• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric

    2022-08-01 05:59:24XiaotingSun孫小婷YadongZhang張亞東KunpengJia賈昆鵬GuoliangTian田國良JiahanYu余嘉晗JinjuanXiang項金娟RuixiaYang楊瑞霞ZhenhuaWu吳振華andHuaxiangYin殷華湘
    Chinese Physics B 2022年7期
    關(guān)鍵詞:亞東

    Xiaoting Sun(孫小婷), Yadong Zhang(張亞東), Kunpeng Jia(賈昆鵬), Guoliang Tian(田國良),3, Jiahan Yu(余嘉晗),Jinjuan Xiang(項金娟), Ruixia Yang(楊瑞霞), Zhenhua Wu(吳振華),3,?, and Huaxiang Yin(殷華湘),3,?

    1School of Information Engineering,Hebei University of Technology,Tianjin 300401,China

    2Key Laboratory of Microelectronics Device and Integrated Technology,Institute of Microelectronics Chinese Academy of Sciences,Beijing 100029,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: MoS2,Al2O3 dielectric,NH3 in-situ doping,oxygen vacancy

    1. Introduction

    In 2004, the discovery of graphene attracted much research attention to two-dimensional (2D) materials.[1]Graphene has an ultra-high mobility of up to 2×105cm2·V-1·s-1,[2]but its gapless nature limits its applications in the field of electronic transistors. Alternative transition metal dichalcogenides(TMDs)with atomic thickness and a tunable bandgap can overcome the shortcomings of graphene and demonstrate unique optical and electrical properties.[3–6]Molybdenum disulfide (MoS2), one of the most widely studied TMDs,shows a variety of bandgaps from 1.2 eV to 1.9 eV with films from bulk to monolayer.[7]The fabricated MoS2field-effect transistors (FETs) show high carrier mobility,[8]high on–off ratios[9]and excellent subthreshold swing,[10]and have great possibilities for application in a variety of electronic devices, such as sensors,[11]photodetectors,[12]and logic devices.[13]

    Theoretically, the intrinsic mobility of MoS2FETs can reach 410 cm2·V-1·s-1,[14]but in practice the reported mobility is far less than that. There are many scattering mechanisms in the devices,including charged impurity(CI)scattering,one of the most important factors that degrades mobility.[15]For a back-gate structure FET, the interface states between the 2D channel material and the gate dielectric can be improved by using a high-κdielectric instead of SiO2to provide a special passivation process for effectively screening CI scattering. Many experimental results also show that MoS2FETs with high-κgate dielectrics, such as HfO2,[16]ZrO2,[17]and Al2O3,[18]exhibit good electrical performance. However,the oxygen vacancies and dangling bonds distributed on the surface of high-κdielectrics lead to the interface-state density of dielectrics/MoS2reaching 1011–1012cm-1·eV-1.[19]Recently, much effort has been made to decrease the interfacial defects,such as various plasma treatments(O2,N2,NH3,and CF4/O2),[20–23]rapid thermal annealing (RTA)[24,25]and dielectric-mediated doping[26]after the deposition of high-κfilms. Proper nitrogen doping into the dielectrics during the deposition process supplies an effective way to improve the quality of the dielectrics.[27]Compared with treatments after growth,in situdoping is easier and effective. However,no research has yet been reported onin situNH3doped Al2O3as a gate dielectric in MoS2FETs. In this work, MoS2FETs with NH3doped atomic layer deposition (ALD) Al2O3are systemically explored. Through x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) characterization and electrical tests,the effects of different sequences of NH3doping into the gate dielectric on device performance are investigated. The results show that MoS2FETs with ALD Al2O3doped with NH3during the final stages demonstrate the best performance;this is consistent with the results of dielectric analysis.

    2. Experiments

    In the FET experiments, a heavily doped p++ Si (100)8inch wafer was used as the back gate. The gate dielectric was formed from an ALD Al2O3thin film grown at 300°C using trimethylaluminum(TMA;Al(CH)3)and H2O as Al and oxygen precursors, respectively. Firstly, TMA vapors are pulsed into the chamber and adsorb on the substrate surface,followed by pulsing of N2into the chamber to purge the unabsorbed TMA.Then H2O vapors are pulsed to react with TMA to generate Al2O3and other by-products. At the end of the cycle,N2is pumped in to remove excess gas and any other gases produced. The control of the film thickness is achieved by changing the number of cycles. In this work, the growth rate of the undoped Al2O3film is 1.05 ?A/cycle and a 20 nm thick film is grown after 190 cycles. To realize nitrogen doping in the Al2O3dielectric layer, different sequences for introducing NH3into the growth cycle were designed in this experiment, as shown in Fig. 1. The growth sequence TMA–N2–H2O–N2–NH3–N2is called AlON (0.89 ?A/cycle, 224 cycles for 20 nm)and the sequence TMA–N2–NH3–N2–H2O–N2is called AlNO(1.05 ?A/cycle,190 cycles for 20 nm).

    Fig. 1. Schematic diagrams of one cycle with different NH3 doping sequences.

    The MoS2flake channel material was mechanically exfoliated from bulk MoS2crystal(purchased from Six Carbon Technology,Shenzhen)using scotch tape and then transferred onto the target substrate by PDMS. Next, lithography with a negative polymer resist was used to define the source/drain region. Then, the metal electrode (Ti/Au=10/40 nm) was deposited by electron beam evaporation, and the metal was stripped by lift-off to form a separate metal electrode.

    Figure 2(a) is a schematic diagram of a few-layer MoS2FET with a 20 nm Al2O3gate dielectric and Ti/Au electrodes.The prepared MoS2FET is shown in Fig.2(b),and the length and width of the channel are 3 μm and 10.86 μm,respectively.The thickness of MoS2measured by AFM is 6 nm,as shown in Fig. 2(c). Figure 2(d) shows the Raman spectra of the MoS2flake and the Raman shift between the E12gpeak (384 cm-1)and the A1gpeak(408 cm-1)is 24 cm-1.

    Fig.2. (a)Schematic of a few-layer MoS2 FET with a 20 nm Al2O3 gate dielectric and Ti/Au electrodes. (b)Optical photograph of the prepared MoS2 transistor. (c)AFM image of the MoS2 transistor with the inset showing the thickness of the MoS2 flake measured by AFM.(d)Raman spectra of MoS2 flake.

    The high-frequency(1 MHz)capacitance–voltage(C–V)curves and the electrical characteristics of MoS2FETs were measured using a Keithley 4200-SCS and an Agilent 4156C,respectively, at room temperature in an atmospheric environment.

    3. Results and discussion

    The influence ofin situNH3doping on the dielectric was explored with theC–Vtest. A metal,a gate dielectric(Al2O3,AlON, AlNO) and Si form a metal–oxide–semiconductor(MOS) capacitor structure. TheC–Vcurves of MOS capacitors measured at 1 MHz are shown in Fig.3(a). For the gate dielectrics Al2O3, AlON and AlNO, the MOS oxide capacitances per unit area (Cox) are 0.337 μF/cm2, 0.381 μF/cm2,and 0.357 μF/cm2, respectively.Coxis increased by the use of NH3doping, indicating improvement of the gate control capability. Figure 3(b) shows thekvalues of the three dielectrics and capacitance equivalent thicknesses. Based onk=(Coxtox)/ε,in whichεis the vacuum permittivity andtoxis the thickness of the gate dielectric, thekvalues for Al2O3,AlON and AlNO are 7.6,8.6,and 8.1,respectively. It is found that NH3doping can improve thekvalue of the dielectric layer due to the incorporation of nitrogen. Meanwhile, the capacitance equivalent thicknesses are decreased,which is conducive to a reduction of device size without affecting the gate control ability. Figure 3(c)shows the gate leakage current under gate voltages from-1 V to 1 V. After NH3doping, the dielectric leakage current decreases and the leakage current of AlON is one order of magnitude lower than that of Al2O3. From the electrical characterization,it is obvious that various electrical parameters are improved after NH3is doped into Al2O3. This is mainly because NH3doping reduces the defects caused by oxygen vacancies.[28]However,the degree to which vacancies are suppressed is dependent on the sequence of NH3doping.When the film grows not as AlNO but as AlON,a better gate dielectric is obtained. An explanation for this is that the NH3doping sequence affects the bonding state of elements during the ALD process.

    The surface roughness of the gate dielectric reflects the quality of the film.The roughness can affect the surface roughness scattering and thus the mobility of the carriers.[29,30]In this work, AFM is used to evaluate the root-mean square(RMS)roughness of the samples,as shown in Figs.4(a)–4(c).The RMS roughness of Al2O3,AlON and AlNO is 0.217 nm,0.169 nm, and 0.192 nm, respectively. Compared with the control sample Al2O3,samples with NH3doping have smaller RMS roughness. The AlON film has the best surface with the smallest surface roughness. This is consistent with the previous assumption that NH3doping and the sequence of doping have an impact on the quality of the dielectric layer.The flat surface is beneficial to improving the mobility of the carriers.[31]

    Fig.3. (a)The C–V curves of MOS capacitors. (b)Relevant k values and capacitance equivalent thicknesses. (c)Gate leakage current(Jg)–Vg characteristics.

    Fig.4.AFM height image(5 μm×5 μm)of the surface of the gate dielectric:(a)Al2O3,(b)AlON,(c)AlNO.

    To further clarify the mechanism of NH3doping, XPS was used to analyze the chemical bonds of the three samples.In Fig.5,O 1s has various binding energies of common chemical states, among which the low binding energy (531.2 eV)corresponds to lattice oxygen derived from O–Al in Al2O3and non-lattice and surface oxygen have a higher binding energy(532.5 eV).[32]As shown in Figs. 5(a)–5(c), the red line represents lattice oxygen and the blue line represents non-lattice oxygen. The ratio of O-Al/Odefectin the film is reflected by the spectral peak intensity ratio and is 2.59, 4.42, and 3.91 in Al2O3,AlON and AlNO,respectively. Compared with the control sample Al2O3,the dielectric layers doped by NH3have a larger peak intensity ratio,representing the fewer oxygen vacancy defects which are repaired by nitrogen.

    The XPS Al 2p spectra was extracted to analyze the bonding states of nitrogen and aluminum.As presented in Fig.5(d),there is only one spectral peak derived from the Al–O bond at 74.55 eV in the Al2O3dielectric layer. After the NH3doping, the peak of Al–N is visible at 73.31 eV, which indicates that nitrogen has been incorporated into Al2O3and formed Al–N bonds. The peak intensity of Al–N represents the number of bonds formed and the peak intensity in the AlON layer is stronger than that in the AlNO layer, which is shown in Figs. 5(e)and 5(f). Corresponding to the peak intensity ratio in Figs. 5(b) and 5(c), there are more Al–N bonds in AlON,which means that more vacancies are repaired. These results show the influence of different nitrogen doping sequences on the dielectric.

    Furthermore,the electrical characteristics of MoS2FETs were measured to study the effect of NH3doping on device performance. Figure 6(a) shows the output characteristics of the three samples, and the scanning gate voltage ranges from-2 V to 4 V in steps of 2 V. The samples with NH3doping achieve a higher drain current and the device has the highest drain current (8.0 μA/μm) atVg=4 V with AlON as the dielectric layer. Due to the effect of NH3doping on the repair of oxygen vacancies, carrier scattering at the interface of the channel and the dielectric layer is reduced,resulting in higher carrier transport efficiency and a larger current.

    Figure 6(b)shows the transfer characteristics of the three samples with normalized drain current in order to avoid the influence of channel width on the output current. The threshold voltagesVthextracted in Fig.6(b)are-0.74 V,-0.12 V,and-0.4 V for the samples with Al2O3,AlON and AlNO gate dielectric layers. It is obvious that theVthof a MoS2FET has a positive drift with a NH3-doped dielectric. Using Al2O3as the dielectric layer,a mass of oxygen vacancies with positive charges exist in the film, causing negativeVth.[33]After NH3doping into the high-κlayer,charge traps are repaired andVthhas a positive drift.[34]The sample with AlON has the smallest|Vth|, which also indicates that the MoS2/AlON interface has the fewest defective states.

    Fig.5. Deconvolution of XPS O 1s and Al 2p spectra of the three samples.

    Figure 6(c) demonstrates the transfer characteristics in a semilog scale withVds=0.2 V,from whichIon/Ioffcan be extracted to be 1.33×105,3.56×106,and 1.06×106for samples with Al2O3,AlON and AlNO,respectively. TheIon/Ioffof the sample with NH3doping is one order of magnitude larger than the sample without NH3doping. According to the above analysis,the repair of oxygen vacancy defects is helpful to reduce the carrier scattering capability,which can increaseIonand decreaseIoffof transistors. From Fig. 6(c), the value of subthreshold swing(SS)can also be extracted; it is 139 mV/dec,105 mV/dec,and 117 mV/dec for samples with Al2O3,AlON and AlNO,respectively. The sample with an AlON dielectric has the smallest SS,which is due to improvement of the interface quality after NH3doping.

    In order to explore the carrier mobility trend of the device channel,decades of devices using Al2O3,AlON and AlNO as the gate dielectric are selected and the value is calculated by using the following equation:

    in whichCoxis the oxide capacitance per unit area of the gate dielectric,LandWare the channel length and width, respectively,and ΔIds/ΔVgsis the slope of the transfer characteristic curve on a linear scale.As shown in Fig.6(d),it is obvious that the MoS2FETs with NH3-doped Al2O3have a higher carrier mobility.

    In the process of Al2O3deposition it is inevitable that oxygen vacancies will be generated because of the low crystallization temperature of Al2O3.[35]The existence of vacancies tends to form charge centers,and thus the charge scattering effect of the dielectric layer is affected. By doping nitrogen into the dielectric layer,oxygen vacancies are substituted by nitrogen atoms, which effectively screen the CI scattering in the dielectric layer and thekvalue of the dielectric is increased.In addition, the introduction of NH3during ALD growth of Al2O3can also reduce the interface roughness of dielectric and channel materials,drastically decreasing the effect of interface scattering on channel carrier transport.

    Fig. 6. (a) The Id–Vds curves in the linear region for the three samples. (b)Transfer characteristics of the three samples on a linear scale with Vds =0.2 V. (c) Transfer characteristics of the three samples on a semilog scale with Vds=0.2 V.(d)Average value of mobility of the three samples.

    Figure 7 shows the off-state current and subthreshold swings of MoS2transistors produced using different treatment methods. Compared with other processes, the device in our work exhibits better performance and achieves a smaller SS(105 mV/dec)while maintaining a low off-state current.

    Fig. 7. A plot of off-state current versus the subthreshold swings from this work compared with MoS2 FETs treated with other reported processes.

    4. Conclusion

    In summary, the processing method and the impacts of NH3in situdoping into an Al2O3gate dielectric on MoS2FETs have been systematically investigated. Two different doping sequences were investigated in experiments. Through XPS and AFM characterization and the MOS capacitor electrical test, it was found that final doping of NH3during the ALD growth cycles demonstrates the best results. The oxygen vacancy defects in the Al2O3dielectric are repaired by thisin situNH3doping, and the carrier scattering of the interfaces between the gate dielectric and TMD channel material is obviously reduced. As a result, the performance of the MoS2FET is effectively improved,and the threshold voltage shift to an ideal state close to 0 V.Thein situdielectric treatment reported in this paper provides an effective and simple method to improve performance as well as the threshold control in the development of future TMD integrated circuits.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.61774168 and 11764008)and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics,Chinese Academy of Sciences.

    猜你喜歡
    亞東
    Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
    汪孟鄒與亞東圖書館
    文史春秋(2022年4期)2022-06-16 07:12:50
    GLOBAL NONEXISTENCE FOR A VISCOELASTIC WAVE EQUATION WITH ACOUSTIC BOUNDARY CONDITIONS?
    胡適與亞東本《紅樓夢》標(biāo)點之關(guān)系
    BLOW-UP PHENOMENA FOR A CLASS OF GENERALIZED DOUBLE DISPERSION EQUATIONS?
    補衣
    點擊反證法
    聽風(fēng)看云喝茶
    兩人之間的往事(短篇小說)
    人間(2015年14期)2015-09-29 21:35:30
    2015年高考數(shù)學(xué)模擬試題(一)
    精品一区二区三区av网在线观看 | 亚洲免费av在线视频| 国产男女内射视频| 又黄又粗又硬又大视频| 午夜福利视频在线观看免费| 90打野战视频偷拍视频| av福利片在线| 精品高清国产在线一区| 午夜精品国产一区二区电影| 美女高潮到喷水免费观看| 嫁个100分男人电影在线观看| 中文字幕色久视频| 在线 av 中文字幕| 巨乳人妻的诱惑在线观看| 99精国产麻豆久久婷婷| 久久久久久亚洲精品国产蜜桃av| 日韩免费高清中文字幕av| 亚洲全国av大片| 亚洲男人天堂网一区| 麻豆av在线久日| 亚洲综合色网址| 黑人操中国人逼视频| 日韩免费av在线播放| 男女床上黄色一级片免费看| 久久久国产成人免费| 久久热在线av| 久久久精品区二区三区| 日本黄色日本黄色录像| 18禁黄网站禁片午夜丰满| 日本av手机在线免费观看| 久久久精品区二区三区| 国产精品九九99| 制服诱惑二区| 黄色a级毛片大全视频| 国产亚洲av高清不卡| 一区二区日韩欧美中文字幕| a在线观看视频网站| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 欧美黑人精品巨大| 国产成人影院久久av| 亚洲精品乱久久久久久| 亚洲色图av天堂| 男女无遮挡免费网站观看| 亚洲精品中文字幕一二三四区 | 热99久久久久精品小说推荐| 国产成人影院久久av| 亚洲欧洲精品一区二区精品久久久| 欧美激情久久久久久爽电影 | 成人影院久久| 999精品在线视频| 操美女的视频在线观看| 又黄又粗又硬又大视频| 国产av一区二区精品久久| 亚洲av欧美aⅴ国产| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩另类电影网站| 十八禁网站网址无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品av麻豆狂野| 欧美 日韩 精品 国产| 少妇被粗大的猛进出69影院| 成年人黄色毛片网站| 精品第一国产精品| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 捣出白浆h1v1| 亚洲国产av影院在线观看| 中文字幕高清在线视频| 国产无遮挡羞羞视频在线观看| 高清视频免费观看一区二区| 日韩有码中文字幕| 久久精品亚洲精品国产色婷小说| 无遮挡黄片免费观看| 成在线人永久免费视频| 美女扒开内裤让男人捅视频| 国产精品亚洲一级av第二区| 免费在线观看完整版高清| 18在线观看网站| 精品第一国产精品| 亚洲 国产 在线| videosex国产| 色综合欧美亚洲国产小说| 国产老妇伦熟女老妇高清| 精品一区二区三卡| 超色免费av| 黑人欧美特级aaaaaa片| 中文字幕制服av| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| 亚洲va日本ⅴa欧美va伊人久久| 国产不卡一卡二| 男女边摸边吃奶| 亚洲精品国产色婷婷电影| 午夜两性在线视频| 国产一区二区激情短视频| 午夜老司机福利片| 老熟妇乱子伦视频在线观看| 亚洲久久久国产精品| 欧美人与性动交α欧美精品济南到| 国产av国产精品国产| 天天躁夜夜躁狠狠躁躁| 亚洲七黄色美女视频| 多毛熟女@视频| 黑人巨大精品欧美一区二区mp4| av视频免费观看在线观看| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 成人永久免费在线观看视频 | 久久精品国产99精品国产亚洲性色 | 欧美精品亚洲一区二区| 日本精品一区二区三区蜜桃| 国产成人av教育| 亚洲欧美一区二区三区久久| 人人妻,人人澡人人爽秒播| av视频免费观看在线观看| 不卡av一区二区三区| 777久久人妻少妇嫩草av网站| www.自偷自拍.com| 欧美黄色片欧美黄色片| 国产黄频视频在线观看| 亚洲欧洲精品一区二区精品久久久| 侵犯人妻中文字幕一二三四区| 搡老岳熟女国产| 国产一区二区三区综合在线观看| 免费高清在线观看日韩| 亚洲伊人久久精品综合| 黄色视频在线播放观看不卡| 美女高潮到喷水免费观看| 在线av久久热| 天堂俺去俺来也www色官网| 中文字幕人妻丝袜一区二区| 成人国语在线视频| 日本黄色视频三级网站网址 | 国产成人精品无人区| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 老司机影院毛片| 成人三级做爰电影| 超碰97精品在线观看| 精品久久久久久久毛片微露脸| 老司机午夜福利在线观看视频 | 免费观看人在逋| 久久久国产一区二区| 国产视频一区二区在线看| www.999成人在线观看| 亚洲国产av影院在线观看| 老司机亚洲免费影院| 考比视频在线观看| 视频区图区小说| 香蕉久久夜色| 国产精品二区激情视频| 首页视频小说图片口味搜索| 亚洲精品成人av观看孕妇| 久久久久精品人妻al黑| 2018国产大陆天天弄谢| 每晚都被弄得嗷嗷叫到高潮| 狠狠婷婷综合久久久久久88av| 欧美成人免费av一区二区三区 | 日本五十路高清| 亚洲av日韩在线播放| 久久ye,这里只有精品| 欧美亚洲日本最大视频资源| 亚洲七黄色美女视频| 久久影院123| 好男人电影高清在线观看| 国产伦人伦偷精品视频| 色视频在线一区二区三区| 日韩欧美国产一区二区入口| 最新的欧美精品一区二区| 国产成人免费无遮挡视频| 丁香欧美五月| 人人妻人人澡人人看| 超碰成人久久| 亚洲精品粉嫩美女一区| 久久久精品94久久精品| 97在线人人人人妻| 成人黄色视频免费在线看| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 免费观看a级毛片全部| 一本综合久久免费| 亚洲久久久国产精品| 日韩大片免费观看网站| 深夜精品福利| 亚洲国产av新网站| 欧美成人午夜精品| 俄罗斯特黄特色一大片| 精品国内亚洲2022精品成人 | 亚洲久久久国产精品| 夜夜夜夜夜久久久久| 国产亚洲av高清不卡| 午夜福利在线免费观看网站| 老司机福利观看| 亚洲精品中文字幕在线视频| 中亚洲国语对白在线视频| 99精品在免费线老司机午夜| 久久精品熟女亚洲av麻豆精品| 国产av又大| 一本大道久久a久久精品| 欧美午夜高清在线| 视频区图区小说| 九色亚洲精品在线播放| 国产精品av久久久久免费| 午夜成年电影在线免费观看| 丝瓜视频免费看黄片| 满18在线观看网站| 国产99久久九九免费精品| 亚洲第一av免费看| 亚洲国产av影院在线观看| 麻豆成人av在线观看| 大陆偷拍与自拍| 中文字幕最新亚洲高清| 在线观看一区二区三区激情| 成人手机av| 国产精品久久久久成人av| 高清视频免费观看一区二区| 黑人猛操日本美女一级片| 男人舔女人的私密视频| 桃红色精品国产亚洲av| 久久久久网色| 黑丝袜美女国产一区| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 最黄视频免费看| 9热在线视频观看99| 国产一区二区激情短视频| 国产精品 欧美亚洲| 亚洲伊人色综图| 一区二区三区精品91| 一本久久精品| 亚洲中文av在线| 丰满人妻熟妇乱又伦精品不卡| 精品人妻1区二区| 十八禁人妻一区二区| 香蕉久久夜色| 国产免费现黄频在线看| 看免费av毛片| a级片在线免费高清观看视频| e午夜精品久久久久久久| 亚洲欧美日韩另类电影网站| 纵有疾风起免费观看全集完整版| 一级毛片精品| 国产一卡二卡三卡精品| 狂野欧美激情性xxxx| 国产一区二区三区视频了| 国产福利在线免费观看视频| 亚洲欧美一区二区三区久久| 国产精品.久久久| 多毛熟女@视频| 日韩欧美国产一区二区入口| 午夜精品久久久久久毛片777| 欧美日韩av久久| 国产一区二区三区在线臀色熟女 | 在线av久久热| 韩国精品一区二区三区| 美女主播在线视频| 一级a爱视频在线免费观看| 久久国产精品大桥未久av| 制服人妻中文乱码| 两个人免费观看高清视频| 日韩一卡2卡3卡4卡2021年| 亚洲五月色婷婷综合| 亚洲av第一区精品v没综合| 亚洲 欧美一区二区三区| 日本欧美视频一区| 十分钟在线观看高清视频www| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 久久精品亚洲熟妇少妇任你| 免费观看人在逋| 亚洲色图综合在线观看| 欧美激情 高清一区二区三区| 91麻豆av在线| videos熟女内射| 波多野结衣一区麻豆| 国产精品国产高清国产av | 极品人妻少妇av视频| 亚洲精品在线美女| 99riav亚洲国产免费| 久久久久网色| 性色av乱码一区二区三区2| xxxhd国产人妻xxx| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 少妇精品久久久久久久| 视频区图区小说| 热re99久久精品国产66热6| 高清黄色对白视频在线免费看| 窝窝影院91人妻| 亚洲视频免费观看视频| 狂野欧美激情性xxxx| 99久久人妻综合| 香蕉国产在线看| 久热爱精品视频在线9| 99精国产麻豆久久婷婷| 精品高清国产在线一区| 亚洲av日韩精品久久久久久密| 国产高清国产精品国产三级| 欧美午夜高清在线| 成人18禁在线播放| 两个人免费观看高清视频| 亚洲精品乱久久久久久| 国产男靠女视频免费网站| 免费观看a级毛片全部| 女同久久另类99精品国产91| 久久免费观看电影| 欧美国产精品va在线观看不卡| 19禁男女啪啪无遮挡网站| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看 | 久久天堂一区二区三区四区| 亚洲综合色网址| 99久久人妻综合| 麻豆国产av国片精品| 日本黄色视频三级网站网址 | av网站免费在线观看视频| 男男h啪啪无遮挡| 免费黄频网站在线观看国产| 国产精品久久久久久人妻精品电影 | 一区二区日韩欧美中文字幕| 一本—道久久a久久精品蜜桃钙片| 日韩免费av在线播放| 男人操女人黄网站| 黑人巨大精品欧美一区二区mp4| 久久精品国产亚洲av高清一级| 欧美日韩国产mv在线观看视频| 亚洲精品粉嫩美女一区| 精品国内亚洲2022精品成人 | 国产免费现黄频在线看| 亚洲精品av麻豆狂野| 亚洲精品一二三| 人妻久久中文字幕网| 涩涩av久久男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 老汉色∧v一级毛片| 亚洲精品自拍成人| 一级黄色大片毛片| 最近最新中文字幕大全免费视频| 我要看黄色一级片免费的| 19禁男女啪啪无遮挡网站| 免费在线观看日本一区| 亚洲熟妇熟女久久| xxxhd国产人妻xxx| 91精品三级在线观看| 国产aⅴ精品一区二区三区波| av欧美777| 777米奇影视久久| 19禁男女啪啪无遮挡网站| 青青草视频在线视频观看| 日韩欧美一区二区三区在线观看 | 我的亚洲天堂| 99精品欧美一区二区三区四区| 免费av中文字幕在线| 精品一品国产午夜福利视频| 高清av免费在线| 女人高潮潮喷娇喘18禁视频| 久久久久久亚洲精品国产蜜桃av| 国产成人系列免费观看| 一本—道久久a久久精品蜜桃钙片| 精品国产亚洲在线| 国产黄频视频在线观看| 悠悠久久av| 99riav亚洲国产免费| 成年版毛片免费区| 这个男人来自地球电影免费观看| 国产精品免费视频内射| 男女边摸边吃奶| av免费在线观看网站| 亚洲国产精品一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区三区在线臀色熟女 | 高清在线国产一区| 精品一品国产午夜福利视频| 国产男女内射视频| 蜜桃在线观看..| 国产精品 欧美亚洲| 午夜福利欧美成人| 成人18禁在线播放| 精品人妻在线不人妻| 老司机福利观看| 欧美在线黄色| 午夜久久久在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久亚洲精品国产蜜桃av| 日韩视频在线欧美| 人妻久久中文字幕网| 丁香欧美五月| 色尼玛亚洲综合影院| 精品人妻在线不人妻| 欧美国产精品一级二级三级| kizo精华| 丰满迷人的少妇在线观看| 欧美变态另类bdsm刘玥| 国产高清国产精品国产三级| 国产欧美日韩精品亚洲av| 黄色a级毛片大全视频| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 国产av精品麻豆| 99久久99久久久精品蜜桃| 亚洲精品国产精品久久久不卡| 中文字幕av电影在线播放| 国产亚洲欧美在线一区二区| 男男h啪啪无遮挡| videosex国产| av不卡在线播放| 18禁美女被吸乳视频| 国产精品久久久久成人av| 久久久久久久精品吃奶| a级毛片黄视频| cao死你这个sao货| 麻豆乱淫一区二区| 欧美精品一区二区免费开放| 成人av一区二区三区在线看| 国产一区二区在线观看av| 午夜福利视频在线观看免费| 2018国产大陆天天弄谢| 91麻豆精品激情在线观看国产 | 成人国语在线视频| 免费少妇av软件| svipshipincom国产片| 久久精品aⅴ一区二区三区四区| www.精华液| 另类亚洲欧美激情| 久久热在线av| 国产一区二区三区综合在线观看| 9191精品国产免费久久| 亚洲精品中文字幕一二三四区 | 久久香蕉激情| 乱人伦中国视频| 夜夜夜夜夜久久久久| 99re在线观看精品视频| 亚洲欧洲日产国产| 久久中文看片网| 日日夜夜操网爽| 国产精品.久久久| 亚洲欧美一区二区三区久久| 69av精品久久久久久 | 欧美日韩视频精品一区| 中文字幕制服av| 极品人妻少妇av视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 国产不卡av网站在线观看| 国产日韩一区二区三区精品不卡| 国产亚洲欧美在线一区二区| 一区二区三区乱码不卡18| 精品国产乱码久久久久久男人| www日本在线高清视频| 天天操日日干夜夜撸| 久久国产精品影院| 男人操女人黄网站| 日韩欧美国产一区二区入口| 亚洲精品乱久久久久久| 国产免费av片在线观看野外av| 天堂8中文在线网| 91精品三级在线观看| 美女福利国产在线| 性色av乱码一区二区三区2| 99riav亚洲国产免费| 亚洲五月色婷婷综合| 国产av又大| 精品人妻1区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久毛片免费看一区二区三区| 国产在线精品亚洲第一网站| 女人久久www免费人成看片| 一本久久精品| 又大又爽又粗| 18禁观看日本| 狂野欧美激情性xxxx| 热99久久久久精品小说推荐| 一级毛片女人18水好多| 精品国产乱码久久久久久男人| a级毛片黄视频| 国产精品久久久久久人妻精品电影 | 午夜福利在线免费观看网站| av不卡在线播放| 老鸭窝网址在线观看| 久久婷婷成人综合色麻豆| 中文字幕人妻熟女乱码| 女人高潮潮喷娇喘18禁视频| 高清在线国产一区| 日本黄色日本黄色录像| 高清欧美精品videossex| 母亲3免费完整高清在线观看| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 少妇精品久久久久久久| 丰满人妻熟妇乱又伦精品不卡| 久久久水蜜桃国产精品网| 男男h啪啪无遮挡| 狠狠狠狠99中文字幕| 久久久精品区二区三区| 性少妇av在线| 考比视频在线观看| 啦啦啦视频在线资源免费观看| 少妇裸体淫交视频免费看高清 | 久久久精品94久久精品| 老汉色av国产亚洲站长工具| 国产亚洲精品一区二区www | 国产一区二区 视频在线| 十八禁网站网址无遮挡| 一本大道久久a久久精品| 十八禁人妻一区二区| 纯流量卡能插随身wifi吗| 久久精品国产99精品国产亚洲性色 | 国产成人影院久久av| 18禁观看日本| 欧美中文综合在线视频| 99re6热这里在线精品视频| 咕卡用的链子| 欧美日韩成人在线一区二区| 乱人伦中国视频| 男女高潮啪啪啪动态图| 精品人妻熟女毛片av久久网站| 香蕉久久夜色| 91国产中文字幕| 三上悠亚av全集在线观看| 亚洲成国产人片在线观看| 日韩欧美三级三区| 99九九在线精品视频| 最近最新免费中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 国产单亲对白刺激| 1024香蕉在线观看| 亚洲av成人一区二区三| 高清黄色对白视频在线免费看| 亚洲中文字幕日韩| 99热网站在线观看| 国产精品久久久人人做人人爽| 黄色毛片三级朝国网站| 日韩人妻精品一区2区三区| 亚洲精品在线美女| 亚洲成a人片在线一区二区| 久久毛片免费看一区二区三区| 国产免费视频播放在线视频| 久久99一区二区三区| 免费在线观看影片大全网站| 亚洲成国产人片在线观看| 欧美激情 高清一区二区三区| 香蕉久久夜色| 亚洲av国产av综合av卡| 国产亚洲精品第一综合不卡| 欧美精品av麻豆av| 91成年电影在线观看| 九色亚洲精品在线播放| 午夜老司机福利片| 国产xxxxx性猛交| 久久热在线av| 亚洲性夜色夜夜综合| 欧美精品亚洲一区二区| 老司机午夜十八禁免费视频| 两个人免费观看高清视频| 在线观看免费高清a一片| 久久天躁狠狠躁夜夜2o2o| 蜜桃国产av成人99| 精品午夜福利视频在线观看一区 | 午夜成年电影在线免费观看| 美女高潮到喷水免费观看| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| 日韩视频在线欧美| 美女福利国产在线| 亚洲精品自拍成人| 免费黄频网站在线观看国产| 国产日韩一区二区三区精品不卡| 性色av乱码一区二区三区2| 亚洲精品中文字幕在线视频| 久久精品国产99精品国产亚洲性色 | 18在线观看网站| 亚洲少妇的诱惑av| 两个人看的免费小视频| 亚洲七黄色美女视频| 蜜桃国产av成人99| 国产激情久久老熟女| 国产精品.久久久| 在线观看66精品国产| 国产成人免费观看mmmm| 亚洲,欧美精品.| 又黄又粗又硬又大视频| 最黄视频免费看| 国产淫语在线视频| 9191精品国产免费久久| 99riav亚洲国产免费| 丝袜喷水一区| 一级毛片女人18水好多| 满18在线观看网站| 国产深夜福利视频在线观看| www.熟女人妻精品国产| 精品国产一区二区三区久久久樱花| 久久久久久免费高清国产稀缺| 成人国语在线视频| 欧美日本中文国产一区发布| 一二三四在线观看免费中文在| 久久这里只有精品19| 一本一本久久a久久精品综合妖精| 亚洲专区字幕在线| 欧美成狂野欧美在线观看| av欧美777| 美女福利国产在线| 亚洲人成电影观看| 国产在线观看jvid| 一级毛片女人18水好多| 黄频高清免费视频| 老司机靠b影院| 多毛熟女@视频| 老司机影院毛片| 999久久久精品免费观看国产| 国产精品久久电影中文字幕 | 男女免费视频国产| 伊人久久大香线蕉亚洲五| 国产片内射在线| 亚洲av日韩在线播放|