• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatigue Reliability Analysis for the Manned Cabin of Deep Manned Submersibles Based on the Unified Fatigue Life Prediction Method

    2016-05-16 02:42:05,,
    船舶力學 2016年3期
    關鍵詞:海洋大學分析方法壽命

    ,,

    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.Hadal Science and Technology Research Center, Shanghai Ocean University,Shanghai 201306,China)

    Fatigue Reliability Analysis for the Manned Cabin of Deep Manned Submersibles Based on the Unified Fatigue Life Prediction Method

    WANG Ying-ying1,WANG Fang2,CUI Wei-cheng2

    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.Hadal Science and Technology Research Center, Shanghai Ocean University,Shanghai 201306,China)

    Fatigue is generally the most common failure mechanism of metal structures,and it is widely known that there always exist uncertainties in structures because of variations in the process of design,fabrication,manufacture,and operation.Those uncertainties may be transmitted into the fatigue life of structures under cyclic loads,and fatigue reliability analysis methods are developed to accommodate those uncertainties in the prediction of fatigue life.In this paper,the feasibility to combine the unified fatigue life prediction(UFLP)method and the reliability analysis methods is carried out to offer a safety guidance in the usage of the structures.The limit state function is established based on the UFLP,and the effect of every parameter in fatigue life estimation is evaluated,then the fatigue reliability analysis based on a series of experimental data is carried out as an example by means of both the Monte-Carlo simulation and the JC method,the results of which are in good agreement with each other.

    fatigue;crack growth;fracture mechanics

    0 Introduction

    Fatigue is generally the most common failure mechanism of metal structures.It has been reported that 80%-90%of all observed failures in mechanical and structural systems can be accounted for by fatigue[1].In reality,there always exist uncertainties in structures because of variations in the process of design,fabrication,manufacture,and operation,etc[2],and those uncertainties will have their own effects on the fatigue life of the structures.It may be too dangerous or over-conservative to use deterministic methods to predict the fatigue life.To overcome these drawbacks,the fatigue reliability analyses should be carried out to accommodate those uncertainties in the prediction of fatigue life[3].Reliability is the capacity of a structureto fulfill its specified functions in an assigned period[4].In the literature,the fatigue reliability refers to the probability that the structure will not fail due to metal fatigue.Fatigue reliability analysis tries to ensure that the occasions leading to catastrophe are extremely unlikely for a given targeted probability of failure[5].Many studies have been carried out to develop fatigue analysis methods[2,6-14],and lots of achievements have been made.

    A unified fatigue life prediction(UFLP)method was proposed for fatigue analysis which has been proved to be a satisfactory approach based on crack growth rate theory by lots of validation analysis made in a deterministic way[15-16].However,the uncertainties during analysis were neglected which will be made up in the present paper.To achieve this,a brief overview on the fatigue reliability analysis regime is presented and two main kinds of fatigue reliability analysis methods are introduced firstly.Then the unified fatigue life prediction(UFLP)which can explain the crack growth behavior well is introduced.Based on that,the limit state function is established.And an example of the fatigue reliability analysis on a series of experimental data is accordingly carried out to exhibit the process.

    1 An overview on the fatigue reliability analysis of the structures

    1.1 Fatigue reliability analysis

    Fatigue life of metal structures scatters as a result of the inherent uncertainties,and it is better to assess the fatigue life probabilistically rather than deterministically.The most common probabilistic assessment method is the fatigue reliability analysis[3].

    Fatigue reliability analyses were applied in composite laminates[17],the highway and railway steel bridges[12,18-22],aerospace[23],offshore platform engineering systems[24-25],as well as many other fields during past several decades.Nowadays,fatigue reliability analyses are more and more commonly used in real practice,and they are usually involved in the optimization design.

    In general,fatigue reliability analyses can be classified into two main categories which are respectively based on the conventional damage accumulation theory and fracture mechanics. The conventional method often employs the stress-life curve of the material to evaluate fatigue life[26-27]for high-cycle fatigue,and the strain-life curve according to the strain response of the material for low-cycle fatigue[28-31].As there are always notches,voids and inclusions in the material which can be regarded as the initiation of the cracks or the precracks,it is more accurate to use fracture mechanics to predict the probability whether a crack grows to/over a critical size.

    1.2 Two kinds of fatigue reliability analysis methods

    As introduced above,the uncertainties due to intrinsic flaws and extrinsic conditions will be drawn into the fatigue life of the structures[32].Reliability is the capacity of a structure to fulfill its designed functions in an assigned period[4].The fatigue reliability is the reliability that the structure will not fracture due to metal fatigue.Its analysis will combine probabilistic theory and fatigue life prediction methods.

    1.2.1 Reliability index

    The failure probability of a structure is Pf,whereand β is the reliability index,is the state limit function[33].is the standard normal cumulative probability function,then

    Therefore,it can be deduced thatIt is easy to reach the conclusion that with a larger β,a structure is of a higher reliability.

    From geometric perspective,the random variables in the original space areand they can be transformed into the normal random variablesin the standard normal space(u space)by means proposed by Rosenblatt[35].It is defined that the shortest distance from the origin to the limit-state surface in u space is the reliability index[36],written as β.As aforementioned,in the u space,β can be calculated as follows:

    The solution to Eq.(2)is the most probable point(MPP for short)[34]uMPP.

    1.2.2 Fatigue reliability analysis methods

    1.2.2.1 Monte-Carlo method

    There are several methods to carry out reliability analysis,among which the Monte-Carlo method is quite straightforward[32].Monte-Carlo method is based on the law of great numbers and it can be used without any statistical information[37]while in the fatigue analysis,the distribution ought to be known as a priori.The calculation flow chart of Monte-Carlo method is shown in Fig.1.Theoretically speaking,the Monte-Carlo method will not confront either nonlinear approximation or equivalent normalization,and so given adequate simulation it can obtain any accuracy, in some sense the Monte-Carlo method can offer a reference to the reliability analysis[18]. The Monte-Carlo method is convenient to use because it is flexible for whatever types of distributions and whatever forms of constraint functions[2].However,the efficiency of Monte-Carlo method is not high,especially when the simulation number N is large.If z1-α/2denotes the 1-α/2 quantile of the standard nor-mal distribution and Pfis the failure probability,ε is the percentage error,there exists[2,38],

    Fig.1 The flow chart of Monte-Carlo method calculating reliability index

    It can be seen from Eq.(3)that the Monte-Carlo simulation number will be very large to obtain a high accuracy,which would therefore cause expensive computational and time burden.Several more efficient sampling methods were developed to improve the simulation efficiency,such as Descriptive Sampling[39-40]and Importance Sampling[41-42],besides that the principle of JC method is another efficient method widely used in fatigue reliability analyses.

    1.2.2.2 JC method

    The JC method is based on the idea of MPP,and is originally developed in the regime of reliability analysis[36].Nowadays,the JC method is not only a main method in the regime of reliability analysis but is widely used in the field of optimization design[43].Expand the limit state function into Taylor series at MPP[32,44],and the terms whose orders are more than 1 are neglected

    And the mean value and variance can be expressed as:

    The reliability index is,

    And the coordinates of the MPP are,

    2 Unified fatigue life prediction method(UFLP)

    It is very pivotal to calculate the crack growth rate in the fatigue performance predictionframe[19].A lot of crack growth models have been proposed to describe the crack growth rate curves till now.Paris law is the earliest and most widely used crack growth model based on the linear elastic fracture mechanics.Paris law has a simple form and is convenient to use,but it can not account for the effects of the load ratio[45],the mean stress and the load sequence,and can be applied for the stable growth stage only[46].

    Thereafter hundreds of crack growth models were developed to explain more phenomena in crack growth[47-53].On the basis of McEvily model[51],the authors’group proposed a unified crack growth rate formula[15]:

    where

    The fatigue life prediction approach based on the unified crack growth rate model introduced above is then called UFLP,which is proved to have the capacity of explaining various fatigue phenomena,such as specimen thickness effect,compressive to compressive loading effect and overload effect,etc[15].

    3 The limit state function

    3.1 The probabilistic fatigue model

    In the case of failure due to fatigue,the state limit functions can be established by the probabilistic fatigue models which describe the fatigue performance[54],such asgis the uncertain variables.The subscript‘N’refers to the total stress cycles;aNand KNare respectively the corresponding crack length and the stress intensity factor at N cycles.Similarly,acand KICare respectively the corresponding values of the crack length and the stress intensity factor at the critical state of fracture.

    In the present paper,the state limit function is defined asand the reliability of a component or structure is as follows,

    If there is,

    3.2 Establishment of the limit-state function

    In this paper,the crack growth model is UFLP,integrating Eq.(18)from a0to ac,so that

    The limit state function can be expressed in the form of

    4 An example of the fatigue reliability analysis

    In Eq.(10),A and m can be obtained by fitting,and in general,m is taken as a constant[55-56],and other parameters are obtained either by fitting or by measuring.The effect of each parameter on the fatigue life is different in significance.For a series of experimental data of titanium alloy TC4-ELI with number of 5904 in which the TC specimens are imposed constant amplitude loads,and the parameters are shown in Tab.1.

    Tab.1 The values of the parameters involved in the limit state

    4.1 The uncertain variables

    The effects on fatigue life of each parameter varying with the other parameters unchanged are illustrated in Figs.2-11.In the present analysis,m is treated as a constant according to the suggestions of Fisher[55]and Wirsching[56].Qualitatively,it can be seen from the figures that the fatigue life has a little scatter with variations of σy,σv,σb,re,n,KICand aN.However,it is easily to observe that the effects of A and a0on the fatigue life are significant which can be explained by Eq.(10)that the crack growth rate da/dN is proportional to parameter A,and then the variation in the value of A leads to different fatigue life proportionally.The initial crack length a0decides the crack growth rate in the beginning,i.e.,with the shorter macro-crack a0which is just larger than its threshold value,the crack propagates slower dramatically,therefore the fatigue life will increase significantly.Fig.11 illustrates that the fatigue life will increase(/reduce)by 80%(/almost1/3)when initial length of the crack decreases(/increases)by 16%.Fig.7 depicts the trend that fatigue life changes to a certain degree with variation of Keffth, nevertheless,Keffthis calculated by Eq.(14)where athis obtained through Eq.(15),thus Keffthis calculated through crack growth rate tests[16]in essence,i.e.,Keffthwill not change by a large margin and is not regarded as a variable in this paper.Generally speaking,it is reasonable to choose A and a0to be the uncertain variables in fatigue reliability analysis.It is supposed that both A and a0follow the lognormal distribution[57-59].In marine structures,a0is usually measured by either Non Destructive Evaluation(NDE)or the Equivalent Initial Flaw Size(EIFS)[19]. The test data used in this paper,actually,aim to study the crack fatigue behavior instead of the fatigue reliability,so that we assume the statistical properties of a0,and that is also the reason why the initial length of a0is quite large.In literature,different suggestions on a0havebeen made.For example,Albrecht&Yazdani[60]and Zhao et al[61]suggested the initial length of crack to be a lognormal variable with mean of 0.02 inch and a CoV of 0.5 while Li& Huang[19]suggested the initial length of crack to be a lognormal variable with mean of 1mm and a CoV of 0.3.In the present paper,to demonstrate of the fatigue reliability analysis procedure,it is without loss of generality that we assume the initial length of crack following a lognormal distribution with mean of 19.027 mm(as the crack begins to propagate in test)and a CoV of 0.3.The crack growth test specimens were conducted using an MTS810 servo-hydraulic testing machine.Standard C-T specimens with dimensions of B=12.5 mm;W=100 mm were cut and machined from 90 mm-thick hot rolled thick plate at load ratio of 0.0 to obtain crack growth rate data.

    The statistics of A is obtained by MATLAB when fitting the crack growth curve.Then the statistical properties of A and a0are listed in Tab.2.

    Tab.2 The statistical properties of the uncertain variables in the limit state

    Fig.2 The effect of σyon the a-N curve

    Fig.3 The effect of σvon the a-N curve

    4.2 The fatigue reliability analysis

    Fig.12 illustrates the experimental results and the simulation results of the crack growth. It can be seen that the crack grows at a quite large rate because the value of a0is quite large. Fig.13 illustrates the results of fatigue reliability analyses both by Monte-Carlo simulation and the JC method.Both of the results are in good agreement with each other.However,as the value of a0in the test is relatively large,which means the structure has more serious defects,the reliability index β is relatively small.It can be seen from Fig.13 that the value of β has dropped to 3 after about 130 cycles,i.e.the fatigue probability of the structure is about 0.13%.Fig.13 implies that it is not applicable to expect a high fatigue reliability index with larger crack initial length.The present test is lack of crack growth data in its earlier stage,then Eq.(10)can not be extrapolated to the region in which the crack length shorter than a0.However,it is promising that the fatigue life with a small initial crack size under the same circumstances would be longer and that the fatigue reliability index would maintain a higher level. More work will be done in the future.

    Fig.4 The effect of σbon the a-N curve

    Fig.5 The effect of reon the a-N curve

    Fig.6 The effect of n on the a-N curve

    Fig.7 The effect of Keffthon the a-N curve

    Fig.8 The effect of KICon the a-N curve

    Fig.9 The effect of aNon the a-N curve

    Fig.10 The effect of A on the a-N curve

    Fig.11 The effect of a0on the a-N curve

    Fig.12 The crack growth rate curve

    Fig.13 The reliability index β.vs.N

    5 Conclusions

    In this paper,the method of fatigue reliability analysis based on the unified fatigue life prediction(UFLP)model has been introduced and the reliability theory to evaluate the fatigue reliability index of a structure is demonstrated.A reliability analysis on a series of experimental data has been carried out for illustration and the main conclusions can be drawn as follows:

    (1)The limit state function can be established through several ways,and in this paper it was established bybased on UFLP method which has the capacity of describing the crack growth behavior well.

    (2)Several parameters will affect the fatigue life in different levels.It is necessary to separately evaluate the effects of each parameter in limit state function on the fatigue life.In the cases studied presently,only A and a0are regarded as the uncertain variables,and the same procedure can be applied in other circumstances.

    (3)Two kinds of methods have been employed in the present paper to assess the fatigue reliability and it turned out that the Monte-Carlo method and the JC method drew similar results,indicating the feasibility of combing UFLP and reliability methods to assess fatigue reliability.

    Acknowledgments

    This work is supported by the Sci-tech Innovation Funds from CSSRC(Grant No.G3314) and the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deep-sea Manned Submersibles’(Grant No.51439004).

    [1]Wirsching P.Application of reliability methods to fatigue analysis and design[M].Recent Developments in Reliability Based Civil Engineering(Haldar A,ed).World Scientific Publishing Co.,2006.

    [2]Du X,Wei C.Towards a better understanding of modeling feasibility robustness in engineering design[J].Journal of Mechanical Design,2000,122:385-394.

    [3]Hu Z,Du X,Conrad D,Twohy R,Walmsley M.Fatigue reliability analysis for structures with known loading trend[J]. Structural&Multidisciplinary Optimization,2014,50:9-23.

    [4]Gao Z,Xiong J.Fatigue reliability[M].Beijing:Beijing University of Aeronautics and Astronautics Press,2000.(in Chinese)

    [5]Du X,Sudjianto A,Huang B.Reliability-based design with the mixture of random and interval variables[J].Journal of Mechanical Design,2005,127(2):1068-1076.

    [6]Choi S,Grandhi R,Canfield R.Reliability-based structural design[M].Springer,London,2007.

    [7]Echard B,Gayton N,Bignonnet A.A reliability analysis method for fatigue design[J].International Journal of Fatigue, 2014,59:292-300.

    [8]Lee Y,Song J.Finite-element-based system reliability analysis of fatigue-induced sequential failures[J].Reliability Engineering&System Safety,2012,108:131-141.

    [9]Norouzi M,Nikolaidis E.Efficient method for reliability assessment under high-cycle fatigue[J].International Journal of Reliability Quality and Safety Engineering,2012,19(5):1-27.

    [10]Liu Y,Mahadevan S.Efficient methods for time-dependent fatigue reliability analysis[J].AIAA Journal,2009,47(3): 494-504.

    [11]Li F,Low Y.Fatigue reliability analysis of a steel catenary riser at the touch down point incorporating soil model uncertainties[J].Applied Ocean Research,2012,38:100-110.

    [12]Guo T,Chen Y.Fatigue reliability analysis of steel bridge details based on field-monitored data and linear elastic fracture mechanics[J].Structure Infrastructure Engineering:Maintenance,Management,Life-Cycle Design and Performance, 2013,9(5):496-505.

    [13]Lee D,Kim S,Sung K,Park J,Lee T,Huh S.A study on the fatigue life prediction of tire belt-layers using probabilistic method[J].Journal of Mechanical Science and Technology,2013,27(3):673-678.

    [14]Le X,Peterson M.A method for fatigue based reliability when the loading of a component is unknown[J].International Journal of Fatigue,1999,21:603-610.

    [15]Cui W,Wang F,Huang X.A unified fatigue life prediction method for marine structures[J].Marine Structures,2011,24 (2):153-181.

    [16]Wang F,Chen F L,Cui W C.Applicability of the improved crack growth rate model and its parameters estimation method [J].Journal of Ship Mechanics,2010,14(3):252-262.

    [17]Talreja R.A mechanisms-based reliability model for fatigue of composite laminates[J].ZAMM Journal of Applied Mathematics and Mechanics,2015,95(10):1058-1066.

    [18]Ge Y,Zhou Z,Xiang H.Reliability assessment of bridge flutter based on modified FOSM method[J].Structure Engineers, 2006,22(3):47-51.

    [19]Li Y,Huang Q.Fracture mechanics approach based fatigue reliability assessment on steel bridges[J].Science Technology and Engineering,2008,16(8):4450-4457.

    [20]Zhao Z,Haldar A,ASCE F,Florence L,Breen Jr.Fatigue-reliability evaluation of steel bridges[J].Journal of Structural Engineering,1994,120(5):1608-1623.

    [21]Ni Y,ASCE M,Ye X,Ko J,ASCE F.Monitoring-based fatigue reliability assessment of steel bridges:Analytical model and application[J].Journal of Structural Engineering,2010,136(12):1563-1573.

    [22]Mirzaei Rafsanjani H,S?rensen J D.Reliability analysis of fatigue failure of cast components for wind turbines[J].Energies,2015,8:2908-2923.

    [23]Asi O,Ye■il ?.Failure analysis of an aircraft nose landing gear piston rod end[J].Engineering Failure Analysis,2013, 32:283-291.

    [24]Dong W,Moan T,Gao Z.Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection[J].Reliability Engineering and System Safety,2012,106:11-27.

    [25]Aghakouchak A,Stiemer S.Fatigue reliability assessment of tubular joints of existing offshore structures[J].Canadian Journal of Civil Engineering,2001,28:691-698.

    [26]Albrecht P.S-N fatigue reliability analysis of highway bridges[J].ASTM,1983,798:184-204.

    [27]Mohammadzadeh S,Ahadi S,Nouri M.Stress-based fatigue reliability analysis of the rail fastening spring clip under traffic loads[J].Latin American Journal of Solids and Structures,2014,11:993-1011.

    [28]Correia JAFO,De Jesus AMP,Fern′andez-Canteli A.Local unified probabilistic model for fatigue crack initiation and propagation:application to a notched geometry[J].Engineering Structures,2013,52:394-407.

    [29]Zhang D,Geng H,Zhang Z,Wang D,Wang S,Ge S.Investigation on the fretting fatigue behaviors of steel wires under different strain ratios[J].Wear,2013,303(1-2):334-342.

    [30]Zhao Y.On the strain-based fatigue reliability analysis[J].Chinese Journal of Mechanical Engineering,2001,37(11):1-6.

    [31]Jin H,Zhou Q,Zhang Q.Finite element method in strain-based fatigue reliability analysis[J].Journal of Tongji University (Natural Science),2006,34(4):438-442.

    [32]Pan B.Reliability based multidisciplinary design optimization of deep manned submersible[D].Wuxi:China Ship Science Research Center,2013.

    [33]Mahadevan S.Reliability-based mechanical design[M].Cruse,T A,ed.,Dekker,New York,1997.

    [34]Du X,Chen W.A most probable point based method for uncertainty analysis[C].Proceedings of DETC′00,ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2000:1-10.

    [35]Rosenblatt M.Remarks on a multivariate transformation[J].The Annals of Mathematical Statistic,1952,23:470-472.

    [36]Hasofer A,Lind N.Exact and invariant second-moment code format[J].Journal of the Engineering Mechanics Division, 1974,100(EMI):111-121.

    [37]Lorén S,Svensson T.Second moment reliability evaluation vs.Monte Carlo simulations for weld fatigue strength[J].Quality and Reliability Engineering International,2012,28:887-896.

    [38]Law A,Kelton W.Simulation modeling and analysis[M].McGraw-Hill Company,New York,1982.

    [39]Saliby E.Descriptive Sampling:A better approach to Monte Carlo simulation[J].The Journal of the Operational Research Society,1990,41:1133-1142.

    [40]Ziha K.Descriptive sampling in structural safety[J].Structural Safety,1995,17:33-41.

    [41]Harbitz A.An efficient sampling method for probability of failure calculation[J].Structural Safety,1986,3(1):109-115.

    [42]Melchers R.Importance sampling in structural system[J].Safety,1986,6(1):3-10.

    [43]Maglaras G,Ponslet E,Haftka R,Nikolaidis E,Sensharma P,Cudney H.Analytical and experimental comparison of probabilistic and deterministic optimization[J].AIAA J,1996,34:1512-1518.

    [44]Li Y.Research on fatigue performance and reliability of highway steel bridges[D].Harbin:Harbin Institute of Technology, 2008.

    [45]Wang Y,Wang Y,Wu X,Cui W,Huang X.A study on the relation between threshold effective stress intensity factor range and load ratio[J].Journal of Ship Mechanics,2008,12(3):105-117.

    [46]Chen F,Wang F,Cui W.Applicability of the improved crack growth rate model for a wide range of alloys under constant amplitude load[J].Journal of Ship Mechanics,2010,12:278-289.

    [47]Donahue R,Clark H,Atanmo P,Kumble R,McEvily A.Crack opening displacement and the rate of fatigue crack growth [J].International Journal of Fracture Mechanics,1972,8:209-219.

    [48]Foreman R,Kearney V,Engle R.Numerical analysis of crack propagation in cyclic-loaded structures[J].Journal of Basic Engineering,1967,89:459-464.

    [49]Elber W.Fatigue crack closure under cyclic tension[J].Engineering Fracture Mechanics,1970,2:37-45.

    [50]Kujawski D.A fatigue crack driving force parameter with load ratio effects[J].International Journal of Fatigue,2001,23: S239-S246.

    [51]McEvily A,Groeger J.On the threshold for fatigue-crack growth[C]//4th International Conference on Fracture.University of Waterloo Press,Waterloo,Canada,1977,2:1293-1298.

    [52]McEvily A,Bao H,Ishihara S.A modified constitutive relation for fatigue crack growth[C].In:Wu XR,Wang ZG(eds) Proceedings of the 7th International Fatigue Congress(Fatigue’99).Higher Education Press,Beijing,1999:329-336.

    [53]McEvily A,Ishihara S.On the dependence of the rate of fatigue crack growth on the σna2()

    a parameter[J].International Journal of Fatigue,2001,23:115-120.

    [54]Madhavan P,Veena G.Fatigue reliability analysis of fixed offshore structures:A first passage problem approach[J].Journal of Zhejiang University SCIENCE A,2006,7(11):1839-1845.

    [55]Fisher J.Fatigue and fracture in steel bridges[M].John Wiley&Sons,Inc.New York,1984:10-106.

    [56]Wirsching P.Fatigue reliability[J].Progress in Structural Engineering and Material,1998,1(2):200-206.

    [57]Fisher J,Frank K,et al.Effect of weldments on the fatigue strength of steel beams[R].National Cooperative Highway Research Program Report 102.Transportation Research Board.National Research Council,1970.

    [58]Zhao Z,Haldar A,Jr.Breen.Fatigue-reliability updating through inspections of steel bridges[J].Journal of Structural Engineering,ASCE,1994,120(5):1624-2642.

    [59]Zhang R,Mahadevan S.Fatigue reliability analysis using nondestructive inspection[J].Journal of Structural Engineering, ASCE,2001,127(8):957-965.

    [60]Albrecht P,YazdaniN.Risk analysis of extending the service life of steel bridges[M].FHWA/MD No.84/01.College Park,MD:University of Maryland,1986.

    [61]Zhao Z W,Haldar A,Breen F L.Fatigue reliability evaluation of steel bridges[J].Journal of Structural Engineering,1994, 120(5):1608-1623.

    基于統(tǒng)一的疲勞壽命預報方法(UFLP)的深潛器載人艙疲勞可靠性分析

    王瑩瑩1,王 芳2,崔維成2

    (1中國船舶科學研究中心,江蘇 無錫 214082;2上海海洋大學 深淵科學技術研究中心,上海 201306)

    疲勞是承受循環(huán)載荷的金屬結構最重要的失效機制,現(xiàn)已有多種金屬疲勞壽命預報方法。實際的設計、制造、加工和操作等工序環(huán)節(jié)中總是存在不確定性,這些不確定性的影響將在結構的疲勞壽命中富集,為此發(fā)展了疲勞可靠性分析。該文討論了將疲勞可靠性分析方法和統(tǒng)一的疲勞壽命預報方法(UFLP)相結合的可行性,為海洋結構物的安全使用提供參考。文中的極限狀態(tài)方程是基于統(tǒng)一的疲勞壽命預報方法(UFLP)得到的,并討論了其中各參數(shù)對疲勞壽命的影響;針對一組TC4-ELI的疲勞裂紋擴展數(shù)據(jù),分別采用Monte-Carlo法和JC法開展了疲勞可靠性分析,兩種分析方法得到的結果彼此符合得較好。

    疲勞;裂紋擴展;斷裂力學

    U661.4

    :A

    王瑩瑩(1983-),女,中國船舶科學研究中心博士研究生;

    U661.4

    A

    10.3969/j.issn.1007-7294.2016.03.010

    1007-7294(2016)03-0335-13

    王 芳(1979-),女,上海海洋大學副研究員;

    崔維成(1963-),男,上海海洋大學教授,博士生導師。

    Received date:2015-11-25

    Foundation item:Supported by Supported by the Sci-tech Innovation Funds from CSSRC(Grant No.G3314)and the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deep-sea Manned Submersibles’(Grant No.51439004)

    Biography:WANG Ying-ying(1981-),female,Ph.D.student,E-mail:yunbeidou@yeah.net; Wang Fang(1979-),female,associate professor.

    猜你喜歡
    海洋大學分析方法壽命
    人類壽命極限應在120~150歲之間
    中老年保健(2021年8期)2021-12-02 23:55:49
    基于EMD的MEMS陀螺儀隨機漂移分析方法
    中國海洋大學作品選登
    一種角接觸球軸承靜特性分析方法
    重型機械(2020年2期)2020-07-24 08:16:16
    倉鼠的壽命知多少
    中國海洋大學 自主招生,讓我同時被兩所211大學錄取
    中國設立PSSA的可行性及其分析方法
    中國航海(2019年2期)2019-07-24 08:26:40
    馬烈光養(yǎng)生之悟 自靜其心延壽命
    華人時刊(2018年17期)2018-12-07 01:02:20
    人類正常壽命為175歲
    奧秘(2017年12期)2017-07-04 11:37:14
    ?? ??? ???? ????
    成年版毛片免费区| 国产精品三级大全| 国产av不卡久久| 在线观看三级黄色| av一本久久久久| 偷拍熟女少妇极品色| 亚洲精品影视一区二区三区av| 一二三四中文在线观看免费高清| av国产久精品久网站免费入址| 久久久成人免费电影| 最新中文字幕久久久久| 黑人高潮一二区| 一级二级三级毛片免费看| 少妇猛男粗大的猛烈进出视频 | 亚洲在久久综合| 九草在线视频观看| 男女边摸边吃奶| 黄片无遮挡物在线观看| 久久99热这里只有精品18| 97超视频在线观看视频| 久久人人爽人人爽人人片va| 综合色av麻豆| 成年人午夜在线观看视频| 久久99热6这里只有精品| 久久精品国产亚洲av天美| 干丝袜人妻中文字幕| 久久久欧美国产精品| 国产精品一区二区三区四区免费观看| 在线观看av片永久免费下载| 少妇被粗大猛烈的视频| 91久久精品国产一区二区三区| 国精品久久久久久国模美| 一级毛片我不卡| a级毛色黄片| 直男gayav资源| 国产淫语在线视频| 国产精品一区二区三区四区免费观看| 日韩一本色道免费dvd| 五月伊人婷婷丁香| 日韩强制内射视频| 欧美成人a在线观看| 下体分泌物呈黄色| 亚洲不卡免费看| 久久这里有精品视频免费| 欧美激情国产日韩精品一区| 国产精品一区二区性色av| av在线观看视频网站免费| 成人黄色视频免费在线看| eeuss影院久久| 亚洲自偷自拍三级| 国产高清国产精品国产三级 | 久久午夜福利片| 一区二区三区免费毛片| 日本黄色片子视频| 成人欧美大片| 国产精品一区二区在线观看99| 日本色播在线视频| 有码 亚洲区| 听说在线观看完整版免费高清| 国产男女内射视频| 亚洲av日韩在线播放| 国产成人freesex在线| 成人欧美大片| 另类亚洲欧美激情| 亚洲国产成人一精品久久久| 免费在线观看成人毛片| 最后的刺客免费高清国语| 亚洲色图综合在线观看| 噜噜噜噜噜久久久久久91| 国产亚洲午夜精品一区二区久久 | 王馨瑶露胸无遮挡在线观看| 日韩av免费高清视频| 国产成年人精品一区二区| 精品国产乱码久久久久久小说| 国产亚洲5aaaaa淫片| 精品熟女少妇av免费看| av福利片在线观看| 亚洲最大成人中文| 另类亚洲欧美激情| 欧美一级a爱片免费观看看| videos熟女内射| 国产精品伦人一区二区| 精品一区二区三区视频在线| 2021少妇久久久久久久久久久| 免费观看的影片在线观看| 丰满少妇做爰视频| 精品久久久精品久久久| 中文字幕人妻熟人妻熟丝袜美| 晚上一个人看的免费电影| tube8黄色片| 精品视频人人做人人爽| 一区二区三区免费毛片| 国产黄片视频在线免费观看| 亚州av有码| 神马国产精品三级电影在线观看| 亚洲人成网站在线播| 乱码一卡2卡4卡精品| 啦啦啦啦在线视频资源| 男人爽女人下面视频在线观看| 最近手机中文字幕大全| videossex国产| 男人和女人高潮做爰伦理| 老司机影院成人| 丰满少妇做爰视频| 毛片女人毛片| 亚洲综合精品二区| 日本一二三区视频观看| 丝袜美腿在线中文| 卡戴珊不雅视频在线播放| 午夜亚洲福利在线播放| 亚洲国产精品成人综合色| 嫩草影院入口| 在线观看免费高清a一片| 青春草亚洲视频在线观看| 久久久久久国产a免费观看| 国产高清国产精品国产三级 | 久久久色成人| 一本一本综合久久| 成人无遮挡网站| 综合色丁香网| 激情 狠狠 欧美| 亚洲精品国产成人久久av| 视频区图区小说| 日本午夜av视频| 国产精品偷伦视频观看了| 九草在线视频观看| 伊人久久精品亚洲午夜| 在线播放无遮挡| 久久亚洲国产成人精品v| 久久久精品免费免费高清| 久久精品国产a三级三级三级| 亚洲精品一区蜜桃| 乱码一卡2卡4卡精品| 精品亚洲乱码少妇综合久久| 国产乱来视频区| 狂野欧美激情性bbbbbb| 天堂俺去俺来也www色官网| 别揉我奶头 嗯啊视频| 免费人成在线观看视频色| kizo精华| 黄片无遮挡物在线观看| 久久6这里有精品| 在线观看免费高清a一片| 国产淫片久久久久久久久| 午夜福利视频1000在线观看| 男人和女人高潮做爰伦理| 久久久久网色| 亚洲av免费高清在线观看| 男插女下体视频免费在线播放| 老司机影院成人| 乱系列少妇在线播放| 精品一区二区三区视频在线| 好男人在线观看高清免费视频| 黄色视频在线播放观看不卡| 免费黄色在线免费观看| 国产人妻一区二区三区在| 亚洲成人久久爱视频| 国产成人aa在线观看| 国产精品99久久99久久久不卡 | 熟女av电影| 国产精品99久久久久久久久| 亚洲国产精品国产精品| 建设人人有责人人尽责人人享有的 | 精品少妇久久久久久888优播| 少妇猛男粗大的猛烈进出视频 | av网站免费在线观看视频| www.色视频.com| 成人无遮挡网站| 国产爽快片一区二区三区| 亚洲人成网站在线播| 高清在线视频一区二区三区| 亚洲丝袜综合中文字幕| 日韩视频在线欧美| 午夜视频国产福利| 搞女人的毛片| 国产精品一区二区在线观看99| 一个人看的www免费观看视频| av天堂中文字幕网| 亚洲欧美成人精品一区二区| 国产毛片a区久久久久| 国产成人精品久久久久久| 男人舔奶头视频| 日韩欧美精品v在线| 国产黄频视频在线观看| 国产亚洲5aaaaa淫片| 一个人看的www免费观看视频| 亚洲精品乱码久久久v下载方式| 国产人妻一区二区三区在| 秋霞在线观看毛片| 超碰97精品在线观看| 狠狠精品人妻久久久久久综合| 久久久a久久爽久久v久久| 精品酒店卫生间| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区三区| 五月天丁香电影| 日韩视频在线欧美| av在线蜜桃| 高清日韩中文字幕在线| 午夜福利视频1000在线观看| 国产大屁股一区二区在线视频| 波野结衣二区三区在线| 22中文网久久字幕| 狂野欧美激情性xxxx在线观看| 狂野欧美激情性bbbbbb| 欧美+日韩+精品| av播播在线观看一区| 国产亚洲最大av| 麻豆成人午夜福利视频| 久久精品国产鲁丝片午夜精品| 亚洲av二区三区四区| 26uuu在线亚洲综合色| 色视频在线一区二区三区| 美女高潮的动态| 久久这里有精品视频免费| 国产熟女欧美一区二区| 五月玫瑰六月丁香| 最近的中文字幕免费完整| 人妻 亚洲 视频| 国产伦精品一区二区三区视频9| 久久久久精品性色| 一级毛片黄色毛片免费观看视频| 国产精品精品国产色婷婷| 日日啪夜夜爽| 亚洲av中文av极速乱| 亚洲婷婷狠狠爱综合网| 看黄色毛片网站| 亚洲av.av天堂| 国产精品国产三级国产专区5o| 免费av不卡在线播放| 激情 狠狠 欧美| 中文在线观看免费www的网站| 免费观看在线日韩| a级毛片免费高清观看在线播放| 97精品久久久久久久久久精品| 亚洲av成人精品一区久久| 我的老师免费观看完整版| 日韩伦理黄色片| 亚洲va在线va天堂va国产| 男人添女人高潮全过程视频| 自拍偷自拍亚洲精品老妇| 日本爱情动作片www.在线观看| 久久精品久久久久久久性| av专区在线播放| 日韩精品有码人妻一区| 久久久久网色| 日韩,欧美,国产一区二区三区| 五月伊人婷婷丁香| 国产老妇伦熟女老妇高清| 大又大粗又爽又黄少妇毛片口| 国产女主播在线喷水免费视频网站| 夫妻午夜视频| 国产精品久久久久久久久免| av福利片在线观看| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 亚洲高清免费不卡视频| 中文字幕人妻熟人妻熟丝袜美| 99精国产麻豆久久婷婷| 国产成年人精品一区二区| 亚洲国产精品成人久久小说| 国产毛片在线视频| 少妇被粗大猛烈的视频| 日韩免费高清中文字幕av| 涩涩av久久男人的天堂| 男女边摸边吃奶| 午夜亚洲福利在线播放| 热re99久久精品国产66热6| 中文字幕久久专区| 国产欧美亚洲国产| 大话2 男鬼变身卡| 亚洲真实伦在线观看| 日本wwww免费看| 亚洲自偷自拍三级| av国产精品久久久久影院| 成人二区视频| 亚洲成色77777| 丰满人妻一区二区三区视频av| 好男人视频免费观看在线| 人妻少妇偷人精品九色| 如何舔出高潮| 赤兔流量卡办理| 成人高潮视频无遮挡免费网站| 日本-黄色视频高清免费观看| 在线观看av片永久免费下载| 日韩中字成人| 91在线精品国自产拍蜜月| 高清在线视频一区二区三区| 99视频精品全部免费 在线| av在线播放精品| av黄色大香蕉| 免费高清在线观看视频在线观看| 能在线免费看毛片的网站| 国产色爽女视频免费观看| 亚洲最大成人中文| 美女国产视频在线观看| 毛片女人毛片| 97超碰精品成人国产| 少妇丰满av| 亚洲国产色片| 精品酒店卫生间| 亚洲精品乱久久久久久| 秋霞在线观看毛片| 白带黄色成豆腐渣| 中文精品一卡2卡3卡4更新| 婷婷色av中文字幕| 制服丝袜香蕉在线| 最近中文字幕高清免费大全6| 97在线人人人人妻| .国产精品久久| 国产黄片视频在线免费观看| av专区在线播放| 欧美日韩视频精品一区| 日本一二三区视频观看| 欧美+日韩+精品| 国产精品一及| 天堂俺去俺来也www色官网| 夫妻性生交免费视频一级片| 免费av毛片视频| 亚洲不卡免费看| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 国产黄片美女视频| 精品久久久久久电影网| 丝袜脚勾引网站| a级一级毛片免费在线观看| 国产黄色免费在线视频| 一级二级三级毛片免费看| 午夜激情福利司机影院| 秋霞伦理黄片| 又大又黄又爽视频免费| 免费黄色在线免费观看| 国产精品.久久久| av又黄又爽大尺度在线免费看| 欧美激情在线99| 成年女人在线观看亚洲视频 | 一级二级三级毛片免费看| 国产成人福利小说| 国内精品宾馆在线| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲网站| 成人免费观看视频高清| 自拍欧美九色日韩亚洲蝌蚪91 | 搞女人的毛片| 大片电影免费在线观看免费| 欧美 日韩 精品 国产| 久久久久久久久久人人人人人人| 色哟哟·www| 国产精品蜜桃在线观看| 免费观看av网站的网址| 搡老乐熟女国产| 国产久久久一区二区三区| 免费看光身美女| 亚洲综合色惰| 最近的中文字幕免费完整| 九草在线视频观看| 国产亚洲91精品色在线| 欧美丝袜亚洲另类| 国产男女超爽视频在线观看| 亚洲精品国产成人久久av| 18禁动态无遮挡网站| 白带黄色成豆腐渣| 听说在线观看完整版免费高清| 国产大屁股一区二区在线视频| 自拍偷自拍亚洲精品老妇| 亚洲综合精品二区| 国产一区二区三区综合在线观看 | 日本一二三区视频观看| 国产伦在线观看视频一区| 国产成年人精品一区二区| 久热久热在线精品观看| 国产永久视频网站| 国产成人a∨麻豆精品| 精品视频人人做人人爽| 国产一区二区在线观看日韩| 在现免费观看毛片| 少妇高潮的动态图| 男女边吃奶边做爰视频| 高清在线视频一区二区三区| 在线观看av片永久免费下载| 国产亚洲最大av| 别揉我奶头 嗯啊视频| 男女边摸边吃奶| 欧美另类一区| 国产大屁股一区二区在线视频| 午夜福利网站1000一区二区三区| 亚洲精品影视一区二区三区av| 亚洲精华国产精华液的使用体验| 亚洲精品乱久久久久久| 色视频www国产| 精品熟女少妇av免费看| 日本三级黄在线观看| 神马国产精品三级电影在线观看| 色视频www国产| 亚洲熟女精品中文字幕| 亚洲精品国产av蜜桃| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| 五月玫瑰六月丁香| 80岁老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区 | 天天一区二区日本电影三级| 一二三四中文在线观看免费高清| 美女脱内裤让男人舔精品视频| 一本久久精品| 在线看a的网站| 日韩 亚洲 欧美在线| 蜜臀久久99精品久久宅男| 干丝袜人妻中文字幕| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 少妇人妻久久综合中文| 老女人水多毛片| 亚洲精品色激情综合| 国产色婷婷99| 我要看日韩黄色一级片| 大香蕉久久网| 性色avwww在线观看| 日本黄大片高清| 最近2019中文字幕mv第一页| 国产真实伦视频高清在线观看| 如何舔出高潮| 亚洲av.av天堂| 国产色婷婷99| 在线观看国产h片| 麻豆成人av视频| 丝袜美腿在线中文| 欧美三级亚洲精品| 少妇人妻精品综合一区二区| 少妇人妻一区二区三区视频| 高清毛片免费看| 国产精品一及| 国产在线男女| 午夜亚洲福利在线播放| 三级男女做爰猛烈吃奶摸视频| 99久国产av精品国产电影| 日韩欧美 国产精品| 久久人人爽人人片av| 国产黄频视频在线观看| 日本三级黄在线观看| 国产成年人精品一区二区| 亚洲av中文字字幕乱码综合| 69人妻影院| 国产白丝娇喘喷水9色精品| 97热精品久久久久久| 夜夜看夜夜爽夜夜摸| 黄色视频在线播放观看不卡| 欧美日韩视频精品一区| 新久久久久国产一级毛片| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 国产综合精华液| 三级经典国产精品| 男人爽女人下面视频在线观看| 日产精品乱码卡一卡2卡三| 18禁动态无遮挡网站| 成人国产av品久久久| 搡老乐熟女国产| 九草在线视频观看| 亚洲四区av| 天天躁夜夜躁狠狠久久av| 女人被狂操c到高潮| 亚洲国产av新网站| 联通29元200g的流量卡| 一级二级三级毛片免费看| 成年版毛片免费区| 精品一区二区三区视频在线| 国产真实伦视频高清在线观看| 直男gayav资源| 黄色怎么调成土黄色| 国产成人freesex在线| 最后的刺客免费高清国语| av网站免费在线观看视频| 超碰97精品在线观看| 少妇人妻久久综合中文| 亚洲av中文字字幕乱码综合| 女人十人毛片免费观看3o分钟| 色网站视频免费| 乱系列少妇在线播放| 亚洲天堂av无毛| 亚洲国产精品国产精品| 成人特级av手机在线观看| 免费大片黄手机在线观看| 婷婷色综合www| 亚洲av中文av极速乱| 国产91av在线免费观看| 高清av免费在线| 精品少妇黑人巨大在线播放| 一区二区三区乱码不卡18| 91久久精品电影网| 国产一级毛片在线| 国产成年人精品一区二区| 在线播放无遮挡| 嫩草影院入口| 男女啪啪激烈高潮av片| 欧美高清性xxxxhd video| 大片电影免费在线观看免费| 国产成人freesex在线| 日本一二三区视频观看| 自拍偷自拍亚洲精品老妇| 97在线人人人人妻| 久久ye,这里只有精品| 国产黄片美女视频| 51国产日韩欧美| 精品国产三级普通话版| 男人添女人高潮全过程视频| 啦啦啦中文免费视频观看日本| 欧美三级亚洲精品| 欧美丝袜亚洲另类| 成人国产av品久久久| 精品久久国产蜜桃| 国产精品一区二区三区四区免费观看| 精品一区二区三区视频在线| 日韩中字成人| 成年女人在线观看亚洲视频 | 色网站视频免费| 久久久久国产精品人妻一区二区| 亚洲av成人精品一二三区| 日韩一区二区视频免费看| 日日摸夜夜添夜夜爱| 纵有疾风起免费观看全集完整版| 欧美 日韩 精品 国产| 大码成人一级视频| 国产一区二区三区综合在线观看 | 99久久精品一区二区三区| 亚洲欧美日韩卡通动漫| 午夜福利高清视频| 亚洲美女搞黄在线观看| 麻豆国产97在线/欧美| 国产在线男女| 一级毛片久久久久久久久女| 国产欧美亚洲国产| 久久午夜福利片| 亚洲第一区二区三区不卡| 男人爽女人下面视频在线观看| 91久久精品电影网| 日韩 亚洲 欧美在线| 2022亚洲国产成人精品| 人妻系列 视频| 亚洲成人精品中文字幕电影| 男人狂女人下面高潮的视频| 美女主播在线视频| 如何舔出高潮| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 99久久精品热视频| av在线app专区| 一本色道久久久久久精品综合| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 免费少妇av软件| 国产亚洲午夜精品一区二区久久 | 久久久久久国产a免费观看| 一级毛片aaaaaa免费看小| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频 | 91精品一卡2卡3卡4卡| 一级毛片久久久久久久久女| 国产探花极品一区二区| 69人妻影院| av天堂中文字幕网| 观看美女的网站| 少妇高潮的动态图| 久久精品夜色国产| 丰满人妻一区二区三区视频av| 欧美人与善性xxx| 男人爽女人下面视频在线观看| 久久久久精品久久久久真实原创| 另类亚洲欧美激情| 亚洲精品国产av成人精品| 国产 一区精品| 精品99又大又爽又粗少妇毛片| 亚洲自拍偷在线| 高清在线视频一区二区三区| 亚洲自偷自拍三级| 国产大屁股一区二区在线视频| 高清av免费在线| av在线亚洲专区| 最近中文字幕高清免费大全6| 色综合色国产| 亚洲综合精品二区| 久久久久久九九精品二区国产| 人妻系列 视频| 26uuu在线亚洲综合色| 国产 一区 欧美 日韩| 97在线视频观看| 亚洲欧美日韩东京热| 国模一区二区三区四区视频| 人妻夜夜爽99麻豆av| 国产精品一二三区在线看| 精品国产乱码久久久久久小说| 国产综合懂色| 欧美少妇被猛烈插入视频| 伊人久久精品亚洲午夜| 精品久久久精品久久久| 国内少妇人妻偷人精品xxx网站| 干丝袜人妻中文字幕| 亚洲伊人久久精品综合| 成人欧美大片| 久久99热这里只频精品6学生| 精品国产露脸久久av麻豆| 国产精品99久久99久久久不卡 | 午夜精品国产一区二区电影 | 欧美潮喷喷水| 午夜老司机福利剧场| 婷婷色综合大香蕉| 欧美高清成人免费视频www| 久久久色成人| 久久久成人免费电影| 免费看光身美女| 亚洲精品成人av观看孕妇| 国产男人的电影天堂91|