• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser

    2023-12-02 09:23:06LieLiu劉列YingHan韓穎JiayuHuo霍佳雨HonglinWen文紅琳GeWu吳戈andBoGao高博
    Chinese Physics B 2023年11期
    關(guān)鍵詞:高博

    Lie Liu(劉列), Ying Han(韓穎), Jiayu Huo(霍佳雨),?,Honglin Wen(文紅琳), Ge Wu(吳戈), and Bo Gao(高博)

    1College of Communication Engineering,Jilin University,Changchun 130012,China 2College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

    Keywords: pure-quartic soliton,pulsating soliton,erupting soliton,passively mode-locked fiber lasers

    1.Introduction

    High-energy soliton fiber lasers have been a research hotspot due to their wide range of applications.[1–7]For solitons which are produced by the balance between second-order dispersion (β2) and the self-phase modulation (SPM) effect,energy is proportional to the first power of the inverse pulse duration (τ):E=2|β2|/(γτ),[8]which limits the increase in energy.Third-order dispersion (β3) will cause solitons to be unstable; however, the existence of negative fourth-order dispersion (β4) will make solitons stable.In 1994, researchers found quartic soliton solutions with oscillating tails and a flatspectrum center of nonlinear Schr¨odinger equations(NLSEs),which consider both negativeβ2andβ4,[9–12]Quartic solitons originate from the balance between the negativeβ2and the SPM effect but are modified byβ4.After more than 20 years of stagnation in the research of quartic solitons, in 2016, Blanco Redondoet al.found pure-quartic solitons(PQSs) that originate from the balance between the negativeβ4and SPM effect in photonic crystal waveguides.[13,14]The energy of PQSs is proportional to the third power of inverseτ:EPQS= 2.87|β4|/(γτ3),[15]which means the narrowerτleads to higher energy.The conditions required to obtain PQSs require platforms to have a large negativeβ4, wide bandwidth, and sufficient nonlinearity.In addition,β3at the central wavelength must be close to zero.[16]Photonic crystal waveguides,[13,14,16]silicon-based waveguides,[17]and optical Kerr microcavities[18–20]can meet the above conditions to achieve PQS output.

    The research on PQSs in fiber and fiber lasers began in 2018; Blanco Redondoet al.designed the microstructured fiber supporting the generation of PQSs, laying a foundation for PQS fiber lasers.[21]Subsequently,they proved that the coexistence ofβ2andβ4can improve the performance of NLSEbased fiber lasers.[22,23]The above numerical results provide theoretical support to the building of PQS fiber lasers.[24–26]Later, they achieved PQS output from dispersion-managed fiber lasers[27,28]and numerically analyzed their oscillation characteristics.[29]Luoet al.employed the same theoretical model to investigate pulsating PQSs.[30]Other researchers have used NLSE-based fiber lasers dominated byβ4to theoretically study vector quartic-solitons.[31]Research on the performance and dynamic characteristics of PQS fiber lasers needs to be carried out.

    In this work,we numerically investigate the pulsating and erupting dynamics in PQS fiber lasers.We study the effects of the saturation power,small-signal gain,and output coupler on PQS dynamics under different gain bandwidths(?g).The results show that PQSs experience several stages,including stationary PQSs, pulsating PQSs, and creeping PQS molecules with modulated parameters under?g= 50 nm conditions.Meanwhile,when we consider the influence of high-order dispersion and the spectral filtering effect on eruption characteristics,PQSs experience stationary PQSs,pulsating PQSs,erupting PQSs, periodically erupting PQSs, and PQS molecules with modulated parameters when?gis 10 nm.PQSs exhibit similar dynamic characteristics under three modulated parameters,in which the small-signal gain corresponds to the pump power in experiments and is a more extensive research object.This paper therefore uses the influence of small-signal gain as an example to analyze PQS dynamic characteristics.These results will provide a physical mechanism for PQS dynamics.

    2.Numerical method

    Figure 1(a) presents the scheme of a PQS fiber laser,which contains a pump source, a wavelength division multiplexer, Er-doped fiber, a fiber polarizer, a polarization controller, an isolator, a saturable absorber (SA), a pulse shaper,single-mode fiber,and an output coupler(OC).Pulse transmission in the fiber is simulated by NLSE

    whereAis the pulse slowly varying complex envelope.Here,γ,β2,β3, andβ4represent the nonlinear coefficient, and the second-order, third-order, and fourth-order dispersion coefficient of the fiber, respectively, andTis the time coordinate.Meanwhile,gis the gain of the Er-doped fiber,written as

    whereg0,?g, andEsatrepresent the small-signal gain, gain bandwidth,and saturation energy,respectively.Here,

    is the pulse energy,whereTRis the roundtrip(RT)time.The SA is modeled by

    whereq0,Psat,and|A(z,T)|2are the modulation depth,saturation power,and instantaneous pulse power,respectively.

    The fixed parameter values in this simulation are given in Table 1, and the other parameters are variables.The pulse shaper,which can compensate for intra-cavityβ2andβ3while providing a large negativeβ4, is modeled by multiplying the electric field by the phase in the frequency domain in simulation.[15]This meansβ2,β3,andβ4of the pulse shaper in Table 1 can fully compensate for intra-cavityβ2,β3to nearly zero and provide sufficientβ4to obtain PQSs.The time resolution is 50 fs and the center wavelength is set near 1550 nm.

    Table 1.Parameter values used in the simulation.

    Fig.1.(a)A scheme of the PQS fiber laser.(b)Logarithmic scale time profiles(inset: time profiles)and(c)the spectrum of stationary PQSs obtained with different β4.Evolution of(d)the time profiles and(e)spectrums when β4 of the pulse shaper is set to-80.0022 ps4/km(inset in(e): energy).

    TheEsat,Psat,g0, and output ratio of the OC (Rout) are set as 300 pJ,200 W,3.45 m-1,and 50%,respectively,to obtain stationary PQSs.The PQS logarithmic scale time profiles shown in Fig.1(b) present oscillating tails.Figure 1(c)exhibits that the change in the spectrum intensity is less pronounced but becomes flatter.Figures 1(d) and 1(e) present the time profile evolution and spectrum evolution of PQSs to demonstrate their stability.Typically, traditional solitons exhibit pulsating dynamics or erupting dynamics with modulated system parameters;[32–36]it is therefore interesting to examine whether PQSs have similar dynamics with altered system parameters.Therefore, we comprehensively study the effects ofPsat,g0, andRouton PQS dynamics.It was found that there are pulsating single PQSs to creeping PQS molecules with the changes inPsat,g, orRoutunder different gain bandwidths (50 nm, 40 nm, 30 nm, 20 nm).However, pulsating PQSs, erupting PQSs, periodically erupting PQSs, and PQS molecules appear when?g=10 nm.The above results are analyzed in detail below.It should be noted that the PQS dynamics with modulatedPsat,g0,andRoutare qualitatively consistent when?g=50 nm,40 nm,30 nm,and 20 nm;we have therefore taken?g=50 nm and 10 nm as the examples in this paper.Meanwhile,due to the importance of small-signal gain,it is taken as an example for analysis in this paper.

    3.Influence of system parameters on purequartic soliton dynamics

    3.1.Influence of small-signal gain under 50 nm

    Modulated pump power in experiments corresponds to a changegin simulation, which will cause different soliton dynamics.In the simulation of this section,?g,Esat,Psat, andRoutare 50 nm, 300 pJ, 200 W, and 50%, respectively.The influence ofgon soliton characteristics is investigated by linearly increasinggfrom 0.1 m-1with a step of 0.1 m-1.The fiber laser outputs stationary PQSs whengis less than 28.1 m-1, but splitting occurs whengis increased to~1 m-1without the intra-cavity pulse shaper.[25]PQSs can endure large nonlinear phase shifts without splitting and have large pulse energy.[29]Pulsating PQSs appear whengis in the range of 84.2 m-1–136.9 m-1.Figure 2 reveals the time profile evolution, spectrum evolution, energy variation, and single-shot spectrum of pulsating PQSs whengis 90 m-1.Figures 2(a)and 2(b)show that the time profile evolution of PQSs exhibits oscillation,while the spectrum evolution exhibits breathing, and its energy also changes periodically.Intensity exchange between sidebands and the center of the soliton spectrums makes breathing appear during PQS spectrum evolution,which is also the cause of pulsating traditional solitons:[25]specifically, pulsating PQSs occur.Figure 2(c)reveals the spectrum evolution of 10 RTs,and Figs.2(d)–2(g)show single-shot spectrums during one pulsating period to further analyze the causes of the pulsation.The pulsating period is about 5 RTs in Fig.2(c),which means that the intensity exchange of the spectrum center with sidebands is within 5 RTs and is restored to the original state after 5 RTs.Single-shot spectrums of PQSs have high-intensity Kelly sidebands, similar to traditional solitons, while PQS spectrums have multilow-intensity sidebands under the influence ofβ4.[13,15]This makes it easier to produce energy exchange between sidebands and the spectrum center, which makes it easier to obtain pulsating PQSs.Specifically,the intra-cavity largeβ4is the cause of pulsating PQSs.

    Fig.2.Evolution of(a)the time profiles and(b)spectrums when g0=90 m-1 (inset in(b): energy).(c)The extracted spectrum evolution of(b).(d)–(g)Single-shot spectrums at different RTs in one pulsating period.

    The PQSs split into PQS molecules wheng0is further increased to 137 m-1, creeping PQS molecules occur wheng0= 370.5 m-1, and the output of the fiber laser becomes chaotic wheng0reaches 475.7 m-1.When we compare Fig.3 with the results in Refs.[37–39], it can be proved that the double solitons we observed also exhibit similar snaking behavior in the time domain,which is generally called creeping solitons and belongs to a type of pulsating solitons.Specifically,PQS molecules creeping in the time domain(Figs.3(a)–3(f))and breathing during spectrum evolution(Figs.3(g)–3(l))are induced by periodic attraction and repulsion between two PQSs, which also induces the periodic variation of the pulse energy.The creeping distance(period)of the PQS molecules first decreases then increases, and the interval between them also shows the same trend with the continuous increase ing0.The interval between two creeping PQSs attains the maximum wheng0reaches a certain level, but its creeping distance is minimum (Fig.3(f)), which may be due to the fact that the large pulse energy of the PQSs makes the energy exchange and interaction between two PQSs easier at this time.It is also easier to reach different equilibrium states(creeping).The larger creeping distance makes spectrum breathing more obvious, i.e., it exhibits more obvious pulsation behavior.Theβ4leads to PQS spectrums with multi-sidebands,[13,15]making it easier to produce energy exchange between the sidebands and the spectrum center.Specifically, the appearance of creeping PQS molecules is related to the intra-cavity largeβ4.

    Fig.3.Evolution of (a)–(f) time profiles and (g)–(l) spectrums when g0 =370.5 m-1, 380.8 m-1, 394.6 m-1, 431.1 m-1, 444.7 m-1, and 475.7 m-1 (inset in(g)–(l): energy).

    3.2.Influence of small-signal gain under 10 nm

    Limited by the size of the fiber core, soliton transmission is affected by many factors in passively mode-locked fiber lasers; these are not only the pumping capacity but also the nonlinear effect, group velocity dispersion effect, and?gcaused by doped ions.The gain spectrum is related to the doping concentration,fiber length,and pump power in actual production.It is necessary to explore the effect of?gon soliton dynamics.The influence ofPsat,g,andRouton PQS dynamics(?g= 10 nm) is investigated.It is found that the parameter value required for splitting is low, which may be related to the narrow?g.Fiber lasers have a significant impact on amplification when the spectrum width of the soliton is close to?g.Solitons with a narrower pulse width(wider spectrum width)have higher energy according to the energy-width scaling law of PQSs:namely,?g=10 nm limits the amplification ability of fiber lasers in this simulation.At the same time,the change in spectrums upon amplification makes it act as a spectral filter, resulting in erupting PQSs, similar to the results in Ref.[40].PQSs, pulsating PQSs, erupting PQSs, and PQS molecules appear successively as altered system parameters.

    The?g,Esat,Psat, andRoutare 10 nm, 120 pJ, 50 W,and 50%, respectively, in this section.Thegis linearly increased from 0.1 m-1in a step of 0.1 m-1to study the effect of pump power on PQS dynamics.The fiber laser outputs stationary PQSs whengis less than 3.5 m-1;pulsating PQSs and the phenomenon similar to that presented in Subsection 3.1 appear with the continuous increase ing.Figures 4(a)–4(d)display the time profile evolution,spectrum evolution,and energy change of the process from pulsating PQSs to erupting PQSs and then to PQS molecules.It can also be seen as the build-up of PQS molecules,which is different from the experimental results observed in mode-locked lasers with onlyβ2.The build-up of dissipative soliton molecules always involves complex interactions among solitons,[29,41]while the build-up of traditional solitons has a big corner.[42]The field autocorrelation trace of PQS molecules in Figs.4(i)and 4(j)shows that there is no complex interaction before the formation of stable PQS molecules, but eruption exists, which may be related to the intra-cavity large negativeβ4.

    Figures 4(e)–4(h) present the single-shot spectrums, and the single-shot time profiles of pulsating PQSs are presented in Figs.4(a)–4(d).The time-domain oscillating tail and breathing spectrum at?g=10 nm are more obvious compared with pulsation at?g=50 nm.Due to the fact that they are characterized by successive or periodic time shifts,spectrum fragmentation, and energy improvement, some researchers classify erupting traditional solitons as pulsating,[34–36,41,43–46]but more researchers classify this as explosion.[47–51]Also, the time profile evolution of erupting PQSs in Figs.5(a)and 5(b)reveals the quartic time shifts of PQSs, i.e., one typical eruption characteristic.It can be seen that although the pulsating characteristics of the PQSs are similar under two values,their eruption processes are significantly different.Also, the second PQSs appear at different time delay positions, i.e., the erupting direction of the PQSs is not fixed, but it will cause an increase in pulse intensity and energy, laying a foundation for subsequent splitting.The nonlinear phase shift that is accumulated(related to intensity)after the solitons run one RT will affect the shape of the soliton spectrums or time profiles,and even cause solitons to split.[52]The single-shot time profiles of the erupting PQSs in Figs.5(a) and 5(b) indicate that during successive eruption,the intensity may be continuously increased(Fig.5(a)),or there may be a tiny weakening(Fig.5(b)), resulting in the accumulation of different nonlinear phase shifts,so that the second PQS after splitting appears at different time delay positions.The fragmented single-shot spectrum in Figs.5(c)and 5(d)further proves the existence of erupting PQSs after pulsating and different erupting intensities caused different degrees of fragmentation.High-order dispersion and high-order nonlinearity have important influences on erupting traditional solitons,[48]and proper pairwise conjugation of these high-order effects can eliminate eruption.[47,49]Therefore,erupting PQSs can be attributed to the intra-cavity large negativeβ4in this simulation.

    Fig.4.Evolution of(a),(b)the time profiles,(c),(d)spectrums,and(i),(j)field autocorrelations when g=9.1 m-1,9.2 m-1 (inset in(c),(d):energy).Single-shot(e),(f)spectrums and(g),(h)time profiles at different RTs in one pulsating period.

    For erupting traditional solitons,periodic eruption will appear when one adds high-order nonlinearity and high-order dispersion to equations to model soliton transmission.[47–49]The time profile evolution will show periodic time shifts.An intra-cavity large negativeβ4makes the PQSs exhibit similar periodic eruption in this simulation.An example is shown in Figs.6(a)–6(c),where PQSs first pulsate and then erupt periodically.The 3D time profile evolution of erupting PQSs shown in Fig.6(d)shows that PQSs erupt periodically with two peaks as one period,making the spectrum evolution exhibit periodic changes(Fig.6(e)).Single-shot spectrums of the erupting PQSs will also be“broken”(Figs.6(f)–6(i)),but they will return to the original spectrum shape at the beginning of a new eruption period(Fig.6(j)).The center of the time profiles moves slightly and the intensity of the oscillating tails changes slightly during eruption(Fig.6(k)),which is also important for periodically erupting PQSs.

    4.Conclusion

    In conclusion, we numerically found that the gain bandwidth, saturation power, small-signal gain, and splitting ratio of the output coupler in passively mode-locked fiber lasers will all affect PQS dynamics.Stationary PQSs, pulsating PQSs,and creeping PQS molecules appear one after another with modulated parameters when?g= 50 nm.The analysis of single-shot spectrums and single-shot time profiles in one pulsating period proved that pulsating PQSs can be attributed not only to its oscillating tail but also to an intra-cavity large negativeβ4.The?gis also a limiting factor for soliton transmission in passively mode-locked fiber lasers.PQSs appear as pulsating,erupting,periodically erupting,and splitting in turn with modulated parameters when?g=10 nm,which is quite different from the pulsating dynamics at 50 nm.This may be due to the change in the soliton spectrum caused by the narrow gain bandwidth during amplification, which makes it act as a spectral filter.At the same time, the influence of highorder dispersion and high-order nonlinearity on erupting traditional solitons,erupting PQSs,and periodically erupting PQSs in this simulation can also be attributed to the intra-cavity largeβ4.These results deepen our understanding of PQS dynamics,such as high-energy erupting PQSs.

    Acknowledgement

    We acknowledge the financial support from Science and Technology Project of the Jilin Provincial Department of Education(Grant No.JJKH20231171KJ).

    猜你喜歡
    高博
    Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
    塔式太陽(yáng)能電站定日鏡場(chǎng)布局研究
    分?jǐn)?shù)階傅里葉變換改進(jìn)算法在時(shí)頻分析中的應(yīng)用
    匿于藝術(shù)
    家居廊(2020年4期)2020-05-25 02:50:11
    Thinking Through Visual Communication
    山東青年(2018年6期)2018-11-06 05:50:56
    優(yōu)雅(2018年5期)2018-05-09 02:36:00
    高職高專自考本科“專、本銜接”研究
    ——以高博學(xué)院自考為例
    高博:黯然赴歐
    汽車觀察(2015年11期)2015-12-23 08:41:46
    高博 可愛(ài)的英國(guó)“老頭”
    英才(2014年10期)2014-10-11 13:22:14
    數(shù)字營(yíng)銷在未來(lái)占有更重要位置 專訪捷豹路虎大中華區(qū)總裁高博
    无遮挡黄片免费观看| 亚洲欧美精品综合一区二区三区| 欧美 亚洲 国产 日韩一| 十分钟在线观看高清视频www| 正在播放国产对白刺激| 好看av亚洲va欧美ⅴa在| 在线观看免费视频日本深夜| 悠悠久久av| 99re在线观看精品视频| 国产精品九九99| 日韩欧美免费精品| 99久久精品国产亚洲精品| 久久精品国产99精品国产亚洲性色| 婷婷丁香在线五月| 亚洲人成网站高清观看| 亚洲国产精品合色在线| 日韩免费av在线播放| 啦啦啦免费观看视频1| 久久精品影院6| 成在线人永久免费视频| 一个人观看的视频www高清免费观看 | 国产精品av久久久久免费| 免费看美女性在线毛片视频| 最新在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲午夜精品一区,二区,三区| 国产亚洲精品第一综合不卡| 啦啦啦 在线观看视频| 一个人免费在线观看的高清视频| 欧美色欧美亚洲另类二区| 午夜久久久久精精品| 国产亚洲欧美精品永久| 操出白浆在线播放| 精品久久久久久久久久久久久 | 国产成人欧美| 丁香欧美五月| 波多野结衣高清作品| 国产一区二区激情短视频| 欧美黑人巨大hd| 亚洲成人久久爱视频| 法律面前人人平等表现在哪些方面| 无限看片的www在线观看| 悠悠久久av| 日韩欧美一区视频在线观看| 免费女性裸体啪啪无遮挡网站| 给我免费播放毛片高清在线观看| 精品久久久久久成人av| 亚洲午夜理论影院| 国产精品综合久久久久久久免费| 欧美激情 高清一区二区三区| 免费高清在线观看日韩| 欧美性猛交╳xxx乱大交人| 女警被强在线播放| 国产成人av激情在线播放| 不卡av一区二区三区| 2021天堂中文幕一二区在线观 | 亚洲人成网站高清观看| 老熟妇乱子伦视频在线观看| 91成人精品电影| 波多野结衣av一区二区av| 国产av不卡久久| 亚洲五月天丁香| av视频在线观看入口| 狂野欧美激情性xxxx| 中文字幕av电影在线播放| 日韩精品中文字幕看吧| 精品国产一区二区三区四区第35| 国产精品精品国产色婷婷| 国产精华一区二区三区| 国产精品美女特级片免费视频播放器 | 亚洲男人天堂网一区| 99国产综合亚洲精品| 男人的好看免费观看在线视频 | 黄色丝袜av网址大全| 欧美乱码精品一区二区三区| 欧美+亚洲+日韩+国产| 露出奶头的视频| 男人的好看免费观看在线视频 | 免费看日本二区| 亚洲欧美日韩高清在线视频| 男女那种视频在线观看| 国产精品 欧美亚洲| 在线av久久热| 最近在线观看免费完整版| 青草久久国产| 亚洲人成77777在线视频| 亚洲专区中文字幕在线| 成人欧美大片| 久久热在线av| 亚洲一区高清亚洲精品| 亚洲人成伊人成综合网2020| 女人被狂操c到高潮| 亚洲第一电影网av| 国产精品一区二区精品视频观看| 午夜福利在线在线| 91av网站免费观看| 日韩有码中文字幕| 久久精品亚洲精品国产色婷小说| av天堂在线播放| 美女高潮喷水抽搐中文字幕| 国产精品爽爽va在线观看网站 | 国产一区在线观看成人免费| 一区二区日韩欧美中文字幕| 禁无遮挡网站| 天堂影院成人在线观看| 欧美黑人巨大hd| 久久久久久久精品吃奶| 99热这里只有精品一区 | 国内毛片毛片毛片毛片毛片| 99久久国产精品久久久| 成人精品一区二区免费| 天天躁夜夜躁狠狠躁躁| 美女高潮到喷水免费观看| 国产av又大| 欧美最黄视频在线播放免费| 老汉色∧v一级毛片| 少妇被粗大的猛进出69影院| 免费搜索国产男女视频| 国产精品亚洲av一区麻豆| 国产激情欧美一区二区| 亚洲精品一卡2卡三卡4卡5卡| ponron亚洲| 亚洲成av片中文字幕在线观看| 性色av乱码一区二区三区2| 69av精品久久久久久| 亚洲色图 男人天堂 中文字幕| 无遮挡黄片免费观看| 日本在线视频免费播放| 亚洲成人久久爱视频| 久99久视频精品免费| 一进一出抽搐动态| 免费在线观看黄色视频的| 精品熟女少妇八av免费久了| aaaaa片日本免费| 亚洲精品国产一区二区精华液| 看免费av毛片| 九色国产91popny在线| 午夜两性在线视频| 日本五十路高清| 国产欧美日韩一区二区三| 亚洲片人在线观看| 国产欧美日韩一区二区三| 色综合欧美亚洲国产小说| 99精品在免费线老司机午夜| 又黄又爽又免费观看的视频| 亚洲av五月六月丁香网| 女性生殖器流出的白浆| 亚洲美女黄片视频| 精品不卡国产一区二区三区| 香蕉久久夜色| 少妇裸体淫交视频免费看高清 | 欧美激情极品国产一区二区三区| 琪琪午夜伦伦电影理论片6080| 免费看美女性在线毛片视频| 制服丝袜大香蕉在线| 免费看美女性在线毛片视频| 日韩高清综合在线| 中亚洲国语对白在线视频| 久久人妻福利社区极品人妻图片| 国产av不卡久久| 男女之事视频高清在线观看| 两个人视频免费观看高清| 成在线人永久免费视频| 91国产中文字幕| 在线观看舔阴道视频| 在线国产一区二区在线| 欧美性长视频在线观看| 欧美日韩瑟瑟在线播放| 日韩中文字幕欧美一区二区| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱码精品一区二区三区| 又紧又爽又黄一区二区| 18禁观看日本| 国产又色又爽无遮挡免费看| 亚洲成av片中文字幕在线观看| 一边摸一边抽搐一进一小说| av视频在线观看入口| 久久午夜亚洲精品久久| 日韩大尺度精品在线看网址| 日韩精品青青久久久久久| www.999成人在线观看| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 国产精品影院久久| 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 少妇 在线观看| 宅男免费午夜| 天天添夜夜摸| 这个男人来自地球电影免费观看| 国产真实乱freesex| 精品一区二区三区四区五区乱码| 亚洲天堂国产精品一区在线| 国产成人精品久久二区二区免费| 岛国在线观看网站| 国产精品,欧美在线| 久久亚洲真实| www.精华液| 久久精品91蜜桃| 亚洲精品美女久久av网站| 97超级碰碰碰精品色视频在线观看| av免费在线观看网站| 天堂√8在线中文| 欧美一级毛片孕妇| 国产爱豆传媒在线观看 | 色av中文字幕| 欧美一区二区精品小视频在线| 国产亚洲精品久久久久5区| 色尼玛亚洲综合影院| 欧美日韩黄片免| 天天添夜夜摸| 最新美女视频免费是黄的| 午夜福利高清视频| 国产精品av久久久久免费| 免费搜索国产男女视频| 亚洲中文日韩欧美视频| 久久天堂一区二区三区四区| 99久久综合精品五月天人人| 神马国产精品三级电影在线观看 | 老司机午夜福利在线观看视频| 精品国产亚洲在线| 免费女性裸体啪啪无遮挡网站| 男女那种视频在线观看| 婷婷六月久久综合丁香| 久久久久久亚洲精品国产蜜桃av| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 男男h啪啪无遮挡| 丰满的人妻完整版| 久久草成人影院| 国产一级毛片七仙女欲春2 | 久久精品人妻少妇| 日韩高清综合在线| 亚洲色图av天堂| 成人免费观看视频高清| 国产在线精品亚洲第一网站| 久久99热这里只有精品18| 精品一区二区三区四区五区乱码| 亚洲精品中文字幕在线视频| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 国产成年人精品一区二区| 人妻久久中文字幕网| 老司机靠b影院| 国产成人精品无人区| 久久青草综合色| 亚洲真实伦在线观看| 亚洲五月婷婷丁香| av免费在线观看网站| 久久久精品欧美日韩精品| 伦理电影免费视频| 99re在线观看精品视频| av片东京热男人的天堂| 久久久久久人人人人人| 最近最新免费中文字幕在线| 无限看片的www在线观看| 99精品欧美一区二区三区四区| 热99re8久久精品国产| 搞女人的毛片| 精品久久久久久久毛片微露脸| www.精华液| 好男人电影高清在线观看| 大型av网站在线播放| 久久国产亚洲av麻豆专区| 午夜福利一区二区在线看| 国产麻豆成人av免费视频| 中文字幕最新亚洲高清| 岛国在线观看网站| 欧美黑人欧美精品刺激| 免费人成视频x8x8入口观看| 精品卡一卡二卡四卡免费| 一区二区日韩欧美中文字幕| 成人国语在线视频| 男人舔奶头视频| 亚洲aⅴ乱码一区二区在线播放 | 国产一区二区三区视频了| 久久久久亚洲av毛片大全| 欧美成人性av电影在线观看| 两个人看的免费小视频| 亚洲成人精品中文字幕电影| 18禁裸乳无遮挡免费网站照片 | 午夜影院日韩av| 1024视频免费在线观看| 色综合婷婷激情| 他把我摸到了高潮在线观看| 午夜激情福利司机影院| 精品福利观看| 国产亚洲精品久久久久5区| 精品一区二区三区av网在线观看| 久久国产乱子伦精品免费另类| 欧美黑人巨大hd| 成人欧美大片| 日韩 欧美 亚洲 中文字幕| 午夜福利视频1000在线观看| 熟妇人妻久久中文字幕3abv| 国产精品二区激情视频| 国产av一区在线观看免费| 亚洲专区中文字幕在线| 老鸭窝网址在线观看| 黄色a级毛片大全视频| 午夜福利18| 亚洲色图 男人天堂 中文字幕| 国产伦在线观看视频一区| 精品乱码久久久久久99久播| 日本一区二区免费在线视频| 在线观看66精品国产| 国产伦人伦偷精品视频| 波多野结衣巨乳人妻| 在线永久观看黄色视频| 国产日本99.免费观看| 麻豆成人av在线观看| 黑丝袜美女国产一区| 久久伊人香网站| 午夜免费成人在线视频| 欧美人与性动交α欧美精品济南到| 国产成+人综合+亚洲专区| 香蕉av资源在线| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| 午夜福利免费观看在线| 国产久久久一区二区三区| 波多野结衣高清无吗| 夜夜爽天天搞| 看黄色毛片网站| 国产精品久久久久久精品电影 | 国产男靠女视频免费网站| cao死你这个sao货| 亚洲一区二区三区不卡视频| 久久香蕉国产精品| 怎么达到女性高潮| 99精品欧美一区二区三区四区| 成年免费大片在线观看| 欧美亚洲日本最大视频资源| 欧美日韩亚洲综合一区二区三区_| 在线播放国产精品三级| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 国产又色又爽无遮挡免费看| 精品欧美国产一区二区三| 男男h啪啪无遮挡| 他把我摸到了高潮在线观看| 国产v大片淫在线免费观看| 国产午夜福利久久久久久| 欧美激情高清一区二区三区| 亚洲国产中文字幕在线视频| 91字幕亚洲| 搡老妇女老女人老熟妇| 久久 成人 亚洲| 一进一出好大好爽视频| www国产在线视频色| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕av电影在线播放| 一区二区日韩欧美中文字幕| 性欧美人与动物交配| 悠悠久久av| 久久亚洲真实| 99国产精品一区二区三区| 19禁男女啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 18禁观看日本| 一本一本综合久久| 日本熟妇午夜| 亚洲一码二码三码区别大吗| 曰老女人黄片| 久久中文字幕一级| 国产熟女xx| 亚洲av成人av| 淫妇啪啪啪对白视频| 男女下面进入的视频免费午夜 | 国产99白浆流出| 精品免费久久久久久久清纯| 丰满人妻熟妇乱又伦精品不卡| 欧美av亚洲av综合av国产av| e午夜精品久久久久久久| 身体一侧抽搐| 免费观看人在逋| 国产v大片淫在线免费观看| 国产亚洲av高清不卡| 欧美激情高清一区二区三区| aaaaa片日本免费| 成年版毛片免费区| 国产私拍福利视频在线观看| 国内毛片毛片毛片毛片毛片| 免费在线观看日本一区| 亚洲专区字幕在线| 国产精品久久久久久亚洲av鲁大| 国产成年人精品一区二区| av福利片在线| 国产精品国产高清国产av| 婷婷六月久久综合丁香| 久久天躁狠狠躁夜夜2o2o| 91老司机精品| 亚洲第一av免费看| 在线观看免费日韩欧美大片| 99精品在免费线老司机午夜| av天堂在线播放| 叶爱在线成人免费视频播放| 亚洲欧洲精品一区二区精品久久久| 久久婷婷成人综合色麻豆| 黑丝袜美女国产一区| 午夜老司机福利片| 免费观看精品视频网站| 麻豆久久精品国产亚洲av| 亚洲七黄色美女视频| 99久久国产精品久久久| 美国免费a级毛片| 精品久久久久久,| 日日干狠狠操夜夜爽| 观看免费一级毛片| 99久久久亚洲精品蜜臀av| 欧美日韩亚洲综合一区二区三区_| 我的亚洲天堂| 熟女电影av网| 亚洲第一青青草原| 叶爱在线成人免费视频播放| 中出人妻视频一区二区| 欧美精品啪啪一区二区三区| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到| 国产精品亚洲美女久久久| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清 | 免费观看人在逋| 免费在线观看黄色视频的| 一级a爱视频在线免费观看| 国产一区二区三区在线臀色熟女| 国产精品一区二区免费欧美| 亚洲一区中文字幕在线| avwww免费| 国内精品久久久久久久电影| 亚洲熟女毛片儿| 精品久久久久久久毛片微露脸| 午夜福利成人在线免费观看| 国产精品免费视频内射| 欧美黑人欧美精品刺激| 欧美又色又爽又黄视频| 美女高潮到喷水免费观看| 日韩欧美在线二视频| 精品少妇一区二区三区视频日本电影| 久久久久久久久久黄片| 别揉我奶头~嗯~啊~动态视频| 脱女人内裤的视频| av中文乱码字幕在线| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 999久久久国产精品视频| 女性生殖器流出的白浆| 午夜老司机福利片| 怎么达到女性高潮| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区三区四区久久 | 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区| 香蕉av资源在线| 久久这里只有精品19| 超碰成人久久| 制服丝袜大香蕉在线| 在线观看舔阴道视频| 国产蜜桃级精品一区二区三区| 国内久久婷婷六月综合欲色啪| av在线播放免费不卡| 在线av久久热| 黄色女人牲交| 啦啦啦韩国在线观看视频| 极品教师在线免费播放| 欧美乱色亚洲激情| 欧美黑人巨大hd| 亚洲 欧美 日韩 在线 免费| 一级作爱视频免费观看| 久久久国产欧美日韩av| 99热这里只有精品一区 | 在线观看免费视频日本深夜| 麻豆国产av国片精品| 波多野结衣高清无吗| 精品久久蜜臀av无| 亚洲,欧美精品.| 黄色毛片三级朝国网站| 亚洲成av片中文字幕在线观看| 国产成人av激情在线播放| 久久精品影院6| 国产高清videossex| 午夜免费观看网址| 欧美大码av| 免费在线观看完整版高清| 午夜久久久久精精品| 黄片小视频在线播放| 男女那种视频在线观看| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3 | 午夜精品久久久久久毛片777| 亚洲真实伦在线观看| 亚洲国产精品999在线| 免费在线观看成人毛片| 亚洲自拍偷在线| 成人三级做爰电影| 久久国产乱子伦精品免费另类| 一卡2卡三卡四卡精品乱码亚洲| 亚洲片人在线观看| 亚洲天堂国产精品一区在线| 免费av毛片视频| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 91九色精品人成在线观看| 中文字幕另类日韩欧美亚洲嫩草| 激情在线观看视频在线高清| 久久天躁狠狠躁夜夜2o2o| 亚洲成人久久性| 久久久精品国产亚洲av高清涩受| 人人妻人人澡欧美一区二区| 美女扒开内裤让男人捅视频| 长腿黑丝高跟| 亚洲午夜理论影院| 欧美性猛交黑人性爽| 啦啦啦观看免费观看视频高清| 亚洲中文av在线| 欧美最黄视频在线播放免费| 91av网站免费观看| 白带黄色成豆腐渣| 这个男人来自地球电影免费观看| 黄色成人免费大全| 精品国产美女av久久久久小说| 午夜福利18| 日韩大码丰满熟妇| 日韩国内少妇激情av| 国产黄a三级三级三级人| 免费看日本二区| 身体一侧抽搐| av超薄肉色丝袜交足视频| 国产精品一区二区免费欧美| 亚洲片人在线观看| 老司机福利观看| 精品久久久久久,| 亚洲男人的天堂狠狠| 欧美午夜高清在线| 成人欧美大片| cao死你这个sao货| 亚洲欧美精品综合一区二区三区| 制服诱惑二区| 国产又爽黄色视频| 成人18禁在线播放| 波多野结衣高清作品| 久久 成人 亚洲| 黄色视频,在线免费观看| 好看av亚洲va欧美ⅴa在| 亚洲一码二码三码区别大吗| 欧美 亚洲 国产 日韩一| 俺也久久电影网| 欧美亚洲日本最大视频资源| 亚洲欧美激情综合另类| 一进一出好大好爽视频| 99精品在免费线老司机午夜| 99精品欧美一区二区三区四区| 国产伦一二天堂av在线观看| 一级片免费观看大全| 亚洲一区二区三区色噜噜| 中出人妻视频一区二区| 91麻豆精品激情在线观看国产| 亚洲欧美日韩高清在线视频| 国产av不卡久久| 超碰成人久久| 一本久久中文字幕| 妹子高潮喷水视频| av片东京热男人的天堂| 男人舔女人下体高潮全视频| 正在播放国产对白刺激| 99在线人妻在线中文字幕| 中文资源天堂在线| a在线观看视频网站| 大型黄色视频在线免费观看| 婷婷丁香在线五月| 国产午夜精品久久久久久| 无限看片的www在线观看| 免费看十八禁软件| 国产野战对白在线观看| 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 免费一级毛片在线播放高清视频| 国产精品爽爽va在线观看网站 | 国产av在哪里看| 日韩欧美在线二视频| 精品久久久久久久毛片微露脸| 日韩精品中文字幕看吧| 国产精华一区二区三区| 国产三级在线视频| 日韩欧美在线二视频| 国产精品香港三级国产av潘金莲| 人人澡人人妻人| 琪琪午夜伦伦电影理论片6080| 亚洲va日本ⅴa欧美va伊人久久| 亚洲九九香蕉| 岛国在线观看网站| 老鸭窝网址在线观看| 老司机靠b影院| 成人国语在线视频| 欧美午夜高清在线| 一级毛片高清免费大全| 18禁美女被吸乳视频| 国产乱人伦免费视频| 在线观看日韩欧美| 午夜福利18| 最近最新中文字幕大全电影3 | 黄色片一级片一级黄色片| 欧美av亚洲av综合av国产av| www.熟女人妻精品国产| 宅男免费午夜| 中文字幕久久专区| 男女之事视频高清在线观看| 亚洲三区欧美一区| 桃色一区二区三区在线观看| 精品国产美女av久久久久小说| 淫妇啪啪啪对白视频| 亚洲中文av在线| 手机成人av网站| 两性夫妻黄色片| 此物有八面人人有两片|