• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric

    2022-08-01 05:59:24XiaotingSun孫小婷YadongZhang張亞東KunpengJia賈昆鵬GuoliangTian田國良JiahanYu余嘉晗JinjuanXiang項金娟RuixiaYang楊瑞霞ZhenhuaWu吳振華andHuaxiangYin殷華湘
    Chinese Physics B 2022年7期
    關(guān)鍵詞:亞東

    Xiaoting Sun(孫小婷), Yadong Zhang(張亞東), Kunpeng Jia(賈昆鵬), Guoliang Tian(田國良),3, Jiahan Yu(余嘉晗),Jinjuan Xiang(項金娟), Ruixia Yang(楊瑞霞), Zhenhua Wu(吳振華),3,?, and Huaxiang Yin(殷華湘),3,?

    1School of Information Engineering,Hebei University of Technology,Tianjin 300401,China

    2Key Laboratory of Microelectronics Device and Integrated Technology,Institute of Microelectronics Chinese Academy of Sciences,Beijing 100029,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: MoS2,Al2O3 dielectric,NH3 in-situ doping,oxygen vacancy

    1. Introduction

    In 2004, the discovery of graphene attracted much research attention to two-dimensional (2D) materials.[1]Graphene has an ultra-high mobility of up to 2×105cm2·V-1·s-1,[2]but its gapless nature limits its applications in the field of electronic transistors. Alternative transition metal dichalcogenides(TMDs)with atomic thickness and a tunable bandgap can overcome the shortcomings of graphene and demonstrate unique optical and electrical properties.[3–6]Molybdenum disulfide (MoS2), one of the most widely studied TMDs,shows a variety of bandgaps from 1.2 eV to 1.9 eV with films from bulk to monolayer.[7]The fabricated MoS2field-effect transistors (FETs) show high carrier mobility,[8]high on–off ratios[9]and excellent subthreshold swing,[10]and have great possibilities for application in a variety of electronic devices, such as sensors,[11]photodetectors,[12]and logic devices.[13]

    Theoretically, the intrinsic mobility of MoS2FETs can reach 410 cm2·V-1·s-1,[14]but in practice the reported mobility is far less than that. There are many scattering mechanisms in the devices,including charged impurity(CI)scattering,one of the most important factors that degrades mobility.[15]For a back-gate structure FET, the interface states between the 2D channel material and the gate dielectric can be improved by using a high-κdielectric instead of SiO2to provide a special passivation process for effectively screening CI scattering. Many experimental results also show that MoS2FETs with high-κgate dielectrics, such as HfO2,[16]ZrO2,[17]and Al2O3,[18]exhibit good electrical performance. However,the oxygen vacancies and dangling bonds distributed on the surface of high-κdielectrics lead to the interface-state density of dielectrics/MoS2reaching 1011–1012cm-1·eV-1.[19]Recently, much effort has been made to decrease the interfacial defects,such as various plasma treatments(O2,N2,NH3,and CF4/O2),[20–23]rapid thermal annealing (RTA)[24,25]and dielectric-mediated doping[26]after the deposition of high-κfilms. Proper nitrogen doping into the dielectrics during the deposition process supplies an effective way to improve the quality of the dielectrics.[27]Compared with treatments after growth,in situdoping is easier and effective. However,no research has yet been reported onin situNH3doped Al2O3as a gate dielectric in MoS2FETs. In this work, MoS2FETs with NH3doped atomic layer deposition (ALD) Al2O3are systemically explored. Through x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) characterization and electrical tests,the effects of different sequences of NH3doping into the gate dielectric on device performance are investigated. The results show that MoS2FETs with ALD Al2O3doped with NH3during the final stages demonstrate the best performance;this is consistent with the results of dielectric analysis.

    2. Experiments

    In the FET experiments, a heavily doped p++ Si (100)8inch wafer was used as the back gate. The gate dielectric was formed from an ALD Al2O3thin film grown at 300°C using trimethylaluminum(TMA;Al(CH)3)and H2O as Al and oxygen precursors, respectively. Firstly, TMA vapors are pulsed into the chamber and adsorb on the substrate surface,followed by pulsing of N2into the chamber to purge the unabsorbed TMA.Then H2O vapors are pulsed to react with TMA to generate Al2O3and other by-products. At the end of the cycle,N2is pumped in to remove excess gas and any other gases produced. The control of the film thickness is achieved by changing the number of cycles. In this work, the growth rate of the undoped Al2O3film is 1.05 ?A/cycle and a 20 nm thick film is grown after 190 cycles. To realize nitrogen doping in the Al2O3dielectric layer, different sequences for introducing NH3into the growth cycle were designed in this experiment, as shown in Fig. 1. The growth sequence TMA–N2–H2O–N2–NH3–N2is called AlON (0.89 ?A/cycle, 224 cycles for 20 nm)and the sequence TMA–N2–NH3–N2–H2O–N2is called AlNO(1.05 ?A/cycle,190 cycles for 20 nm).

    Fig. 1. Schematic diagrams of one cycle with different NH3 doping sequences.

    The MoS2flake channel material was mechanically exfoliated from bulk MoS2crystal(purchased from Six Carbon Technology,Shenzhen)using scotch tape and then transferred onto the target substrate by PDMS. Next, lithography with a negative polymer resist was used to define the source/drain region. Then, the metal electrode (Ti/Au=10/40 nm) was deposited by electron beam evaporation, and the metal was stripped by lift-off to form a separate metal electrode.

    Figure 2(a) is a schematic diagram of a few-layer MoS2FET with a 20 nm Al2O3gate dielectric and Ti/Au electrodes.The prepared MoS2FET is shown in Fig.2(b),and the length and width of the channel are 3 μm and 10.86 μm,respectively.The thickness of MoS2measured by AFM is 6 nm,as shown in Fig. 2(c). Figure 2(d) shows the Raman spectra of the MoS2flake and the Raman shift between the E12gpeak (384 cm-1)and the A1gpeak(408 cm-1)is 24 cm-1.

    Fig.2. (a)Schematic of a few-layer MoS2 FET with a 20 nm Al2O3 gate dielectric and Ti/Au electrodes. (b)Optical photograph of the prepared MoS2 transistor. (c)AFM image of the MoS2 transistor with the inset showing the thickness of the MoS2 flake measured by AFM.(d)Raman spectra of MoS2 flake.

    The high-frequency(1 MHz)capacitance–voltage(C–V)curves and the electrical characteristics of MoS2FETs were measured using a Keithley 4200-SCS and an Agilent 4156C,respectively, at room temperature in an atmospheric environment.

    3. Results and discussion

    The influence ofin situNH3doping on the dielectric was explored with theC–Vtest. A metal,a gate dielectric(Al2O3,AlON, AlNO) and Si form a metal–oxide–semiconductor(MOS) capacitor structure. TheC–Vcurves of MOS capacitors measured at 1 MHz are shown in Fig.3(a). For the gate dielectrics Al2O3, AlON and AlNO, the MOS oxide capacitances per unit area (Cox) are 0.337 μF/cm2, 0.381 μF/cm2,and 0.357 μF/cm2, respectively.Coxis increased by the use of NH3doping, indicating improvement of the gate control capability. Figure 3(b) shows thekvalues of the three dielectrics and capacitance equivalent thicknesses. Based onk=(Coxtox)/ε,in whichεis the vacuum permittivity andtoxis the thickness of the gate dielectric, thekvalues for Al2O3,AlON and AlNO are 7.6,8.6,and 8.1,respectively. It is found that NH3doping can improve thekvalue of the dielectric layer due to the incorporation of nitrogen. Meanwhile, the capacitance equivalent thicknesses are decreased,which is conducive to a reduction of device size without affecting the gate control ability. Figure 3(c)shows the gate leakage current under gate voltages from-1 V to 1 V. After NH3doping, the dielectric leakage current decreases and the leakage current of AlON is one order of magnitude lower than that of Al2O3. From the electrical characterization,it is obvious that various electrical parameters are improved after NH3is doped into Al2O3. This is mainly because NH3doping reduces the defects caused by oxygen vacancies.[28]However,the degree to which vacancies are suppressed is dependent on the sequence of NH3doping.When the film grows not as AlNO but as AlON,a better gate dielectric is obtained. An explanation for this is that the NH3doping sequence affects the bonding state of elements during the ALD process.

    The surface roughness of the gate dielectric reflects the quality of the film.The roughness can affect the surface roughness scattering and thus the mobility of the carriers.[29,30]In this work, AFM is used to evaluate the root-mean square(RMS)roughness of the samples,as shown in Figs.4(a)–4(c).The RMS roughness of Al2O3,AlON and AlNO is 0.217 nm,0.169 nm, and 0.192 nm, respectively. Compared with the control sample Al2O3,samples with NH3doping have smaller RMS roughness. The AlON film has the best surface with the smallest surface roughness. This is consistent with the previous assumption that NH3doping and the sequence of doping have an impact on the quality of the dielectric layer.The flat surface is beneficial to improving the mobility of the carriers.[31]

    Fig.3. (a)The C–V curves of MOS capacitors. (b)Relevant k values and capacitance equivalent thicknesses. (c)Gate leakage current(Jg)–Vg characteristics.

    Fig.4.AFM height image(5 μm×5 μm)of the surface of the gate dielectric:(a)Al2O3,(b)AlON,(c)AlNO.

    To further clarify the mechanism of NH3doping, XPS was used to analyze the chemical bonds of the three samples.In Fig.5,O 1s has various binding energies of common chemical states, among which the low binding energy (531.2 eV)corresponds to lattice oxygen derived from O–Al in Al2O3and non-lattice and surface oxygen have a higher binding energy(532.5 eV).[32]As shown in Figs. 5(a)–5(c), the red line represents lattice oxygen and the blue line represents non-lattice oxygen. The ratio of O-Al/Odefectin the film is reflected by the spectral peak intensity ratio and is 2.59, 4.42, and 3.91 in Al2O3,AlON and AlNO,respectively. Compared with the control sample Al2O3,the dielectric layers doped by NH3have a larger peak intensity ratio,representing the fewer oxygen vacancy defects which are repaired by nitrogen.

    The XPS Al 2p spectra was extracted to analyze the bonding states of nitrogen and aluminum.As presented in Fig.5(d),there is only one spectral peak derived from the Al–O bond at 74.55 eV in the Al2O3dielectric layer. After the NH3doping, the peak of Al–N is visible at 73.31 eV, which indicates that nitrogen has been incorporated into Al2O3and formed Al–N bonds. The peak intensity of Al–N represents the number of bonds formed and the peak intensity in the AlON layer is stronger than that in the AlNO layer, which is shown in Figs. 5(e)and 5(f). Corresponding to the peak intensity ratio in Figs. 5(b) and 5(c), there are more Al–N bonds in AlON,which means that more vacancies are repaired. These results show the influence of different nitrogen doping sequences on the dielectric.

    Furthermore,the electrical characteristics of MoS2FETs were measured to study the effect of NH3doping on device performance. Figure 6(a) shows the output characteristics of the three samples, and the scanning gate voltage ranges from-2 V to 4 V in steps of 2 V. The samples with NH3doping achieve a higher drain current and the device has the highest drain current (8.0 μA/μm) atVg=4 V with AlON as the dielectric layer. Due to the effect of NH3doping on the repair of oxygen vacancies, carrier scattering at the interface of the channel and the dielectric layer is reduced,resulting in higher carrier transport efficiency and a larger current.

    Figure 6(b)shows the transfer characteristics of the three samples with normalized drain current in order to avoid the influence of channel width on the output current. The threshold voltagesVthextracted in Fig.6(b)are-0.74 V,-0.12 V,and-0.4 V for the samples with Al2O3,AlON and AlNO gate dielectric layers. It is obvious that theVthof a MoS2FET has a positive drift with a NH3-doped dielectric. Using Al2O3as the dielectric layer,a mass of oxygen vacancies with positive charges exist in the film, causing negativeVth.[33]After NH3doping into the high-κlayer,charge traps are repaired andVthhas a positive drift.[34]The sample with AlON has the smallest|Vth|, which also indicates that the MoS2/AlON interface has the fewest defective states.

    Fig.5. Deconvolution of XPS O 1s and Al 2p spectra of the three samples.

    Figure 6(c) demonstrates the transfer characteristics in a semilog scale withVds=0.2 V,from whichIon/Ioffcan be extracted to be 1.33×105,3.56×106,and 1.06×106for samples with Al2O3,AlON and AlNO,respectively. TheIon/Ioffof the sample with NH3doping is one order of magnitude larger than the sample without NH3doping. According to the above analysis,the repair of oxygen vacancy defects is helpful to reduce the carrier scattering capability,which can increaseIonand decreaseIoffof transistors. From Fig. 6(c), the value of subthreshold swing(SS)can also be extracted; it is 139 mV/dec,105 mV/dec,and 117 mV/dec for samples with Al2O3,AlON and AlNO,respectively. The sample with an AlON dielectric has the smallest SS,which is due to improvement of the interface quality after NH3doping.

    In order to explore the carrier mobility trend of the device channel,decades of devices using Al2O3,AlON and AlNO as the gate dielectric are selected and the value is calculated by using the following equation:

    in whichCoxis the oxide capacitance per unit area of the gate dielectric,LandWare the channel length and width, respectively,and ΔIds/ΔVgsis the slope of the transfer characteristic curve on a linear scale.As shown in Fig.6(d),it is obvious that the MoS2FETs with NH3-doped Al2O3have a higher carrier mobility.

    In the process of Al2O3deposition it is inevitable that oxygen vacancies will be generated because of the low crystallization temperature of Al2O3.[35]The existence of vacancies tends to form charge centers,and thus the charge scattering effect of the dielectric layer is affected. By doping nitrogen into the dielectric layer,oxygen vacancies are substituted by nitrogen atoms, which effectively screen the CI scattering in the dielectric layer and thekvalue of the dielectric is increased.In addition, the introduction of NH3during ALD growth of Al2O3can also reduce the interface roughness of dielectric and channel materials,drastically decreasing the effect of interface scattering on channel carrier transport.

    Fig. 6. (a) The Id–Vds curves in the linear region for the three samples. (b)Transfer characteristics of the three samples on a linear scale with Vds =0.2 V. (c) Transfer characteristics of the three samples on a semilog scale with Vds=0.2 V.(d)Average value of mobility of the three samples.

    Figure 7 shows the off-state current and subthreshold swings of MoS2transistors produced using different treatment methods. Compared with other processes, the device in our work exhibits better performance and achieves a smaller SS(105 mV/dec)while maintaining a low off-state current.

    Fig. 7. A plot of off-state current versus the subthreshold swings from this work compared with MoS2 FETs treated with other reported processes.

    4. Conclusion

    In summary, the processing method and the impacts of NH3in situdoping into an Al2O3gate dielectric on MoS2FETs have been systematically investigated. Two different doping sequences were investigated in experiments. Through XPS and AFM characterization and the MOS capacitor electrical test, it was found that final doping of NH3during the ALD growth cycles demonstrates the best results. The oxygen vacancy defects in the Al2O3dielectric are repaired by thisin situNH3doping, and the carrier scattering of the interfaces between the gate dielectric and TMD channel material is obviously reduced. As a result, the performance of the MoS2FET is effectively improved,and the threshold voltage shift to an ideal state close to 0 V.Thein situdielectric treatment reported in this paper provides an effective and simple method to improve performance as well as the threshold control in the development of future TMD integrated circuits.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.61774168 and 11764008)and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics,Chinese Academy of Sciences.

    猜你喜歡
    亞東
    Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
    汪孟鄒與亞東圖書館
    文史春秋(2022年4期)2022-06-16 07:12:50
    GLOBAL NONEXISTENCE FOR A VISCOELASTIC WAVE EQUATION WITH ACOUSTIC BOUNDARY CONDITIONS?
    胡適與亞東本《紅樓夢》標(biāo)點之關(guān)系
    BLOW-UP PHENOMENA FOR A CLASS OF GENERALIZED DOUBLE DISPERSION EQUATIONS?
    補衣
    點擊反證法
    聽風(fēng)看云喝茶
    兩人之間的往事(短篇小說)
    人間(2015年14期)2015-09-29 21:35:30
    2015年高考數(shù)學(xué)模擬試題(一)
    亚洲av中文字字幕乱码综合| 国产三级在线视频| 国产高清三级在线| 禁无遮挡网站| 国产黄a三级三级三级人| 一级黄色大片毛片| 亚洲三级黄色毛片| 欧美xxxx性猛交bbbb| 久久久久久大精品| 精品人妻视频免费看| 精品一区二区三区人妻视频| 天天一区二区日本电影三级| 亚洲久久久久久中文字幕| 免费观看的影片在线观看| 久久精品影院6| 看十八女毛片水多多多| 亚洲国产精品国产精品| 男人狂女人下面高潮的视频| 国产精品久久久久久精品电影小说 | 少妇丰满av| 99热精品在线国产| 女人被狂操c到高潮| 亚洲国产最新在线播放| 麻豆一二三区av精品| 99热6这里只有精品| 久久午夜福利片| 国产一区亚洲一区在线观看| 久久久午夜欧美精品| 亚洲成人av在线免费| 精品少妇黑人巨大在线播放 | av.在线天堂| 国产成人一区二区在线| 国产色婷婷99| 久热久热在线精品观看| 性色avwww在线观看| 日韩强制内射视频| 国内揄拍国产精品人妻在线| 日本免费在线观看一区| 内射极品少妇av片p| 免费黄色在线免费观看| 69人妻影院| 色综合亚洲欧美另类图片| 午夜福利网站1000一区二区三区| 伦精品一区二区三区| 亚洲精华国产精华液的使用体验| 久久草成人影院| 麻豆成人午夜福利视频| 毛片一级片免费看久久久久| 噜噜噜噜噜久久久久久91| 免费看a级黄色片| 欧美日韩精品成人综合77777| 精华霜和精华液先用哪个| 成人毛片a级毛片在线播放| 中文亚洲av片在线观看爽| 人人妻人人看人人澡| 天堂影院成人在线观看| 免费在线观看成人毛片| 久久国内精品自在自线图片| 免费看美女性在线毛片视频| 99热网站在线观看| 日日啪夜夜撸| 人体艺术视频欧美日本| 亚洲成av人片在线播放无| 国产精品麻豆人妻色哟哟久久 | 舔av片在线| 国产成人免费观看mmmm| av播播在线观看一区| 两个人的视频大全免费| 搞女人的毛片| 国产又色又爽无遮挡免| 别揉我奶头 嗯啊视频| 女的被弄到高潮叫床怎么办| 人妻系列 视频| 日韩一区二区三区影片| 在线免费观看不下载黄p国产| 日本av手机在线免费观看| 久久精品久久久久久噜噜老黄 | videossex国产| 午夜亚洲福利在线播放| av又黄又爽大尺度在线免费看 | 国产成人精品婷婷| www日本黄色视频网| 纵有疾风起免费观看全集完整版 | 日韩亚洲欧美综合| 偷拍熟女少妇极品色| 五月玫瑰六月丁香| 日本色播在线视频| 一区二区三区高清视频在线| 欧美最新免费一区二区三区| 国产午夜精品一二区理论片| 又爽又黄a免费视频| 韩国高清视频一区二区三区| 日本欧美国产在线视频| 一个人免费在线观看电影| 国产一区二区在线av高清观看| АⅤ资源中文在线天堂| av在线天堂中文字幕| 好男人视频免费观看在线| 美女xxoo啪啪120秒动态图| 国产精品人妻久久久影院| 男人舔女人下体高潮全视频| 日韩人妻高清精品专区| 在线观看66精品国产| 国产精品99久久久久久久久| 国产伦精品一区二区三区四那| 女的被弄到高潮叫床怎么办| 性插视频无遮挡在线免费观看| 亚洲国产欧美人成| 男女啪啪激烈高潮av片| 欧美区成人在线视频| 中文字幕av在线有码专区| av在线老鸭窝| 韩国高清视频一区二区三区| 久久久久网色| 国产老妇伦熟女老妇高清| 亚洲综合精品二区| 丰满少妇做爰视频| av视频在线观看入口| 免费大片18禁| 综合色av麻豆| АⅤ资源中文在线天堂| 国产精品国产三级国产av玫瑰| 男人舔女人下体高潮全视频| 91av网一区二区| 国产午夜精品久久久久久一区二区三区| 精品人妻偷拍中文字幕| 国产一级毛片七仙女欲春2| 人人妻人人澡人人爽人人夜夜 | 少妇熟女欧美另类| 女人被狂操c到高潮| 国产精品伦人一区二区| 蜜桃亚洲精品一区二区三区| 久久草成人影院| 国产精品久久电影中文字幕| 中文字幕免费在线视频6| 老司机福利观看| 欧美成人精品欧美一级黄| 直男gayav资源| 99热这里只有精品一区| 亚洲人成网站在线播| 晚上一个人看的免费电影| 美女高潮的动态| 久久精品久久久久久久性| 青春草国产在线视频| 国产单亲对白刺激| 成人鲁丝片一二三区免费| 成人二区视频| 精品99又大又爽又粗少妇毛片| 99久久成人亚洲精品观看| 老师上课跳d突然被开到最大视频| 直男gayav资源| 又爽又黄a免费视频| 久久久精品大字幕| 亚洲在线自拍视频| 秋霞伦理黄片| av专区在线播放| 亚洲丝袜综合中文字幕| 久久精品国产亚洲av涩爱| 人人妻人人澡人人爽人人夜夜 | 成人亚洲精品av一区二区| 亚洲图色成人| 精品一区二区三区视频在线| 美女cb高潮喷水在线观看| 国产精品久久久久久精品电影小说 | 99在线视频只有这里精品首页| 久久久久九九精品影院| 国产在视频线精品| 国产精华一区二区三区| 亚洲精品国产av成人精品| 久久久久网色| 大香蕉97超碰在线| 中文乱码字字幕精品一区二区三区 | 国产亚洲5aaaaa淫片| 国产精品国产三级专区第一集| 久久热精品热| 久久热精品热| av在线蜜桃| 国产高潮美女av| 边亲边吃奶的免费视频| 国产成人精品久久久久久| 亚洲精品aⅴ在线观看| 国内精品美女久久久久久| 91久久精品电影网| 22中文网久久字幕| 欧美又色又爽又黄视频| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久久久久久久| 国产亚洲一区二区精品| 国产乱来视频区| 韩国av在线不卡| 国产乱来视频区| 国产亚洲一区二区精品| 国产乱来视频区| 女人被狂操c到高潮| 亚洲一区高清亚洲精品| 久久久国产成人精品二区| 久久久国产成人精品二区| 亚洲av不卡在线观看| 亚洲久久久久久中文字幕| 尤物成人国产欧美一区二区三区| 我要搜黄色片| 亚洲av一区综合| 狠狠狠狠99中文字幕| 岛国在线免费视频观看| 欧美zozozo另类| 一个人观看的视频www高清免费观看| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区免费毛片| 亚洲精品国产av成人精品| 老司机影院成人| 少妇人妻精品综合一区二区| 韩国高清视频一区二区三区| 国产精品伦人一区二区| 99热这里只有精品一区| 99热这里只有是精品50| 夜夜爽夜夜爽视频| 18+在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 久久鲁丝午夜福利片| 欧美最新免费一区二区三区| 国产精品久久久久久久电影| 人妻夜夜爽99麻豆av| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩无卡精品| 最新中文字幕久久久久| 最近最新中文字幕免费大全7| 日韩三级伦理在线观看| 久久久成人免费电影| ponron亚洲| 欧美激情国产日韩精品一区| 又爽又黄a免费视频| 久久精品夜色国产| 久久精品久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 18禁裸乳无遮挡免费网站照片| 乱人视频在线观看| 日韩大片免费观看网站 | 亚洲精品乱码久久久久久按摩| 人人妻人人澡人人爽人人夜夜 | 久久久久九九精品影院| 非洲黑人性xxxx精品又粗又长| 国产在线一区二区三区精 | 国产女主播在线喷水免费视频网站 | 大又大粗又爽又黄少妇毛片口| 看免费成人av毛片| 午夜福利高清视频| 亚洲怡红院男人天堂| 国产精品精品国产色婷婷| 能在线免费看毛片的网站| 中文字幕亚洲精品专区| 成人午夜精彩视频在线观看| 小说图片视频综合网站| 村上凉子中文字幕在线| 国产高清视频在线观看网站| 一个人免费在线观看电影| 久久久色成人| 极品教师在线视频| 精品久久久噜噜| 国产精品.久久久| 亚洲精品自拍成人| 国产精品,欧美在线| 免费大片18禁| 国产精品久久久久久精品电影小说 | 成人漫画全彩无遮挡| 男插女下体视频免费在线播放| 蜜桃久久精品国产亚洲av| 亚洲,欧美,日韩| 蜜臀久久99精品久久宅男| 国产成人福利小说| 亚洲综合精品二区| 久久草成人影院| 精品少妇黑人巨大在线播放 | 国模一区二区三区四区视频| 国产69精品久久久久777片| 午夜久久久久精精品| 91狼人影院| 三级国产精品欧美在线观看| av国产免费在线观看| 精品久久久久久久久av| 一二三四中文在线观看免费高清| 最近2019中文字幕mv第一页| 亚洲在线自拍视频| 成人亚洲欧美一区二区av| 男女啪啪激烈高潮av片| www.色视频.com| 18禁在线播放成人免费| 大香蕉97超碰在线| 99热这里只有精品一区| 午夜视频国产福利| 人体艺术视频欧美日本| 亚洲成人精品中文字幕电影| 一边亲一边摸免费视频| videossex国产| 国产精品久久久久久久久免| 成人综合一区亚洲| 中文亚洲av片在线观看爽| 国产精品无大码| 欧美一区二区国产精品久久精品| 2021天堂中文幕一二区在线观| 97超视频在线观看视频| 超碰av人人做人人爽久久| 2021少妇久久久久久久久久久| 亚洲av不卡在线观看| 久久久久久久久中文| av.在线天堂| 精品久久久久久电影网 | 男女那种视频在线观看| 天天一区二区日本电影三级| 在线观看av片永久免费下载| 我的女老师完整版在线观看| 日本免费a在线| 亚洲成人久久爱视频| 国产亚洲av片在线观看秒播厂 | 乱系列少妇在线播放| 高清在线视频一区二区三区 | 国产av码专区亚洲av| 国产 一区精品| 天堂√8在线中文| 插阴视频在线观看视频| 成人亚洲精品av一区二区| 日韩在线高清观看一区二区三区| 精品一区二区三区人妻视频| 男人舔女人下体高潮全视频| 看免费成人av毛片| av视频在线观看入口| 日韩一区二区三区影片| a级一级毛片免费在线观看| 久久久a久久爽久久v久久| 亚洲经典国产精华液单| 少妇人妻一区二区三区视频| 久久久精品欧美日韩精品| 能在线免费观看的黄片| 久久久精品大字幕| 精品不卡国产一区二区三区| 亚洲精品成人久久久久久| 在线观看美女被高潮喷水网站| 美女高潮的动态| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 欧美zozozo另类| 一级av片app| 国产精品乱码一区二三区的特点| 亚洲自拍偷在线| 狂野欧美激情性xxxx在线观看| 久99久视频精品免费| 免费观看精品视频网站| 国产女主播在线喷水免费视频网站 | 97热精品久久久久久| 色尼玛亚洲综合影院| 99久久九九国产精品国产免费| www日本黄色视频网| 最近中文字幕高清免费大全6| 久99久视频精品免费| 99久久成人亚洲精品观看| 最近中文字幕2019免费版| 我的女老师完整版在线观看| 91精品伊人久久大香线蕉| 亚洲精品一区蜜桃| 99视频精品全部免费 在线| 日日撸夜夜添| 男人的好看免费观看在线视频| 真实男女啪啪啪动态图| 色网站视频免费| www.色视频.com| 国产精华一区二区三区| 久久久久久久久久久丰满| 国产高清不卡午夜福利| 免费电影在线观看免费观看| 亚洲欧美日韩高清专用| 99久久精品一区二区三区| 91久久精品电影网| 国产男人的电影天堂91| 成人av在线播放网站| 波多野结衣巨乳人妻| 亚洲精品日韩在线中文字幕| 一级毛片久久久久久久久女| 国产单亲对白刺激| 国产伦在线观看视频一区| 日本午夜av视频| 两个人视频免费观看高清| 国产精品永久免费网站| 身体一侧抽搐| 国产黄a三级三级三级人| 亚洲成人久久爱视频| 国产午夜精品一二区理论片| 亚洲精品久久久久久婷婷小说 | 美女内射精品一级片tv| av在线老鸭窝| 麻豆久久精品国产亚洲av| 国产精品三级大全| 午夜激情福利司机影院| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 亚洲精品久久久久久婷婷小说 | 最近2019中文字幕mv第一页| 18+在线观看网站| 深夜a级毛片| 一二三四中文在线观看免费高清| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 色吧在线观看| 熟女人妻精品中文字幕| 日韩成人伦理影院| 欧美bdsm另类| 男人的好看免费观看在线视频| 免费观看精品视频网站| 国产三级中文精品| 69人妻影院| 国产 一区 欧美 日韩| 中文字幕av成人在线电影| 视频中文字幕在线观看| 欧美成人午夜免费资源| 色综合色国产| 精品一区二区免费观看| 午夜福利视频1000在线观看| 国产精品电影一区二区三区| 神马国产精品三级电影在线观看| 午夜亚洲福利在线播放| av黄色大香蕉| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 久久精品国产鲁丝片午夜精品| 永久网站在线| 国产一区二区在线av高清观看| 成人二区视频| 国产精品一区二区在线观看99 | 麻豆成人av视频| 日本午夜av视频| 能在线免费看毛片的网站| 又黄又爽又刺激的免费视频.| 精品一区二区三区人妻视频| 久久精品综合一区二区三区| 午夜激情福利司机影院| 国产免费男女视频| 久久亚洲精品不卡| 大香蕉97超碰在线| a级一级毛片免费在线观看| 亚洲精品,欧美精品| 在线观看美女被高潮喷水网站| 久久久久久久国产电影| 国产av码专区亚洲av| 日本爱情动作片www.在线观看| 欧美日本视频| 欧美一区二区国产精品久久精品| 精品久久久噜噜| 久久久久久伊人网av| 超碰97精品在线观看| 精品人妻偷拍中文字幕| 性插视频无遮挡在线免费观看| 伊人久久精品亚洲午夜| 一边亲一边摸免费视频| 国产 一区 欧美 日韩| 亚洲自拍偷在线| 水蜜桃什么品种好| 中文亚洲av片在线观看爽| 精品免费久久久久久久清纯| 色播亚洲综合网| 日本黄色片子视频| 免费观看在线日韩| 色综合站精品国产| 国产久久久一区二区三区| 男女啪啪激烈高潮av片| 国产亚洲av嫩草精品影院| 国产伦一二天堂av在线观看| 精品一区二区免费观看| 国产麻豆成人av免费视频| 看十八女毛片水多多多| 淫秽高清视频在线观看| 又爽又黄a免费视频| 国产极品天堂在线| 亚洲高清免费不卡视频| 亚洲人成网站在线观看播放| 草草在线视频免费看| 九九爱精品视频在线观看| 欧美日韩综合久久久久久| a级毛片免费高清观看在线播放| 国产精品久久电影中文字幕| 亚洲精品自拍成人| 男女视频在线观看网站免费| 国产欧美日韩精品一区二区| 日本wwww免费看| 建设人人有责人人尽责人人享有的 | 精品久久国产蜜桃| 又爽又黄无遮挡网站| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 国产免费又黄又爽又色| 黄片无遮挡物在线观看| 国内精品宾馆在线| 国产毛片a区久久久久| 色综合站精品国产| 亚洲在线自拍视频| 菩萨蛮人人尽说江南好唐韦庄 | 欧美日本视频| АⅤ资源中文在线天堂| av黄色大香蕉| 国产 一区精品| 免费黄色在线免费观看| 熟女电影av网| 欧美激情在线99| 日韩欧美在线乱码| 黑人高潮一二区| 亚洲国产精品国产精品| 免费观看a级毛片全部| 欧美xxxx性猛交bbbb| 国产女主播在线喷水免费视频网站 | 久久99蜜桃精品久久| 亚洲四区av| 搞女人的毛片| 婷婷六月久久综合丁香| 国产精品久久视频播放| 久久精品国产鲁丝片午夜精品| 日本免费在线观看一区| 亚洲内射少妇av| 国产69精品久久久久777片| 伦精品一区二区三区| 欧美日本亚洲视频在线播放| 我要看日韩黄色一级片| 如何舔出高潮| 欧美最新免费一区二区三区| 美女国产视频在线观看| videossex国产| 天堂影院成人在线观看| av在线蜜桃| 精品免费久久久久久久清纯| 乱码一卡2卡4卡精品| 日韩av在线免费看完整版不卡| 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| 国产精品1区2区在线观看.| 亚洲熟妇中文字幕五十中出| 久久精品夜色国产| 亚洲最大成人中文| 久久久久久久久大av| 日韩亚洲欧美综合| 亚洲人成网站在线观看播放| 看非洲黑人一级黄片| 亚洲婷婷狠狠爱综合网| 黄色欧美视频在线观看| 亚洲av中文av极速乱| av视频在线观看入口| 成人综合一区亚洲| 亚洲真实伦在线观看| 18禁在线无遮挡免费观看视频| 亚洲天堂国产精品一区在线| 亚洲精品成人久久久久久| 国产亚洲一区二区精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av免费在线观看| 色尼玛亚洲综合影院| 婷婷色综合大香蕉| 久久精品国产99精品国产亚洲性色| 婷婷色麻豆天堂久久 | 波野结衣二区三区在线| 欧美一区二区亚洲| 亚洲精华国产精华液的使用体验| 99九九线精品视频在线观看视频| 中文字幕av在线有码专区| 久久久久久久午夜电影| 亚洲av成人精品一区久久| 国产成人免费观看mmmm| 亚洲精品乱码久久久v下载方式| eeuss影院久久| 亚洲一区高清亚洲精品| 日本五十路高清| 99热6这里只有精品| 午夜福利高清视频| 老司机影院成人| 免费观看在线日韩| 久久国内精品自在自线图片| 熟女电影av网| 一区二区三区免费毛片| 欧美日韩综合久久久久久| 欧美xxxx黑人xx丫x性爽| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 免费看美女性在线毛片视频| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级 | 麻豆一二三区av精品| 国产亚洲91精品色在线| 国产免费又黄又爽又色| 国产av不卡久久| a级一级毛片免费在线观看| or卡值多少钱| 看黄色毛片网站| 纵有疾风起免费观看全集完整版 | 国产精品av视频在线免费观看| 99热这里只有精品一区| 少妇丰满av| 久久久久久久久久久丰满| 日韩精品有码人妻一区| 国产精品永久免费网站| 免费av毛片视频| 2021少妇久久久久久久久久久| 边亲边吃奶的免费视频| 国产麻豆成人av免费视频| 亚洲精品乱码久久久久久按摩| 欧美xxxx性猛交bbbb| 2022亚洲国产成人精品| 啦啦啦啦在线视频资源| 精华霜和精华液先用哪个| 欧美3d第一页| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲色图av天堂| 美女内射精品一级片tv| 午夜福利在线观看免费完整高清在| 日韩 亚洲 欧美在线| 深夜a级毛片| 99久久人妻综合| 国产精品久久久久久精品电影| 久久久久久久久久久丰满|