• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser

    2022-08-01 05:59:02YingHan韓穎BoGao高博JiayuHuo霍佳雨ChunyangMa馬春陽(yáng)GeWu吳戈YingyingLi李瑩瑩BingkunChen陳炳焜YubinGuo郭玉彬andLieLiu劉列
    Chinese Physics B 2022年7期
    關(guān)鍵詞:高博

    Ying Han(韓穎), Bo Gao(高博),?, Jiayu Huo(霍佳雨), Chunyang Ma(馬春陽(yáng)), Ge Wu(吳戈),Yingying Li(李瑩瑩), Bingkun Chen(陳炳焜), Yubin Guo(郭玉彬), and Lie Liu(劉列)

    1College of Communication Engineering,Jilin University,Changchun 130012,China

    2Collaborative Innovation Center for Optoelectronic Science&Technology,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,China

    3College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

    Keywords: soliton pulsation,dispersive Fourier transform,numerical simulation,breathing behavior

    1. Introduction

    In recent decades, researchers’ enthusiasm for passively mode-locked fiber lasers (PMFLs) has not diminished.[1–3]Due to the dissipative properties of such fiber lasers, solitons can change their shapes,amplitude,and pulse width regularly under the adjustment of system parameters, which is called soliton pulsation. As a unique local structure in the fiber laser, soliton pulsation has been paid much attention by researchers. Although soliton period-doubling bifurcation[4]and multi-period pulsation[5]have been observed in nonlinear polarization mode-locked fiber lasers as early as 2004,due to the lack of experimental instruments capable of capturing real-time spectra of solitons, the research on soliton pulsation was mainly based on theoretical analysis and simulation analysis. For example, researchers have used a complex cubic-quintic Ginzburg–Landau equation (CQGLE) to study pulsating,[4]creeping,[5]and erupting solitons[6]in fiber lasers.[7]And the soliton pulsation with breathing behavior was studied by the CQGLE[8,9]in recent years. At the same time, researchers have used a simpler nonlinear Schr¨odinger equation (NLSE)[10]to study the Akhmediev breathers that show similar breathing behavior to soliton pulsation. And the Ginzburg–Landau equation (GLE)[11,12]can be used to observe the breathing behavior of soliton pulsation in a fiber laser mode-locked by the nonlinear polarization rotation (NPR)technique. Modeling fiber lasers based on such two equations is closer to actual fiber lasers and deserves more in-depth research.

    The dispersive Fourier transform (DFT) technique is a new way to study the real-time spectral of the soliton.[13]The soliton spectrum is mapped to the time waveform by employing dispersive elements that have large group velocity dispersion. Therefore, people can obtain the ultrafast spectrum through the real-time oscilloscope together with the high-speed photodetector. A variety of soliton transient dynamics was observed in passively mode-locked fiber lasers adopting the DFT technique: the build-up of dissipative soliton pulsation,[14]successive soliton explosion,[15]explosion induced rogue waves.[16]Breathing behavior of dissipative soliton pulsation,[17–19]multiple soliton pulsation,[20,21]dissipative soliton explosion[22]and the pulsating soliton molecule[23]are observed in the normal dispersion NPR mode-locked fiber laser by the DFT. In the anomalous dispersion region,the soliton pulsation with chaotic behavior[24]and the soliton pulsation sideband characteristics[12]are also studied. However, there are few studies on soliton pulsation with breathing behavior in anomalous dispersion NPR modelocked fiber lasers. It is found in references[25–27]that the soliton pulsation has obvious breathing behavior in the real-time spectral evolution.

    In this research, the breathing behavior of soliton pulsation in anomalous dispersion NPR passively mode-locked fiber laser is studied by numerical simulation and experiment.Specifically, we studied the influence of the phase difference caused by the polarization controller on the breathing period of soliton pulsation through theoretical modeling of such fiber lasers. At the same time,we obtained the single-shot spectral evolutions of the soliton pulsation via the DFT technique to further explore the breathing behavior in the experiment. The breathing behavior is achieved by adjusting the polarization controller. It has similar features such as energy oscillation and bandwidth breathing to simulation results.

    2. Physical model and DFT technique

    2.1. Physical model of the passively mode-locked fiber laser

    The pulse tracing technique can numerically simulate the pulse evolution in PMFLs. Such a method takes into account the effect of each element in the fiber laser on the light field.All the components in the laser are successively distributed in the laser cavity. Figure 1 is the physical model of the typical PMFL. The doped fiber usually includes Er-doped fibers(EDF),Yb-doped fibers(YDF),Tm-doped fibers(TDF),Hodoped fibers, etc. The undoped fiber usually contains singlemode fibers (SMF), dispersion compensation fibers (DCF),etc. Saturable absorber(SA)mainly includes artificial SA and real SA. Researchers used the NLSEs to calculate the transmission of pulses in undoped fibers and the GLEs to calculate the transmission of pulse in the doped fiber. When the pulse passes through other components,such as SA and output coupler (OC), the Jones matrix equation of the component is directly multiplied by the light field to represent its influence on pulse transmission. In the simulation, the initial input signal is arbitrary. When the pulse runs in the cavity for one roundtrip (RT), the result is regarded as the next RT input pulse.Using the pulse tracing method for numerical simulation can observe the output pulse at any time and any position in the cavity,the evolution process of the pulse,and the influence of each element on the pulse evolution, which is impossible in the experiment.

    2.2. Introduction of DFT technique

    The DFT technique is based on the analogy between spatial Fraunhofer diffraction and time dispersion: the diffraction of the light beam in the far-field through the lens is analogous to the transmission of pulse in the dispersive element,which is also called spatiotemporal duality. Figure 2 is the schematic diagram of the DFT technique. The DFT system consists of the dispersive element with large group velocity dispersion, photodetectors, and a real-time digital oscilloscope: the pulse is stretched due to the large group velocity dispersion of dispersion element when there is pulse transmission in it. After being stretched, the soliton intensity envelope has the same shape as the spectrum; that is, the soliton spectrum is mapped to its time profile to realize the timedomain measurement of the soliton spectrum. Such a timedomain stretched pulse is obtained via the high-speed photodetector,therefore,the single-shot spectrum information can be observed and analyzed through the real-time digital oscilloscope.There are many kinds of dispersive components used in the DFT technique,including SMF,DCF,chirped fiber Bragg grating,multi-mode waveguide,etc.In the DFT technique,the spectrum detection speed can reach the same level as the repetition frequency of the mode-locked lasers and can realize the measurement and observation of a single real-time spectrum.Using this technique, researchers have a better understanding of the physical mechanism of various soliton transient dynamics, which has important implications for optimizing the performance of fiber lasers and promoting basic research in the field of fiber lasers.

    Fig.2. Schematic diagram of the DFT technique.

    3. Numerical simulation results

    3.1. Simulation model

    Figures 1 and 5 are the simulation schematic and the experiment schematic of anomalous dispersion NPR passively mode-locked fiber laser, respectively. It consists of the EDF,SMF, NPR as the saturable absorber, and an OC. The OC is utilized to extract 40% of the intracavity pulse energy for decreasing intracavity nonlinearity and avoiding excessive pulses. As shown in Fig.5,two PCs,an isolator,and birefringent fiber constitute the NPR.The pulse with any polarization state becomes linearly polarized after passing through the isolator. When it propagates in the fiber, it will split into two orthogonal elliptical polarization components along the two main axes of the fiber. Due to the influence of the nonlinear effects of the fiber,the polarization state of the pulse will undergo intensity-related evolution when it is transmitted in the fiber. As the pulse passes through the NPR,the low-intensity wings of the pulse are absorbed, and the high-intensity center passes smoothly. The pulse will be narrowed slightly after an RT in the cavity,and it will be significantly narrowed after multiple RTs.

    Since NPR is related to the birefringence effect of the fiber,our simulation is based on coupled GLE(in doped fiber)and coupled NLSE(in single-mode fiber),which can be solved via the symmetric split-step Fourier method. The coupled GLE is expressed as follows:

    whereuandvdenote the envelopes of the optical pulses,which propagates along the two orthogonal polarization axes of the optical fibers. 2β=2πΔn/λrepresents the wavenumber difference between the two orthogonal polarization modes, and 2δ=2βλ/2πcis the reciprocal of the group velocity difference.γis the nonlinear coefficient.β2represents the group velocity dispersion.gis the gain of the fiber given by the spectrally correlated parabolic frequency domain expressiong(ω):

    whereθis the angle between the fast axis of the birefringent fiber and the polarizer, andφrepresents the angle between the fast axis of the birefringent fiber and the analyzer. ΔΨL=(2πL/λ)(nx-ny)+ΨPCis the linear phase delay. The phase difference of the pulse caused by polarization controllers (PCs) is represented byψPC.λandLrepresent the light wavelength and the cavity length,respectively.The nonlinear phase delay caused by self-phase modulation and cross-phase modulation can be expressed as ΔΨNL=-(2πLn2P/3λAeff)cos(2θ), wheren2denotes the nonlinear coefficient.Aeffis the effective mode area,andPis the optical power. In the time domain,this simulation grid consists of 214points. The detailed parameters of our simulation are shown in Table 1.

    3.2. Result and discussion

    To explore the influence ofψPCon the breathing behavior of soliton pulsation,firstly,we find the stationary soliton with the value of system parameter taken as Table 1, at the same time,takenψPCas 0°. Figures 3(a)–3(a4)includes the correlation graphs of stationary soliton. Figures 3(a)–3(a4) shows that both time-domain and frequency-domain soliton exhibit similar shapes during the evolution,and the energy shows the constant value of 20.2 pJ. Later, we change the value ofψPCto explore its influence on soliton evolution. When it is taken as 7°,6°,3°,the soliton exhibits breathing behavior(the characteristic of soliton pulsation).

    Table 1. Parameters of the fiber laser.

    Fig.3. Column(a)and column(b)represent the correlation graphs when ψPC=0°and 7°,respectively:[(a),(b)]time-domain evolution;[(a1),(b1)]spectral evolution; [(a2),(b2)]energy evolution of stationary soliton and soliton pulsation; (a3)extracted spectral evolution diagram of(a1); (b3)extracted spectral evolution diagram of one breathing period;(a4)single-shot spectral of stationary soliton;(b4)single-shot spectral for the maximal and minimal bandwidths.

    Fig. 4. Column (a) and column (b) represent the correlation graphs when ψPC =6°, 3°: [(a), (b)] time-domain evolution; [(a1), (b1)] spectral evolution;[(a2),(b2)]energy evolution;[(a3),(b3)]extracted spectral evolution diagram of one breathing period;[(a4),(b4)]single-shot spectral for the maximal and minimal bandwidths.

    Figures 3(b)–3(b4)and 4 show correlation graphs of different soliton pulsation with breathing behavior. It is evident in Figs. 3(b), 4(a), and 4(b) that the soliton presents pulsation characteristics;that is,the soliton width and soliton intensity of the soliton change periodically as the increase of RT.As can be seen in Figs. 3(b1), 4(a1), and 4(b1), the soliton spectrum shows breathing behavior, and the breathing period is around 35 RTs(Fig.3(b3)),50 RTs(Fig.4(a3))and 40 RTs(Fig. 4(b3)), respectively. Researchers defined the ratio between the maximum and minimum spectral bandwidth in one period as the breathing ratio. According to Figs.3(b4),4(a4),and 4(b4)the breathing ratio is~2.5,~2,and~2.5,respectively. The periodic energy changes during the soliton pulsation dynamics in Figs.3(b2),4(a2),and 4(b2)indicate that the gain saturation effect has an impact on the soliton of PMFLs.

    Comparing Figs. 3(b)–3(b4) and 4, it can be seen that the angle of the polarization controller may affect the breathing characteristics of the soliton pulsation, including different fluctuations in the time domain evolution, changes in the breathing period and the shape of the spectrum. Since NPR produces saturable absorption characteristics based on intensity-sensitive polarization evolution, its parameters can be determined by the polarizer,nonlinear phase accumulation,and linear phase bias controlled by the polarization controllers.It can also be used as a birefringent filter[30]to achieve wavelength tuning or use its spectral filtering effect to achieve soliton pulsation with breathing behavior.

    4. Experimental results

    4.1. Experimental setups

    We constructed an NPR mode-locked fiber laser as shown in Fig.5 as the test-bed system to verify the above simulation results. The gain medium is 0.7-m EDF,which is pumped by a 976-nm laser source through the wavelength division multiplexer. The parameters of EDF,SMF,and other elements used in the experiment are the same as in Table 1. Therefore, the cavity net dispersion is about-0.13 ps2. The combination of two polarization controllers (PCs) with the polarizationdependent isolator between them produces the saturable absorption effect known as NPR mode-locking. That makes it possible to simply rotate the blades of the PCs to adjust the transmission function of NPR and modify the linear cavity loss and the interaction between pulses. At the same time,we recorded the single-shot spectrum using the DFT technique,in which the frequency-to-time transformation is realized by using 10-km SMF.It is subsequently fed to a 5-GHz photodetector(PD,THORLABS DET08CFC/M)that is connected to a 12.5-GHz real-time oscilloscope (Tektronix DP071254C).The corresponding spectral resolution(in nm)is conveniently expressed as Δλ= (B|D|z)-1[31]whereB= 12.5 GHz is the overall detection bandwidth, andD=-(2πc/λ2)β2=20 ps/(nm·km) is the dispersion parameter,zis the propagation distance. Therefore, in our case, the real-time spectral resolution is about 1 nm.

    Fig. 5. Schematic diagram of NPR mode-locked fiber laser for the experiment.

    4.2. Result and discussion

    By properly adjusting the pump power to the modelocking threshold of about 460 mW and the paddle direction of the PCs, a mode-locked soliton spectrum is observed and shown in Fig.6(b). We employ the DFT technique to further validate the real-time soliton spectrum. The real-time spectral evolution(Fig.6(a))and the evolution process(Fig.6(c))of the soliton show that it has a similar shape, and uniform intensity,indicating that it is a stationary soliton. The stationary soliton has been commonly seen and fully investigated.Nevertheless, the research of soliton pulsation with breathing characteristics is not comprehensive.

    Fig.6.(a)Spectrum,(b)real-time spectral and evolution of stationary soliton and(c)the evolution process of the stationary soliton.

    Soliton pulsation is related to the nonlinear gain saturation and spectral filtering, so the conversion from stationary to pulsation can be realized by adjusting the pump power. In previous simulations, various pulsation solitons has been observed by changing the intracavity spectral filtering effect.[32]It has been proved that if an in-line polarizer(ILP)[33]is added to the single-wall carbon nanotube(SWNT)mode-locked fiber laser, the spectral profile changes with the adjustment of the intracavity-loss-dependent gain spectrum[34]and the spectral filtering effect.[35]The characteristics of NPR are determined by the polarizer, nonlinear phase accumulation, and PCscontrolled linear phase bias. Adjusting the PCs will change the intracavity total birefringence, which can affect the bandwidth,and the free spectral range of the NPR filter effect,resulting in the soliton pulsation. We have taken pump power at about 460 mW in the experiment,while the only variable is the paddle direction of PCs.

    Fig. 7. (a) Real-time spectral evolution of soliton pulsation with breathing behavior; (b) energy evolution; (c) extracted spectral evolution diagram of one breathing period;(d)single-shot spectrum for the maximal and minimal bandwidths;(e)evolution process of soliton pulsation.

    The real-time spectral evolution dynamics in Fig.7(a)exhibit similar breathing dynamics in references[25–27]and above simulation. Figure 7(d) shows spectral profiles for the maximal bandwidth and the minimal bandwidth, proving that the breathing ratio is~3.25. The soliton spectrum is continuously compressed and stretched with a period of 2000 RTs(Fig. 7(c)). The energy of the pulse was obtained by integrating the power spectral density over the whole wavelength band, as shown in Fig. 7(b). Pulse energy variation and the evolution process(Fig.7(e))show periodic oscillations corresponding to the change of pulse width, bandwidth, and peak power. And the amplitude of the energy oscillation echoes the spectral breathing ratio. The breathing behavior of the soliton complex in NPR mode-locked fiber lasers was proved in reference,[25]and the experimental results were verified by CQGLE.Our experiment further proves that the single soliton pulsation can also show breathing behavior in the same fiber laser. At the same time,the simple and practical couple GLEs are used to verify breathing behavior which is closer to actual fiber lasers and deserves more in-depth research.

    In the simulation, there is little difference between the single-shot spectral for the maximal bandwidth and the minimum bandwidth, and the shape will change slightly. In the experiment, the shape of the spectrum remains almost unchanged, and the intensity of the spectrum changes greatly.The intensity of the maximum spectrum is 2.5 times the minimum spectrum. Usually, the simulation considers the ideal situation such as taking the parameters of gain fiber and the transfer function of the mode-locked device as ideal values,ignoring the influence of fiber loss,environmental factors,etc.However,some factors need to be considered in actual operation, for instance, the influence of temperature on the dispersion value of the gain fiber, the influence of fiber bending on the fiber birefringence, the influence of the loss of the fiber,and other components in the laser cavity on the evolution of soliton,the influence of the loss of fiber and other components in the laser cavity on the evolution of the soliton, the error of the photoelectric detector and oscilloscope in the measurement process will also affect the results. These factors cause the difference between the change of spectral intensity in the experiment and the simulation,which is inevitable.

    Pulse temporal duration also varies, and the temporal resolution of existing detection systems cannot capture these changes. A temporal magnifier technique known as time-lens may solve such constraints.[36,37]Nevertheless, the time-lens technique can be difficult to implement when the pulse undergoes large breathing. The time magnifying window is limited by the width of the pump pulse in the time-lens technique,which requires the pump pulse to be synchronized with the signal. When the signal is beyond the magnifying window,the information that can be measured is very limited and sometimes not even available. It is very difficult to study the full field soliton transient dynamics in mode-locked fiber lasers.

    5. Conclusion and perspectives

    In conclusion, we have experimentally and theoretically investigated the breathing behavior of soliton pulsation in the anomalous dispersion NPR mode-locked fiber laser. Through the model based on the couple GLE and transfer function for NPR, the simulation shows that the breathing characteristics of soliton pulsation can be influenced by the angle of the polarization controller.Subsequently,the breathing behavior of soliton pulsation is observed by continuously adjusting the polarization controller with the dispersive Fourier transform technique in the experiment. The experimental results in this letter qualitatively agree with the numerical results,which demonstrate the couple GLE as a powerful equation to model the behaviors of the fiber lasers. The complex properties of the NPR effects,as well as the complex dissipative properties of fiber laser, result in breathing phenomena in our case even with the fixed pump power. The experimental results are qualitatively consistent with the simulation results,indicating that the couple GLEs are powerful equations to model fiber lasers.In our case,the complex properties of the NPR effect and the complex dissipative nature of the fiber laser cause soliton pulsation even if the pump power remains constant. The limited examples presented above do not fully represent the complex soliton pulsation dynamics. However, these results will appeal to the community dealing with ultrafast lasers and nonlinear optics and better designing ultrafast fiber lasers. Further explanation of the time-domain formation (via the time-lens technique) of the observed soliton pulsations will be the aim of our future work.

    Acknowledgments

    Project supported by the Jilin Province Science and Technology Development Plan Project, China (Grant Nos. 20190201128JC and 20200401125GX), the National Natural Science Foundation of China (Grant No. 62105209),F(xiàn)oundation and Applied Foundation Research Fund of Guangdong Province, China (Grant No. 2019A1515111060), and Science and Technology Project of the 13th Five-Year Plan of Jilin Provincial Department of Education, China (Grant Nos.JJKH20190157KJ and JJKH20190169KJ).

    猜你喜歡
    高博
    Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser
    塔式太陽(yáng)能電站定日鏡場(chǎng)布局研究
    分?jǐn)?shù)階傅里葉變換改進(jìn)算法在時(shí)頻分析中的應(yīng)用
    匿于藝術(shù)
    家居廊(2020年4期)2020-05-25 02:50:11
    Thinking Through Visual Communication
    山東青年(2018年6期)2018-11-06 05:50:56
    優(yōu)雅(2018年5期)2018-05-09 02:36:00
    高職高專(zhuān)自考本科“專(zhuān)、本銜接”研究
    ——以高博學(xué)院自考為例
    高博:黯然赴歐
    高博 可愛(ài)的英國(guó)“老頭”
    英才(2014年10期)2014-10-11 13:22:14
    數(shù)字營(yíng)銷(xiāo)在未來(lái)占有更重要位置 專(zhuān)訪(fǎng)捷豹路虎大中華區(qū)總裁高博
    少妇猛男粗大的猛烈进出视频 | 日韩一区二区视频免费看| 国产精品爽爽va在线观看网站| 国产亚洲最大av| 亚洲国产av新网站| 91aial.com中文字幕在线观看| av在线观看视频网站免费| 亚洲欧美精品专区久久| 国产精品一区二区性色av| 中文欧美无线码| 午夜福利在线观看免费完整高清在| 精品一区二区三区人妻视频| 久久久久久九九精品二区国产| 亚洲精品久久久久久婷婷小说| 在线观看av片永久免费下载| 3wmmmm亚洲av在线观看| 日本免费在线观看一区| 国产午夜福利久久久久久| h日本视频在线播放| 国产免费一级a男人的天堂| 日本与韩国留学比较| 精品久久久久久电影网| 一级毛片电影观看| 偷拍熟女少妇极品色| 又粗又硬又长又爽又黄的视频| 深爱激情五月婷婷| 成人午夜高清在线视频| 久久国内精品自在自线图片| 久久久久网色| 水蜜桃什么品种好| 精品酒店卫生间| 欧美97在线视频| 午夜免费男女啪啪视频观看| videos熟女内射| 亚洲人成网站高清观看| 波多野结衣巨乳人妻| 国产成人freesex在线| 色网站视频免费| 看十八女毛片水多多多| 三级国产精品欧美在线观看| 男人舔奶头视频| 久久99精品国语久久久| 少妇丰满av| 最近最新中文字幕免费大全7| 97人妻精品一区二区三区麻豆| 99久久精品热视频| 午夜日本视频在线| 日韩欧美精品v在线| 久久久久久久久久黄片| 我要看日韩黄色一级片| 在线观看免费高清a一片| 大香蕉97超碰在线| 国产精品嫩草影院av在线观看| 美女高潮的动态| 丝袜喷水一区| 久久精品国产亚洲av涩爱| 三级男女做爰猛烈吃奶摸视频| 91久久精品电影网| 国产午夜精品久久久久久一区二区三区| 深夜a级毛片| 草草在线视频免费看| 我的女老师完整版在线观看| 国产亚洲午夜精品一区二区久久 | 亚州av有码| 日本av手机在线免费观看| 午夜福利在线观看吧| 在线免费观看不下载黄p国产| 晚上一个人看的免费电影| 亚洲av成人精品一区久久| 亚洲精华国产精华液的使用体验| 少妇熟女aⅴ在线视频| av网站免费在线观看视频 | 欧美激情在线99| 欧美日韩国产mv在线观看视频 | 七月丁香在线播放| 激情五月婷婷亚洲| 国语对白做爰xxxⅹ性视频网站| 在线免费观看不下载黄p国产| 久久精品国产亚洲av天美| 亚洲av中文字字幕乱码综合| 免费大片黄手机在线观看| 精品一区二区三区人妻视频| 久久久午夜欧美精品| 日日撸夜夜添| 中国国产av一级| 天天躁日日操中文字幕| 熟女人妻精品中文字幕| 亚洲国产成人一精品久久久| 少妇的逼水好多| 成人高潮视频无遮挡免费网站| 亚洲第一区二区三区不卡| 看非洲黑人一级黄片| 777米奇影视久久| 国产综合精华液| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 色尼玛亚洲综合影院| 91狼人影院| 中文天堂在线官网| 日韩精品有码人妻一区| 色哟哟·www| 亚洲av日韩在线播放| 亚洲色图av天堂| 插逼视频在线观看| 婷婷色麻豆天堂久久| 七月丁香在线播放| 91久久精品国产一区二区三区| 毛片一级片免费看久久久久| 亚洲精品成人av观看孕妇| 99久久人妻综合| 精品久久久久久久人妻蜜臀av| 欧美不卡视频在线免费观看| 国产女主播在线喷水免费视频网站 | 中文字幕av在线有码专区| 国产亚洲一区二区精品| 三级国产精品片| 亚洲成人久久爱视频| 精品人妻一区二区三区麻豆| 国产伦理片在线播放av一区| 九九在线视频观看精品| 蜜臀久久99精品久久宅男| 日韩欧美三级三区| 一二三四中文在线观看免费高清| 人妻少妇偷人精品九色| 真实男女啪啪啪动态图| 99久久九九国产精品国产免费| 91午夜精品亚洲一区二区三区| av免费在线看不卡| 两个人视频免费观看高清| 国产黄色视频一区二区在线观看| 人妻少妇偷人精品九色| 免费在线观看成人毛片| 最近最新中文字幕大全电影3| 免费大片黄手机在线观看| 亚洲精品自拍成人| 高清av免费在线| 亚洲高清免费不卡视频| 欧美xxxx性猛交bbbb| 亚洲三级黄色毛片| 国产精品1区2区在线观看.| 久久99精品国语久久久| 高清av免费在线| 99久国产av精品国产电影| 国产在视频线在精品| 国产白丝娇喘喷水9色精品| 国产成人午夜福利电影在线观看| 夜夜看夜夜爽夜夜摸| 久久国产乱子免费精品| 综合色av麻豆| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 亚洲av男天堂| 亚洲aⅴ乱码一区二区在线播放| 三级国产精品片| 成人欧美大片| 色网站视频免费| 少妇人妻一区二区三区视频| 中文精品一卡2卡3卡4更新| 欧美日韩视频高清一区二区三区二| 午夜福利视频1000在线观看| 久久久久久久大尺度免费视频| 美女被艹到高潮喷水动态| 夫妻性生交免费视频一级片| 久久国产乱子免费精品| 久久久精品欧美日韩精品| 久久久色成人| 亚洲国产精品国产精品| 国产精品一区二区三区四区免费观看| 亚洲熟女精品中文字幕| 国产亚洲最大av| 少妇人妻精品综合一区二区| 成人综合一区亚洲| 色网站视频免费| 3wmmmm亚洲av在线观看| 国产精品精品国产色婷婷| 三级毛片av免费| 国产伦精品一区二区三区四那| 老司机影院毛片| 国产精品久久久久久精品电影| 少妇猛男粗大的猛烈进出视频 | 亚洲av在线观看美女高潮| 亚洲色图av天堂| 又大又黄又爽视频免费| 国产黄片视频在线免费观看| 亚洲av电影不卡..在线观看| 天堂av国产一区二区熟女人妻| 精品不卡国产一区二区三区| 亚洲国产av新网站| 久久午夜福利片| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| 男女啪啪激烈高潮av片| 色吧在线观看| 一夜夜www| 超碰97精品在线观看| 日韩在线高清观看一区二区三区| 永久网站在线| 国产精品一区二区三区四区久久| 亚洲综合精品二区| 狠狠精品人妻久久久久久综合| av在线亚洲专区| 亚洲激情五月婷婷啪啪| 国产精品日韩av在线免费观看| 日本欧美国产在线视频| 国产在视频线在精品| 色网站视频免费| 国产 亚洲一区二区三区 | 国产高清有码在线观看视频| 国产精品美女特级片免费视频播放器| av在线老鸭窝| 欧美日韩综合久久久久久| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 99热网站在线观看| 毛片一级片免费看久久久久| 熟妇人妻不卡中文字幕| 日韩欧美 国产精品| 亚洲国产欧美在线一区| 大香蕉97超碰在线| 伊人久久国产一区二区| 全区人妻精品视频| xxx大片免费视频| 国产片特级美女逼逼视频| 精品久久久噜噜| 成人毛片a级毛片在线播放| 国产一区二区亚洲精品在线观看| 51国产日韩欧美| 看黄色毛片网站| 日韩精品青青久久久久久| 国产亚洲最大av| 国产精品一二三区在线看| 国产亚洲精品av在线| 欧美日韩在线观看h| 欧美性感艳星| 婷婷色av中文字幕| 熟妇人妻久久中文字幕3abv| 日本色播在线视频| 国产av国产精品国产| 午夜精品国产一区二区电影 | 欧美一级a爱片免费观看看| 国产精品综合久久久久久久免费| 国产精品爽爽va在线观看网站| 日本黄色片子视频| 欧美日本视频| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| 午夜精品国产一区二区电影 | 小蜜桃在线观看免费完整版高清| 三级男女做爰猛烈吃奶摸视频| 国产高清不卡午夜福利| 在线观看一区二区三区| 男女视频在线观看网站免费| 国产久久久一区二区三区| 人体艺术视频欧美日本| av又黄又爽大尺度在线免费看| 成人av在线播放网站| 久久久精品免费免费高清| 国产黄色免费在线视频| 欧美一区二区亚洲| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区免费观看| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 极品少妇高潮喷水抽搐| 日本黄大片高清| 精品久久国产蜜桃| 麻豆乱淫一区二区| av在线亚洲专区| 久久精品久久久久久噜噜老黄| av国产久精品久网站免费入址| 亚洲在线观看片| 成人毛片a级毛片在线播放| 97在线视频观看| 99久国产av精品| 亚洲成色77777| 日本猛色少妇xxxxx猛交久久| 午夜激情福利司机影院| 看黄色毛片网站| 哪个播放器可以免费观看大片| 日韩av在线大香蕉| 亚洲在线观看片| freevideosex欧美| 一夜夜www| 亚洲美女搞黄在线观看| 美女脱内裤让男人舔精品视频| 国产精品一区二区三区四区久久| 欧美xxxx性猛交bbbb| 久久精品国产亚洲av涩爱| 亚洲综合色惰| 国产老妇伦熟女老妇高清| 人人妻人人看人人澡| 97人妻精品一区二区三区麻豆| 18禁在线无遮挡免费观看视频| 天堂网av新在线| 亚洲精品自拍成人| 一二三四中文在线观看免费高清| 天堂影院成人在线观看| 麻豆久久精品国产亚洲av| 成人特级av手机在线观看| 一级黄片播放器| 亚洲最大成人中文| 亚洲自偷自拍三级| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 少妇人妻精品综合一区二区| 日韩,欧美,国产一区二区三区| 日日撸夜夜添| 久久99热这里只频精品6学生| 婷婷六月久久综合丁香| 中文字幕制服av| 日本色播在线视频| 精品久久国产蜜桃| 伦精品一区二区三区| av线在线观看网站| 高清在线视频一区二区三区| 1000部很黄的大片| 激情 狠狠 欧美| 一级av片app| 日本免费在线观看一区| 国产精品精品国产色婷婷| 精品亚洲乱码少妇综合久久| 22中文网久久字幕| 国产精品精品国产色婷婷| 亚洲精品乱码久久久v下载方式| 午夜福利高清视频| 日日干狠狠操夜夜爽| 国产一区有黄有色的免费视频 | 久久人人爽人人爽人人片va| 韩国高清视频一区二区三区| 久久久久国产网址| 在线免费观看的www视频| 久久久久性生活片| 免费大片黄手机在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区视频9| 日本欧美国产在线视频| 欧美高清成人免费视频www| 亚洲怡红院男人天堂| 精品人妻熟女av久视频| 看十八女毛片水多多多| 国产精品人妻久久久影院| 色视频www国产| 久久鲁丝午夜福利片| 精品一区二区免费观看| 色视频www国产| 亚洲成色77777| 日本猛色少妇xxxxx猛交久久| 国产精品伦人一区二区| 成人亚洲精品一区在线观看 | 亚洲国产成人一精品久久久| 日本黄大片高清| 最近中文字幕高清免费大全6| 联通29元200g的流量卡| 少妇人妻一区二区三区视频| 老司机影院成人| 亚洲在久久综合| 高清日韩中文字幕在线| 久久人人爽人人片av| 三级经典国产精品| 综合色av麻豆| 男人狂女人下面高潮的视频| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 五月伊人婷婷丁香| 精品欧美国产一区二区三| 国产成人精品福利久久| 亚洲内射少妇av| 国产91av在线免费观看| 国内少妇人妻偷人精品xxx网站| 男女视频在线观看网站免费| 国产午夜精品一二区理论片| 99久久中文字幕三级久久日本| 超碰97精品在线观看| 身体一侧抽搐| 日日摸夜夜添夜夜爱| 中文字幕av在线有码专区| 草草在线视频免费看| 少妇熟女欧美另类| 精品国产露脸久久av麻豆 | 99热6这里只有精品| 高清午夜精品一区二区三区| 少妇的逼好多水| 99热全是精品| 亚洲色图av天堂| 精品久久国产蜜桃| 熟妇人妻不卡中文字幕| 久久久久久九九精品二区国产| 91久久精品国产一区二区成人| 成年女人在线观看亚洲视频 | 精品一区二区免费观看| 少妇人妻精品综合一区二区| 最近中文字幕2019免费版| 日韩成人av中文字幕在线观看| 亚洲不卡免费看| 国产黄色免费在线视频| 插阴视频在线观看视频| av在线亚洲专区| 美女黄网站色视频| 国产精品久久久久久久久免| 日本-黄色视频高清免费观看| 国产黄色小视频在线观看| 国产精品麻豆人妻色哟哟久久 | 美女高潮的动态| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 久久久久免费精品人妻一区二区| 国产精品人妻久久久影院| 内地一区二区视频在线| 国产精品综合久久久久久久免费| 一个人免费在线观看电影| 观看免费一级毛片| av国产免费在线观看| 国产麻豆成人av免费视频| 在线天堂最新版资源| 日韩成人av中文字幕在线观看| 精品久久久噜噜| 男人舔女人下体高潮全视频| 久久精品夜色国产| 欧美不卡视频在线免费观看| 欧美另类一区| 99热这里只有是精品50| 亚洲美女视频黄频| 欧美丝袜亚洲另类| av.在线天堂| 一个人观看的视频www高清免费观看| 亚洲精品一二三| 国产成年人精品一区二区| 精品久久久久久成人av| 亚洲精品日韩在线中文字幕| 高清欧美精品videossex| 国产精品一区二区三区四区免费观看| 欧美性猛交╳xxx乱大交人| 一级爰片在线观看| 亚洲伊人久久精品综合| 啦啦啦啦在线视频资源| 国产午夜福利久久久久久| 少妇猛男粗大的猛烈进出视频 | 国产精品99久久久久久久久| 99久久精品热视频| 女的被弄到高潮叫床怎么办| 国产黄色免费在线视频| 春色校园在线视频观看| 不卡视频在线观看欧美| 麻豆国产97在线/欧美| 国产 一区 欧美 日韩| 精品国产三级普通话版| 国产一级毛片在线| 免费高清在线观看视频在线观看| 三级毛片av免费| 国产有黄有色有爽视频| 91久久精品国产一区二区成人| 国产探花极品一区二区| 一级二级三级毛片免费看| 午夜精品一区二区三区免费看| 欧美3d第一页| 又黄又爽又刺激的免费视频.| 热99在线观看视频| 狠狠精品人妻久久久久久综合| 黄片无遮挡物在线观看| 亚洲最大成人手机在线| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 亚洲欧美日韩东京热| 青青草视频在线视频观看| 国产午夜精品一二区理论片| 日韩av免费高清视频| 免费观看精品视频网站| 七月丁香在线播放| 亚洲精品国产av蜜桃| av免费观看日本| 亚洲一区高清亚洲精品| 汤姆久久久久久久影院中文字幕 | 免费大片黄手机在线观看| av免费在线看不卡| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久亚洲| a级毛色黄片| 汤姆久久久久久久影院中文字幕 | 尾随美女入室| 日韩强制内射视频| 青春草视频在线免费观看| 高清日韩中文字幕在线| 色尼玛亚洲综合影院| eeuss影院久久| 亚洲精品456在线播放app| 亚洲精品久久久久久婷婷小说| 少妇熟女欧美另类| 亚洲av日韩在线播放| 婷婷色综合www| 大香蕉久久网| 国产综合精华液| 高清视频免费观看一区二区 | 免费人成在线观看视频色| 亚洲国产欧美在线一区| 国产一区有黄有色的免费视频 | 97精品久久久久久久久久精品| 国产高潮美女av| 日本一二三区视频观看| 亚洲电影在线观看av| 能在线免费看毛片的网站| 精品国产一区二区三区久久久樱花 | 高清欧美精品videossex| 欧美三级亚洲精品| 国产精品熟女久久久久浪| 国内精品美女久久久久久| 国产在视频线精品| 国产高清不卡午夜福利| 午夜福利在线观看吧| 日本免费在线观看一区| 日本一二三区视频观看| 国产一级毛片七仙女欲春2| 国产老妇伦熟女老妇高清| av在线蜜桃| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 一二三四中文在线观看免费高清| 亚洲av二区三区四区| 一个人观看的视频www高清免费观看| 人妻制服诱惑在线中文字幕| 啦啦啦中文免费视频观看日本| 欧美不卡视频在线免费观看| 精品久久久久久久末码| av天堂中文字幕网| 欧美日韩国产mv在线观看视频 | 成人亚洲精品av一区二区| 亚洲av成人精品一二三区| 直男gayav资源| www.色视频.com| 日日啪夜夜爽| 色吧在线观看| 啦啦啦韩国在线观看视频| 亚洲精品国产成人久久av| 搞女人的毛片| 免费观看无遮挡的男女| 大陆偷拍与自拍| 中文乱码字字幕精品一区二区三区 | 国产亚洲午夜精品一区二区久久 | 久久久久国产网址| 亚洲婷婷狠狠爱综合网| 国产熟女欧美一区二区| 99久国产av精品国产电影| 日韩av在线免费看完整版不卡| 久久精品国产亚洲网站| 亚洲成人中文字幕在线播放| 欧美高清性xxxxhd video| 日韩大片免费观看网站| 精品国内亚洲2022精品成人| 成人特级av手机在线观看| 久久久久免费精品人妻一区二区| 嫩草影院新地址| 久久久久久久久久久免费av| 亚洲精品影视一区二区三区av| 国产熟女欧美一区二区| 亚洲精品日本国产第一区| 久久热精品热| 免费看日本二区| 久久99热这里只有精品18| 亚洲在线自拍视频| 国国产精品蜜臀av免费| 亚洲性久久影院| 午夜福利视频精品| 国产精品久久久久久久电影| 久久久久网色| 2021天堂中文幕一二区在线观| 亚洲精品中文字幕在线视频 | 国产精品人妻久久久影院| 成人午夜精彩视频在线观看| 免费大片18禁| 国产精品一区二区在线观看99 | 久久久精品免费免费高清| 欧美一区二区亚洲| 看免费成人av毛片| 18禁裸乳无遮挡免费网站照片| 大话2 男鬼变身卡| 国产中年淑女户外野战色| 亚洲成人中文字幕在线播放| 国产乱人偷精品视频| 欧美精品国产亚洲| 天堂av国产一区二区熟女人妻| 在线观看美女被高潮喷水网站| www.av在线官网国产| 最后的刺客免费高清国语| 国内精品美女久久久久久| 亚洲欧美一区二区三区国产| 男女边摸边吃奶| 国产91av在线免费观看| 国产 亚洲一区二区三区 | 黄色欧美视频在线观看| 亚洲最大成人av| 色综合色国产| 日韩亚洲欧美综合| 日本与韩国留学比较| 尤物成人国产欧美一区二区三区| 亚洲内射少妇av| 内射极品少妇av片p| av国产久精品久网站免费入址| 边亲边吃奶的免费视频| 又爽又黄无遮挡网站| 国产精品久久久久久精品电影| 欧美潮喷喷水| 91在线精品国自产拍蜜月| 国产男女超爽视频在线观看| 国产人妻一区二区三区在| 中文欧美无线码| 国产综合懂色| or卡值多少钱| 精品少妇黑人巨大在线播放| 欧美日韩国产mv在线观看视频 | 精品久久久久久久久久久久久|