• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric

    2022-08-01 05:59:24XiaotingSun孫小婷YadongZhang張亞東KunpengJia賈昆鵬GuoliangTian田國良JiahanYu余嘉晗JinjuanXiang項金娟RuixiaYang楊瑞霞ZhenhuaWu吳振華andHuaxiangYin殷華湘
    Chinese Physics B 2022年7期
    關(guān)鍵詞:亞東

    Xiaoting Sun(孫小婷), Yadong Zhang(張亞東), Kunpeng Jia(賈昆鵬), Guoliang Tian(田國良),3, Jiahan Yu(余嘉晗),Jinjuan Xiang(項金娟), Ruixia Yang(楊瑞霞), Zhenhua Wu(吳振華),3,?, and Huaxiang Yin(殷華湘),3,?

    1School of Information Engineering,Hebei University of Technology,Tianjin 300401,China

    2Key Laboratory of Microelectronics Device and Integrated Technology,Institute of Microelectronics Chinese Academy of Sciences,Beijing 100029,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: MoS2,Al2O3 dielectric,NH3 in-situ doping,oxygen vacancy

    1. Introduction

    In 2004, the discovery of graphene attracted much research attention to two-dimensional (2D) materials.[1]Graphene has an ultra-high mobility of up to 2×105cm2·V-1·s-1,[2]but its gapless nature limits its applications in the field of electronic transistors. Alternative transition metal dichalcogenides(TMDs)with atomic thickness and a tunable bandgap can overcome the shortcomings of graphene and demonstrate unique optical and electrical properties.[3–6]Molybdenum disulfide (MoS2), one of the most widely studied TMDs,shows a variety of bandgaps from 1.2 eV to 1.9 eV with films from bulk to monolayer.[7]The fabricated MoS2field-effect transistors (FETs) show high carrier mobility,[8]high on–off ratios[9]and excellent subthreshold swing,[10]and have great possibilities for application in a variety of electronic devices, such as sensors,[11]photodetectors,[12]and logic devices.[13]

    Theoretically, the intrinsic mobility of MoS2FETs can reach 410 cm2·V-1·s-1,[14]but in practice the reported mobility is far less than that. There are many scattering mechanisms in the devices,including charged impurity(CI)scattering,one of the most important factors that degrades mobility.[15]For a back-gate structure FET, the interface states between the 2D channel material and the gate dielectric can be improved by using a high-κdielectric instead of SiO2to provide a special passivation process for effectively screening CI scattering. Many experimental results also show that MoS2FETs with high-κgate dielectrics, such as HfO2,[16]ZrO2,[17]and Al2O3,[18]exhibit good electrical performance. However,the oxygen vacancies and dangling bonds distributed on the surface of high-κdielectrics lead to the interface-state density of dielectrics/MoS2reaching 1011–1012cm-1·eV-1.[19]Recently, much effort has been made to decrease the interfacial defects,such as various plasma treatments(O2,N2,NH3,and CF4/O2),[20–23]rapid thermal annealing (RTA)[24,25]and dielectric-mediated doping[26]after the deposition of high-κfilms. Proper nitrogen doping into the dielectrics during the deposition process supplies an effective way to improve the quality of the dielectrics.[27]Compared with treatments after growth,in situdoping is easier and effective. However,no research has yet been reported onin situNH3doped Al2O3as a gate dielectric in MoS2FETs. In this work, MoS2FETs with NH3doped atomic layer deposition (ALD) Al2O3are systemically explored. Through x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) characterization and electrical tests,the effects of different sequences of NH3doping into the gate dielectric on device performance are investigated. The results show that MoS2FETs with ALD Al2O3doped with NH3during the final stages demonstrate the best performance;this is consistent with the results of dielectric analysis.

    2. Experiments

    In the FET experiments, a heavily doped p++ Si (100)8inch wafer was used as the back gate. The gate dielectric was formed from an ALD Al2O3thin film grown at 300°C using trimethylaluminum(TMA;Al(CH)3)and H2O as Al and oxygen precursors, respectively. Firstly, TMA vapors are pulsed into the chamber and adsorb on the substrate surface,followed by pulsing of N2into the chamber to purge the unabsorbed TMA.Then H2O vapors are pulsed to react with TMA to generate Al2O3and other by-products. At the end of the cycle,N2is pumped in to remove excess gas and any other gases produced. The control of the film thickness is achieved by changing the number of cycles. In this work, the growth rate of the undoped Al2O3film is 1.05 ?A/cycle and a 20 nm thick film is grown after 190 cycles. To realize nitrogen doping in the Al2O3dielectric layer, different sequences for introducing NH3into the growth cycle were designed in this experiment, as shown in Fig. 1. The growth sequence TMA–N2–H2O–N2–NH3–N2is called AlON (0.89 ?A/cycle, 224 cycles for 20 nm)and the sequence TMA–N2–NH3–N2–H2O–N2is called AlNO(1.05 ?A/cycle,190 cycles for 20 nm).

    Fig. 1. Schematic diagrams of one cycle with different NH3 doping sequences.

    The MoS2flake channel material was mechanically exfoliated from bulk MoS2crystal(purchased from Six Carbon Technology,Shenzhen)using scotch tape and then transferred onto the target substrate by PDMS. Next, lithography with a negative polymer resist was used to define the source/drain region. Then, the metal electrode (Ti/Au=10/40 nm) was deposited by electron beam evaporation, and the metal was stripped by lift-off to form a separate metal electrode.

    Figure 2(a) is a schematic diagram of a few-layer MoS2FET with a 20 nm Al2O3gate dielectric and Ti/Au electrodes.The prepared MoS2FET is shown in Fig.2(b),and the length and width of the channel are 3 μm and 10.86 μm,respectively.The thickness of MoS2measured by AFM is 6 nm,as shown in Fig. 2(c). Figure 2(d) shows the Raman spectra of the MoS2flake and the Raman shift between the E12gpeak (384 cm-1)and the A1gpeak(408 cm-1)is 24 cm-1.

    Fig.2. (a)Schematic of a few-layer MoS2 FET with a 20 nm Al2O3 gate dielectric and Ti/Au electrodes. (b)Optical photograph of the prepared MoS2 transistor. (c)AFM image of the MoS2 transistor with the inset showing the thickness of the MoS2 flake measured by AFM.(d)Raman spectra of MoS2 flake.

    The high-frequency(1 MHz)capacitance–voltage(C–V)curves and the electrical characteristics of MoS2FETs were measured using a Keithley 4200-SCS and an Agilent 4156C,respectively, at room temperature in an atmospheric environment.

    3. Results and discussion

    The influence ofin situNH3doping on the dielectric was explored with theC–Vtest. A metal,a gate dielectric(Al2O3,AlON, AlNO) and Si form a metal–oxide–semiconductor(MOS) capacitor structure. TheC–Vcurves of MOS capacitors measured at 1 MHz are shown in Fig.3(a). For the gate dielectrics Al2O3, AlON and AlNO, the MOS oxide capacitances per unit area (Cox) are 0.337 μF/cm2, 0.381 μF/cm2,and 0.357 μF/cm2, respectively.Coxis increased by the use of NH3doping, indicating improvement of the gate control capability. Figure 3(b) shows thekvalues of the three dielectrics and capacitance equivalent thicknesses. Based onk=(Coxtox)/ε,in whichεis the vacuum permittivity andtoxis the thickness of the gate dielectric, thekvalues for Al2O3,AlON and AlNO are 7.6,8.6,and 8.1,respectively. It is found that NH3doping can improve thekvalue of the dielectric layer due to the incorporation of nitrogen. Meanwhile, the capacitance equivalent thicknesses are decreased,which is conducive to a reduction of device size without affecting the gate control ability. Figure 3(c)shows the gate leakage current under gate voltages from-1 V to 1 V. After NH3doping, the dielectric leakage current decreases and the leakage current of AlON is one order of magnitude lower than that of Al2O3. From the electrical characterization,it is obvious that various electrical parameters are improved after NH3is doped into Al2O3. This is mainly because NH3doping reduces the defects caused by oxygen vacancies.[28]However,the degree to which vacancies are suppressed is dependent on the sequence of NH3doping.When the film grows not as AlNO but as AlON,a better gate dielectric is obtained. An explanation for this is that the NH3doping sequence affects the bonding state of elements during the ALD process.

    The surface roughness of the gate dielectric reflects the quality of the film.The roughness can affect the surface roughness scattering and thus the mobility of the carriers.[29,30]In this work, AFM is used to evaluate the root-mean square(RMS)roughness of the samples,as shown in Figs.4(a)–4(c).The RMS roughness of Al2O3,AlON and AlNO is 0.217 nm,0.169 nm, and 0.192 nm, respectively. Compared with the control sample Al2O3,samples with NH3doping have smaller RMS roughness. The AlON film has the best surface with the smallest surface roughness. This is consistent with the previous assumption that NH3doping and the sequence of doping have an impact on the quality of the dielectric layer.The flat surface is beneficial to improving the mobility of the carriers.[31]

    Fig.3. (a)The C–V curves of MOS capacitors. (b)Relevant k values and capacitance equivalent thicknesses. (c)Gate leakage current(Jg)–Vg characteristics.

    Fig.4.AFM height image(5 μm×5 μm)of the surface of the gate dielectric:(a)Al2O3,(b)AlON,(c)AlNO.

    To further clarify the mechanism of NH3doping, XPS was used to analyze the chemical bonds of the three samples.In Fig.5,O 1s has various binding energies of common chemical states, among which the low binding energy (531.2 eV)corresponds to lattice oxygen derived from O–Al in Al2O3and non-lattice and surface oxygen have a higher binding energy(532.5 eV).[32]As shown in Figs. 5(a)–5(c), the red line represents lattice oxygen and the blue line represents non-lattice oxygen. The ratio of O-Al/Odefectin the film is reflected by the spectral peak intensity ratio and is 2.59, 4.42, and 3.91 in Al2O3,AlON and AlNO,respectively. Compared with the control sample Al2O3,the dielectric layers doped by NH3have a larger peak intensity ratio,representing the fewer oxygen vacancy defects which are repaired by nitrogen.

    The XPS Al 2p spectra was extracted to analyze the bonding states of nitrogen and aluminum.As presented in Fig.5(d),there is only one spectral peak derived from the Al–O bond at 74.55 eV in the Al2O3dielectric layer. After the NH3doping, the peak of Al–N is visible at 73.31 eV, which indicates that nitrogen has been incorporated into Al2O3and formed Al–N bonds. The peak intensity of Al–N represents the number of bonds formed and the peak intensity in the AlON layer is stronger than that in the AlNO layer, which is shown in Figs. 5(e)and 5(f). Corresponding to the peak intensity ratio in Figs. 5(b) and 5(c), there are more Al–N bonds in AlON,which means that more vacancies are repaired. These results show the influence of different nitrogen doping sequences on the dielectric.

    Furthermore,the electrical characteristics of MoS2FETs were measured to study the effect of NH3doping on device performance. Figure 6(a) shows the output characteristics of the three samples, and the scanning gate voltage ranges from-2 V to 4 V in steps of 2 V. The samples with NH3doping achieve a higher drain current and the device has the highest drain current (8.0 μA/μm) atVg=4 V with AlON as the dielectric layer. Due to the effect of NH3doping on the repair of oxygen vacancies, carrier scattering at the interface of the channel and the dielectric layer is reduced,resulting in higher carrier transport efficiency and a larger current.

    Figure 6(b)shows the transfer characteristics of the three samples with normalized drain current in order to avoid the influence of channel width on the output current. The threshold voltagesVthextracted in Fig.6(b)are-0.74 V,-0.12 V,and-0.4 V for the samples with Al2O3,AlON and AlNO gate dielectric layers. It is obvious that theVthof a MoS2FET has a positive drift with a NH3-doped dielectric. Using Al2O3as the dielectric layer,a mass of oxygen vacancies with positive charges exist in the film, causing negativeVth.[33]After NH3doping into the high-κlayer,charge traps are repaired andVthhas a positive drift.[34]The sample with AlON has the smallest|Vth|, which also indicates that the MoS2/AlON interface has the fewest defective states.

    Fig.5. Deconvolution of XPS O 1s and Al 2p spectra of the three samples.

    Figure 6(c) demonstrates the transfer characteristics in a semilog scale withVds=0.2 V,from whichIon/Ioffcan be extracted to be 1.33×105,3.56×106,and 1.06×106for samples with Al2O3,AlON and AlNO,respectively. TheIon/Ioffof the sample with NH3doping is one order of magnitude larger than the sample without NH3doping. According to the above analysis,the repair of oxygen vacancy defects is helpful to reduce the carrier scattering capability,which can increaseIonand decreaseIoffof transistors. From Fig. 6(c), the value of subthreshold swing(SS)can also be extracted; it is 139 mV/dec,105 mV/dec,and 117 mV/dec for samples with Al2O3,AlON and AlNO,respectively. The sample with an AlON dielectric has the smallest SS,which is due to improvement of the interface quality after NH3doping.

    In order to explore the carrier mobility trend of the device channel,decades of devices using Al2O3,AlON and AlNO as the gate dielectric are selected and the value is calculated by using the following equation:

    in whichCoxis the oxide capacitance per unit area of the gate dielectric,LandWare the channel length and width, respectively,and ΔIds/ΔVgsis the slope of the transfer characteristic curve on a linear scale.As shown in Fig.6(d),it is obvious that the MoS2FETs with NH3-doped Al2O3have a higher carrier mobility.

    In the process of Al2O3deposition it is inevitable that oxygen vacancies will be generated because of the low crystallization temperature of Al2O3.[35]The existence of vacancies tends to form charge centers,and thus the charge scattering effect of the dielectric layer is affected. By doping nitrogen into the dielectric layer,oxygen vacancies are substituted by nitrogen atoms, which effectively screen the CI scattering in the dielectric layer and thekvalue of the dielectric is increased.In addition, the introduction of NH3during ALD growth of Al2O3can also reduce the interface roughness of dielectric and channel materials,drastically decreasing the effect of interface scattering on channel carrier transport.

    Fig. 6. (a) The Id–Vds curves in the linear region for the three samples. (b)Transfer characteristics of the three samples on a linear scale with Vds =0.2 V. (c) Transfer characteristics of the three samples on a semilog scale with Vds=0.2 V.(d)Average value of mobility of the three samples.

    Figure 7 shows the off-state current and subthreshold swings of MoS2transistors produced using different treatment methods. Compared with other processes, the device in our work exhibits better performance and achieves a smaller SS(105 mV/dec)while maintaining a low off-state current.

    Fig. 7. A plot of off-state current versus the subthreshold swings from this work compared with MoS2 FETs treated with other reported processes.

    4. Conclusion

    In summary, the processing method and the impacts of NH3in situdoping into an Al2O3gate dielectric on MoS2FETs have been systematically investigated. Two different doping sequences were investigated in experiments. Through XPS and AFM characterization and the MOS capacitor electrical test, it was found that final doping of NH3during the ALD growth cycles demonstrates the best results. The oxygen vacancy defects in the Al2O3dielectric are repaired by thisin situNH3doping, and the carrier scattering of the interfaces between the gate dielectric and TMD channel material is obviously reduced. As a result, the performance of the MoS2FET is effectively improved,and the threshold voltage shift to an ideal state close to 0 V.Thein situdielectric treatment reported in this paper provides an effective and simple method to improve performance as well as the threshold control in the development of future TMD integrated circuits.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.61774168 and 11764008)and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics,Chinese Academy of Sciences.

    猜你喜歡
    亞東
    Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
    汪孟鄒與亞東圖書館
    文史春秋(2022年4期)2022-06-16 07:12:50
    GLOBAL NONEXISTENCE FOR A VISCOELASTIC WAVE EQUATION WITH ACOUSTIC BOUNDARY CONDITIONS?
    胡適與亞東本《紅樓夢》標(biāo)點之關(guān)系
    BLOW-UP PHENOMENA FOR A CLASS OF GENERALIZED DOUBLE DISPERSION EQUATIONS?
    補衣
    點擊反證法
    聽風(fēng)看云喝茶
    兩人之間的往事(短篇小說)
    人間(2015年14期)2015-09-29 21:35:30
    2015年高考數(shù)學(xué)模擬試題(一)
    久久99蜜桃精品久久| 99久国产av精品| 天堂网av新在线| 少妇高潮的动态图| 久久亚洲精品不卡| 一区二区三区免费毛片| 中文字幕免费在线视频6| 中文资源天堂在线| 国产成人精品久久久久久| 午夜a级毛片| 一级毛片久久久久久久久女| 色视频www国产| 赤兔流量卡办理| 日本黄色视频三级网站网址| 亚洲国产欧美在线一区| 久久久国产成人免费| 丝袜喷水一区| 亚洲国产高清在线一区二区三| 九九久久精品国产亚洲av麻豆| а√天堂www在线а√下载| 日本撒尿小便嘘嘘汇集6| 看片在线看免费视频| 国产午夜福利久久久久久| 国产蜜桃级精品一区二区三区| 综合色av麻豆| 国产美女午夜福利| 中文字幕av在线有码专区| 欧美一区二区精品小视频在线| 国产成年人精品一区二区| 免费人成视频x8x8入口观看| 国产精品永久免费网站| 亚洲国产高清在线一区二区三| 婷婷六月久久综合丁香| 亚洲高清免费不卡视频| 国产高清三级在线| 日本免费一区二区三区高清不卡| 国产一区亚洲一区在线观看| av女优亚洲男人天堂| 十八禁国产超污无遮挡网站| 国产高清不卡午夜福利| 日韩欧美三级三区| 亚洲欧美中文字幕日韩二区| 欧美变态另类bdsm刘玥| 精品人妻视频免费看| av在线天堂中文字幕| 99热全是精品| 看免费成人av毛片| 九九久久精品国产亚洲av麻豆| 男女视频在线观看网站免费| 亚洲不卡免费看| 白带黄色成豆腐渣| 久久久久久伊人网av| 国模一区二区三区四区视频| 午夜精品一区二区三区免费看| 国产极品精品免费视频能看的| 九九久久精品国产亚洲av麻豆| 美女内射精品一级片tv| 精品久久久噜噜| 天堂中文最新版在线下载 | 国产私拍福利视频在线观看| 久久国内精品自在自线图片| 日本在线视频免费播放| .国产精品久久| 3wmmmm亚洲av在线观看| 亚洲精品影视一区二区三区av| 国产精品久久电影中文字幕| 免费观看在线日韩| 精品久久国产蜜桃| 免费在线观看成人毛片| 国内精品一区二区在线观看| 男人舔女人下体高潮全视频| 99riav亚洲国产免费| 国产大屁股一区二区在线视频| 国产老妇女一区| 美女国产视频在线观看| 简卡轻食公司| 国产成人freesex在线| 91av网一区二区| 成人午夜高清在线视频| 又爽又黄a免费视频| 日本成人三级电影网站| 亚洲内射少妇av| 国产精品美女特级片免费视频播放器| 国产精品不卡视频一区二区| 少妇被粗大猛烈的视频| 欧美xxxx黑人xx丫x性爽| 别揉我奶头 嗯啊视频| 波野结衣二区三区在线| 国产一区亚洲一区在线观看| 欧美xxxx性猛交bbbb| 中文字幕av在线有码专区| 日产精品乱码卡一卡2卡三| 乱人视频在线观看| 校园春色视频在线观看| 永久网站在线| 久久久a久久爽久久v久久| 伦精品一区二区三区| 国产精品无大码| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| 三级经典国产精品| 97超视频在线观看视频| 热99re8久久精品国产| kizo精华| 日韩制服骚丝袜av| 国产人妻一区二区三区在| 精品久久久久久久人妻蜜臀av| 亚洲精品久久久久久婷婷小说 | 搡老妇女老女人老熟妇| 蜜桃亚洲精品一区二区三区| 国语自产精品视频在线第100页| 久久久成人免费电影| 禁无遮挡网站| 亚洲欧美成人精品一区二区| 草草在线视频免费看| 一本久久精品| 中文字幕av在线有码专区| 中文欧美无线码| av视频在线观看入口| 亚洲不卡免费看| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 成人亚洲精品av一区二区| 亚洲人成网站在线播放欧美日韩| 色哟哟·www| 99热这里只有是精品在线观看| 久久精品国产亚洲av涩爱 | 日韩大尺度精品在线看网址| 美女大奶头视频| 性插视频无遮挡在线免费观看| 国产综合懂色| 蜜臀久久99精品久久宅男| 少妇裸体淫交视频免费看高清| 国产91av在线免费观看| 国产女主播在线喷水免费视频网站 | 日韩欧美在线乱码| 久久精品国产亚洲av香蕉五月| 亚洲欧美清纯卡通| 久久久久免费精品人妻一区二区| 久久中文看片网| 国产精品嫩草影院av在线观看| av专区在线播放| av天堂在线播放| 超碰av人人做人人爽久久| 欧美另类亚洲清纯唯美| 国产爱豆传媒在线观看| 亚洲av第一区精品v没综合| 亚洲不卡免费看| 亚洲第一区二区三区不卡| 哪里可以看免费的av片| 特大巨黑吊av在线直播| 高清午夜精品一区二区三区 | 成人高潮视频无遮挡免费网站| 免费av毛片视频| 麻豆成人午夜福利视频| 黄色一级大片看看| a级毛片免费高清观看在线播放| 免费看av在线观看网站| 精品不卡国产一区二区三区| 国产精品精品国产色婷婷| 亚洲av电影不卡..在线观看| 国内少妇人妻偷人精品xxx网站| 免费看美女性在线毛片视频| 国产成人精品一,二区 | 久久人妻av系列| 日本免费一区二区三区高清不卡| 毛片一级片免费看久久久久| 小蜜桃在线观看免费完整版高清| 亚洲综合色惰| 欧美3d第一页| 三级男女做爰猛烈吃奶摸视频| 国产成人精品婷婷| 精品久久久久久成人av| 亚洲av中文av极速乱| 成人午夜高清在线视频| 小蜜桃在线观看免费完整版高清| 丰满的人妻完整版| 欧美丝袜亚洲另类| 婷婷精品国产亚洲av| 国产精品一区二区三区四区久久| 国产精品蜜桃在线观看 | 色播亚洲综合网| 午夜精品一区二区三区免费看| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 国产亚洲精品av在线| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 久久精品国产亚洲av涩爱 | 国产亚洲精品av在线| 九九久久精品国产亚洲av麻豆| 可以在线观看的亚洲视频| 久久精品国产亚洲av涩爱 | 日日摸夜夜添夜夜添av毛片| 99热网站在线观看| 青春草国产在线视频 | 日本免费a在线| 国产又黄又爽又无遮挡在线| 深夜a级毛片| 日本一二三区视频观看| 少妇熟女aⅴ在线视频| 久久中文看片网| 青春草国产在线视频 | 欧美在线一区亚洲| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件| 久久久国产成人免费| 看免费成人av毛片| 乱人视频在线观看| 一级毛片aaaaaa免费看小| 久久国产乱子免费精品| 三级毛片av免费| 国产精品一区二区三区四区免费观看| 变态另类丝袜制服| 国产大屁股一区二区在线视频| 日本五十路高清| 美女内射精品一级片tv| 日本熟妇午夜| 久久久久久大精品| 亚洲人成网站高清观看| 婷婷色综合大香蕉| 热99re8久久精品国产| av福利片在线观看| 天美传媒精品一区二区| 啦啦啦韩国在线观看视频| 亚洲精品成人久久久久久| 99在线视频只有这里精品首页| 亚洲最大成人中文| 成人漫画全彩无遮挡| 国产高清三级在线| 男女做爰动态图高潮gif福利片| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 国产一区二区激情短视频| 九九爱精品视频在线观看| 久久欧美精品欧美久久欧美| 久久久久九九精品影院| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 老女人水多毛片| 免费看a级黄色片| 亚洲欧美清纯卡通| 国产毛片a区久久久久| 亚洲人成网站在线观看播放| 亚洲国产欧洲综合997久久,| 九九爱精品视频在线观看| 亚洲精品自拍成人| 国产淫片久久久久久久久| 国产毛片a区久久久久| 一级毛片电影观看 | 精品久久久久久久久久久久久| 欧美一区二区精品小视频在线| 色播亚洲综合网| 99热精品在线国产| 免费不卡的大黄色大毛片视频在线观看 | 国产高清视频在线观看网站| 日本三级黄在线观看| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 精品不卡国产一区二区三区| 夜夜爽天天搞| 大香蕉久久网| 嫩草影院新地址| 亚洲丝袜综合中文字幕| 波多野结衣高清作品| 精品日产1卡2卡| 亚洲精品亚洲一区二区| 人妻少妇偷人精品九色| 国产精品一区二区性色av| 美女内射精品一级片tv| 成年版毛片免费区| 嫩草影院新地址| 久久久久久久久中文| av又黄又爽大尺度在线免费看 | 国内精品久久久久精免费| 日韩精品有码人妻一区| 男人狂女人下面高潮的视频| 日日啪夜夜撸| 久久久色成人| 天堂中文最新版在线下载 | 亚洲国产精品合色在线| 校园人妻丝袜中文字幕| 欧美人与善性xxx| 一级毛片电影观看 | 国产午夜精品论理片| 天堂√8在线中文| 天堂影院成人在线观看| 久久亚洲精品不卡| 内地一区二区视频在线| 欧美日本亚洲视频在线播放| 少妇人妻精品综合一区二区 | 一区二区三区免费毛片| 婷婷精品国产亚洲av| 日本免费a在线| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频 | 18禁黄网站禁片免费观看直播| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 欧美+日韩+精品| 国产精品三级大全| 亚洲丝袜综合中文字幕| 亚洲av免费在线观看| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 亚洲成人久久爱视频| 国产精品久久久久久久电影| 亚洲五月天丁香| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| 午夜视频国产福利| 国产一区二区激情短视频| 亚洲在线观看片| 国产成人91sexporn| 校园春色视频在线观看| 少妇被粗大猛烈的视频| 中文字幕免费在线视频6| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| av天堂在线播放| 日韩 亚洲 欧美在线| 天堂中文最新版在线下载 | 黄色一级大片看看| 亚洲七黄色美女视频| 91狼人影院| 少妇的逼好多水| 亚洲在线观看片| 丰满人妻一区二区三区视频av| 亚洲图色成人| 少妇被粗大猛烈的视频| 99热这里只有精品一区| 热99在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 亚洲美女视频黄频| 亚洲不卡免费看| 午夜a级毛片| 中文字幕制服av| 免费观看a级毛片全部| 干丝袜人妻中文字幕| 久久99精品国语久久久| 婷婷色av中文字幕| 91av网一区二区| 又爽又黄无遮挡网站| 最好的美女福利视频网| 夜夜夜夜夜久久久久| 欧美又色又爽又黄视频| 日本黄色片子视频| 精品人妻视频免费看| 啦啦啦啦在线视频资源| 亚洲成人中文字幕在线播放| 亚洲人成网站在线播| 3wmmmm亚洲av在线观看| 亚洲美女搞黄在线观看| 日韩欧美一区二区三区在线观看| 日韩欧美国产在线观看| 国产精品,欧美在线| 天堂影院成人在线观看| 深夜精品福利| 黄色欧美视频在线观看| 国产成人精品婷婷| 麻豆一二三区av精品| 国产一区二区激情短视频| 成人欧美大片| 一级毛片电影观看 | 免费无遮挡裸体视频| 69人妻影院| 一个人看视频在线观看www免费| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 国产高清有码在线观看视频| 大香蕉久久网| 午夜老司机福利剧场| 亚洲人成网站在线播放欧美日韩| 高清毛片免费观看视频网站| 免费观看在线日韩| 国产精品久久久久久精品电影小说 | 自拍偷自拍亚洲精品老妇| 国产精品一二三区在线看| 久久99精品国语久久久| 极品教师在线视频| 午夜a级毛片| 亚洲精品乱码久久久v下载方式| 精品国产三级普通话版| 在线播放国产精品三级| 免费不卡的大黄色大毛片视频在线观看 | 午夜免费激情av| 99视频精品全部免费 在线| 亚洲欧美清纯卡通| ponron亚洲| 亚洲成人久久爱视频| 亚洲精品亚洲一区二区| 久久久国产成人精品二区| 免费观看a级毛片全部| 亚洲av电影不卡..在线观看| 久久久久久久久大av| 真实男女啪啪啪动态图| av又黄又爽大尺度在线免费看 | 在线播放无遮挡| av在线天堂中文字幕| 搞女人的毛片| 美女内射精品一级片tv| 在线天堂最新版资源| 99riav亚洲国产免费| av福利片在线观看| 1024手机看黄色片| av天堂在线播放| 一级av片app| av国产免费在线观看| 男女做爰动态图高潮gif福利片| 日本在线视频免费播放| 亚洲国产欧美在线一区| 人人妻人人看人人澡| 99九九线精品视频在线观看视频| 欧美激情久久久久久爽电影| 能在线免费看毛片的网站| 亚洲欧美精品自产自拍| 秋霞在线观看毛片| 哪个播放器可以免费观看大片| 精品99又大又爽又粗少妇毛片| 婷婷六月久久综合丁香| 久久久精品大字幕| 日韩强制内射视频| 黄色配什么色好看| 插阴视频在线观看视频| 国产免费一级a男人的天堂| 午夜精品在线福利| 亚洲精品亚洲一区二区| 欧美成人免费av一区二区三区| 精品国产三级普通话版| 国产精品麻豆人妻色哟哟久久 | 亚洲综合色惰| 欧美潮喷喷水| 免费大片18禁| 变态另类成人亚洲欧美熟女| 国产精品久久久久久精品电影小说 | 最新中文字幕久久久久| 老师上课跳d突然被开到最大视频| 久久久久久久久久黄片| 天堂av国产一区二区熟女人妻| 欧美性感艳星| 久久久久久久久久久免费av| 久久九九热精品免费| 国产高潮美女av| 久久精品国产亚洲网站| 18禁黄网站禁片免费观看直播| 成人二区视频| 亚洲av男天堂| 国产伦精品一区二区三区四那| 美女xxoo啪啪120秒动态图| 91精品国产九色| 午夜a级毛片| 久久人妻av系列| 男女边吃奶边做爰视频| 日韩,欧美,国产一区二区三区 | 久久人妻av系列| 国产精品三级大全| 日本熟妇午夜| 国产亚洲av嫩草精品影院| 日韩一本色道免费dvd| 成人鲁丝片一二三区免费| 亚洲美女视频黄频| 亚洲丝袜综合中文字幕| 亚洲av第一区精品v没综合| 日本成人三级电影网站| 亚洲人与动物交配视频| 欧美bdsm另类| 国产成人精品一,二区 | 精品不卡国产一区二区三区| 可以在线观看的亚洲视频| 少妇人妻一区二区三区视频| 老女人水多毛片| 久久精品综合一区二区三区| www.av在线官网国产| 插阴视频在线观看视频| 亚洲av中文av极速乱| 校园春色视频在线观看| 亚洲av成人av| 麻豆成人av视频| 一区二区三区免费毛片| 久久精品人妻少妇| 午夜福利成人在线免费观看| 中文精品一卡2卡3卡4更新| 中国美白少妇内射xxxbb| 六月丁香七月| 国产乱人视频| 国产精品久久电影中文字幕| 变态另类丝袜制服| 亚洲欧美日韩东京热| 最近手机中文字幕大全| 久久99精品国语久久久| 又爽又黄a免费视频| 欧美一区二区国产精品久久精品| 岛国毛片在线播放| 久久久久网色| av国产免费在线观看| 久久久久久久亚洲中文字幕| 欧美一区二区亚洲| 你懂的网址亚洲精品在线观看 | 中国美白少妇内射xxxbb| 亚洲婷婷狠狠爱综合网| 亚洲激情五月婷婷啪啪| 欧美高清性xxxxhd video| 99在线人妻在线中文字幕| 国产探花极品一区二区| 一本一本综合久久| 亚洲精品日韩av片在线观看| 国产成人精品一,二区 | 亚洲第一区二区三区不卡| a级毛色黄片| 亚洲av男天堂| 日日摸夜夜添夜夜添av毛片| 一级毛片我不卡| 亚洲精品亚洲一区二区| 亚洲精品456在线播放app| 国产一区二区在线观看日韩| 欧美极品一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 男人狂女人下面高潮的视频| 此物有八面人人有两片| 国产老妇伦熟女老妇高清| 成人毛片60女人毛片免费| 嫩草影院入口| 看十八女毛片水多多多| 99riav亚洲国产免费| 人人妻人人澡人人爽人人夜夜 | 国产av麻豆久久久久久久| 床上黄色一级片| 可以在线观看毛片的网站| 国产av不卡久久| 国产av麻豆久久久久久久| 久久精品综合一区二区三区| 久久久久久久久中文| av在线天堂中文字幕| 国产免费男女视频| av在线播放精品| 成年版毛片免费区| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 最后的刺客免费高清国语| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 久久久久国产网址| 亚洲aⅴ乱码一区二区在线播放| 三级经典国产精品| 日韩欧美精品免费久久| 欧美最新免费一区二区三区| 简卡轻食公司| 婷婷六月久久综合丁香| 日韩在线高清观看一区二区三区| 一本久久中文字幕| 最好的美女福利视频网| 亚洲av成人精品一区久久| 最近中文字幕高清免费大全6| 1000部很黄的大片| 亚洲欧美精品综合久久99| 亚洲国产欧洲综合997久久,| 国产精品国产高清国产av| 亚洲成人久久爱视频| 99久久精品热视频| 中国美白少妇内射xxxbb| 国产亚洲av嫩草精品影院| 97人妻精品一区二区三区麻豆| 午夜精品一区二区三区免费看| 两个人视频免费观看高清| 久久热精品热| 级片在线观看| 日本免费a在线| 两个人的视频大全免费| 欧美极品一区二区三区四区| 亚洲无线在线观看| 你懂的网址亚洲精品在线观看 | 岛国毛片在线播放| 欧美xxxx性猛交bbbb| 亚洲av.av天堂| 精品少妇黑人巨大在线播放 | 午夜视频国产福利| 亚洲va在线va天堂va国产| 精品人妻视频免费看| 一级毛片aaaaaa免费看小| 亚洲婷婷狠狠爱综合网| 久久99蜜桃精品久久| 中文字幕久久专区| 精品久久久久久久末码| 欧美日韩在线观看h| 免费人成在线观看视频色| 亚洲高清免费不卡视频| 中文欧美无线码| 99精品在免费线老司机午夜| 一个人观看的视频www高清免费观看| 亚洲精品自拍成人| 国产高清三级在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品日韩在线中文字幕 | 中文字幕熟女人妻在线| 夜夜看夜夜爽夜夜摸| 老司机福利观看| 九九热线精品视视频播放| 亚洲中文字幕日韩| 成人亚洲精品av一区二区| 噜噜噜噜噜久久久久久91| 不卡一级毛片| 久久精品国产亚洲av天美| 少妇裸体淫交视频免费看高清| 欧美一区二区精品小视频在线| 天堂影院成人在线观看| 国产高清有码在线观看视频| 日日啪夜夜撸| 成人综合一区亚洲| 中国美女看黄片| 91av网一区二区| 在线国产一区二区在线| 精品久久久久久久末码|