• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser

    2022-08-01 05:59:02YingHan韓穎BoGao高博JiayuHuo霍佳雨ChunyangMa馬春陽(yáng)GeWu吳戈YingyingLi李瑩瑩BingkunChen陳炳焜YubinGuo郭玉彬andLieLiu劉列
    Chinese Physics B 2022年7期
    關(guān)鍵詞:高博

    Ying Han(韓穎), Bo Gao(高博),?, Jiayu Huo(霍佳雨), Chunyang Ma(馬春陽(yáng)), Ge Wu(吳戈),Yingying Li(李瑩瑩), Bingkun Chen(陳炳焜), Yubin Guo(郭玉彬), and Lie Liu(劉列)

    1College of Communication Engineering,Jilin University,Changchun 130012,China

    2Collaborative Innovation Center for Optoelectronic Science&Technology,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,China

    3College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

    Keywords: soliton pulsation,dispersive Fourier transform,numerical simulation,breathing behavior

    1. Introduction

    In recent decades, researchers’ enthusiasm for passively mode-locked fiber lasers (PMFLs) has not diminished.[1–3]Due to the dissipative properties of such fiber lasers, solitons can change their shapes,amplitude,and pulse width regularly under the adjustment of system parameters, which is called soliton pulsation. As a unique local structure in the fiber laser, soliton pulsation has been paid much attention by researchers. Although soliton period-doubling bifurcation[4]and multi-period pulsation[5]have been observed in nonlinear polarization mode-locked fiber lasers as early as 2004,due to the lack of experimental instruments capable of capturing real-time spectra of solitons, the research on soliton pulsation was mainly based on theoretical analysis and simulation analysis. For example, researchers have used a complex cubic-quintic Ginzburg–Landau equation (CQGLE) to study pulsating,[4]creeping,[5]and erupting solitons[6]in fiber lasers.[7]And the soliton pulsation with breathing behavior was studied by the CQGLE[8,9]in recent years. At the same time, researchers have used a simpler nonlinear Schr¨odinger equation (NLSE)[10]to study the Akhmediev breathers that show similar breathing behavior to soliton pulsation. And the Ginzburg–Landau equation (GLE)[11,12]can be used to observe the breathing behavior of soliton pulsation in a fiber laser mode-locked by the nonlinear polarization rotation (NPR)technique. Modeling fiber lasers based on such two equations is closer to actual fiber lasers and deserves more in-depth research.

    The dispersive Fourier transform (DFT) technique is a new way to study the real-time spectral of the soliton.[13]The soliton spectrum is mapped to the time waveform by employing dispersive elements that have large group velocity dispersion. Therefore, people can obtain the ultrafast spectrum through the real-time oscilloscope together with the high-speed photodetector. A variety of soliton transient dynamics was observed in passively mode-locked fiber lasers adopting the DFT technique: the build-up of dissipative soliton pulsation,[14]successive soliton explosion,[15]explosion induced rogue waves.[16]Breathing behavior of dissipative soliton pulsation,[17–19]multiple soliton pulsation,[20,21]dissipative soliton explosion[22]and the pulsating soliton molecule[23]are observed in the normal dispersion NPR mode-locked fiber laser by the DFT. In the anomalous dispersion region,the soliton pulsation with chaotic behavior[24]and the soliton pulsation sideband characteristics[12]are also studied. However, there are few studies on soliton pulsation with breathing behavior in anomalous dispersion NPR modelocked fiber lasers. It is found in references[25–27]that the soliton pulsation has obvious breathing behavior in the real-time spectral evolution.

    In this research, the breathing behavior of soliton pulsation in anomalous dispersion NPR passively mode-locked fiber laser is studied by numerical simulation and experiment.Specifically, we studied the influence of the phase difference caused by the polarization controller on the breathing period of soliton pulsation through theoretical modeling of such fiber lasers. At the same time,we obtained the single-shot spectral evolutions of the soliton pulsation via the DFT technique to further explore the breathing behavior in the experiment. The breathing behavior is achieved by adjusting the polarization controller. It has similar features such as energy oscillation and bandwidth breathing to simulation results.

    2. Physical model and DFT technique

    2.1. Physical model of the passively mode-locked fiber laser

    The pulse tracing technique can numerically simulate the pulse evolution in PMFLs. Such a method takes into account the effect of each element in the fiber laser on the light field.All the components in the laser are successively distributed in the laser cavity. Figure 1 is the physical model of the typical PMFL. The doped fiber usually includes Er-doped fibers(EDF),Yb-doped fibers(YDF),Tm-doped fibers(TDF),Hodoped fibers, etc. The undoped fiber usually contains singlemode fibers (SMF), dispersion compensation fibers (DCF),etc. Saturable absorber(SA)mainly includes artificial SA and real SA. Researchers used the NLSEs to calculate the transmission of pulses in undoped fibers and the GLEs to calculate the transmission of pulse in the doped fiber. When the pulse passes through other components,such as SA and output coupler (OC), the Jones matrix equation of the component is directly multiplied by the light field to represent its influence on pulse transmission. In the simulation, the initial input signal is arbitrary. When the pulse runs in the cavity for one roundtrip (RT), the result is regarded as the next RT input pulse.Using the pulse tracing method for numerical simulation can observe the output pulse at any time and any position in the cavity,the evolution process of the pulse,and the influence of each element on the pulse evolution, which is impossible in the experiment.

    2.2. Introduction of DFT technique

    The DFT technique is based on the analogy between spatial Fraunhofer diffraction and time dispersion: the diffraction of the light beam in the far-field through the lens is analogous to the transmission of pulse in the dispersive element,which is also called spatiotemporal duality. Figure 2 is the schematic diagram of the DFT technique. The DFT system consists of the dispersive element with large group velocity dispersion, photodetectors, and a real-time digital oscilloscope: the pulse is stretched due to the large group velocity dispersion of dispersion element when there is pulse transmission in it. After being stretched, the soliton intensity envelope has the same shape as the spectrum; that is, the soliton spectrum is mapped to its time profile to realize the timedomain measurement of the soliton spectrum. Such a timedomain stretched pulse is obtained via the high-speed photodetector,therefore,the single-shot spectrum information can be observed and analyzed through the real-time digital oscilloscope.There are many kinds of dispersive components used in the DFT technique,including SMF,DCF,chirped fiber Bragg grating,multi-mode waveguide,etc.In the DFT technique,the spectrum detection speed can reach the same level as the repetition frequency of the mode-locked lasers and can realize the measurement and observation of a single real-time spectrum.Using this technique, researchers have a better understanding of the physical mechanism of various soliton transient dynamics, which has important implications for optimizing the performance of fiber lasers and promoting basic research in the field of fiber lasers.

    Fig.2. Schematic diagram of the DFT technique.

    3. Numerical simulation results

    3.1. Simulation model

    Figures 1 and 5 are the simulation schematic and the experiment schematic of anomalous dispersion NPR passively mode-locked fiber laser, respectively. It consists of the EDF,SMF, NPR as the saturable absorber, and an OC. The OC is utilized to extract 40% of the intracavity pulse energy for decreasing intracavity nonlinearity and avoiding excessive pulses. As shown in Fig.5,two PCs,an isolator,and birefringent fiber constitute the NPR.The pulse with any polarization state becomes linearly polarized after passing through the isolator. When it propagates in the fiber, it will split into two orthogonal elliptical polarization components along the two main axes of the fiber. Due to the influence of the nonlinear effects of the fiber,the polarization state of the pulse will undergo intensity-related evolution when it is transmitted in the fiber. As the pulse passes through the NPR,the low-intensity wings of the pulse are absorbed, and the high-intensity center passes smoothly. The pulse will be narrowed slightly after an RT in the cavity,and it will be significantly narrowed after multiple RTs.

    Since NPR is related to the birefringence effect of the fiber,our simulation is based on coupled GLE(in doped fiber)and coupled NLSE(in single-mode fiber),which can be solved via the symmetric split-step Fourier method. The coupled GLE is expressed as follows:

    whereuandvdenote the envelopes of the optical pulses,which propagates along the two orthogonal polarization axes of the optical fibers. 2β=2πΔn/λrepresents the wavenumber difference between the two orthogonal polarization modes, and 2δ=2βλ/2πcis the reciprocal of the group velocity difference.γis the nonlinear coefficient.β2represents the group velocity dispersion.gis the gain of the fiber given by the spectrally correlated parabolic frequency domain expressiong(ω):

    whereθis the angle between the fast axis of the birefringent fiber and the polarizer, andφrepresents the angle between the fast axis of the birefringent fiber and the analyzer. ΔΨL=(2πL/λ)(nx-ny)+ΨPCis the linear phase delay. The phase difference of the pulse caused by polarization controllers (PCs) is represented byψPC.λandLrepresent the light wavelength and the cavity length,respectively.The nonlinear phase delay caused by self-phase modulation and cross-phase modulation can be expressed as ΔΨNL=-(2πLn2P/3λAeff)cos(2θ), wheren2denotes the nonlinear coefficient.Aeffis the effective mode area,andPis the optical power. In the time domain,this simulation grid consists of 214points. The detailed parameters of our simulation are shown in Table 1.

    3.2. Result and discussion

    To explore the influence ofψPCon the breathing behavior of soliton pulsation,firstly,we find the stationary soliton with the value of system parameter taken as Table 1, at the same time,takenψPCas 0°. Figures 3(a)–3(a4)includes the correlation graphs of stationary soliton. Figures 3(a)–3(a4) shows that both time-domain and frequency-domain soliton exhibit similar shapes during the evolution,and the energy shows the constant value of 20.2 pJ. Later, we change the value ofψPCto explore its influence on soliton evolution. When it is taken as 7°,6°,3°,the soliton exhibits breathing behavior(the characteristic of soliton pulsation).

    Table 1. Parameters of the fiber laser.

    Fig.3. Column(a)and column(b)represent the correlation graphs when ψPC=0°and 7°,respectively:[(a),(b)]time-domain evolution;[(a1),(b1)]spectral evolution; [(a2),(b2)]energy evolution of stationary soliton and soliton pulsation; (a3)extracted spectral evolution diagram of(a1); (b3)extracted spectral evolution diagram of one breathing period;(a4)single-shot spectral of stationary soliton;(b4)single-shot spectral for the maximal and minimal bandwidths.

    Fig. 4. Column (a) and column (b) represent the correlation graphs when ψPC =6°, 3°: [(a), (b)] time-domain evolution; [(a1), (b1)] spectral evolution;[(a2),(b2)]energy evolution;[(a3),(b3)]extracted spectral evolution diagram of one breathing period;[(a4),(b4)]single-shot spectral for the maximal and minimal bandwidths.

    Figures 3(b)–3(b4)and 4 show correlation graphs of different soliton pulsation with breathing behavior. It is evident in Figs. 3(b), 4(a), and 4(b) that the soliton presents pulsation characteristics;that is,the soliton width and soliton intensity of the soliton change periodically as the increase of RT.As can be seen in Figs. 3(b1), 4(a1), and 4(b1), the soliton spectrum shows breathing behavior, and the breathing period is around 35 RTs(Fig.3(b3)),50 RTs(Fig.4(a3))and 40 RTs(Fig. 4(b3)), respectively. Researchers defined the ratio between the maximum and minimum spectral bandwidth in one period as the breathing ratio. According to Figs.3(b4),4(a4),and 4(b4)the breathing ratio is~2.5,~2,and~2.5,respectively. The periodic energy changes during the soliton pulsation dynamics in Figs.3(b2),4(a2),and 4(b2)indicate that the gain saturation effect has an impact on the soliton of PMFLs.

    Comparing Figs. 3(b)–3(b4) and 4, it can be seen that the angle of the polarization controller may affect the breathing characteristics of the soliton pulsation, including different fluctuations in the time domain evolution, changes in the breathing period and the shape of the spectrum. Since NPR produces saturable absorption characteristics based on intensity-sensitive polarization evolution, its parameters can be determined by the polarizer,nonlinear phase accumulation,and linear phase bias controlled by the polarization controllers.It can also be used as a birefringent filter[30]to achieve wavelength tuning or use its spectral filtering effect to achieve soliton pulsation with breathing behavior.

    4. Experimental results

    4.1. Experimental setups

    We constructed an NPR mode-locked fiber laser as shown in Fig.5 as the test-bed system to verify the above simulation results. The gain medium is 0.7-m EDF,which is pumped by a 976-nm laser source through the wavelength division multiplexer. The parameters of EDF,SMF,and other elements used in the experiment are the same as in Table 1. Therefore, the cavity net dispersion is about-0.13 ps2. The combination of two polarization controllers (PCs) with the polarizationdependent isolator between them produces the saturable absorption effect known as NPR mode-locking. That makes it possible to simply rotate the blades of the PCs to adjust the transmission function of NPR and modify the linear cavity loss and the interaction between pulses. At the same time,we recorded the single-shot spectrum using the DFT technique,in which the frequency-to-time transformation is realized by using 10-km SMF.It is subsequently fed to a 5-GHz photodetector(PD,THORLABS DET08CFC/M)that is connected to a 12.5-GHz real-time oscilloscope (Tektronix DP071254C).The corresponding spectral resolution(in nm)is conveniently expressed as Δλ= (B|D|z)-1[31]whereB= 12.5 GHz is the overall detection bandwidth, andD=-(2πc/λ2)β2=20 ps/(nm·km) is the dispersion parameter,zis the propagation distance. Therefore, in our case, the real-time spectral resolution is about 1 nm.

    Fig. 5. Schematic diagram of NPR mode-locked fiber laser for the experiment.

    4.2. Result and discussion

    By properly adjusting the pump power to the modelocking threshold of about 460 mW and the paddle direction of the PCs, a mode-locked soliton spectrum is observed and shown in Fig.6(b). We employ the DFT technique to further validate the real-time soliton spectrum. The real-time spectral evolution(Fig.6(a))and the evolution process(Fig.6(c))of the soliton show that it has a similar shape, and uniform intensity,indicating that it is a stationary soliton. The stationary soliton has been commonly seen and fully investigated.Nevertheless, the research of soliton pulsation with breathing characteristics is not comprehensive.

    Fig.6.(a)Spectrum,(b)real-time spectral and evolution of stationary soliton and(c)the evolution process of the stationary soliton.

    Soliton pulsation is related to the nonlinear gain saturation and spectral filtering, so the conversion from stationary to pulsation can be realized by adjusting the pump power. In previous simulations, various pulsation solitons has been observed by changing the intracavity spectral filtering effect.[32]It has been proved that if an in-line polarizer(ILP)[33]is added to the single-wall carbon nanotube(SWNT)mode-locked fiber laser, the spectral profile changes with the adjustment of the intracavity-loss-dependent gain spectrum[34]and the spectral filtering effect.[35]The characteristics of NPR are determined by the polarizer, nonlinear phase accumulation, and PCscontrolled linear phase bias. Adjusting the PCs will change the intracavity total birefringence, which can affect the bandwidth,and the free spectral range of the NPR filter effect,resulting in the soliton pulsation. We have taken pump power at about 460 mW in the experiment,while the only variable is the paddle direction of PCs.

    Fig. 7. (a) Real-time spectral evolution of soliton pulsation with breathing behavior; (b) energy evolution; (c) extracted spectral evolution diagram of one breathing period;(d)single-shot spectrum for the maximal and minimal bandwidths;(e)evolution process of soliton pulsation.

    The real-time spectral evolution dynamics in Fig.7(a)exhibit similar breathing dynamics in references[25–27]and above simulation. Figure 7(d) shows spectral profiles for the maximal bandwidth and the minimal bandwidth, proving that the breathing ratio is~3.25. The soliton spectrum is continuously compressed and stretched with a period of 2000 RTs(Fig. 7(c)). The energy of the pulse was obtained by integrating the power spectral density over the whole wavelength band, as shown in Fig. 7(b). Pulse energy variation and the evolution process(Fig.7(e))show periodic oscillations corresponding to the change of pulse width, bandwidth, and peak power. And the amplitude of the energy oscillation echoes the spectral breathing ratio. The breathing behavior of the soliton complex in NPR mode-locked fiber lasers was proved in reference,[25]and the experimental results were verified by CQGLE.Our experiment further proves that the single soliton pulsation can also show breathing behavior in the same fiber laser. At the same time,the simple and practical couple GLEs are used to verify breathing behavior which is closer to actual fiber lasers and deserves more in-depth research.

    In the simulation, there is little difference between the single-shot spectral for the maximal bandwidth and the minimum bandwidth, and the shape will change slightly. In the experiment, the shape of the spectrum remains almost unchanged, and the intensity of the spectrum changes greatly.The intensity of the maximum spectrum is 2.5 times the minimum spectrum. Usually, the simulation considers the ideal situation such as taking the parameters of gain fiber and the transfer function of the mode-locked device as ideal values,ignoring the influence of fiber loss,environmental factors,etc.However,some factors need to be considered in actual operation, for instance, the influence of temperature on the dispersion value of the gain fiber, the influence of fiber bending on the fiber birefringence, the influence of the loss of the fiber,and other components in the laser cavity on the evolution of soliton,the influence of the loss of fiber and other components in the laser cavity on the evolution of the soliton, the error of the photoelectric detector and oscilloscope in the measurement process will also affect the results. These factors cause the difference between the change of spectral intensity in the experiment and the simulation,which is inevitable.

    Pulse temporal duration also varies, and the temporal resolution of existing detection systems cannot capture these changes. A temporal magnifier technique known as time-lens may solve such constraints.[36,37]Nevertheless, the time-lens technique can be difficult to implement when the pulse undergoes large breathing. The time magnifying window is limited by the width of the pump pulse in the time-lens technique,which requires the pump pulse to be synchronized with the signal. When the signal is beyond the magnifying window,the information that can be measured is very limited and sometimes not even available. It is very difficult to study the full field soliton transient dynamics in mode-locked fiber lasers.

    5. Conclusion and perspectives

    In conclusion, we have experimentally and theoretically investigated the breathing behavior of soliton pulsation in the anomalous dispersion NPR mode-locked fiber laser. Through the model based on the couple GLE and transfer function for NPR, the simulation shows that the breathing characteristics of soliton pulsation can be influenced by the angle of the polarization controller.Subsequently,the breathing behavior of soliton pulsation is observed by continuously adjusting the polarization controller with the dispersive Fourier transform technique in the experiment. The experimental results in this letter qualitatively agree with the numerical results,which demonstrate the couple GLE as a powerful equation to model the behaviors of the fiber lasers. The complex properties of the NPR effects,as well as the complex dissipative properties of fiber laser, result in breathing phenomena in our case even with the fixed pump power. The experimental results are qualitatively consistent with the simulation results,indicating that the couple GLEs are powerful equations to model fiber lasers.In our case,the complex properties of the NPR effect and the complex dissipative nature of the fiber laser cause soliton pulsation even if the pump power remains constant. The limited examples presented above do not fully represent the complex soliton pulsation dynamics. However, these results will appeal to the community dealing with ultrafast lasers and nonlinear optics and better designing ultrafast fiber lasers. Further explanation of the time-domain formation (via the time-lens technique) of the observed soliton pulsations will be the aim of our future work.

    Acknowledgments

    Project supported by the Jilin Province Science and Technology Development Plan Project, China (Grant Nos. 20190201128JC and 20200401125GX), the National Natural Science Foundation of China (Grant No. 62105209),F(xiàn)oundation and Applied Foundation Research Fund of Guangdong Province, China (Grant No. 2019A1515111060), and Science and Technology Project of the 13th Five-Year Plan of Jilin Provincial Department of Education, China (Grant Nos.JJKH20190157KJ and JJKH20190169KJ).

    猜你喜歡
    高博
    Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser
    塔式太陽(yáng)能電站定日鏡場(chǎng)布局研究
    分?jǐn)?shù)階傅里葉變換改進(jìn)算法在時(shí)頻分析中的應(yīng)用
    匿于藝術(shù)
    家居廊(2020年4期)2020-05-25 02:50:11
    Thinking Through Visual Communication
    山東青年(2018年6期)2018-11-06 05:50:56
    優(yōu)雅(2018年5期)2018-05-09 02:36:00
    高職高專(zhuān)自考本科“專(zhuān)、本銜接”研究
    ——以高博學(xué)院自考為例
    高博:黯然赴歐
    高博 可愛(ài)的英國(guó)“老頭”
    英才(2014年10期)2014-10-11 13:22:14
    數(shù)字營(yíng)銷(xiāo)在未來(lái)占有更重要位置 專(zhuān)訪(fǎng)捷豹路虎大中華區(qū)總裁高博
    全区人妻精品视频| 亚洲精品日韩av片在线观看| 国产精品99久久久久久久久| av黄色大香蕉| 青春草国产在线视频| 亚洲精品日本国产第一区| 欧美成人一区二区免费高清观看| 久久久久久久午夜电影| 又大又黄又爽视频免费| av.在线天堂| 国产又色又爽无遮挡免| 精品人妻一区二区三区麻豆| 成年免费大片在线观看| 好男人视频免费观看在线| 69人妻影院| 亚洲熟妇中文字幕五十中出| 久久99精品国语久久久| 国产有黄有色有爽视频| 日本熟妇午夜| 又黄又爽又刺激的免费视频.| 亚洲久久久久久中文字幕| 欧美xxxx性猛交bbbb| 91精品伊人久久大香线蕉| 欧美另类一区| 免费av毛片视频| 亚洲精品视频女| 亚洲熟妇中文字幕五十中出| 国产精品99久久久久久久久| 精品久久久久久久人妻蜜臀av| 免费观看精品视频网站| 国产大屁股一区二区在线视频| 色视频www国产| 国产老妇伦熟女老妇高清| 99久久精品国产国产毛片| 性色avwww在线观看| 亚洲精品国产av成人精品| 久久97久久精品| 国产熟女欧美一区二区| av福利片在线观看| 日本熟妇午夜| av在线老鸭窝| 一级a做视频免费观看| 亚洲精品成人久久久久久| 91av网一区二区| 国产av在哪里看| 在线观看av片永久免费下载| 插逼视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 天堂影院成人在线观看| a级毛色黄片| 日本黄色片子视频| 婷婷色综合www| 91久久精品国产一区二区成人| 国产精品三级大全| 日韩制服骚丝袜av| 久久这里只有精品中国| 少妇人妻一区二区三区视频| 亚洲精品,欧美精品| 夫妻性生交免费视频一级片| 欧美激情国产日韩精品一区| 欧美97在线视频| 国产精品麻豆人妻色哟哟久久 | 日韩精品青青久久久久久| 午夜福利网站1000一区二区三区| 成人亚洲精品一区在线观看 | 美女脱内裤让男人舔精品视频| 黄色配什么色好看| 搞女人的毛片| 国产一区二区三区综合在线观看 | 成人美女网站在线观看视频| 亚洲精品国产av蜜桃| 人妻系列 视频| 午夜激情欧美在线| 亚洲人与动物交配视频| 一本一本综合久久| 男人和女人高潮做爰伦理| 大香蕉97超碰在线| 18禁在线无遮挡免费观看视频| 免费观看无遮挡的男女| 久久99热这里只频精品6学生| 国产高清国产精品国产三级 | 国产 一区 欧美 日韩| 成年免费大片在线观看| 国产视频内射| 三级毛片av免费| 免费黄色在线免费观看| 久久久久性生活片| 久久精品夜色国产| 日韩 亚洲 欧美在线| 狂野欧美白嫩少妇大欣赏| 高清欧美精品videossex| 亚洲欧美清纯卡通| 国产亚洲av嫩草精品影院| 青春草亚洲视频在线观看| 久久久久久国产a免费观看| 美女国产视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 少妇人妻一区二区三区视频| 日本色播在线视频| 亚洲激情五月婷婷啪啪| 亚洲精品aⅴ在线观看| 久久久久久久久久人人人人人人| 久久精品国产亚洲av涩爱| 欧美潮喷喷水| 日韩成人伦理影院| 国产亚洲精品av在线| 久热久热在线精品观看| 插逼视频在线观看| 日韩一区二区视频免费看| 99久久人妻综合| 欧美极品一区二区三区四区| 亚洲成人一二三区av| 非洲黑人性xxxx精品又粗又长| 亚洲欧美一区二区三区国产| 最近2019中文字幕mv第一页| 国产中年淑女户外野战色| 成人性生交大片免费视频hd| 五月天丁香电影| 亚洲国产色片| 99热6这里只有精品| 国产中年淑女户外野战色| 亚洲成人一二三区av| 免费看av在线观看网站| 久热久热在线精品观看| 亚洲美女搞黄在线观看| 欧美 日韩 精品 国产| 午夜久久久久精精品| 免费观看精品视频网站| 日韩成人伦理影院| 色综合色国产| 人体艺术视频欧美日本| 国产精品久久久久久久电影| 天天躁夜夜躁狠狠久久av| 久久99精品国语久久久| 精品久久久久久久久亚洲| 精品久久久久久久久亚洲| 精品国产三级普通话版| 日韩大片免费观看网站| 亚洲内射少妇av| 舔av片在线| 一个人观看的视频www高清免费观看| 一个人观看的视频www高清免费观看| 婷婷色综合www| 亚洲av免费高清在线观看| 国产片特级美女逼逼视频| 亚洲精品成人av观看孕妇| 人妻系列 视频| 亚洲精品一区蜜桃| 精品国内亚洲2022精品成人| 波多野结衣巨乳人妻| 精品少妇黑人巨大在线播放| 一个人看的www免费观看视频| .国产精品久久| 国产精品一区二区性色av| 91久久精品电影网| 少妇高潮的动态图| 一级毛片黄色毛片免费观看视频| 白带黄色成豆腐渣| 免费观看精品视频网站| 国产 一区 欧美 日韩| 午夜激情欧美在线| 狂野欧美白嫩少妇大欣赏| 亚洲成人一二三区av| 亚洲精品乱码久久久v下载方式| av线在线观看网站| 久久精品熟女亚洲av麻豆精品 | 国产毛片a区久久久久| 国产毛片a区久久久久| 国产熟女欧美一区二区| 中文字幕av成人在线电影| 男女边摸边吃奶| 亚洲欧美日韩无卡精品| 97人妻精品一区二区三区麻豆| 又大又黄又爽视频免费| 国产精品一区二区三区四区久久| 欧美另类一区| 久久97久久精品| 午夜福利在线观看吧| 五月天丁香电影| 免费看av在线观看网站| 亚洲精品国产av蜜桃| 欧美一级a爱片免费观看看| 九草在线视频观看| 两个人的视频大全免费| ponron亚洲| 久久99精品国语久久久| 99久久精品热视频| 久久久久久国产a免费观看| 国产综合精华液| 最近手机中文字幕大全| 少妇人妻精品综合一区二区| 亚洲国产成人一精品久久久| 久久久a久久爽久久v久久| 午夜免费观看性视频| 91狼人影院| 免费看光身美女| 夜夜看夜夜爽夜夜摸| freevideosex欧美| 久久99精品国语久久久| 国产不卡一卡二| 久久久成人免费电影| 男女边吃奶边做爰视频| 啦啦啦中文免费视频观看日本| 性色avwww在线观看| 99热全是精品| 高清在线视频一区二区三区| 国产精品人妻久久久久久| 色网站视频免费| 自拍偷自拍亚洲精品老妇| 亚洲美女视频黄频| 久久久国产一区二区| av在线播放精品| 97热精品久久久久久| 久久久久性生活片| 男女那种视频在线观看| 日韩成人伦理影院| 三级国产精品欧美在线观看| 久久精品国产自在天天线| 又粗又硬又长又爽又黄的视频| 亚洲国产精品成人综合色| 久99久视频精品免费| 国产久久久一区二区三区| 国产精品不卡视频一区二区| 国产高清不卡午夜福利| 免费看a级黄色片| 久久久久久久久久黄片| 我要看日韩黄色一级片| 2021少妇久久久久久久久久久| 又爽又黄无遮挡网站| 啦啦啦韩国在线观看视频| 国产精品.久久久| 免费高清在线观看视频在线观看| 国产成年人精品一区二区| 成人漫画全彩无遮挡| 在现免费观看毛片| 又爽又黄a免费视频| 特级一级黄色大片| 中文天堂在线官网| 日日撸夜夜添| 欧美日韩视频高清一区二区三区二| 18禁裸乳无遮挡免费网站照片| 又爽又黄无遮挡网站| 亚洲丝袜综合中文字幕| 美女脱内裤让男人舔精品视频| 深夜a级毛片| 国产成人福利小说| 久久99热这里只频精品6学生| 精品人妻熟女av久视频| 青春草国产在线视频| 麻豆乱淫一区二区| 97精品久久久久久久久久精品| 一区二区三区乱码不卡18| 国产精品久久久久久av不卡| 精品一区在线观看国产| 色吧在线观看| 亚洲国产精品专区欧美| 亚洲综合色惰| 日韩欧美 国产精品| 一级毛片黄色毛片免费观看视频| 女人久久www免费人成看片| 国产午夜精品论理片| 欧美日本视频| 中文资源天堂在线| 高清视频免费观看一区二区 | 午夜福利视频精品| 午夜福利成人在线免费观看| 日韩成人伦理影院| 麻豆久久精品国产亚洲av| 最近最新中文字幕免费大全7| 亚洲高清免费不卡视频| 婷婷色av中文字幕| 午夜精品一区二区三区免费看| 欧美最新免费一区二区三区| 国内精品美女久久久久久| 久久这里只有精品中国| 一夜夜www| 日韩一区二区三区影片| 成人综合一区亚洲| 国产av码专区亚洲av| 精品久久久久久久久亚洲| 国产精品日韩av在线免费观看| 久久久久九九精品影院| 伊人久久国产一区二区| 高清视频免费观看一区二区 | 久久97久久精品| 麻豆乱淫一区二区| 国产 一区 欧美 日韩| 欧美激情久久久久久爽电影| 亚洲成人精品中文字幕电影| 国产精品日韩av在线免费观看| 美女cb高潮喷水在线观看| 亚洲av在线观看美女高潮| 日本熟妇午夜| 蜜臀久久99精品久久宅男| 久久久精品欧美日韩精品| 国产麻豆成人av免费视频| 国产成人午夜福利电影在线观看| 日韩人妻高清精品专区| 国产一区二区亚洲精品在线观看| 亚洲成人久久爱视频| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 国产精品三级大全| 国产人妻一区二区三区在| 久久精品熟女亚洲av麻豆精品 | 最近最新中文字幕免费大全7| 一级毛片我不卡| 久久久a久久爽久久v久久| 国产熟女欧美一区二区| 黄片wwwwww| 一区二区三区四区激情视频| 午夜福利成人在线免费观看| 亚洲欧美日韩东京热| 深夜a级毛片| 国产高清有码在线观看视频| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 99热网站在线观看| 亚洲av免费高清在线观看| 欧美97在线视频| 天天躁夜夜躁狠狠久久av| 国产成人精品婷婷| 国产精品嫩草影院av在线观看| 日韩电影二区| 国产免费一级a男人的天堂| 日韩av免费高清视频| 一级黄片播放器| 欧美+日韩+精品| 哪个播放器可以免费观看大片| 舔av片在线| 18禁在线无遮挡免费观看视频| 亚洲av电影不卡..在线观看| 波野结衣二区三区在线| 精华霜和精华液先用哪个| 久久精品久久精品一区二区三区| 干丝袜人妻中文字幕| 白带黄色成豆腐渣| 日日撸夜夜添| 国内精品宾馆在线| 直男gayav资源| av福利片在线观看| 免费av毛片视频| videossex国产| 亚洲精品一区蜜桃| 精品国产露脸久久av麻豆 | 亚洲精品久久午夜乱码| 亚洲av不卡在线观看| 伦理电影大哥的女人| av免费在线看不卡| 99久国产av精品国产电影| 国产高清三级在线| 亚洲精品亚洲一区二区| 亚洲av电影在线观看一区二区三区 | av免费在线看不卡| 插阴视频在线观看视频| 国产高清三级在线| 三级国产精品欧美在线观看| 男女国产视频网站| 婷婷色av中文字幕| av福利片在线观看| 亚洲精品乱久久久久久| 一级毛片我不卡| 夜夜爽夜夜爽视频| 精品一区二区三区人妻视频| 精品久久国产蜜桃| 少妇人妻精品综合一区二区| 亚洲,欧美,日韩| 国内揄拍国产精品人妻在线| 午夜免费激情av| 亚洲人成网站高清观看| 亚洲精品aⅴ在线观看| 18禁在线播放成人免费| 亚洲av电影不卡..在线观看| av.在线天堂| 麻豆国产97在线/欧美| 麻豆精品久久久久久蜜桃| 白带黄色成豆腐渣| 亚洲综合色惰| 人妻少妇偷人精品九色| 国产午夜精品论理片| 亚洲欧洲国产日韩| 插阴视频在线观看视频| 久久亚洲国产成人精品v| 免费av毛片视频| 水蜜桃什么品种好| 欧美日本视频| 精品国产三级普通话版| 毛片女人毛片| 亚洲在线自拍视频| 天天躁夜夜躁狠狠久久av| 亚洲av电影在线观看一区二区三区 | 少妇的逼好多水| a级毛色黄片| 国产黄片美女视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品av视频在线免费观看| 99久国产av精品国产电影| 人人妻人人看人人澡| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 亚洲在久久综合| 亚洲18禁久久av| 美女高潮的动态| 亚洲成色77777| 亚洲熟妇中文字幕五十中出| 麻豆av噜噜一区二区三区| 欧美最新免费一区二区三区| 亚洲精品国产成人久久av| 成年av动漫网址| 国产av码专区亚洲av| 欧美另类一区| 别揉我奶头 嗯啊视频| av在线蜜桃| 日日摸夜夜添夜夜爱| 中文字幕久久专区| 国产一区二区三区av在线| 亚洲婷婷狠狠爱综合网| 秋霞伦理黄片| 精华霜和精华液先用哪个| 国产精品熟女久久久久浪| 成人综合一区亚洲| 91av网一区二区| 在线 av 中文字幕| 国产精品99久久久久久久久| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的 | 少妇高潮的动态图| 国产精品一区二区三区四区久久| 建设人人有责人人尽责人人享有的 | 国产熟女欧美一区二区| 久久精品综合一区二区三区| 蜜桃久久精品国产亚洲av| 日韩av在线免费看完整版不卡| 国精品久久久久久国模美| 成人一区二区视频在线观看| 少妇丰满av| 国产人妻一区二区三区在| 亚洲人成77777在线视频| 国产综合精华液| 日韩精品免费视频一区二区三区| 亚洲欧美成人综合另类久久久| 午夜福利影视在线免费观看| 午夜影院在线不卡| 人体艺术视频欧美日本| 国产精品无大码| 最近最新中文字幕免费大全7| 亚洲国产av新网站| 男女下面插进去视频免费观看| 91精品三级在线观看| 精品一品国产午夜福利视频| 夫妻性生交免费视频一级片| 午夜激情久久久久久久| 超碰97精品在线观看| 一级毛片黄色毛片免费观看视频| 在线观看国产h片| 欧美av亚洲av综合av国产av | 男女下面插进去视频免费观看| av在线播放精品| 精品人妻在线不人妻| 亚洲国产av新网站| 国产精品香港三级国产av潘金莲 | 超碰成人久久| 欧美激情 高清一区二区三区| 亚洲综合色惰| 在线观看www视频免费| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| 欧美精品高潮呻吟av久久| 成年女人在线观看亚洲视频| 啦啦啦在线免费观看视频4| 国产精品久久久久久精品电影小说| 免费大片黄手机在线观看| 97在线视频观看| videos熟女内射| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区| 大片电影免费在线观看免费| 亚洲图色成人| 国产精品一国产av| 水蜜桃什么品种好| 叶爱在线成人免费视频播放| 久久人人爽av亚洲精品天堂| 免费少妇av软件| 亚洲国产av新网站| 香蕉精品网在线| 2022亚洲国产成人精品| 欧美日韩av久久| 精品一品国产午夜福利视频| 亚洲国产av新网站| 黄色 视频免费看| 亚洲一码二码三码区别大吗| 啦啦啦视频在线资源免费观看| 久久久精品免费免费高清| 精品国产乱码久久久久久小说| 三级国产精品片| 永久免费av网站大全| 亚洲国产最新在线播放| 精品酒店卫生间| 欧美精品av麻豆av| 精品视频人人做人人爽| 99热网站在线观看| 18禁动态无遮挡网站| 男的添女的下面高潮视频| 精品少妇内射三级| 日本黄色日本黄色录像| 国产精品三级大全| 在线观看人妻少妇| 美女主播在线视频| 日韩中文字幕欧美一区二区 | 中文字幕最新亚洲高清| 国产一区有黄有色的免费视频| 久久久久精品久久久久真实原创| 亚洲av综合色区一区| 亚洲精品自拍成人| 777久久人妻少妇嫩草av网站| 欧美日韩综合久久久久久| 啦啦啦视频在线资源免费观看| 亚洲精品美女久久久久99蜜臀 | 赤兔流量卡办理| 一本—道久久a久久精品蜜桃钙片| 三上悠亚av全集在线观看| 最新的欧美精品一区二区| 久久久久精品性色| 制服丝袜香蕉在线| 一级毛片我不卡| 国产欧美亚洲国产| 欧美日韩视频高清一区二区三区二| 午夜免费观看性视频| xxx大片免费视频| 亚洲精品一区蜜桃| 久久精品久久久久久噜噜老黄| 婷婷成人精品国产| 亚洲人成电影观看| 亚洲欧美精品综合一区二区三区 | 各种免费的搞黄视频| 天天躁夜夜躁狠狠躁躁| 午夜av观看不卡| 亚洲精品第二区| 亚洲精品视频女| 国产片特级美女逼逼视频| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 捣出白浆h1v1| 日本av手机在线免费观看| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 国产成人一区二区在线| 国产精品一区二区在线不卡| 少妇的逼水好多| 欧美另类一区| 少妇的逼水好多| 伦理电影免费视频| 考比视频在线观看| 黑人猛操日本美女一级片| 成年动漫av网址| 欧美中文综合在线视频| 久久久国产欧美日韩av| 久久这里只有精品19| 亚洲伊人色综图| 菩萨蛮人人尽说江南好唐韦庄| 亚洲图色成人| 日本vs欧美在线观看视频| 十八禁高潮呻吟视频| 久久久久久伊人网av| 亚洲图色成人| 日韩不卡一区二区三区视频在线| 狠狠精品人妻久久久久久综合| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 国产黄频视频在线观看| 老汉色∧v一级毛片| 美女主播在线视频| 亚洲三区欧美一区| 亚洲熟女精品中文字幕| 国产无遮挡羞羞视频在线观看| 国产一区二区三区av在线| 中文字幕制服av| 日韩精品有码人妻一区| 亚洲国产精品国产精品| 精品一区二区三区四区五区乱码 | 宅男免费午夜| 男女边吃奶边做爰视频| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 国产精品不卡视频一区二区| 亚洲情色 制服丝袜| 国产探花极品一区二区| 天堂8中文在线网| 日韩成人av中文字幕在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 午夜av观看不卡| 亚洲成人一二三区av| 欧美精品一区二区免费开放| 中文乱码字字幕精品一区二区三区| 亚洲成人av在线免费| 一本大道久久a久久精品| 国产成人精品久久二区二区91 | 久久久国产一区二区| 成人午夜精彩视频在线观看| 成人影院久久| 99re6热这里在线精品视频| av在线播放精品| 国产免费现黄频在线看| 性色avwww在线观看| 永久网站在线| 男人爽女人下面视频在线观看| 欧美精品人与动牲交sv欧美| 久久精品夜色国产| 中文欧美无线码| 晚上一个人看的免费电影| av福利片在线| 黄色 视频免费看| 日韩一卡2卡3卡4卡2021年| 国产免费又黄又爽又色|