• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice

    2023-02-20 13:15:56QingSongYang楊清松BinBinRuan阮彬彬MengHuZhou周孟虎YaDongGu谷亞?wèn)|MingWeiMa馬明偉GenFuChen陳根富andZhiAnRen任治安
    Chinese Physics B 2023年1期
    關(guān)鍵詞:亞?wèn)|治安

    Qing-Song Yang(楊清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亞?wèn)|),Ming-Wei Ma(馬明偉), Gen-Fu Chen(陳根富), and Zhi-An Ren(任治安),?

    1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: ZrIr2,superconductivity,Laves phase,kagome lattice,spin–orbit coupling

    1. Introduction

    The well-known Laves phases with general formulasAB2constitute a large family in the intermetallic compounds.[1–3]Despite the relatively simple compositions, they hold various crystal structures,intriguing physical properties and hence wide applications, such as magnetic materials,[4,5]hydrogen storage materials,[6,7]and superconducting magnets.[8–10]Thermodynamically stable Laves phases mainly crystallize in three common structures,namely,the hexagonal C14-type(or MgZn2-type), the cubic C15-type (or MgCu2-type), and the hexagonal C36-type(or MgNi2-type). Among them, the C14 and C15 Laves phases were found to be more favorable for the occurrence of superconductivity.[1,11,12]For instance, the C15-type V-based superconductors (Zr1-xHfxV2) have been intensively studied as candidates for application in high-field superconducting magnets.[13–15]In addition,several C15-type superconductors such as CeRu2[16,17]and Au2Pb[18,19]were reported to host possible unconventional superconductivity.

    Recently, Ir-based C15-type Laves phasesAIr2(A=Ca,Sr, Ba, Th) have attracted much interest for the coexistence of superconductivity and strong spin–orbit coupling (SOC)effects.[20–26]Although superconductivity inAIr2(A=Ca,Sr,Th)had been discovered before the 1960s,[27]the normal-state and superconducting properties ofAIr2were not systematically studied until these recent reports. Electronic band structure calculations further revealed that the presence of SOC would strongly affect not only the topology of Fermi surfaces but also the lattice stability.[23]All these results suggest that the C15-typeAIr2are good platforms to study the interplay between SOC and superconductivity. However,studies on these compounds face challenges sinceAIr2(A=Ca,Sr,Ba,Th)are either unstable in air or contain toxic/radioactive elements.

    ZrIr2is also a C15-type superconductor,whose superconductivity was discovered by Matthiaset al. in 1961.[11]Subsequent studies focused on the magnetic states of rare-earth dopants in ZrIr2,[28–30]but reports on the superconducting nature of ZrIr2were scarce. To date, evidence for bulk superconductivity in ZrIr2has not been revealed,and details of the superconducting properties are still lacking.In particular,thermodynamic measurements on ZrIr2have never been reported,neither have been the superconducting parameters except for the transition temperature(Tc).Given that ZrIr2is stable in air,and the element Zr is friendly to both health and environment,it is necessary to examine the bulk superconductivity and to study the superconducting properties in detail.

    In this paper,we report the superconducting properties of ZrIr2based on the measurements of resistivity,magnetic susceptibility, and heat capacity. Bulk superconductivity is confirmed by the heat capacity measurements, and the superconducting parameters are determined for the first time. Moreover, ZrIr2is possibly an s-wave superconductor with strong electron–phonon coupling. First-principles calculations reveal the crucial role of SOC and the three-dimensional feature of Fermi surfaces in ZrIr2.

    2. Methods

    Polycrystalline samples of ZrIr2were prepared by an arcmelting method. The starting materials were zirconium(powder, 99.5%, may contain trace amount of Hf) and iridium(powder,99.99%). Zr and Ir were thoroughly mixed in a molar ratio of 1.08:2 before pressed into pellets. A slightly excess amount of Zr was used in order to prevent the formation of ZrIr3. The pellets were then arc-melted in high purity argon atmosphere for at least 8 times with intermediate turnovers.The weight losses after arc-melting were always less than 1%.The ingots obtained were subsequently wrapped with tantalum sheets, sealed into quartz tubes, and annealed at 1430 K for three weeks. The final products showed metallic lusters and were stable in air.

    X-ray diffraction (XRD) data were collected on a powdered sample using a PAN-analytical x-ray diffractometer(Cu-Kαradiation) at room temperature. Rietveld refinements of the XRD results were carried out using the GSAS package.[31]Measurements of electrical resistivity, as well as heat capacity of the sample were performed on a Quantum Design physical property measurement system (PPMS). While magnetization data were collected on a Quantum Design magnetic property measurement system (MPMS). More details about the measurements can be found elsewhere.[32]Note that all the data in this paper were collected on a sample from the same batch. The magnetization data were corrected by taking the demagnetization factors into account.[33]

    First-principles calculations were performed by using the density functional theory(DFT),as implemented in the Quantum ESPRESSO(QE)package.[34]Projector augmented wave pseudopotentials from the PSlibrary were chosen,[35]with exchange–correlation functionals of PBEsol based on the generalized gradient approximation (GGA).[36]The energy cutoffs for the wavefunctions were 70 Ry. A Monkhorst–Pack grid of 163k-points was used in the self-consistent calculation,while a grid of 493k-points was used to calculate the density of states(DOS)and the Fermi surfaces. Before the calculation of charge densities, the cells were fully relaxed till the force on each atom was less than 10-4Ry·Bohr-1. Both the scalar relativistic and the fully relativistic cases were considered in the calculation.

    3. Results

    3.1. Structural characterization

    Figure 1(a) demonstrates the powder XRD pattern of ZrIr2. The pattern can be well refined with a C15-type Laves phase structure (MgCu2-type, space group), indicating the formation of the target phase. The unindexed weak peaks in Fig. 1(a) arise from a small amount (9.8 wt.%) ofα-ZrIr impurity. The Rietveld refinement yields cell parametersa=b=c=7.3596(1) ?A, in good agreement with previous reports.[11]Details of the refinement results are summarized in Table 1. The cell parameters from DFT relaxations are also listed. The experimental value ofaagrees very well with the theoretical ones. When the SOC effects are taken into account,the discrepancy between experiment(7.3596 ?A)and theory(7.3614 ?A)is less than 0.03%.

    Table 1. Crystallographic parameters of ZrIr2 from Rietveld refinement of XRD.

    Fig.1. (a)Room-temperature powder XRD pattern of ZrIr2 and its Rietveld refinements. The conventional unit cell is shown as the inset. (b)Calculated valence charge density (bound between 0 and 0.2e/, where e is the electronic charge and a0 is the Bohr radius) on the (111) plane. The kagome lattice of Ir atoms is emphasized. (c) Calculated valence charge density on the(110)plane,in which the low-density region around Zr atoms is visible.

    The conventional unit cell of ZrIr2is shown as the inset of Fig. 1(a). The cell is constructed with Zr atoms filling the cavities of the Ir network. Notice the Ir atoms form a kagome lattice, which is clearly shown in the charge density map in Fig.1(b). We also note that the Zr–Ir bonds are partially ionic,as the calculated charge density shows “empty” regions surrounding the Zr atoms, as shown in Fig.1(c). These findings are similar with the cases in isostructural compounds such as SrIr2or SrRh2.[23]

    3.2. Superconducting properties

    Figure 2(a) shows the temperature dependence of resistivity (ρ) of ZrIr2from 1.8 K to 300 K. Metallic behavior can be inferred from the monotonous decrease ofρto lower temperature, yet the residual resistivity ratio (RRR) is relatively low compared with SrIr2[22,23]or ThIr2.[24]Under zero magnetic field,a sharp superconducting transition is observed below 4.0 K () andρbecomes zero at 3.8 K ().These values are consistent with previous reportedTc(4.1 K)of ZrIr2.[11,27]The transition width is about 0.2 K.In order to estimate the upper critical field (μ0Hc2(T)),ρ(T) was measured under various magnetic fields,as seen in Fig.2(b). The superconducting transition is gradually suppressed with the increase of magnetic field. We thus obtain theμ0Hc2(T) plot,which is shown in the inset of Fig.2(a). In the inset,Tcis defined as the midpoint of superconducting transition.μ0Hc2(0)is determined to be 4.78 T by a Ginzburg–Landau (G–L) fit:μ0Hc2(T)=μ0Hc2(0)[1-(T/Tc)2]/[1+(T/Tc)2].

    Fig.2. (a) Temperature dependence of resistivity (ρ) of ZrIr2 in zero magnetic field. Inset shows the temperature dependence of upper critical field(μ0Hc2(T)). (b)The superconducting transition region on ρ(T)under various magnetic fields up to 3.5 T.

    Zero-field-cooled(ZFC) and field-cooled(FC) DC magnetic susceptibility(4πχ)of ZrIr2from 7.0 K to 1.8 K,measured under 10 Oe magnetic field,is demonstrated in Fig.3(a).The strong diamagnetic signal below 3.8 K indicates the occurrence of superconductivity. The transition temperature is consistent with the one from theρ(T) measurement. The superconducting shielding fraction from the ZFC curves is~103%,confirming the bulk nature of superconductivity. The shielding fraction is larger than 100% because of the experimental errors of the sample dimensions. In addition, the existence of strong magnetic flux pinning effects is revealed by the much lower FC signals. The isothermal magnetization curves (M(H)) at various temperatures from 1.8 K to 3.6 K are shown in Fig.3(b). The fields at which the curves deviate 2.5%from the initial Meissner states are defined as the lower critical fields(μ0Hc1). As a result,the inset of Fig.3(a)shows the temperature dependence ofμ0Hc1,which can be well fitted with the G–L formula:μ0Hc1(T)=μ0Hc1(0)[1-(T/Tc)2],yieldingμ0Hc1(0)=12.8 mT.

    Fig.3. (a) Temperature-dependent DC magnetic susceptibility of ZrIr2 under 10 Oe. Inset shows the evolution of lower critical field μ0Hc1(T).(b)Isothermal magnetization at various temperatures below Tc.

    We are able to determine a series of superconducting parameters starting from the values ofHc1(0) andHc2(0). The G–L coherence length (ξGL) is determined to be 8.30 nm byμ0Hc2(0)=Φ0/(),whereΦ0is the magnetic flux quantum. From the relation[37]

    the penetration depth (λGL) and the G–L parameter (κGL=λGL/ξGL)are estimated to be 220.4 nm and 26.6,respectively.κGLis much larger than 1/, suggesting type-II superconductivity. The thermodynamic field (μ0Hc(0)) is thus estimated to be 0.14 T by(0)lnκGL=Hc1(0)Hc2(0). These superconducting parameters are summarized in Table 2.

    We also measured the specific heat of ZrIr2to examine the superconducting nature. Figure 4(a) shows the temperature dependence of specific heat(Cp)for ZrIr2within the temperature range of 1.8 K–7.0 K at magnetic fields of zero and 5 T.Notice theCpdata have been corrected by subtracting the contribution ofα-ZrIr impurity. The subtraction procedure is similar with that in our previous study.[32]Under zero magnetic field, there was an obvious anomaly onCp(T)at 3.8 K,validating the bulk nature of superconductivity. The anomaly could be completely suppressed when a field of 5 T was applied. The normal-stateCp(T) measured under 5 T can be well fitted with a Debye modelCp(T)/T=γ+βT2+δT4,in whichγis the Sommerfeld coefficient,while the other two terms stand for the phononic contributions. The fittedγandβvalues are 8.68 mJ·mol-1·K-2and 0.909 mJ·mol-1·K-4, respectively. And the fitting curve is shown in Fig. 4(a) as the black dash line. Debye temperature(ΘD)is thus calculated to be 186 K by

    in whichNis the number of atoms per formula unit(f.u.),andRis the ideal gas constant. The value ofΘDis comparable with that of SrIr2(180 K).[22]

    We can further estimate the electron–phonon coupling constantλepusing the McMillan relation[38]

    whereμ*is the Coulomb screening parameter (set to 0.13 in our case).λep= 0.68 is thus obtained, indicating that ZrIr2hosts a weak to moderate coupling strength. Moreover,the DOS at Fermi level(EF)is estimated usingN(EF)=3γ/[(1+λep)] based onγandλep, yieldingN(EF) =2.20 eV-1·f.u.-1.

    By subtracting the phononic contributions fromCp, the electronic contributionCeis obtained and shown in Fig.4(b).The normalizedCejump(ΔCe/γTc)is determined to be 1.86.This value is larger than the BCS weak-coupling ratio(1.43),suggesting enhanced electron–phonon coupling in ZrIr2.Ceat the superconducting state can be well fitted with the so-calledα-model,[39]whereCe=T?S/?T, and the entropySis expressed as

    f= 1/[1 +exp(], in whichΔ(T) =Δ0tanh(1.82[1.018(Tc/T-1)]0.51). These results mean that ZrIr2is possibly an s-wave superconductor with an isotropic gap,and the gap value at zero temperature(Δ0)is fitted to be 0.62 meV.Δ0/kBTcis thus estimated to be 1.92,again validating strong-coupling superconductivity.

    Fig.4. (a)Specific heat(Cp)for ZrIr2 within the temperature range of 1.8 K–7.0 K under zero and 5 T magnetic field. The black dash line is the fit with Debye model.(b)The electronic contribution of Cp below 6 K.The solid line shows the fit with α-model.

    3.3. First-principles calculations

    Figure 5(a)shows the electronic band structures of ZrIr2nearEFfrom first-principles calculations,in which the results without SOC are plotted as the dash lines, and the SOC results in solid lines. There are three bands crossingEFboth in the absence and presence of SOC,which is consistent with the metallic nature of ZrIr2from resistivity measurement. Notice the inclusion of SOC dramatically changes the band dispersion nearEF. In particular,band splits are obvious(~0.2 eV)at certaink-points, as emphasized by the green circles in Fig.5(a).

    The influences of SOC are also reflected in the DOS plots,as shown in Figs.5(b)and 5(c). In both cases(with and without SOC),the DOS nearEFare dominated by Ir-5d and Zr-4d orbitals. The strong hybridization between the two orbitals is indicated by the similar shapes of their corresponding contributions. The theoretical value ofN(EF) is 2.94 eV-1·f.u.-1with SOC. This value is slightly larger than the experimental one, which means that the actualEFis probably lower than calculated. This can be caused by a possible existence of Hf atoms and/or Zr vacancies on the Zr sites.

    The three sheets of calculated Fermi surfaces(with SOC)are illustrated in Fig. 5(d). Notice each sheet hosts a Krammers degeneracy. Compared to the isostructural superconductors SrIr2[23]or ThIr2,[24]the Fermi surface topology in ZrIr2is unexpectedly simple, although they all share threedimensional features. To be specific, ZrIr2hosts only one polyhedron-shaped hole-like pocket surrounding theΓpoint,plus one capsule-shaped electron-like pocket surrounding theXpoint.

    Fig.5. (a)Calculated electronic band structure of ZrIr2 without and with SOC near the Fermi level. The corresponding DOS plots are shown in(b)and(c),respectively. (d)The high symmetry points in Brillouin zone,and the calculated sheets of Fermi surfaces(with SOC).

    4. Discussion

    Now we move on to make a comparison between ZrIr2and C15-type superconductorsAIr2(A=Ca, Sr, Ba, Th). As shown in Table 2,N(EF)for ZrIr2is much lower than the other four members(except for CaIr2). However,Tcof ZrIr2is comparable with the others’. It is even higher than that of BaIr2despite the much lowerN(EF) (orγ). Interestingly, we notice thatΘDis positively correlated withTc. AsΘDreflects the phonon dispersion,these results suggest that phonon spectrum, rather thanN(EF), plays an important role in determination of the electron–phonon coupling strength. The modification of phonon spectrum(henceTc)is realized by changing the guest atomAin the kagome lattice ofAIr2. Indeed, the low-frequency vibrations of the Ir network (kagome lattice),modified by the insertion of Sr,have also been suggested to be the reason for strong electron–phonon coupling in SrIr2.[23]In this respect,future studies on phonon dispersion and electron–phonon interactions in ZrIr2are needed. Given that the Fermi surfaces of ZrIr2are quite different(and much simpler)compared withAIr2(A=Sr or Th),[23,24]it will possibly provide new thoughts for understanding the superconductivity in Irbased C15-type superconductors.

    Table 2. Superconducting and thermodynamic parameters of ZrIr2. Reference values for AIr2 (A=Ca,Sr,Ba,Th)are also listed for comparison.

    5. Conclusion

    In summary, we have systematically investigated superconductivity in the C15-type Laves phase superconductor ZrIr2. Bulk superconductivity withTcof 4.0 K is confirmed.Our measurements indicate that ZrIr2is a type-II s-wave superconductor with upper and lower critical fields of 4.78 T and 12.8 mT, respectively. In addition, strong electron–phonon coupling is revealed by the large values ofΔCe/γTc(1.86)andΔ0/kBTc(1.92). First-principles calculations indicate that the SOC effects are prominent,while the Fermi surface topologies are simple. ZrIr2is a stable compound under ambient conditions, with health and environmental friendly Zr. Therefore,it serves as a suitable platform,both experimentally and theoretically,to study the interplay between superconductivity and strong SOC in Ir-based C15-type superconductors.

    Acknowledgments

    Project supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2021YFA1401800), the National Natural Science Foundation of China (Grant Nos. 12074414 and 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB25000000).

    猜你喜歡
    亞?wèn)|治安
    汪孟鄒與亞?wèn)|圖書館
    文史春秋(2022年4期)2022-06-16 07:12:50
    Me & Miss Bee
    貫徹落實(shí)新安法 全力推動(dòng)依法治安
    推進(jìn)掃黑除惡 優(yōu)化治安環(huán)境
    公民與法治(2020年5期)2020-05-30 12:33:50
    GLOBAL NONEXISTENCE FOR A VISCOELASTIC WAVE EQUATION WITH ACOUSTIC BOUNDARY CONDITIONS?
    做好企業(yè)治安保衛(wèi)工作的認(rèn)識(shí)與實(shí)踐
    活力(2019年17期)2019-11-26 00:42:08
    BLOW-UP PHENOMENA FOR A CLASS OF GENERALIZED DOUBLE DISPERSION EQUATIONS?
    基于知識(shí)管理的建設(shè)企業(yè)治安管理模式
    點(diǎn)擊反證法
    2015年高考數(shù)學(xué)模擬試題(一)
    免费不卡的大黄色大毛片视频在线观看 | 中文字幕av在线有码专区| 亚洲色图av天堂| 亚洲精品自拍成人| 国产成年人精品一区二区| 女人十人毛片免费观看3o分钟| 亚洲精品成人av观看孕妇| 日本一本二区三区精品| 国产黄片美女视频| 97人妻精品一区二区三区麻豆| 男女国产视频网站| 好男人在线观看高清免费视频| 国产在线一区二区三区精| 亚洲在久久综合| 久久久久久九九精品二区国产| 在线免费观看的www视频| 91精品伊人久久大香线蕉| 成人二区视频| 伦精品一区二区三区| 久久精品人妻少妇| 高清av免费在线| 春色校园在线视频观看| 亚洲图色成人| 国产白丝娇喘喷水9色精品| 国产午夜精品久久久久久一区二区三区| 久久精品综合一区二区三区| 简卡轻食公司| 免费观看精品视频网站| 亚洲第一区二区三区不卡| www.色视频.com| 91久久精品国产一区二区成人| 女人被狂操c到高潮| 欧美高清成人免费视频www| 精品一区二区三区人妻视频| 国产精品久久久久久精品电影| 日韩av在线大香蕉| 蜜桃亚洲精品一区二区三区| 中文资源天堂在线| 国产亚洲5aaaaa淫片| av一本久久久久| 国产精品一区www在线观看| 成人美女网站在线观看视频| 国产男女超爽视频在线观看| 亚洲精品,欧美精品| 亚洲自拍偷在线| 丰满乱子伦码专区| 久久综合国产亚洲精品| 水蜜桃什么品种好| 欧美潮喷喷水| 国产免费一级a男人的天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女人十人毛片免费观看3o分钟| 如何舔出高潮| 国产一区二区三区综合在线观看 | 麻豆久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 黄片无遮挡物在线观看| 国产高清国产精品国产三级 | 在线观看免费高清a一片| 久久草成人影院| 国产探花极品一区二区| 亚洲av中文av极速乱| 久久精品综合一区二区三区| 国产黄色视频一区二区在线观看| 秋霞伦理黄片| 久久久久久九九精品二区国产| 国产亚洲午夜精品一区二区久久 | 国产亚洲av片在线观看秒播厂 | 久久久久久久午夜电影| 最近2019中文字幕mv第一页| av专区在线播放| 欧美三级亚洲精品| 国产精品一区二区三区四区久久| 在现免费观看毛片| 日韩视频在线欧美| av网站免费在线观看视频 | videos熟女内射| 老司机影院毛片| 男女下面进入的视频免费午夜| 91久久精品国产一区二区成人| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 精品一区二区免费观看| av国产久精品久网站免费入址| 久久久久久久大尺度免费视频| 日本熟妇午夜| 3wmmmm亚洲av在线观看| 欧美成人a在线观看| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 国产一区亚洲一区在线观看| 国产精品熟女久久久久浪| 免费人成在线观看视频色| 亚洲av日韩在线播放| 天堂√8在线中文| 国产精品久久久久久精品电影小说 | 在线 av 中文字幕| 欧美潮喷喷水| 免费高清在线观看视频在线观看| 一级毛片久久久久久久久女| 亚洲精品中文字幕在线视频 | 国产精品精品国产色婷婷| 天堂俺去俺来也www色官网 | 午夜激情久久久久久久| 久久久久精品性色| 少妇的逼水好多| 国产极品天堂在线| 超碰av人人做人人爽久久| 久久精品久久久久久久性| 在线播放无遮挡| 日韩欧美 国产精品| 99热网站在线观看| 青青草视频在线视频观看| 亚洲综合精品二区| 能在线免费观看的黄片| 久久草成人影院| 欧美97在线视频| 黄色配什么色好看| 欧美xxⅹ黑人| 少妇丰满av| 97在线视频观看| 能在线免费看毛片的网站| 国产亚洲一区二区精品| 老女人水多毛片| 熟妇人妻久久中文字幕3abv| 国产精品一区二区性色av| 亚洲美女视频黄频| 少妇裸体淫交视频免费看高清| 简卡轻食公司| 免费黄频网站在线观看国产| 日本熟妇午夜| 亚洲精品日韩在线中文字幕| 中文精品一卡2卡3卡4更新| 精品久久久久久久末码| 欧美3d第一页| 欧美日本视频| av.在线天堂| 26uuu在线亚洲综合色| 久久久精品94久久精品| 在现免费观看毛片| 久久久a久久爽久久v久久| 三级经典国产精品| 日日啪夜夜撸| 夫妻午夜视频| 午夜福利视频1000在线观看| 一级爰片在线观看| 日韩av不卡免费在线播放| 91久久精品国产一区二区三区| 国产v大片淫在线免费观看| 亚洲经典国产精华液单| 国产成人精品婷婷| 久久精品国产亚洲网站| 免费无遮挡裸体视频| 爱豆传媒免费全集在线观看| 欧美xxxx性猛交bbbb| 麻豆成人av视频| 成人国产麻豆网| 国产精品嫩草影院av在线观看| 国产午夜精品一二区理论片| 欧美bdsm另类| 国产亚洲av嫩草精品影院| 国产伦精品一区二区三区四那| 国产一区二区三区av在线| 国产精品久久视频播放| 美女被艹到高潮喷水动态| 亚洲精品,欧美精品| 国产成人a∨麻豆精品| 亚洲在线自拍视频| 婷婷色麻豆天堂久久| 欧美激情在线99| 在线观看人妻少妇| 男女边摸边吃奶| 国产精品精品国产色婷婷| 欧美高清性xxxxhd video| 1000部很黄的大片| 日本av手机在线免费观看| 国产大屁股一区二区在线视频| 男女边摸边吃奶| 一二三四中文在线观看免费高清| 国产精品麻豆人妻色哟哟久久 | 成人亚洲精品av一区二区| 免费观看av网站的网址| 精品人妻视频免费看| 国产精品久久视频播放| a级一级毛片免费在线观看| 五月伊人婷婷丁香| 国产精品熟女久久久久浪| 色5月婷婷丁香| 美女国产视频在线观看| 亚洲欧美中文字幕日韩二区| 91精品一卡2卡3卡4卡| 草草在线视频免费看| 国产片特级美女逼逼视频| 亚洲在久久综合| 爱豆传媒免费全集在线观看| 麻豆av噜噜一区二区三区| 欧美不卡视频在线免费观看| 精品一区二区免费观看| 中国国产av一级| 成人高潮视频无遮挡免费网站| 国产午夜福利久久久久久| 久久久久久伊人网av| 好男人视频免费观看在线| 国产精品熟女久久久久浪| a级一级毛片免费在线观看| 国产精品综合久久久久久久免费| 亚洲真实伦在线观看| 国产真实伦视频高清在线观看| 国产精品一及| 精品久久国产蜜桃| 亚洲av一区综合| 一区二区三区免费毛片| 国内精品宾馆在线| 秋霞在线观看毛片| 蜜桃亚洲精品一区二区三区| 精品人妻一区二区三区麻豆| 成年女人在线观看亚洲视频 | 晚上一个人看的免费电影| 亚洲av在线观看美女高潮| 久久久久久久亚洲中文字幕| 久久这里有精品视频免费| 欧美激情国产日韩精品一区| 大陆偷拍与自拍| 91午夜精品亚洲一区二区三区| 国产真实伦视频高清在线观看| www.色视频.com| 久久国内精品自在自线图片| 国产综合懂色| 三级国产精品欧美在线观看| 99热网站在线观看| 精品久久久精品久久久| 真实男女啪啪啪动态图| av在线蜜桃| 欧美另类一区| 婷婷色av中文字幕| 免费大片黄手机在线观看| 草草在线视频免费看| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| 亚洲av日韩在线播放| 久久久精品欧美日韩精品| 久久草成人影院| 人体艺术视频欧美日本| 亚洲伊人久久精品综合| 99久国产av精品国产电影| 国产日韩欧美在线精品| 日韩精品青青久久久久久| 亚洲精品久久午夜乱码| 色尼玛亚洲综合影院| 国产免费福利视频在线观看| 国产黄a三级三级三级人| 成人av在线播放网站| 日韩成人伦理影院| 看非洲黑人一级黄片| 久久久久九九精品影院| 亚洲在线自拍视频| 亚洲精品日韩在线中文字幕| 国产黄片视频在线免费观看| 天堂影院成人在线观看| av在线蜜桃| 18禁在线播放成人免费| 国产v大片淫在线免费观看| 久久久久久久久久人人人人人人| 五月玫瑰六月丁香| 欧美xxxx性猛交bbbb| 岛国毛片在线播放| 亚州av有码| 免费看日本二区| 午夜福利在线观看免费完整高清在| 乱人视频在线观看| 亚洲精品乱码久久久v下载方式| 中文字幕av成人在线电影| 丝袜美腿在线中文| 亚洲人成网站高清观看| 久久久久九九精品影院| 如何舔出高潮| 一区二区三区高清视频在线| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 亚洲av在线观看美女高潮| 国产一区二区三区av在线| 午夜精品在线福利| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 久久久久久久久久久免费av| 国产精品爽爽va在线观看网站| 国产色爽女视频免费观看| 亚洲精品成人久久久久久| 非洲黑人性xxxx精品又粗又长| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 久久久欧美国产精品| 日韩三级伦理在线观看| 丝瓜视频免费看黄片| 精品人妻视频免费看| 在线免费观看不下载黄p国产| 国产免费福利视频在线观看| videossex国产| 欧美激情久久久久久爽电影| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 久久久久久久久大av| 午夜精品国产一区二区电影 | 边亲边吃奶的免费视频| 国产亚洲av嫩草精品影院| .国产精品久久| 亚洲av电影在线观看一区二区三区 | 丝袜喷水一区| 亚洲av成人精品一二三区| 亚洲一区高清亚洲精品| 亚洲精品亚洲一区二区| av女优亚洲男人天堂| 夜夜看夜夜爽夜夜摸| av卡一久久| 亚洲最大成人中文| 亚洲av电影在线观看一区二区三区 | 人妻一区二区av| 久久久久久久午夜电影| 成年女人在线观看亚洲视频 | 好男人在线观看高清免费视频| 美女脱内裤让男人舔精品视频| 欧美zozozo另类| 国产伦在线观看视频一区| 成人特级av手机在线观看| 大又大粗又爽又黄少妇毛片口| 色吧在线观看| 久久精品国产鲁丝片午夜精品| 亚洲精品成人久久久久久| 欧美丝袜亚洲另类| 亚洲精品视频女| 久久久久精品性色| 三级国产精品欧美在线观看| 亚洲最大成人手机在线| 国产精品久久久久久久电影| 六月丁香七月| 黄色一级大片看看| 嫩草影院新地址| 色5月婷婷丁香| 乱人视频在线观看| 97超碰精品成人国产| 丰满乱子伦码专区| 成人午夜精彩视频在线观看| 亚洲国产欧美人成| a级一级毛片免费在线观看| 2018国产大陆天天弄谢| 国产成人精品一,二区| 美女黄网站色视频| 精品久久久久久久久久久久久| 国内揄拍国产精品人妻在线| 亚洲人成网站在线播| 免费观看a级毛片全部| 干丝袜人妻中文字幕| av在线观看视频网站免费| 亚洲人与动物交配视频| 男女边摸边吃奶| 51国产日韩欧美| 成人毛片a级毛片在线播放| 亚洲最大成人手机在线| 国产成人精品久久久久久| 高清欧美精品videossex| 高清午夜精品一区二区三区| 性色avwww在线观看| .国产精品久久| 大片免费播放器 马上看| 亚洲av二区三区四区| av卡一久久| 黄色日韩在线| 久久午夜福利片| 波野结衣二区三区在线| 欧美成人一区二区免费高清观看| 九九在线视频观看精品| 能在线免费看毛片的网站| 精品不卡国产一区二区三区| 婷婷色综合www| 精品国产露脸久久av麻豆 | 99久久九九国产精品国产免费| 两个人视频免费观看高清| 国内精品一区二区在线观看| 少妇猛男粗大的猛烈进出视频 | 美女国产视频在线观看| 在线观看人妻少妇| 亚洲精品色激情综合| 免费少妇av软件| 一级片'在线观看视频| 欧美97在线视频| 有码 亚洲区| 国产激情偷乱视频一区二区| 国产黄a三级三级三级人| 午夜免费观看性视频| 色综合站精品国产| 97超碰精品成人国产| 免费大片18禁| 不卡视频在线观看欧美| 卡戴珊不雅视频在线播放| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| 三级经典国产精品| 一级毛片我不卡| 免费观看在线日韩| 久久久久网色| 亚洲av中文av极速乱| 99热这里只有是精品在线观看| 亚洲成人精品中文字幕电影| 成人亚洲精品av一区二区| 国产精品av视频在线免费观看| 日本三级黄在线观看| 国产精品久久久久久精品电影| 最近最新中文字幕大全电影3| 五月玫瑰六月丁香| 亚洲av中文字字幕乱码综合| or卡值多少钱| 日本熟妇午夜| videossex国产| 免费观看在线日韩| 水蜜桃什么品种好| 国产黄频视频在线观看| 久久久久久久大尺度免费视频| 热99在线观看视频| av在线老鸭窝| 夫妻午夜视频| 麻豆成人av视频| 日日摸夜夜添夜夜爱| 网址你懂的国产日韩在线| 久久午夜福利片| 天堂中文最新版在线下载 | 日本黄色片子视频| 26uuu在线亚洲综合色| 精品久久久久久久久久久久久| 国产一区亚洲一区在线观看| 少妇的逼水好多| 超碰av人人做人人爽久久| 免费大片黄手机在线观看| 大片免费播放器 马上看| av.在线天堂| 乱系列少妇在线播放| 亚洲精品,欧美精品| 久久久久久久大尺度免费视频| 99久久精品热视频| 日韩视频在线欧美| 中国国产av一级| www.av在线官网国产| 18禁裸乳无遮挡免费网站照片| 国产一级毛片七仙女欲春2| 国产老妇伦熟女老妇高清| 中文字幕av成人在线电影| 建设人人有责人人尽责人人享有的 | 亚洲人成网站在线播| 色吧在线观看| 波多野结衣巨乳人妻| 一级毛片久久久久久久久女| 精品久久国产蜜桃| 尤物成人国产欧美一区二区三区| 九色成人免费人妻av| 久久这里有精品视频免费| 久久综合国产亚洲精品| 老司机影院毛片| 中文乱码字字幕精品一区二区三区 | 精品久久久精品久久久| 国内少妇人妻偷人精品xxx网站| 日本黄色片子视频| 精品久久久久久电影网| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 美女内射精品一级片tv| 我的老师免费观看完整版| 97热精品久久久久久| 1000部很黄的大片| 亚洲成人一二三区av| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 777米奇影视久久| 少妇的逼水好多| av在线播放精品| 国产有黄有色有爽视频| 国产淫片久久久久久久久| 亚洲精品,欧美精品| 九九爱精品视频在线观看| 国产成年人精品一区二区| 国产成人午夜福利电影在线观看| 色播亚洲综合网| 欧美三级亚洲精品| 99热6这里只有精品| 国产三级在线视频| 尤物成人国产欧美一区二区三区| 国国产精品蜜臀av免费| 色综合色国产| 五月天丁香电影| 亚洲真实伦在线观看| 国产久久久一区二区三区| 国产亚洲91精品色在线| 亚洲在久久综合| 插阴视频在线观看视频| 日产精品乱码卡一卡2卡三| 熟妇人妻不卡中文字幕| 麻豆国产97在线/欧美| 日韩国内少妇激情av| 亚洲精品国产av成人精品| 婷婷色麻豆天堂久久| 九九爱精品视频在线观看| 少妇的逼好多水| 亚洲性久久影院| 国产精品久久视频播放| 亚洲精品视频女| 亚洲不卡免费看| 少妇的逼好多水| 人妻制服诱惑在线中文字幕| 在线 av 中文字幕| 亚洲成人中文字幕在线播放| 一级爰片在线观看| 一个人免费在线观看电影| 国产有黄有色有爽视频| 韩国高清视频一区二区三区| 国产成人免费观看mmmm| 欧美日本视频| 久久久久九九精品影院| 久久99蜜桃精品久久| 国产亚洲av片在线观看秒播厂 | 啦啦啦韩国在线观看视频| 亚洲精品久久午夜乱码| 国产免费福利视频在线观看| 亚洲精品456在线播放app| 亚州av有码| 欧美人与善性xxx| 一区二区三区乱码不卡18| 日韩一本色道免费dvd| 中文字幕制服av| 少妇的逼好多水| 黄色一级大片看看| 精品人妻熟女av久视频| 搡女人真爽免费视频火全软件| 日本一本二区三区精品| 国产黄色小视频在线观看| 日本免费在线观看一区| 国产69精品久久久久777片| 七月丁香在线播放| 亚洲性久久影院| 99久久精品国产国产毛片| 黄片无遮挡物在线观看| 成人美女网站在线观看视频| 校园人妻丝袜中文字幕| 成人毛片60女人毛片免费| 欧美日韩亚洲高清精品| 有码 亚洲区| 成人亚洲精品一区在线观看 | 国产亚洲最大av| 一个人看的www免费观看视频| av女优亚洲男人天堂| 26uuu在线亚洲综合色| 99久久精品一区二区三区| 天天躁日日操中文字幕| 久久精品人妻少妇| 尤物成人国产欧美一区二区三区| 欧美性感艳星| 亚洲欧美精品自产自拍| 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| 三级经典国产精品| 国产麻豆成人av免费视频| 国内揄拍国产精品人妻在线| 人人妻人人看人人澡| 插阴视频在线观看视频| 亚洲熟女精品中文字幕| 夜夜爽夜夜爽视频| 丝袜美腿在线中文| 1000部很黄的大片| 一级av片app| 又粗又硬又长又爽又黄的视频| 少妇高潮的动态图| 亚洲国产色片| 久久这里只有精品中国| 国产成人午夜福利电影在线观看| 午夜免费激情av| 91av网一区二区| 青春草视频在线免费观看| 日日摸夜夜添夜夜爱| 国产爱豆传媒在线观看| 亚洲国产成人一精品久久久| 精品久久国产蜜桃| 国产老妇女一区| 亚洲精品456在线播放app| 有码 亚洲区| 亚洲欧美日韩东京热| 午夜免费激情av| 亚洲成人中文字幕在线播放| 国产激情偷乱视频一区二区| 性色avwww在线观看| 91av网一区二区| 日韩欧美一区视频在线观看 | 亚洲激情五月婷婷啪啪| 国产 一区 欧美 日韩| 啦啦啦中文免费视频观看日本| 中文字幕av成人在线电影| 乱码一卡2卡4卡精品| 啦啦啦中文免费视频观看日本| 亚洲精品亚洲一区二区| 国产精品麻豆人妻色哟哟久久 | 麻豆久久精品国产亚洲av| 亚洲不卡免费看| 超碰av人人做人人爽久久| 国产高潮美女av| 99久久人妻综合| 亚洲av一区综合| 久久热精品热| 欧美高清性xxxxhd video| 狂野欧美激情性xxxx在线观看| 国产午夜福利久久久久久| 99热这里只有是精品在线观看| av免费在线看不卡| 精品少妇黑人巨大在线播放| 欧美xxxx性猛交bbbb| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av成人av| 久久久久久久久久久免费av|