• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Engineering Method to Predict Fatigue Crack Propagation Life for Marine Structures

    2016-05-16 02:42:04,,
    船舶力學(xué) 2016年3期
    關(guān)鍵詞:黃小平海洋大學(xué)壽命

    ,,

    (1 China Ship Develop and Design Center,Wuhan 430064,China;2 State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;3 Hadal Science and Technology Research Center,Shanghai Ocean University,Shanghai 201306,China)

    An Engineering Method to Predict Fatigue Crack Propagation Life for Marine Structures

    YAN Xiao-shun1,2,HUANG Xiao-ping2,CUI Wei-cheng3

    (1 China Ship Develop and Design Center,Wuhan 430064,China;2 State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;3 Hadal Science and Technology Research Center,Shanghai Ocean University,Shanghai 201306,China)

    Accurate prediction of fatigue life is important for the safety of marine structures.Comparing with traditional methods based on Cumulative Fatigue Damage(CFD)theory,life prediction based on Fatigue Crack Propagation(FCP)can take the key factors,like load sequence and initial defects,into consideration.This makes the major classification societies strongly promote the application of FCP theory in ocean engineering.This paper investigated the engineering method of fatigue life prediction based on FCP from three aspects,namely crack propagation law,calculation of Stress Intensity Factor(SIF)and generation of fatigue load spectrum.The aim was to find an accurate,rational and relatively simple method.By using the unique curve model,the technology of sub-model to calculate SIF and the method to generate fatigue load spectrum based on spectral analysis,the crack propagation life of a typical fatigue hot spot of a semi-submersible platform was predicted and then the effect of initial crack size was discussed.The results showed the discussed hot spot met the requirement of design life.And initial crack size of the surface crack affected the fatigue life a lot. The method proposed in this paper may provide a reference for accurate prediction of fatigue life of marine structures.

    fatigue crack propagation;unique curve model;spectral analysis; stress intensity factor;semi-submersible platform

    0 Introduction

    With the exploration of oil and gas resources under deep water and the development of economic globalization,offshore platforms and other marine structures are increasing as well as maritime accidents.Meanwhile,in order to obtain higher profits,offshore oil companies or ship owners are trying to extend the life of marine structures,which makes accurate prediction of life for marine structures has important engineering significance.Time-varying environment loads,such as wind,wave and current,will cause alternating stresses in components of marine structures.Since fatigue damage caused by these alternating stresses is one of the main failuremodes,fatigue assessment for marine structures is an important part of design and maintenance phases.To accurately predict fatigue lives of hot spots is vital for safety of offshore structures.

    The traditional methods to predict fatigue life are based on Cumulative Fatigue Damage (CFD)theory,including simplified fatigue analysis method and spectral fatigue analysis method. The simplified fatigue analysis method is straightforward but varied from people to people because of the empirical formulas in fatigue load calculation.In comparison,the fatigue load calculation of spectral fatigue analysis method is based on spectral analysis,which considers the impact of the ship type,wave condition,location of target hot spot.It makes this method seems more rational.However,CFD theory does not take important factors such as the initial defect and load sequence into consideration.It makes the life prediction results for the same hot spot of a ship by using traditional methods showed a large dispersion[1].

    Fortunately,the theory of Fatigue Crack Propagation(FCP)can overcome these difficulties.Besides,the clear definition of fatigue damage in FCP theory makes it easy to detect damage and predict the residual lives of offshore structures.Thus,in recent years,research and application on fatigue life prediction based on FCP are increasing dramatically.Doerk and R?rup[2]predicted the fatigue crack propagation life of a thick deck plate,made by high strength steel, of a large container ship,by using Paris law.Doshi and Vhanmane[3]combined Paris law and Monte Carlo simulation to predict fatigue reliability of several details of a double bottom tanker.Sumi[4]applied the storm model to generate fatigue loads and predicted the fatigue crack growth life of a deck structure with an embed crack.And then the impacts of the storm sequence on fatigue life were discussed.Huang et al[5]studied the simulation of fatigue load spectrum and proposed a method to generate the wave-induced fatigue loads for the service time of marine structures based on spectral analysis and stress distribution in the short term. Li and Cui[6-7]investigated the idea of Standard Load History(SLH)and combined the unified fatigue life prediction model of FCP to predict fatigue lives of details of a ship and an offshore platform.ABS,DNV,CCS and other classification societies have preliminary had the life prediction based on FCP written into the relevant specifications[8-10].

    This paper aimed at the engineering application of FCP and mainly investigated the selection of FCP law,calculation of Stress Intensity Factor(SIF),generation of fatigue load spectrum.Then the FCP life of a typical fatigue hot spot of a semi-submersible platform was predicted and the influence of initial crack size was discussed.

    1 Crack propagation law

    The crack propagation law is the core of FCP theory and consequently more research has been done on it.The most representative formula is Paris law,which has been widely studied and used due to its simplicity,and the formula constants C and m in Paris law have been frequently tested for different materials.Since the Paris formula ignores the effects of stress ratio and load sequence,in many subsequent studies the original formula was modified and new onesproposed[11-16].However,most of the new formulas added more parameters,or changed the original parameters of Paris’s law,with the result that the large body of experiment C and m data being wasted or cannot be directly used.In addition,studies have shown that the parameters such as the crack propagation constant C and the threshold SIF range ΔKthalways change with stress ratio R.

    In order to apply FCP theory into marine structures subjected to complex variable amplitude loading,Huang and Moan[14]proposed an improved FCP model considering stress ratio and validated the model by a large number of experimental data.The model only requires the material constants under stress ratio R=0 and is able to predict crack propagation under complex variable amplitude loading.Subsequently,Huang et al[15-16]proposed a unique curve model consisted of a unique crack growth rate curve and the corresponding equivalent SIF range. This model not only takes the effects of stress ratio and load sequence into consideration,but also combines the simplicity and practicability,showing broad engineering applications.The basic expression of the unique curve model is:

    where a is the crack length;N is the number of applied cycles;C,m are the Paris parameters; ΔKeq0,ΔKth0respectively are the equivalent SIF range and threshold of SIF range corresponding to the stress ratio R=0;MRis the correction factor for stress ratio;β,β1depend on the material and the environment.Kresis the SIF caused by residual stress;MPis the correction factor for load sequence and can be calculated by:

    2 Calculation of SIF

    SIF is a fundamental parameter of fracture mechanics and many attempts have been made to calculate it accurately.In the current fatigue life prediction based on FCP,the commonly used method of SIF calculation depends on empirical formulas[17].However,this simplified approach is likely to underestimate the value of the SIF,leading to dangerous prediction[18]. For example,the T-welded joint showed in Fig.1 is one of the common joints used in marine structures,and the SIF of the surface crack is always calculated by empirical formulas recommended by BS7910[19]which was obtained by Finite Element Method(FEM)and with Boundary E,Boundary B,and Boundary D free[20].But the boundary conditions are almost unachievable in actual T-welded joint of ocean engineering.When complex loads are applied on the Boundary E,Boundary B,and Boundary D,the empirical formulas to calculate SIF must be different.Therefore,the poor applicability of the empirical formulas limits the wide application of fatigue assessment based on crack propagation.

    Yan et al[18]proposed a method of SIF calculation based on the idea of sub-model,which considers complex boundary condition of welded joints and is more suitable for the SIF calculation under wave load calculations.Moreover,the method combines the PATRAN model of structural analysis commonly used in ocean engineering and the advantage of ANSYS in SIF calculation,and is suitable for engineering application.Take the typical fatigue hot spot of semi-submersible platforms shown in Fig.2 for example.In order to calculate SIF of an assumed semi-elliptical surface crack at the weld toe,the shell elements in vicinity of the discussed hot spot need to be refined and then are swept into solid elements with MPCs being created to connect shell elements and solid elements,as shown in Fig.3 and Fig.4.If the wave loads are loaded on the platform,the 3-D displacement field in vicinity of the hot spot can be obtained after static analysis.Then corresponding model with a surface crack is created in ANSYS,shown as Fig.5.The boundary conditions are obtained by interpolations from 3-D displacement field of PATRAN.Finally,the SIF of the surface crack under wave load is obtained.

    Fig.6 is the comparison between the results of SIF under a wave load and the results obtained by conventional BS7910 empirical formulas[21].It is not difficult to find that the results obtained from empirical formulas seriously underestimated the value of the actual SIF.When predicting crack propagation life of marine structure,the SIF is calculated by using the em-pirical formula is inappropriate and it is more reasonable to apply the sub-model techniques of FEM.

    Fig.1 A common T-welded joint in marine structures

    Fig.2 A typical fatigue hot spot in offshore platforms

    Fig.3 Refinement process of shell elements in vicinity of the discussed hot spot

    Fig.4 Finite element model with the solid and shell elements

    Fig.5 Corresponding finite element model with surface crack

    Fig.6 Comparison between proposed FEM and empirical formula recommended by BS7910

    3 Fatigue load generation based on spectral analysis

    To generate real fatigue load spectrum is a prerequisite for accurate life prediction.Thefatigue loads of marine structures are mainly alternating stresses caused by wave loads,so the fatigue load spectrum can be considered as the wave-induced stresses in structures.

    Generally,long-term distribution of the wave-induced stress ranges obeys the two-parameter Weibull distribution.In practice,the shape parameter and scale parameter of the Weibull distribution are derived by empirical formulas and the random stress ranges during the service time are equivalent to a constant stress by the following formula:

    where m is the exponent of FCP law,q is the scale parameter of Weibull distribution.

    However,when the random stress ranges are transformed into an equivalent constant stress range,the effects of the load sequence are ignored.In addition,the assumption of two-parameter Weibull distribution implies the stationary random process for wave-induced stress ranges in long-term.Stochastic process theory tells us that if the statistical properties do not vary with time,the random process can be called stationary random process.The waves in ocean vary with weather and seasons,so the wave-induced stresses do not have the long-term stability[22],and it is more rational to assume that wave-induced stresses in short term are stationary random process.

    For the reasons above,Tomita[23]proposed storm model to simulate the effect of loading sequence.He derived the storm model from onboard wave history acquired by Japanese Marine Self Defense Force in North Pacific Ocean.He categorized sea conditions into two conditions:calm condition and storm condition.Tomita’s model can simulate a wave-induced load history of rough sea conditions.Later several researchers[4,24-26]improved the storm model and applied it into FCP-based life prediction.But the storm model is still not a mature approach and the methods of generating fatigue load spectrum vary from people to people,which makes the storm model difficult to be widely used.Li and Cui[6-7]proposed a method to generate fatigue load spectrum based on extrapolation of short-term tested data and the extreme value theory.Because of the expensive tested data and uncertainty of measured data of short term,this method is difficult to be applied into practice temporarily.

    Huang et al[5]investigated the theory of spectral analysis and proposed a method for fatigue load spectrum generation based on the spectral analysis and stationary of wave-induced stresses in short term.The basic steps of the method are as follows:

    Step 1:Calculate the transfer functioni.e.,get the nominal stresses of the discussed hot spot under unit wave height and different wave frequencies and directions.

    Step 2:Determine the Power Spectral Density(PSD)function of wave-induced stresses G

    Step 3:Calculate the moments of PSD.n-order moment of PSD is:

    Step 4:Get the distribution of wave-induce stress in short term,which is assumed as Rayleigh distribution.The probability density function can be written as:

    where Δσ represents the stress range and it is equal to twice the amplitude of the stress.

    Step 5:Suppose that each short-sea condition lasts two hours[23]and determine the number of cycles in two hours based on the average zero-crossing rate.Generate load block for each short-sea condition which consists of a number of random stress ranges that following the Rayleigh distribution shown as Eq.(13).

    Step 6:Determine the probability of occurrence for each load block based on the wave scatter diagram.The total number of cycles is determined by the average zero-crossing rate. Various short-sea conditions appear randomly in accordance with a certain probability constitute the long-term fatigue load spectrum.

    Obviously,the first four steps of this method are the same as the traditional fatigue spectral analysis method.Since the traditional method is theoretically rigorous and has been widely accepted and written into relevant norms,this method of fatigue load spectrum generation is easy to be adopted by engineers and nice to be used in engineering practice.

    4 Application for a typical hot spot of platforms

    A semi-submersible drilling platform mainly works in the South China Sea and its design life is 30 years.The target location discussed in this study was a connection between the column and brace of an offshore platform,which was a typical fatigue hot spot,shown as Fig. 2.The wall thickness of the column is 22 mm,the thickness of the brace is 30 mm,the thickness of the stiffener on the column is 24 mm,and the thickness of the stiffener on the brace is 18 mm.The yield strength of the material is 245 MPa.

    4.1 Fatigue load spectrum

    The software AQWA WAVE was used to compute the hydrodynamic wave pressure on the panels for the selected waves.Parameters of hydrodynamic analysis were as follows:

    Wave frequency:0.2~1.8 rad/s,step=0.1 rad/s(total 17 frequencies);

    Wave heading:-180°~150°,step=30°(total 12 directions);

    For each wave with determined wave heading and period,unit wave amplitude was used to generate the real and imaginary hydrodynamic wave pressures on the panels,so 408 different hydrodynamic analyses(17×12×2)were carried out.The hydrodynamic wave pressure was then mapped to the PATRAN structural elements.After loading and static analysis,the stressresponses of the target structure under different wave frequencies and directions were obtained.Fig.7 shows the equivalent stress contours(unit wave height,wave direction was 90°, frequency was 0.8 rad/s,real part of hydrodynamic pressure)in vicinity of the discussed fatigue hot spot.The transfer function is shown in Fig.8.

    Fig.7 Equivalent stress contour of the discussed hot spot under wave load(shell elements)

    Fig.8 Transfer function of the discussed hot spot

    According to the method of fatigue load generation described in Chapter 3,the fatigue load spectrum the target hot spot subjected could be obtained,as well as the average period(7.27 sec)of stress cycles and the total number(1.3×108)of cycles in 30 years.A piece(5 000 cycles)of wave-induced stress ranges is shown as Fig.9.

    4.2 SIF calculation of unit stress

    According to the method of SIF calculation described in Chapter 2,the shell elements were refined and then swept to solid elements.After loading the wave loads and static analysis,the 3-D displacement field in vicinity of the hot spot was obtained.Fig.10 shows the equivalent stress contour(unit wave height,wave direction was-120°,wave frequency was 0.8 rad/s,real part of hydrodynamic pressure)in vicinity of the discussed hot spot.Obviously, shell elements and solid elements were connected very well.

    Fig.9 Fatigue load spectrum(piece) (shell and solid elements)

    Fig.10 Equivalent stress contour of the discussed hot spot

    Then the corresponding model with surface crack was created in ANSYS.After interpolation,loading and static analysis,SIF of the surface crack was obtained.As the load was divid-ed into real and imaginary parts,the response of SIF was also divided into real and imaginary parts.The results of SIF were transferred into equivalent SIF according to Eq.(14).The SIFs of different crack sizes are shown in Fig.11.

    Fig.11 SIF under unit stress(left:deepest point;right:surface point)

    4.3 Crack growth prediction

    In crack growth prediction,the unique curve model was applied and the Paris constants in this model were referred to the recommendation of International Institute of Welding(IIW[27]), namelyThe parameters in correction factor calculation were set as β=0.3,β1=0.5,n=0.155 and residual stress was taken as 0.3 times of the yield strength of the material[16].SIF for different crack sizes were obtained by interpolation.

    Referring to DNV recommendation[9],the initial depth a0of the surface crack was set as 0.5 mm,and the initial length 2c0was set as 5 mm.Suppose that the component was failure when the surface crack penetrates the thickness of the target plate.

    Fatigue crack growth calculation was based on cycle-by-cycle approach.The calculated crack growth curves are shown in Fig.12.It was not difficult to find that the crack did not reach the critical state in 30 years,and the fatigue strength of the discussed hot spot met the requirement of design life.In addition,if the platform continued to be used without repair,the safety of the platform would not be ensured,because the fatigue crack propagation life of the discussed spot was about 32 years.

    4.4 Discussion of the influence of the initial crack size

    For surface cracks starting from transition between weld/base material,a crack depth of 0.5 mm may be assumed if no other documented information about crack depth is available[9]. BS7608 recommended that initial crack depth should be in the range from 0.1 mm to 0.25 mm unless a large size is known to be relevant.ABS[8]held that it would be realistic to assume that the initial flaw is a semi-elliptical in shape with

    Fig.13 shows the fatigue lives of different initial crack sizes.Obviously,the initial crack size had vital influence on fatigue life,and the greater initial crack size,the shorter fatigue life. Therefore,effective control of the initial defect was important for the safety of marine structures.In addition,if no measured data was available,the initial crack size of the surface crack could be assumed as:a0=0.5 mm,2c0=5 mm.

    Fig.13 Fatigue life of different initial crack sizes

    5 Conclusions

    This paper focuses on the engineering application of crack propagation-based fatigue life prediction from three aspects,namely,selection of crack propagation law,calculation of stress intensity factor and generation of fatigue load spectrum.The main conclusions are as follows:

    (1)The unique curve model takes the effects of load sequence and stress ratio into consideration and is able to predict crack propagation of welded joints under variable amplitude fatigue loads.The definition of crack propagation rate makes the parameters of the model easy to be determined and convenient to be used for marine structures.

    (2)The complex boundary condition of welded joints of marine structures makes the traditional empirical formulas unsuitable.Some joints are too complicated to summarize empirical formulas.The proposed FEM using sub-model technology can calculate the SIF of surface crack at welded toe subjected to wave loads,which considers the realistic characteristics of the stress field in vicinity of the fatigue hot spot.

    (3)Since the theory of spectral analysis is written into relevant norms and widely used in marine structure,the fatigue load spectrum generated based on spectral analysis can be easily adopted and applied by engineers.Constructing the wave-induced stress ranges based on shortterm distribution is more theoretically rational.

    (4)The result of fatigue life prediction for a typical fatigue hot spot of a semi-submersible platform based on crack propagation showed the fatigue strength met the requirement of design life.The conclusion of comparing the fatigue lives of different initial crack sizes is that the effective control of the initial defect size was important to ensure the safety of marine structures.

    Acknowledgements

    The research reported in this paper is supported by the National Natural Science Foundation of China,project no.51279102.The support is gratefully acknowledged.

    [1]Fricke W,Cui W,Kierkegaard H,et al.Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies[J].Marine Structures,2002,15(1):1-13.

    [2]Doerk O,R?rup J.Development of toughness and quality requirements for yp47 steel welds based on fracture mechanics [C]//Proc.of the 19th Intl.Offshore and Polar Engineering Conference.ISOPE,2009:386-391.

    [3]Doshi K,Vhanmane S.Probabilistic fracture mechanics based fatigue evaluation of ship structural details[J].Ocean Engineering,2013,61:26-38.

    [4]Sumi Y.Fatigue crack propagation in marine structures under seaway loading[J].International Journal of Fatigue,2014, 58:218-224.

    [5]Huang X,Yan X,Wang K.Discussion of fatigue loading spectrum on crack propagation in a ship detail[C].ASME 2014 33rd International Conference on Ocean,Offshore and Arctic Engineering.American Society of Mechanical Engineers, 2014.

    [6]Li S,Cui W.Generation and application of a standardised load-time history to critical ship structural details[J].Ships and Offshore Structures,2013(ahead-of-print):1-15.

    [7]Li S,Cui W.Generation and application of a standardised load-time history to tubular T-joints in offshore platforms[J]. China Ocean Engineering,2014.

    [8]ABS.Guide for the fatigue assessment of offshore structures[S].New York:American Bureau of Shipping,2003.

    [9]DNV.Fatigue design of offshore steel structures[K].DNV Recommended Practice DNV-RP-C203,2010.

    [10]CCS.Guidelines for fatigue strength assessment of offshore engineering structures[M].China Classification Society,2013.

    [11]McEvily A J,Ishihara S.On the dependence of the rate of fatigue crack growth on theparameter[J].International Journal of Fatigue,2001,23(2):115-120.

    [12]Wang Y,Cui W,Wu X,et al.The extended McEvily model for fatigue crack growth analysis of metal structures[J].International Journal of Fatigue,2008,30(10):1851-1860.

    [13]Cui W,Wang F,Huang X.A unified fatigue life prediction method for marine structures[J].Marine Structures,2011,24 (2):153-181.

    [14]Huang X,Moan T.Improved modeling of the effect of R-ratio on crack growth rate[J].International Journal of Fatigue, 2007,29(4):591-602.

    [15]Huang X,Torgeir M,Cui W.An engineering model of fatigue crack growth under variable amplitude loading[J].International Journal of Fatigue,2008,30(1):2-10.

    [16]Huang X,Moan T,Cui W.A unique crack growth rate curve method for fatigue life prediction of steel structures[J].Ships and Offshore Structures,2009,4(2):165-173.

    [17]Fricke W.Fatigue analysis of welded joints:State of development[J].Marine structures,2003,16(3):185-200.

    [18]Yan X,Huang X,Liang Y,et al.Stress intensity factor for surface crack at weld toe of ocean engineering under wave loads[J].Journal of Shanghai Jiao Tong University,2014.(in Chinese)

    [19]BS7910.Guide to methods for assessing the acceptability of flaws in metallic structures[M].British Standards Institution, 2005.

    [20]Bowness D,Lee M M K.Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints[J].International Journal of Fatigue,2000,22(5):369-387.

    [21]Yan X,Huang X.A method to predict stress intensity factor of surface crack at weld toe of offshore structures under wave loads[J].Advanced Materials Research,2014.

    [22]Hu Yuren,Chen Bozhen.Fatigue reliability analysis for structures in ship and ocean engineering[M]Beijing:China Communication Press,2010.(in Chinese)

    [23]Tomita Y,Matobat M,Kawabel H.Fatigue crack growth behavior under random loading model simulating real encountered wave condition[J].Marine Structures,1995,8(4):407-422.

    [24]Prasetyo F A,Osawa N,Tsutumi S,et al.Study on a load history generation method based on‘Storm Model’for fatigue assessment of ship structural members[C].The Twentieth International Offshore and Polar Engineering Conference.International Society of Offshore and Polar Engineers,2010.

    [25]Moon C H,Hashimoto K,Song Y,et al.Experimental study on fatigue strength of welded joints under storm loading[C]. ASME 2011 30th International Conference on Ocean,Offshore and Arctic Engineering.American Society of Mechanical Engineers,2011:487-495.

    [26]Mao W,Prasetyo F A,Ringsberg J W,et al.A comparison of two wave models and their influence on fatigue damage in ship structures[C].ASME 2013 32nd International Conference on Ocean,Offshore and Arctic Engineering.American Society of Mechanical Engineers,2013.

    [27]IIW.Recommendations for fatigue design of welded joints and components[M].International Institute of Welding,2004.

    海洋結(jié)構(gòu)物疲勞裂紋擴(kuò)展壽命的一種工程預(yù)報(bào)方法

    閆小順1,2,黃小平2,崔維成3

    (1中國(guó)艦船研究設(shè)計(jì)中心,武漢430064;2上海交通大學(xué) 海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200030;3上海海洋大學(xué) 深淵科學(xué)技術(shù)研究中心,上海201306)

    海洋結(jié)構(gòu)物疲勞壽命的準(zhǔn)確預(yù)報(bào)對(duì)海洋結(jié)構(gòu)安全具有重要意義。基于裂紋擴(kuò)展的壽命預(yù)報(bào)相比于常規(guī)的基于累積損傷理論的壽命預(yù)報(bào)方法,能夠考慮載荷次序、初始缺陷等重要因素的影響,各大船級(jí)社極力推進(jìn)裂紋擴(kuò)展理論在海洋工程中的應(yīng)用。文章從裂紋擴(kuò)展法則、應(yīng)力強(qiáng)度因子求解、疲勞載荷譜模擬上對(duì)裂紋擴(kuò)展理論的工程應(yīng)用進(jìn)行研究,試圖找出準(zhǔn)確、合理且相對(duì)簡(jiǎn)單的方法。結(jié)合裂紋擴(kuò)展的單一曲線模型、基于有限元子模型技術(shù)的應(yīng)力強(qiáng)度因子求法以及基于譜分析的疲勞載荷譜產(chǎn)生方法,對(duì)某半潛式鉆井平臺(tái)典型焊接節(jié)點(diǎn)進(jìn)行基于裂紋擴(kuò)展疲勞壽命預(yù)報(bào),并討論了初始裂紋尺寸對(duì)疲勞壽命的影響。結(jié)果表明,該半潛平臺(tái)焊接結(jié)構(gòu)符合設(shè)計(jì)壽命的要求,初始裂紋尺寸對(duì)疲勞壽命影響很大,可為海洋結(jié)構(gòu)物基于裂紋擴(kuò)展的疲勞壽命預(yù)報(bào)提供參考。

    疲勞裂紋擴(kuò)展;單一曲線模型;譜分析;應(yīng)力強(qiáng)度因子;半潛平臺(tái)

    U661.4

    :A

    閆小順(1990-),男,中國(guó)艦船研究設(shè)計(jì)中心工程師;

    U661.4

    A

    10.3969/j.issn.1007-7294.2016.03.009

    1007-7294(2016)03-0323-12

    黃小平(1963-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院副教授,通訊作者;

    崔維成(1963-),男,上海海洋大學(xué)深淵科學(xué)技術(shù)研究中心教授,博士生導(dǎo)師。

    Received date:2015-12-30

    Foundation item:Supported by National Natural Science Foundation of China(Project No.51279102)

    Biography:YAN Xiao-shun(1990-),male,engineer of China Ship Develop and Design Center;

    HUANG Xiao-ping(1963-),male,Ph.D.,associate professor of Shanghai Jiao Tong University,E-mail: xphuang@sjtu.edu.cn;

    CUI Wei-cheng(1963-),male,Ph.D.,professor/tutor of Shanghai Ocean University.

    猜你喜歡
    黃小平海洋大學(xué)壽命
    人類壽命極限應(yīng)在120~150歲之間
    中老年保健(2021年8期)2021-12-02 23:55:49
    中國(guó)海洋大學(xué)作品選登
    回聲與原聲
    小讀者(2020年6期)2020-12-04 15:13:55
    倉(cāng)鼠的壽命知多少
    中國(guó)海洋大學(xué) 自主招生,讓我同時(shí)被兩所211大學(xué)錄取
    馬烈光養(yǎng)生之悟 自靜其心延壽命
    心動(dòng)的想法
    人類正常壽命為175歲
    奧秘(2017年12期)2017-07-04 11:37:14
    ?? ??? ???? ????
    La communication sino-fran?aise
    99九九线精品视频在线观看视频| 人人妻人人澡人人看| 男人爽女人下面视频在线观看| 久久青草综合色| 成人影院久久| 成人国产av品久久久| 男女高潮啪啪啪动态图| 亚洲高清免费不卡视频| 少妇 在线观看| 日日啪夜夜爽| 人妻制服诱惑在线中文字幕| 欧美亚洲 丝袜 人妻 在线| 日韩不卡一区二区三区视频在线| 国产男人的电影天堂91| 久久精品久久精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 精品国产国语对白av| 精品久久久久久久久av| 韩国高清视频一区二区三区| 精品少妇久久久久久888优播| 亚洲激情五月婷婷啪啪| 日本午夜av视频| 国产男人的电影天堂91| 一本大道久久a久久精品| 在线观看www视频免费| 91成人精品电影| 蜜桃在线观看..| 欧美97在线视频| 999精品在线视频| av不卡在线播放| 国产欧美另类精品又又久久亚洲欧美| av国产精品久久久久影院| 一区二区三区乱码不卡18| 建设人人有责人人尽责人人享有的| av在线app专区| 麻豆成人av视频| 永久网站在线| 久久精品久久久久久噜噜老黄| 一边亲一边摸免费视频| 国产在视频线精品| 一边摸一边做爽爽视频免费| 精品久久久噜噜| 五月开心婷婷网| 免费观看a级毛片全部| 国产亚洲欧美精品永久| 美女内射精品一级片tv| 秋霞在线观看毛片| 一级毛片aaaaaa免费看小| 亚洲成色77777| 欧美精品一区二区免费开放| 成人影院久久| 99热6这里只有精品| 午夜影院在线不卡| 国产男女超爽视频在线观看| 久久久久精品久久久久真实原创| videossex国产| 免费看av在线观看网站| 尾随美女入室| 欧美日韩成人在线一区二区| 黑人高潮一二区| 夜夜骑夜夜射夜夜干| 久热久热在线精品观看| 高清视频免费观看一区二区| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| 国产片内射在线| 成年人午夜在线观看视频| 十八禁高潮呻吟视频| 一个人看视频在线观看www免费| 永久免费av网站大全| 在线观看免费日韩欧美大片 | 午夜激情福利司机影院| 国产日韩欧美亚洲二区| 久久精品人人爽人人爽视色| 3wmmmm亚洲av在线观看| 黑人猛操日本美女一级片| 亚洲精品国产av成人精品| 午夜精品国产一区二区电影| 国产成人精品福利久久| 欧美日韩精品成人综合77777| 97在线视频观看| 日韩欧美精品免费久久| 精品亚洲乱码少妇综合久久| 日韩欧美一区视频在线观看| 满18在线观看网站| 亚州av有码| 国产成人免费无遮挡视频| 热re99久久精品国产66热6| 久久婷婷青草| av网站免费在线观看视频| 汤姆久久久久久久影院中文字幕| 久久午夜综合久久蜜桃| 另类精品久久| 99国产综合亚洲精品| 看非洲黑人一级黄片| 搡老乐熟女国产| 少妇 在线观看| 99久久精品一区二区三区| 亚洲在久久综合| 亚洲精品,欧美精品| 久久久精品94久久精品| 少妇人妻精品综合一区二区| 国产午夜精品一二区理论片| 久久免费观看电影| 多毛熟女@视频| 热99国产精品久久久久久7| 老熟女久久久| 边亲边吃奶的免费视频| 大码成人一级视频| 少妇猛男粗大的猛烈进出视频| 嘟嘟电影网在线观看| 国产精品不卡视频一区二区| 成人手机av| 欧美精品国产亚洲| 九色亚洲精品在线播放| 亚洲在久久综合| 永久网站在线| 久久99蜜桃精品久久| 91在线精品国自产拍蜜月| 婷婷色av中文字幕| 80岁老熟妇乱子伦牲交| 一个人看视频在线观看www免费| 亚洲,欧美,日韩| 亚洲av成人精品一区久久| 亚洲av综合色区一区| 亚洲精品第二区| 亚洲欧美中文字幕日韩二区| 国产成人aa在线观看| 亚洲欧美中文字幕日韩二区| 久久精品熟女亚洲av麻豆精品| 日本免费在线观看一区| 国产伦精品一区二区三区视频9| 久久久久久伊人网av| 中文天堂在线官网| 性高湖久久久久久久久免费观看| 欧美激情 高清一区二区三区| 久久婷婷青草| 日韩电影二区| 日韩熟女老妇一区二区性免费视频| 成年美女黄网站色视频大全免费 | 国产男女内射视频| 国产熟女午夜一区二区三区 | 男的添女的下面高潮视频| 超色免费av| av又黄又爽大尺度在线免费看| 精品少妇内射三级| 人妻系列 视频| 欧美激情 高清一区二区三区| 热99久久久久精品小说推荐| 一级毛片黄色毛片免费观看视频| 亚洲av.av天堂| 啦啦啦视频在线资源免费观看| 久久久久久久大尺度免费视频| 插逼视频在线观看| 欧美性感艳星| 欧美3d第一页| tube8黄色片| 国产成人午夜福利电影在线观看| 人人妻人人爽人人添夜夜欢视频| 色网站视频免费| 精品午夜福利在线看| 51国产日韩欧美| 麻豆成人av视频| 少妇人妻久久综合中文| 韩国av在线不卡| 国产精品国产av在线观看| 伊人亚洲综合成人网| 亚洲伊人久久精品综合| 菩萨蛮人人尽说江南好唐韦庄| av网站免费在线观看视频| 最近中文字幕2019免费版| 久久亚洲国产成人精品v| 91精品一卡2卡3卡4卡| 国产精品一区二区在线观看99| 日本黄大片高清| 国产成人精品婷婷| 性色av一级| 久久久精品免费免费高清| 在线观看免费视频网站a站| 在线播放无遮挡| 精品酒店卫生间| 精品少妇黑人巨大在线播放| 少妇高潮的动态图| 边亲边吃奶的免费视频| 亚洲色图 男人天堂 中文字幕 | 男人添女人高潮全过程视频| 国产精品一区二区三区四区免费观看| 久久久久久久久久人人人人人人| 大香蕉久久网| 国产精品99久久久久久久久| 高清视频免费观看一区二区| 亚洲经典国产精华液单| 日本-黄色视频高清免费观看| 两个人的视频大全免费| 在线观看国产h片| 亚洲国产成人一精品久久久| 五月开心婷婷网| 国产永久视频网站| 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| 最近中文字幕高清免费大全6| 最近2019中文字幕mv第一页| 热re99久久精品国产66热6| 99久久精品一区二区三区| 99国产综合亚洲精品| 高清黄色对白视频在线免费看| 午夜av观看不卡| 色哟哟·www| 日韩欧美精品免费久久| 国产精品久久久久久久久免| 中文字幕制服av| 中文字幕人妻熟人妻熟丝袜美| 精品99又大又爽又粗少妇毛片| 久久久a久久爽久久v久久| 国产淫语在线视频| 久久这里有精品视频免费| 国产欧美亚洲国产| 日本av免费视频播放| 美女xxoo啪啪120秒动态图| 欧美成人精品欧美一级黄| 欧美97在线视频| 十八禁网站网址无遮挡| 国产精品99久久久久久久久| 成年女人在线观看亚洲视频| 大又大粗又爽又黄少妇毛片口| 午夜视频国产福利| 欧美激情 高清一区二区三区| 国产伦理片在线播放av一区| 久久亚洲国产成人精品v| 夫妻性生交免费视频一级片| 中文天堂在线官网| 如日韩欧美国产精品一区二区三区 | 永久免费av网站大全| 亚洲熟女精品中文字幕| 国产精品成人在线| 欧美日韩视频精品一区| 少妇人妻 视频| 搡女人真爽免费视频火全软件| 丰满少妇做爰视频| 欧美97在线视频| 亚洲欧美精品自产自拍| 国产精品免费大片| 麻豆精品久久久久久蜜桃| 高清视频免费观看一区二区| 蜜臀久久99精品久久宅男| 汤姆久久久久久久影院中文字幕| 国产黄频视频在线观看| 久久久亚洲精品成人影院| 日韩精品免费视频一区二区三区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线看a的网站| 哪个播放器可以免费观看大片| 9色porny在线观看| 秋霞伦理黄片| 国产男人的电影天堂91| 日本91视频免费播放| 制服诱惑二区| 免费黄色在线免费观看| 天堂中文最新版在线下载| 久久精品久久精品一区二区三区| 成人午夜精彩视频在线观看| 精品一区二区免费观看| 亚洲高清免费不卡视频| 亚洲av综合色区一区| 午夜视频国产福利| 精品熟女少妇av免费看| 欧美日韩精品成人综合77777| 男人爽女人下面视频在线观看| 亚洲av二区三区四区| 搡老乐熟女国产| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区 | 男人操女人黄网站| 久久精品国产亚洲网站| 日韩av在线免费看完整版不卡| 国产成人av激情在线播放 | 欧美97在线视频| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄| 校园人妻丝袜中文字幕| 日本91视频免费播放| 3wmmmm亚洲av在线观看| 国产一级毛片在线| 日韩av不卡免费在线播放| 性色avwww在线观看| 国产精品99久久久久久久久| 成人影院久久| 另类亚洲欧美激情| 国产亚洲午夜精品一区二区久久| 免费人成在线观看视频色| 久久久久久伊人网av| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 欧美日韩av久久| 熟女电影av网| 美女福利国产在线| 国产精品.久久久| 在线观看美女被高潮喷水网站| 两个人免费观看高清视频| 亚洲精品色激情综合| 熟妇人妻不卡中文字幕| 69精品国产乱码久久久| 人妻系列 视频| 插逼视频在线观看| 久久久久人妻精品一区果冻| 久久99热6这里只有精品| 一区二区日韩欧美中文字幕 | 国产精品人妻久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美日韩在线播放| av免费观看日本| 秋霞在线观看毛片| 最新的欧美精品一区二区| 国产精品熟女久久久久浪| 成人亚洲欧美一区二区av| 亚洲,一卡二卡三卡| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 亚洲精品久久午夜乱码| 天堂俺去俺来也www色官网| 国产成人午夜福利电影在线观看| 一级,二级,三级黄色视频| 国产精品欧美亚洲77777| 狠狠精品人妻久久久久久综合| 免费人妻精品一区二区三区视频| 黄色视频在线播放观看不卡| 免费大片黄手机在线观看| 欧美日韩视频高清一区二区三区二| 久久久精品免费免费高清| 国产亚洲欧美精品永久| 亚洲丝袜综合中文字幕| 多毛熟女@视频| 日韩电影二区| 夫妻午夜视频| 少妇的逼水好多| 大片电影免费在线观看免费| 黄色欧美视频在线观看| 777米奇影视久久| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看| 精品99又大又爽又粗少妇毛片| 日本色播在线视频| 国产精品久久久久久久久免| 观看av在线不卡| 久久久精品区二区三区| 只有这里有精品99| a级毛色黄片| 亚洲精品久久久久久婷婷小说| 午夜激情av网站| 午夜福利在线观看免费完整高清在| 国语对白做爰xxxⅹ性视频网站| 国产白丝娇喘喷水9色精品| 国精品久久久久久国模美| 大又大粗又爽又黄少妇毛片口| 午夜av观看不卡| 国产精品一二三区在线看| 人妻夜夜爽99麻豆av| 观看美女的网站| 久久这里有精品视频免费| 日韩av免费高清视频| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| av国产精品久久久久影院| 亚洲av成人精品一区久久| 人成视频在线观看免费观看| 久久ye,这里只有精品| 人妻系列 视频| 免费av不卡在线播放| xxx大片免费视频| 国产亚洲一区二区精品| 精品国产露脸久久av麻豆| 亚洲国产最新在线播放| 日本-黄色视频高清免费观看| 性色avwww在线观看| 99精国产麻豆久久婷婷| 成人漫画全彩无遮挡| 久久久久久久亚洲中文字幕| 亚洲av中文av极速乱| 97在线视频观看| 久久精品久久久久久久性| 亚洲经典国产精华液单| 国产欧美另类精品又又久久亚洲欧美| 麻豆乱淫一区二区| 亚洲人成77777在线视频| 中国三级夫妇交换| 99热这里只有是精品在线观看| 成年美女黄网站色视频大全免费 | 成年美女黄网站色视频大全免费 | 欧美日韩成人在线一区二区| 韩国高清视频一区二区三区| 制服诱惑二区| 亚洲不卡免费看| 极品人妻少妇av视频| 九九爱精品视频在线观看| 又大又黄又爽视频免费| 亚洲图色成人| 国产一区亚洲一区在线观看| 精品人妻在线不人妻| 国产亚洲午夜精品一区二区久久| 亚洲欧美成人精品一区二区| 日韩成人av中文字幕在线观看| 亚洲久久久国产精品| 一区二区三区四区激情视频| 黑丝袜美女国产一区| 日韩免费高清中文字幕av| 亚洲国产日韩一区二区| av一本久久久久| 一级爰片在线观看| 久久久久视频综合| 女的被弄到高潮叫床怎么办| 国产极品天堂在线| 国产精品久久久久久精品电影小说| 插逼视频在线观看| 91久久精品国产一区二区成人| 另类亚洲欧美激情| 少妇人妻 视频| 妹子高潮喷水视频| av网站免费在线观看视频| 亚洲精品国产av成人精品| 国产欧美亚洲国产| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区 | √禁漫天堂资源中文www| 久久毛片免费看一区二区三区| 9色porny在线观看| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 高清黄色对白视频在线免费看| 亚洲人与动物交配视频| 成人黄色视频免费在线看| 亚洲国产成人一精品久久久| av免费在线看不卡| 亚洲精品久久成人aⅴ小说 | 日韩视频在线欧美| av天堂久久9| 日本黄色日本黄色录像| 精品久久久精品久久久| 久久久久久久久久久久大奶| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 日韩强制内射视频| 久久鲁丝午夜福利片| 国产黄片视频在线免费观看| 久久亚洲国产成人精品v| 亚洲精品乱码久久久久久按摩| 亚洲欧美成人综合另类久久久| 九色亚洲精品在线播放| 成人亚洲欧美一区二区av| 日日摸夜夜添夜夜爱| 秋霞伦理黄片| 午夜久久久在线观看| 日本欧美视频一区| 久久久久精品久久久久真实原创| 韩国高清视频一区二区三区| av.在线天堂| 久久精品久久精品一区二区三区| 国产精品国产av在线观看| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 国产黄频视频在线观看| 人妻系列 视频| 免费观看av网站的网址| 国产免费视频播放在线视频| 午夜免费观看性视频| 少妇的逼好多水| 日韩视频在线欧美| 国产精品国产三级国产av玫瑰| 亚洲国产成人一精品久久久| av网站免费在线观看视频| 少妇人妻精品综合一区二区| 久久久久久久久久久久大奶| 中文字幕精品免费在线观看视频 | 成年人免费黄色播放视频| 男女边吃奶边做爰视频| 中文字幕久久专区| 亚洲精品乱久久久久久| 亚洲人成网站在线播| 91国产中文字幕| 麻豆乱淫一区二区| 人成视频在线观看免费观看| 一级毛片我不卡| 久久精品人人爽人人爽视色| 美女内射精品一级片tv| 看免费成人av毛片| 青青草视频在线视频观看| 考比视频在线观看| 人人妻人人澡人人看| 久久精品久久久久久噜噜老黄| 一级黄片播放器| 日本免费在线观看一区| 一区二区三区免费毛片| 亚洲经典国产精华液单| 在线观看国产h片| 欧美变态另类bdsm刘玥| 一级a做视频免费观看| 久久国产精品男人的天堂亚洲 | 午夜久久久在线观看| 秋霞伦理黄片| 97在线视频观看| 久久这里有精品视频免费| 九色成人免费人妻av| 亚洲av成人精品一区久久| 久久久久视频综合| av专区在线播放| 国产男女内射视频| 精品一区二区三卡| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 亚洲一级一片aⅴ在线观看| av在线app专区| 亚洲美女视频黄频| 如何舔出高潮| 国产精品一国产av| 亚洲精品国产av蜜桃| 免费人妻精品一区二区三区视频| 黄色视频在线播放观看不卡| 国产女主播在线喷水免费视频网站| 亚洲欧美中文字幕日韩二区| 国产极品天堂在线| 嘟嘟电影网在线观看| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 男人操女人黄网站| 国产精品国产三级国产专区5o| 美女主播在线视频| 香蕉精品网在线| 日韩伦理黄色片| 97在线人人人人妻| 亚洲国产av新网站| 美女视频免费永久观看网站| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 国产极品粉嫩免费观看在线 | 成人亚洲精品一区在线观看| 18禁在线无遮挡免费观看视频| 高清午夜精品一区二区三区| 国模一区二区三区四区视频| 一级毛片黄色毛片免费观看视频| 欧美日韩av久久| 久久99一区二区三区| 国产精品一区www在线观看| 亚洲精品aⅴ在线观看| 少妇熟女欧美另类| 街头女战士在线观看网站| 人妻系列 视频| 一区二区三区精品91| 婷婷成人精品国产| 少妇人妻久久综合中文| 国产高清三级在线| 欧美另类一区| 赤兔流量卡办理| 久久人人爽av亚洲精品天堂| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 日韩,欧美,国产一区二区三区| 国产成人av激情在线播放 | 日本wwww免费看| 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 亚洲欧美色中文字幕在线| 男女边吃奶边做爰视频| 欧美日本中文国产一区发布| 午夜福利视频精品| 少妇 在线观看| 日韩av在线免费看完整版不卡| 成年人午夜在线观看视频| 母亲3免费完整高清在线观看 | 国产毛片在线视频| 一区二区三区四区激情视频| 国产熟女欧美一区二区| 国产黄色视频一区二区在线观看| 男人操女人黄网站| 亚洲丝袜综合中文字幕| 久久精品久久精品一区二区三区| 欧美精品一区二区大全| 成人二区视频| 国产成人免费观看mmmm| 精品一品国产午夜福利视频| 欧美性感艳星| 国产在线免费精品| 一本久久精品| 我的老师免费观看完整版| 建设人人有责人人尽责人人享有的| av免费观看日本| 涩涩av久久男人的天堂| 大码成人一级视频| av视频免费观看在线观看| 青青草视频在线视频观看| 少妇高潮的动态图| 插阴视频在线观看视频| 99国产综合亚洲精品| 亚洲国产精品成人久久小说| 亚洲精品乱码久久久久久按摩| 天堂俺去俺来也www色官网| 69精品国产乱码久久久| 十八禁高潮呻吟视频| 少妇的逼好多水| 久久久精品免费免费高清| 在线观看美女被高潮喷水网站| 国产精品一区二区三区四区免费观看| 王馨瑶露胸无遮挡在线观看| 在线看a的网站| 国产精品一二三区在线看| 看非洲黑人一级黄片| 精品亚洲成国产av| 日本猛色少妇xxxxx猛交久久| 欧美激情 高清一区二区三区| 欧美日韩视频高清一区二区三区二| 久久久久久久久久久免费av| 一本久久精品| 母亲3免费完整高清在线观看 | videosex国产| 国产在视频线精品| 国产女主播在线喷水免费视频网站| 亚洲精品第二区|