

    (9)Restart thermal analysis,to begin the cooling process temperature field analysis;

    (10)Let t=t+Δt1,j=j+1,Δt1=1 s is the cooling time step;

    (11)When t=15.5 s,the heating transient temperature field file during 15.5 s is read,cooling analysis began,until the end of t=900 s,j=1 055.

    1.5 Thermal-mechanical coupling method

    Using the equivalents indirect coupling methods to achieve thermal-stress coupling:

    (1)Delete all the thermal analysis of the load step;

    (2)For thermal stress calculated by equivalent unit SOLID45 thermal structure replacing solid element SOLID70;

    (3)Start the static analysis of structural stress field;

    (4)From t=0 s,j=1 starts to t=15.5 s,j=155,reads the heating process temperature field RST file,enter the entire steel instantaneous results of the last sub-step of every step of the whole process as the initial stress and strain of data;

    (5)From t=15.5 s,j=1 starts to t=900 s,j=1 055,reads the heating process temperature field RST file,enter the entire steel instantaneous results of the last sub-step of every step ofthe whole process as the initial stress and strain of data;

    (6)Using the above data to calculate the stress field changes until the end of t=900 s;

    (7)Entire heat-stress coupling process is complete,save DEFORM file.

    1.6 Boundary conditions,loads and constraints

    (1)The gravity load

    Due to steel itself has a certain influence on the gravity bending steel plates,steel plates need to load their own gravity loads.In this paper,by applying the acceleration of gravity on all nodes to achieve their own gravity loads.

    (2)The displacement constraints

    Symmetry plane constraints is imposed on the plane of X=0,For restraint the UY freedom of nodes on the right end face and the bottom plate personally lines,shown in Fig.8.

    (3)Cooling boundary condition

    The initial temperature was set at 10℃,applying the thermal boundary conditions on the surface of steel plate up and down for heat transfer coefficient of 15 W/(m2℃).And applying the thermal boundary conditions on the right side surface before and after for heat transfer coefficient of 10(m2℃).

    1.7 Material model

    Plate materials is Q345 steel,the thermal physical parameters are conductivity K,magnetic permeability μ and elastic modulus E,yield strength σs,shear modulus G as shown in Tab.1,μ of the Copper coils and the air permeability is 1 h/m.

    Fig.8 The displacement constraint model

    Tab.1 Q345 steel plate thermal physical parameters

    1.8 Program algorithm

    Fig.9 Program algorithm of the model

    2 Research program

    The research of Q345 steel plate bending angle and radius of curvature on the establishment model of steel plate in the case of exciting current frequency=20 kHz,heating time= 12 s,moving coil rate=l/t=0.02 m/s,research plan as shown in Tab.2.

    Tab.2 Research scheme

    The temperature fields of steel plate heated by 25kW power are shown in Fig.10(a1-a10).During heating,the temperature field is unstable,that is to say,apparent end effect with higher heating temperature is shown in the intial stage and termination stage,and especially in the termination stage,it is the most significant with the highest heating temperature of 1 150℃, higher than the temperature of 645℃ in the intermediate heating stage.The temperature field of steady heating period is similar to welding spindle temperature field,and the temperature gradients in thickness direction and width direction pointing to front of the heating area are verylarge,whether much smaller in other direction.During cooling,the isothermal lines possess more and more wide range,and the temperature gradient is getting smaller.The temperature fields and their evolution above are consistent with the measured results.

    Fig.10 Temperature field,stress field and deformation field during heating and cooling of the steel model (a1-a10)Temperature field,(b1-b10)Stress field,(c1-c10)Deformation field

    The stress fields of steel plate heated by 25 kW power are shown in Fig.10(b1-b10).It can be seen from the Fig.10(b2-b4)that there is a great stress gradient in the Y direction of heating area below the coil.In the stable intermediate heating stage,the compressive stress appears in heating and heated areas where could not expand freely due to the constraint of unheated area,and the maximum compressive stress is not in the zone directly below the coil,but in the heat affected zone where is in front of the heating zone and on the surface of the sheet metal.The compressive stress in the zone below coil is between 10-100 MPa,which is equal to the yield strength of Q345 at the heating temperatures in this zone,while the maximum compressive stress is between 250-300 MPa,equal to the yield strength equal to the plate yield stress at the heating temperatures in that zone,as shown in Fig.10(b4).The tensile stress appears in the unheated area dragged by the heating area,and the maximum tensile stress is far away in front of the heating area.It is also seen that apparent end effect with higher tensile stress appears in the termination stage.The residual stress field of steel plate after cooling 900 s is shown in Fig.10(b10).It is shown from the figure that there is obvious internal stress in the steel plate,while the stress gradient is small in thickness direction.The maximum compressive stress of 248 MPa is at the end of heating line,while the maximum tensile stress of 82.1 MPa is in the middle of the heating line.

    The deformation fields in Y direction are shown in Fig.10(c1-c10).In the intial stage,the deformation in heating area is only elastic because the compressive stress is only 257 MPa, less than the yield strength of 300 MPa at the temperature of 120℃,as shown in Fig.10(c1). When stable heating,the highest temperature on the surface is above 600℃,and the compressive stress in heating area and the front end heat affected area reached the high temperature yield strength,so the steel plate produces permanent compression plastic deformation,while now the heating area is still upward bended due to heat expansion.With the moving of heat source,the heated area is downward bended,as shown in Fig.10(c2-c6).When the heat sourceclose to the end of heating line,the tensile stress area is gradually disappearing(shown in Fig.12(b7)),so the constraint force for heat expansion is also disappearing,which prompts the whole heated area to be upward bended,and finally the plate will be downward bended after cooling.

    Fig.11 Steel plate temperature field nephogram

    The temperature fields of continuous heating 8.75 s with heating power of 20 kW,25 kW, 30 kW,35 kW are shown in Fig.11.It can be seen that the isothermal curves are with similar shape in these four temperature fields,and with the increase of power,the heating temperature is rising,with gradually increasing temperature gradient in the width direction and reducing temperature gradient in the thickness direction.The above temperature fields are consistent with the measured results.

    Fig.12 Steel plate deformation nephogram of Y direction

    The Y direction deformation fields after cooling for 900 s are shown in Fig.12.It can be seen that the bigger the heating power,the greater the bending deformation, and along the heating line the deformation is uneven,the biggest deformation appeares on the line end,which calls end effect of deformation,and with the increase of heating power end effect is more and more obvious.

    The results of experiment and simulation under different powers are shown in Fig.13.As can be seen,the bending angle increases approximately linearly with the heating power,and the results of simulation are consistent with experimental results,except under the low power(20 kW)heating condition.The error under the low power heating condition is caused by the imprecise low temperature heat dissipation conditions in the simulation analysis.

    Fig.13 Bending angle of experiment and simulation

    4 Conclusions

    (1)An electromagnetic-thermal-stress coupling finite element model of multi physics fields is established using the ANSYS-APDL language,in which a coil unit selection method is adopted to realize the mobile induction heating source,a physical environment indirect coupling method to realize electromagnetic thermal coupling,and an equivalent substitution indirect coupling method to realize thermal stress coupling.The induction heating forming of steel plate is simulated using the model,and the simulation results agree with those of experiment.

    (2)During the heating,the temperature field in steel plate is not stable,and at the start and end time,temperature,stress and deformation appear obvious end effect.In stable heating stage,in the plate thickness direction and the plate width direction ahead of the heating zonethere is great temperature gradient.

    (3)In stable heating stage,there is compressive stress in the heating area.The maximum compressive stress is not in high temperature area right under the coil,but in the heat affected zone in the front of heating area.The maximum tensile stress is far in the front of the heat affected zone.There is a large stress gradient in the thickness direction of heating zone,and there is one in the width direction after cooling.

    (4)In the stable heating stage,pressure stress reaches the yield stress of high temperature in the heating area of metal plate surface and the front heat affected zone,so a permanent plastic compression deformation occurs and a concave bending deformation appears in the heating area after cooling.

    (5)With the increase of heating power,the heating temperature rises,with the isotherm range expanses and the temperature gradient in the plate width direction enlarges,so the steel plate bending deformation increases.Along the whole heating line the deformation is uneven, that is to say,there is an obvious deformation end effect appears in the plate,and the largest deformation is at the end of heating line.Along with the increase of heating power,the end effect is more and more obvious.The above simulation results agree with those of the experimental measurement.

    [1]Fan Ping,Chen Minghe.Experimental study of high frequency induction thermal stress forming technology of plate[J]. Forginf&Stamping Technology,2008,33(5):38-39.

    [2]Fan Ping,Chen Minghe,Zhou Zhaofeng.Steel plate without technology of thermal stress forming die forming[J].New Technology&New Process,2007(11):62-64.

    [3]Zhou Hong,Li Gan,Zhu Hongjuan.Effects of ship plate boundary conditions on the high frequency induction plate bending[J].Ship&Ocean Engineering,2009,10,38(5):17-19.

    [4]Guan Yanjin,Ji Zhong,Sun Sheng.The laser induced thermal stress forming technology and its application[J].Aeronautical Manufacturing Technology,1999(4):30-32.

    [5]Yoshihiko T,Morinobu I,Nagahara S.Automated line heating for plate forming by IHI-ALPHA system and its application to construction of actual vessels system outline and application record to date[J].Journal of the Society of Naval Architects of Japan,2004(193):85-95.

    [6]Jang Chang-Doo,Kim Ho-Kyung,Ha Yun-Sok(Department of Naval Architecture and Engineering,Seoul National University,Seoul,Korea).Prediction of plate bending by high-frequency induction heating[J].Journal of Ship Production, 2002,1(18):226-236.

    [7]Lee Soon-Bok,Kim Yun-Jae.An electromagnetic and thermo-mechanical analysis of high frequency induction heating for steel plate bending[J].Key Engineering Materials,2006,326-328:1283-1286.

    [8]Nguyen Truong-Thinh,Yang Young-Soo,Bae Kang-Yul,Choi Sung-Nam.Prediction of deformations of steel plate by artificial neural network in forming process with induction heating[J].Journal of Mechanical Science and Technology,2009, 23(4):1211-1221.

    [9]Chen J,Qi Y,Shi Y,Bi Z.An analytical model to predict bending angles in high-frequency induction heat forming[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2010,224(3): 655-660.

    [10]Lee Kwang Seok,Eom Deuk Ha,Lee Jung-Hwan.Deformation behavior of SS400 thick plate by high-frequency-induction-heating-based line heating[J].Metals and Materials International,2013,19(2):315-328.

    [11]Jeong Chan-Man,Yang Young-Soo,Bae Kang-Yul,Hyun Chung-Min.Prediction of deformation of steel plate with forced displacement and initial curvature in a forming process with high frequency induction heating[J].International Journal of Precision Engineering and Manufacturing,2013,14(5):785-790.

    [12]Lee Kwang Seok,Hwang Byoungchul.An approach to triangular induction heating in final precision forming of thick steel plates[J].Journal of Materials Processing Technology,2014,214(4):1008-1017.

    [13]Zhang Jixiang,An Guoyin,Li Zhengjun,Wang Zhixiang.Free bending of ship plate of different thinckness on high-frequency induction[J].Journal of Chongqing Jiaotong University(Natural Science),2011,31(4):900-904.

    [14]An Guoyin,Zhang Jixiang,Li Zhengjun,Wang Zhixiang.Study of deformation law of key points on high-frequency induction heating for ship plate[J].Ship Engineering,2013,35(5):87-89.

    [15]Luo Yu,Jiang Xiaoling,Deng Dean.Influence of mechanical properties of materials on high frequency inducting plate bending[J].Material Engineering,2005(8):35-36.

    [16]Shuai Kegang,Luo Yu.Finite element molding temperature field of high frequency induction heating plate bending analysis[J].Boiler Technology,2004,35(3):53-54.

    [17]Zhang Xuebiao,Yang Yulong,Liu Yujun.The numerical analysis of temperature field during moveable induction heating of steel plate[J].Journal of Ship Production and Design,2012,28(2):73-81.

    [18]Zhang Xuebiao,Yang Yulong,Hu Xuefeng,Ji Zhuosang.Experimental analysis and numerical simulation of induction heat forming of steel plate[J].Journal of Harbin Engineering University,2009,30(3):239-240.

    [19]Zhang Xuebiao,Yang Yulong,Liu Yujun,Ji Zhuosang,Deng Yanping.Numerical analysis of high frequency induction heating process of steel plate bending process[J].Shipbuilding of China,2011,52(2):108-116.

    [20]Zhang Xuebiao,Yang Yulong,Liu Yujun.Analysis of electromagnetic thermal coupling field of steel plate of high frequency induction heating process[J].Journal of Dalian University of Technology,2012,52(5):676-677.

    [21]Zhou Hong,Jiang Zhiyong,Li Gan.Influence of high frequency induction processing parameters on plate bending[J].Ship Engineering,2011,33(1):57-58.

    [22]Zhou Hong,Li Gan,Zhu Hongjuan.Effects of ship plate boundary conditions on high frequency induction plate bending [J].Transactions of the China Welding Institution,2010,31(11):101-102.

    [23]Liu Shoufa,Fan Ping.Test bed design of high-frequency induction bending forming[J].Machinery Design&Manufacture, 2012(6):194-195.

    [24]Chen Hao,Zhou Yueming,Hua Xueming.Temperature distribution insurface layer of workpiece duringinduction heating process and its mechanismanalysis[J].Heat Treatment of Metals,2011,36(2):66-68.

    三維移動式鋼板高頻感應加熱成形電磁—熱—力全耦合有限元建模研究

    張繼祥a,b,徐 昱a,王智祥a,b,鐘 厲a,王 帥a,劉紫陽a

    (重慶交通大學a.機電與車輛工程學院;b.重慶市特種船舶數(shù)字化設計與制造工程技術研究中心,重慶400074)

    文章基于ANSYS-APDL語言,建立了三維移動式鋼板高頻感應加熱成形電磁—熱—力多物理場耦合有限元模型,并使用線圈單元選取法實現(xiàn)了感應線圈熱源模型的移動。文中采用此模型研究了Q345鋼板在不同加熱功率下的變形情況,得到如下結論:鋼板加熱時受熱不均勻,加熱區(qū)上下表面溫差很大最后階段出現(xiàn)端部效應;隨著加熱功率的增大,鋼板表面瞬時最高溫度也增大;加熱過程中鋼板最大壓應力出現(xiàn)在上表面加熱區(qū)前端,最大拉應力出現(xiàn)在鋼板上表面加熱區(qū)的前方;冷卻后鋼板最大壓應力出現(xiàn)在加熱線末端,最大拉應力出現(xiàn)在加熱線中段區(qū)域;開始時加熱區(qū)上翹,已加熱區(qū)冷卻下凹,當熱源接近末端時,已加熱變形區(qū)上翹,鋼板經(jīng)過冷卻后,整體下凹;隨著加熱功率的增大,加熱區(qū)域Y方向變形 Uy越大,鋼板彎曲角度線性增大,曲率半徑先減小后趨于定值;改進后模型的模擬結果與相同實驗參數(shù)下的實驗結果基本吻合,與傳統(tǒng)模擬方法相比更接近實驗結果。

    熱應力成形;高頻感應加熱;ANSYS;單元選取法;熱源模型

    O343.6

    :A

    張繼祥(1971-),男,重慶交通大學機電與車輛工程學院教授,碩士生導師;

    O343.6

    A

    10.3969/j.issn.1007-7294.2016.03.011

    1007-7294(2016)03-0348-15

    徐 昱(1989-),男,重慶交通大學機電與車輛工程學院碩士研究生;

    王智祥(1955-),男,重慶交通大學航海學院教授,碩士生導師;

    鐘 厲(1965-),女,重慶交通大學機電與車輛工程學院教授,碩士生導師;

    王 帥(1987-),男,重慶交通大學機電與車輛工程學院碩士研究生;

    劉紫陽(1988-),男,重慶交通大學機電與車輛工程學院碩士研究生。

    Received date:2015-12-04

    Foundation item:Supported by Chongqing Foundation General and Frontier Research Plan Project(cstc2013jcyjA70015); Chongqing Municipal Education Commission Science and Technology Research Project(KJ080407)

    Biography:ZHANG Ji-xiang(1971-),male,Ph.D.,professor,E-mail:jixiangzhang@163.com;

    XU Yu(1989-),male,master graduate student.

    猜你喜歡
    碩士生工程學院熱源
    我國2021年在學研究生規(guī)模達333萬人
    福建工程學院
    福建工程學院
    橫流熱源塔換熱性能研究
    煤氣與熱力(2021年3期)2021-06-09 06:16:20
    福建工程學院
    福建工程學院
    基于啟發(fā)式動態(tài)規(guī)劃的冷熱源優(yōu)化控制
    電子制作(2017年19期)2017-02-02 07:08:31
    趙燕磊
    中國詩歌(2016年1期)2016-11-26 15:13:15
    社會資本視角下女碩士生就業(yè)狀況研究
    中部槽激光-MAG復合熱源打底焊焊接工藝研究
    焊接(2015年8期)2015-07-18 10:59:13
    欧美性感艳星| 国产免费又黄又爽又色| h日本视频在线播放| 男女边摸边吃奶| 日韩制服骚丝袜av| 大片免费播放器 马上看| 丰满饥渴人妻一区二区三| 精品久久久噜噜| av福利片在线观看| 久久精品久久久久久噜噜老黄| 亚洲欧洲日产国产| 亚洲国产精品成人久久小说| 美女中出高潮动态图| 99精国产麻豆久久婷婷| 最新中文字幕久久久久| 中文字幕av电影在线播放| 国产视频内射| a级片在线免费高清观看视频| 亚洲av日韩在线播放| 亚洲欧洲国产日韩| 国产免费视频播放在线视频| 亚洲av综合色区一区| 99久久精品一区二区三区| 插逼视频在线观看| 午夜av观看不卡| 黑人猛操日本美女一级片| 99久久综合免费| 一级av片app| 少妇的逼水好多| 制服丝袜香蕉在线| 亚洲国产欧美在线一区| 欧美 亚洲 国产 日韩一| 欧美成人午夜免费资源| 成人亚洲欧美一区二区av| 汤姆久久久久久久影院中文字幕| 在线观看国产h片| 国产片特级美女逼逼视频| 又爽又黄a免费视频| 欧美激情极品国产一区二区三区 | 日韩视频在线欧美| 我的老师免费观看完整版| 亚洲欧美成人综合另类久久久| 欧美日韩视频高清一区二区三区二| 水蜜桃什么品种好| 大又大粗又爽又黄少妇毛片口| 欧美区成人在线视频| 日韩精品有码人妻一区| 国模一区二区三区四区视频| 国产精品麻豆人妻色哟哟久久| 成人亚洲精品一区在线观看| 精品久久久久久电影网| 亚洲va在线va天堂va国产| 国产爽快片一区二区三区| 国产精品99久久久久久久久| 欧美日韩精品成人综合77777| 18禁在线播放成人免费| 日韩一区二区三区影片| 国产又色又爽无遮挡免| 亚洲av国产av综合av卡| 美女xxoo啪啪120秒动态图| 最近2019中文字幕mv第一页| a级片在线免费高清观看视频| 亚洲激情五月婷婷啪啪| xxx大片免费视频| 99久久精品国产国产毛片| av黄色大香蕉| 高清午夜精品一区二区三区| 日韩中文字幕视频在线看片| 亚洲国产最新在线播放| 中文字幕人妻熟人妻熟丝袜美| av福利片在线观看| 免费播放大片免费观看视频在线观看| 热re99久久国产66热| 91精品国产九色| 欧美+日韩+精品| av播播在线观看一区| 日韩强制内射视频| 热re99久久精品国产66热6| 欧美高清成人免费视频www| 日韩欧美 国产精品| 亚洲国产欧美在线一区| 免费黄色在线免费观看| 日韩成人伦理影院| 亚洲天堂av无毛| 日韩成人av中文字幕在线观看| 免费看av在线观看网站| 九草在线视频观看| 精品一区二区免费观看| 国产精品久久久久成人av| 老熟女久久久| 高清黄色对白视频在线免费看 | 少妇被粗大的猛进出69影院 | 成年女人在线观看亚洲视频| 交换朋友夫妻互换小说| 搡老乐熟女国产| 国产中年淑女户外野战色| 国产又色又爽无遮挡免| 搡女人真爽免费视频火全软件| 精品国产国语对白av| 乱人伦中国视频| 黄色日韩在线| 亚洲自偷自拍三级| 最近的中文字幕免费完整| 久久婷婷青草| 国产精品成人在线| av卡一久久| 亚洲不卡免费看| 黄色日韩在线| 午夜激情久久久久久久| 韩国av在线不卡| 久久亚洲国产成人精品v| 亚洲美女黄色视频免费看| 人人澡人人妻人| 成人二区视频| www.av在线官网国产| 欧美日韩视频精品一区| 高清不卡的av网站| 免费黄频网站在线观看国产| 中文天堂在线官网| 亚洲情色 制服丝袜| 在线观看www视频免费| 亚洲,欧美,日韩| 欧美精品一区二区免费开放| 国产av国产精品国产| 国产深夜福利视频在线观看| 国产av码专区亚洲av| 在线观看三级黄色| 国产精品国产三级国产专区5o| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 欧美少妇被猛烈插入视频| 51国产日韩欧美| 久热这里只有精品99| 一级,二级,三级黄色视频| 亚洲内射少妇av| 国产黄色视频一区二区在线观看| 亚洲精品一二三| 蜜臀久久99精品久久宅男| 日韩av免费高清视频| 国产淫片久久久久久久久| 国产欧美日韩精品一区二区| 日本av免费视频播放| 久久97久久精品| 九九爱精品视频在线观看| 色94色欧美一区二区| 亚洲国产精品专区欧美| 在线 av 中文字幕| 欧美人与善性xxx| 免费观看a级毛片全部| 久久97久久精品| 老熟女久久久| 日韩av不卡免费在线播放| 丰满迷人的少妇在线观看| 嘟嘟电影网在线观看| 国产成人freesex在线| 亚洲av成人精品一二三区| 插阴视频在线观看视频| 26uuu在线亚洲综合色| videossex国产| 日韩电影二区| 国产极品粉嫩免费观看在线 | 乱系列少妇在线播放| 亚洲欧美成人精品一区二区| 日本色播在线视频| 免费观看的影片在线观看| 在线观看免费视频网站a站| av在线观看视频网站免费| 久久青草综合色| 久久久久久久久久久丰满| 亚洲电影在线观看av| √禁漫天堂资源中文www| 青春草国产在线视频| 成年人免费黄色播放视频 | 美女视频免费永久观看网站| 在线天堂最新版资源| 有码 亚洲区| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 亚洲国产精品专区欧美| 麻豆精品久久久久久蜜桃| 免费大片黄手机在线观看| 国产成人91sexporn| 国产精品熟女久久久久浪| 国产av一区二区精品久久| 国产 一区精品| 91精品伊人久久大香线蕉| 国产色爽女视频免费观看| 午夜日本视频在线| 亚洲国产最新在线播放| 亚洲精品一二三| 九九久久精品国产亚洲av麻豆| 熟女人妻精品中文字幕| 99精国产麻豆久久婷婷| 三级经典国产精品| 中国三级夫妇交换| 日韩三级伦理在线观看| 亚洲精品日韩在线中文字幕| √禁漫天堂资源中文www| 亚洲欧美清纯卡通| 国产一级毛片在线| 国产探花极品一区二区| 男女边摸边吃奶| 国产亚洲欧美精品永久| 少妇 在线观看| 免费看不卡的av| 这个男人来自地球电影免费观看 | 男女边摸边吃奶| 综合色丁香网| 亚洲国产毛片av蜜桃av| 日韩一本色道免费dvd| 男女国产视频网站| 成年av动漫网址| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 中文字幕亚洲精品专区| 三级国产精品欧美在线观看| 精品一区在线观看国产| 超碰97精品在线观看| 午夜影院在线不卡| 一个人看视频在线观看www免费| 日韩伦理黄色片| 午夜老司机福利剧场| 中文字幕久久专区| 高清午夜精品一区二区三区| 久久久久人妻精品一区果冻| av黄色大香蕉| 免费高清在线观看视频在线观看| 99久久综合免费| 精品久久久噜噜| 亚洲av中文av极速乱| 久久99热这里只频精品6学生| 久久精品国产亚洲av天美| 免费观看av网站的网址| 18禁在线播放成人免费| 涩涩av久久男人的天堂| 欧美精品一区二区免费开放| 91久久精品国产一区二区成人| 精品久久久精品久久久| 成人影院久久| 日本黄大片高清| 国产亚洲精品久久久com| 亚洲va在线va天堂va国产| 久久青草综合色| 免费不卡的大黄色大毛片视频在线观看| 国产成人精品婷婷| 日韩av免费高清视频| 亚洲精品久久久久久婷婷小说| 久久精品国产自在天天线| 一级毛片 在线播放| 91久久精品国产一区二区三区| 十分钟在线观看高清视频www | 亚洲精品自拍成人| 精品熟女少妇av免费看| 亚洲国产av新网站| 亚洲欧美日韩另类电影网站| 久久国产精品大桥未久av | 国产伦理片在线播放av一区| 亚洲精品色激情综合| 亚洲欧美日韩另类电影网站| 肉色欧美久久久久久久蜜桃| 偷拍熟女少妇极品色| av线在线观看网站| 男女边摸边吃奶| 毛片一级片免费看久久久久| 中文资源天堂在线| 各种免费的搞黄视频| 亚洲精品成人av观看孕妇| 黄色一级大片看看| 亚洲内射少妇av| 国产精品久久久久久久久免| 天天操日日干夜夜撸| 日本av手机在线免费观看| 丁香六月天网| 日本色播在线视频| 熟女人妻精品中文字幕| 插逼视频在线观看| 日日摸夜夜添夜夜爱| 男人添女人高潮全过程视频| 少妇人妻 视频| 亚洲国产精品成人久久小说| 久久国产精品大桥未久av | 色94色欧美一区二区| 欧美另类一区| 国产亚洲av片在线观看秒播厂| 这个男人来自地球电影免费观看 | 久久久a久久爽久久v久久| 婷婷色麻豆天堂久久| 亚洲高清免费不卡视频| 午夜视频国产福利| 中国三级夫妇交换| 蜜桃久久精品国产亚洲av| 天天操日日干夜夜撸| 美女福利国产在线| 亚洲国产精品999| 亚洲精品色激情综合| 另类精品久久| 男的添女的下面高潮视频| 大片免费播放器 马上看| 人妻 亚洲 视频| 日韩伦理黄色片| 97精品久久久久久久久久精品| 久久女婷五月综合色啪小说| 一级毛片久久久久久久久女| 日韩精品免费视频一区二区三区 | 成人免费观看视频高清| 久久综合国产亚洲精品| 美女中出高潮动态图| 婷婷色综合大香蕉| 热re99久久精品国产66热6| 日本免费在线观看一区| 国产精品久久久久久av不卡| 午夜福利,免费看| 免费久久久久久久精品成人欧美视频 | 人妻制服诱惑在线中文字幕| a级毛片免费高清观看在线播放| 自线自在国产av| 亚洲精品久久久久久婷婷小说| 一区二区三区乱码不卡18| 色5月婷婷丁香| 亚州av有码| 91精品国产九色| 国产女主播在线喷水免费视频网站| 亚洲,一卡二卡三卡| 国产免费又黄又爽又色| 99久久精品热视频| 久热久热在线精品观看| 只有这里有精品99| 精品人妻熟女av久视频| 肉色欧美久久久久久久蜜桃| 精品卡一卡二卡四卡免费| 日韩成人伦理影院| a级毛片免费高清观看在线播放| 老女人水多毛片| 欧美日韩视频精品一区| 国产精品一二三区在线看| 天堂中文最新版在线下载| 久久97久久精品| 人妻 亚洲 视频| 丰满人妻一区二区三区视频av| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 精品少妇久久久久久888优播| 免费人成在线观看视频色| 国产极品粉嫩免费观看在线 | 纯流量卡能插随身wifi吗| 91久久精品电影网| 高清欧美精品videossex| 人妻制服诱惑在线中文字幕| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 亚洲国产精品专区欧美| 亚洲精品乱码久久久v下载方式| 国产午夜精品久久久久久一区二区三区| 五月天丁香电影| 少妇高潮的动态图| 视频中文字幕在线观看| 国产av一区二区精品久久| 极品少妇高潮喷水抽搐| 99热国产这里只有精品6| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人 | 这个男人来自地球电影免费观看 | 国产毛片在线视频| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 日韩强制内射视频| 80岁老熟妇乱子伦牲交| 丰满乱子伦码专区| 赤兔流量卡办理| 午夜久久久在线观看| 国产免费又黄又爽又色| 精品久久国产蜜桃| 午夜影院在线不卡| 亚洲内射少妇av| 精品视频人人做人人爽| √禁漫天堂资源中文www| 久久这里有精品视频免费| 色哟哟·www| 中文字幕久久专区| 国产精品欧美亚洲77777| 亚洲三级黄色毛片| 日韩av免费高清视频| 久久狼人影院| 男女国产视频网站| 亚洲性久久影院| 久久影院123| 免费看不卡的av| 我要看日韩黄色一级片| 午夜福利,免费看| 青青草视频在线视频观看| 日韩成人伦理影院| 嫩草影院新地址| 久久精品国产亚洲av涩爱| 人人澡人人妻人| 国产毛片在线视频| 免费观看无遮挡的男女| 亚洲成色77777| 精品少妇内射三级| av.在线天堂| 欧美 亚洲 国产 日韩一| 亚洲电影在线观看av| 亚洲欧美清纯卡通| 日韩欧美 国产精品| 国产老妇伦熟女老妇高清| 全区人妻精品视频| 中文字幕精品免费在线观看视频 | av在线观看视频网站免费| 亚洲欧美一区二区三区国产| 亚洲av二区三区四区| 亚洲国产最新在线播放| 麻豆成人av视频| 天堂8中文在线网| 久久久久久久亚洲中文字幕| 久久午夜福利片| 日韩熟女老妇一区二区性免费视频| 最黄视频免费看| 青青草视频在线视频观看| 少妇的逼水好多| 视频区图区小说| 99热全是精品| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产| 国产精品久久久久久久电影| 精品久久久精品久久久| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频| .国产精品久久| 亚洲欧洲精品一区二区精品久久久 | 夫妻性生交免费视频一级片| 伦理电影免费视频| 久久久a久久爽久久v久久| 亚洲天堂av无毛| 女的被弄到高潮叫床怎么办| 这个男人来自地球电影免费观看 | av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 18禁在线播放成人免费| 人人妻人人看人人澡| 亚洲av电影在线观看一区二区三区| 日韩视频在线欧美| 国产伦精品一区二区三区视频9| 久久久久久久久久久丰满| 婷婷色综合大香蕉| 久久久久久久久久久丰满| 婷婷色综合大香蕉| 亚洲av综合色区一区| 国产一区二区在线观看日韩| 国产无遮挡羞羞视频在线观看| 日韩精品有码人妻一区| 欧美 日韩 精品 国产| freevideosex欧美| 99热这里只有精品一区| 亚洲天堂av无毛| 亚洲国产精品国产精品| 国产熟女午夜一区二区三区 | 国产色爽女视频免费观看| 久久人人爽人人爽人人片va| 丝袜喷水一区| 日韩强制内射视频| 97超碰精品成人国产| 国产亚洲91精品色在线| 乱码一卡2卡4卡精品| 国产成人aa在线观看| 天堂中文最新版在线下载| 99久久综合免费| 亚洲电影在线观看av| 一级毛片我不卡| 精品人妻熟女毛片av久久网站| 91精品国产国语对白视频| 在线精品无人区一区二区三| 国国产精品蜜臀av免费| 免费人成在线观看视频色| 啦啦啦在线观看免费高清www| 91成人精品电影| 国产亚洲午夜精品一区二区久久| 黄色欧美视频在线观看| 丰满乱子伦码专区| 久热这里只有精品99| 日韩精品有码人妻一区| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 久久精品国产亚洲av涩爱| 国产日韩一区二区三区精品不卡 | a级一级毛片免费在线观看| 欧美国产精品一级二级三级 | 亚州av有码| 亚洲丝袜综合中文字幕| 国产国拍精品亚洲av在线观看| 亚洲欧美成人精品一区二区| 亚洲欧洲精品一区二区精品久久久 | 黄色怎么调成土黄色| 日韩在线高清观看一区二区三区| 久久ye,这里只有精品| 亚洲国产日韩一区二区| 久久精品久久精品一区二区三区| 九九在线视频观看精品| 成人午夜精彩视频在线观看| 亚洲精品色激情综合| 熟女av电影| 亚洲av电影在线观看一区二区三区| 秋霞伦理黄片| 91久久精品国产一区二区成人| 国产成人精品福利久久| 高清欧美精品videossex| 日本免费在线观看一区| 性色avwww在线观看| av网站免费在线观看视频| 曰老女人黄片| 欧美日韩视频精品一区| 亚洲欧美一区二区三区国产| 久久99精品国语久久久| 中文在线观看免费www的网站| 成人国产av品久久久| 精品卡一卡二卡四卡免费| 老司机影院毛片| 男男h啪啪无遮挡| 91久久精品电影网| 在线免费观看不下载黄p国产| 视频区图区小说| 亚洲图色成人| 一级a做视频免费观看| 又黄又爽又刺激的免费视频.| 亚洲精品乱久久久久久| 中文资源天堂在线| 精品少妇久久久久久888优播| 天堂中文最新版在线下载| 麻豆成人午夜福利视频| 99热国产这里只有精品6| 亚洲精品国产av蜜桃| 在线观看三级黄色| 国产在线男女| 好男人视频免费观看在线| 黑丝袜美女国产一区| 秋霞在线观看毛片| 国产精品福利在线免费观看| 国产精品麻豆人妻色哟哟久久| 国产男女内射视频| 日韩,欧美,国产一区二区三区| 中文字幕av电影在线播放| 日韩,欧美,国产一区二区三区| 亚洲精品日本国产第一区| 伊人亚洲综合成人网| 免费黄网站久久成人精品| 国产一区二区在线观看av| 欧美97在线视频| 99热网站在线观看| 免费少妇av软件| 免费久久久久久久精品成人欧美视频 | 成人国产av品久久久| 国产精品久久久久久久电影| a级毛色黄片| 欧美日韩视频精品一区| 精品一区二区三卡| √禁漫天堂资源中文www| 黄色日韩在线| 大香蕉97超碰在线| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的| 日本与韩国留学比较| 久久久a久久爽久久v久久| 日韩av免费高清视频| 精品酒店卫生间| av国产久精品久网站免费入址| 欧美亚洲 丝袜 人妻 在线| 丰满饥渴人妻一区二区三| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 久久韩国三级中文字幕| 插逼视频在线观看| 国产一级毛片在线| 久久久久久久久大av| 日韩成人伦理影院| 久久国产亚洲av麻豆专区| 久久久久久久久久久久大奶| 国产乱来视频区| 色吧在线观看| 免费人成在线观看视频色| 亚洲高清免费不卡视频| 亚洲电影在线观看av| 日韩免费高清中文字幕av| av免费观看日本| 高清在线视频一区二区三区| 我要看日韩黄色一级片| 人妻制服诱惑在线中文字幕| 下体分泌物呈黄色| 亚洲精品亚洲一区二区| 国产色爽女视频免费观看| 多毛熟女@视频| 成人亚洲欧美一区二区av| 老司机影院成人| 精品国产乱码久久久久久小说| 老女人水多毛片| 一区二区三区四区激情视频| 女人久久www免费人成看片| 日韩一区二区三区影片| 国产黄频视频在线观看| 男人添女人高潮全过程视频| 九色成人免费人妻av| 看十八女毛片水多多多| 美女内射精品一级片tv| 只有这里有精品99| 久久久久久久国产电影| 激情五月婷婷亚洲| 亚洲国产日韩一区二区| 免费黄色在线免费观看| 99热国产这里只有精品6| 国产精品不卡视频一区二区| 中文字幕av电影在线播放| 最新的欧美精品一区二区| 中文字幕免费在线视频6| 伦理电影免费视频| 日韩在线高清观看一区二区三区| 成人无遮挡网站|