• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser

    2023-12-02 09:23:06LieLiu劉列YingHan韓穎JiayuHuo霍佳雨HonglinWen文紅琳GeWu吳戈andBoGao高博
    Chinese Physics B 2023年11期
    關(guān)鍵詞:高博

    Lie Liu(劉列), Ying Han(韓穎), Jiayu Huo(霍佳雨),?,Honglin Wen(文紅琳), Ge Wu(吳戈), and Bo Gao(高博)

    1College of Communication Engineering,Jilin University,Changchun 130012,China 2College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

    Keywords: pure-quartic soliton,pulsating soliton,erupting soliton,passively mode-locked fiber lasers

    1.Introduction

    High-energy soliton fiber lasers have been a research hotspot due to their wide range of applications.[1–7]For solitons which are produced by the balance between second-order dispersion (β2) and the self-phase modulation (SPM) effect,energy is proportional to the first power of the inverse pulse duration (τ):E=2|β2|/(γτ),[8]which limits the increase in energy.Third-order dispersion (β3) will cause solitons to be unstable; however, the existence of negative fourth-order dispersion (β4) will make solitons stable.In 1994, researchers found quartic soliton solutions with oscillating tails and a flatspectrum center of nonlinear Schr¨odinger equations(NLSEs),which consider both negativeβ2andβ4,[9–12]Quartic solitons originate from the balance between the negativeβ2and the SPM effect but are modified byβ4.After more than 20 years of stagnation in the research of quartic solitons, in 2016, Blanco Redondoet al.found pure-quartic solitons(PQSs) that originate from the balance between the negativeβ4and SPM effect in photonic crystal waveguides.[13,14]The energy of PQSs is proportional to the third power of inverseτ:EPQS= 2.87|β4|/(γτ3),[15]which means the narrowerτleads to higher energy.The conditions required to obtain PQSs require platforms to have a large negativeβ4, wide bandwidth, and sufficient nonlinearity.In addition,β3at the central wavelength must be close to zero.[16]Photonic crystal waveguides,[13,14,16]silicon-based waveguides,[17]and optical Kerr microcavities[18–20]can meet the above conditions to achieve PQS output.

    The research on PQSs in fiber and fiber lasers began in 2018; Blanco Redondoet al.designed the microstructured fiber supporting the generation of PQSs, laying a foundation for PQS fiber lasers.[21]Subsequently,they proved that the coexistence ofβ2andβ4can improve the performance of NLSEbased fiber lasers.[22,23]The above numerical results provide theoretical support to the building of PQS fiber lasers.[24–26]Later, they achieved PQS output from dispersion-managed fiber lasers[27,28]and numerically analyzed their oscillation characteristics.[29]Luoet al.employed the same theoretical model to investigate pulsating PQSs.[30]Other researchers have used NLSE-based fiber lasers dominated byβ4to theoretically study vector quartic-solitons.[31]Research on the performance and dynamic characteristics of PQS fiber lasers needs to be carried out.

    In this work,we numerically investigate the pulsating and erupting dynamics in PQS fiber lasers.We study the effects of the saturation power,small-signal gain,and output coupler on PQS dynamics under different gain bandwidths(?g).The results show that PQSs experience several stages,including stationary PQSs, pulsating PQSs, and creeping PQS molecules with modulated parameters under?g= 50 nm conditions.Meanwhile,when we consider the influence of high-order dispersion and the spectral filtering effect on eruption characteristics,PQSs experience stationary PQSs,pulsating PQSs,erupting PQSs, periodically erupting PQSs, and PQS molecules with modulated parameters when?gis 10 nm.PQSs exhibit similar dynamic characteristics under three modulated parameters,in which the small-signal gain corresponds to the pump power in experiments and is a more extensive research object.This paper therefore uses the influence of small-signal gain as an example to analyze PQS dynamic characteristics.These results will provide a physical mechanism for PQS dynamics.

    2.Numerical method

    Figure 1(a) presents the scheme of a PQS fiber laser,which contains a pump source, a wavelength division multiplexer, Er-doped fiber, a fiber polarizer, a polarization controller, an isolator, a saturable absorber (SA), a pulse shaper,single-mode fiber,and an output coupler(OC).Pulse transmission in the fiber is simulated by NLSE

    whereAis the pulse slowly varying complex envelope.Here,γ,β2,β3, andβ4represent the nonlinear coefficient, and the second-order, third-order, and fourth-order dispersion coefficient of the fiber, respectively, andTis the time coordinate.Meanwhile,gis the gain of the Er-doped fiber,written as

    whereg0,?g, andEsatrepresent the small-signal gain, gain bandwidth,and saturation energy,respectively.Here,

    is the pulse energy,whereTRis the roundtrip(RT)time.The SA is modeled by

    whereq0,Psat,and|A(z,T)|2are the modulation depth,saturation power,and instantaneous pulse power,respectively.

    The fixed parameter values in this simulation are given in Table 1, and the other parameters are variables.The pulse shaper,which can compensate for intra-cavityβ2andβ3while providing a large negativeβ4, is modeled by multiplying the electric field by the phase in the frequency domain in simulation.[15]This meansβ2,β3,andβ4of the pulse shaper in Table 1 can fully compensate for intra-cavityβ2,β3to nearly zero and provide sufficientβ4to obtain PQSs.The time resolution is 50 fs and the center wavelength is set near 1550 nm.

    Table 1.Parameter values used in the simulation.

    Fig.1.(a)A scheme of the PQS fiber laser.(b)Logarithmic scale time profiles(inset: time profiles)and(c)the spectrum of stationary PQSs obtained with different β4.Evolution of(d)the time profiles and(e)spectrums when β4 of the pulse shaper is set to-80.0022 ps4/km(inset in(e): energy).

    TheEsat,Psat,g0, and output ratio of the OC (Rout) are set as 300 pJ,200 W,3.45 m-1,and 50%,respectively,to obtain stationary PQSs.The PQS logarithmic scale time profiles shown in Fig.1(b) present oscillating tails.Figure 1(c)exhibits that the change in the spectrum intensity is less pronounced but becomes flatter.Figures 1(d) and 1(e) present the time profile evolution and spectrum evolution of PQSs to demonstrate their stability.Typically, traditional solitons exhibit pulsating dynamics or erupting dynamics with modulated system parameters;[32–36]it is therefore interesting to examine whether PQSs have similar dynamics with altered system parameters.Therefore, we comprehensively study the effects ofPsat,g0, andRouton PQS dynamics.It was found that there are pulsating single PQSs to creeping PQS molecules with the changes inPsat,g, orRoutunder different gain bandwidths (50 nm, 40 nm, 30 nm, 20 nm).However, pulsating PQSs, erupting PQSs, periodically erupting PQSs, and PQS molecules appear when?g=10 nm.The above results are analyzed in detail below.It should be noted that the PQS dynamics with modulatedPsat,g0,andRoutare qualitatively consistent when?g=50 nm,40 nm,30 nm,and 20 nm;we have therefore taken?g=50 nm and 10 nm as the examples in this paper.Meanwhile,due to the importance of small-signal gain,it is taken as an example for analysis in this paper.

    3.Influence of system parameters on purequartic soliton dynamics

    3.1.Influence of small-signal gain under 50 nm

    Modulated pump power in experiments corresponds to a changegin simulation, which will cause different soliton dynamics.In the simulation of this section,?g,Esat,Psat, andRoutare 50 nm, 300 pJ, 200 W, and 50%, respectively.The influence ofgon soliton characteristics is investigated by linearly increasinggfrom 0.1 m-1with a step of 0.1 m-1.The fiber laser outputs stationary PQSs whengis less than 28.1 m-1, but splitting occurs whengis increased to~1 m-1without the intra-cavity pulse shaper.[25]PQSs can endure large nonlinear phase shifts without splitting and have large pulse energy.[29]Pulsating PQSs appear whengis in the range of 84.2 m-1–136.9 m-1.Figure 2 reveals the time profile evolution, spectrum evolution, energy variation, and single-shot spectrum of pulsating PQSs whengis 90 m-1.Figures 2(a)and 2(b)show that the time profile evolution of PQSs exhibits oscillation,while the spectrum evolution exhibits breathing, and its energy also changes periodically.Intensity exchange between sidebands and the center of the soliton spectrums makes breathing appear during PQS spectrum evolution,which is also the cause of pulsating traditional solitons:[25]specifically, pulsating PQSs occur.Figure 2(c)reveals the spectrum evolution of 10 RTs,and Figs.2(d)–2(g)show single-shot spectrums during one pulsating period to further analyze the causes of the pulsation.The pulsating period is about 5 RTs in Fig.2(c),which means that the intensity exchange of the spectrum center with sidebands is within 5 RTs and is restored to the original state after 5 RTs.Single-shot spectrums of PQSs have high-intensity Kelly sidebands, similar to traditional solitons, while PQS spectrums have multilow-intensity sidebands under the influence ofβ4.[13,15]This makes it easier to produce energy exchange between sidebands and the spectrum center, which makes it easier to obtain pulsating PQSs.Specifically,the intra-cavity largeβ4is the cause of pulsating PQSs.

    Fig.2.Evolution of(a)the time profiles and(b)spectrums when g0=90 m-1 (inset in(b): energy).(c)The extracted spectrum evolution of(b).(d)–(g)Single-shot spectrums at different RTs in one pulsating period.

    The PQSs split into PQS molecules wheng0is further increased to 137 m-1, creeping PQS molecules occur wheng0= 370.5 m-1, and the output of the fiber laser becomes chaotic wheng0reaches 475.7 m-1.When we compare Fig.3 with the results in Refs.[37–39], it can be proved that the double solitons we observed also exhibit similar snaking behavior in the time domain,which is generally called creeping solitons and belongs to a type of pulsating solitons.Specifically,PQS molecules creeping in the time domain(Figs.3(a)–3(f))and breathing during spectrum evolution(Figs.3(g)–3(l))are induced by periodic attraction and repulsion between two PQSs, which also induces the periodic variation of the pulse energy.The creeping distance(period)of the PQS molecules first decreases then increases, and the interval between them also shows the same trend with the continuous increase ing0.The interval between two creeping PQSs attains the maximum wheng0reaches a certain level, but its creeping distance is minimum (Fig.3(f)), which may be due to the fact that the large pulse energy of the PQSs makes the energy exchange and interaction between two PQSs easier at this time.It is also easier to reach different equilibrium states(creeping).The larger creeping distance makes spectrum breathing more obvious, i.e., it exhibits more obvious pulsation behavior.Theβ4leads to PQS spectrums with multi-sidebands,[13,15]making it easier to produce energy exchange between the sidebands and the spectrum center.Specifically, the appearance of creeping PQS molecules is related to the intra-cavity largeβ4.

    Fig.3.Evolution of (a)–(f) time profiles and (g)–(l) spectrums when g0 =370.5 m-1, 380.8 m-1, 394.6 m-1, 431.1 m-1, 444.7 m-1, and 475.7 m-1 (inset in(g)–(l): energy).

    3.2.Influence of small-signal gain under 10 nm

    Limited by the size of the fiber core, soliton transmission is affected by many factors in passively mode-locked fiber lasers; these are not only the pumping capacity but also the nonlinear effect, group velocity dispersion effect, and?gcaused by doped ions.The gain spectrum is related to the doping concentration,fiber length,and pump power in actual production.It is necessary to explore the effect of?gon soliton dynamics.The influence ofPsat,g,andRouton PQS dynamics(?g= 10 nm) is investigated.It is found that the parameter value required for splitting is low, which may be related to the narrow?g.Fiber lasers have a significant impact on amplification when the spectrum width of the soliton is close to?g.Solitons with a narrower pulse width(wider spectrum width)have higher energy according to the energy-width scaling law of PQSs:namely,?g=10 nm limits the amplification ability of fiber lasers in this simulation.At the same time,the change in spectrums upon amplification makes it act as a spectral filter, resulting in erupting PQSs, similar to the results in Ref.[40].PQSs, pulsating PQSs, erupting PQSs, and PQS molecules appear successively as altered system parameters.

    The?g,Esat,Psat, andRoutare 10 nm, 120 pJ, 50 W,and 50%, respectively, in this section.Thegis linearly increased from 0.1 m-1in a step of 0.1 m-1to study the effect of pump power on PQS dynamics.The fiber laser outputs stationary PQSs whengis less than 3.5 m-1;pulsating PQSs and the phenomenon similar to that presented in Subsection 3.1 appear with the continuous increase ing.Figures 4(a)–4(d)display the time profile evolution,spectrum evolution,and energy change of the process from pulsating PQSs to erupting PQSs and then to PQS molecules.It can also be seen as the build-up of PQS molecules,which is different from the experimental results observed in mode-locked lasers with onlyβ2.The build-up of dissipative soliton molecules always involves complex interactions among solitons,[29,41]while the build-up of traditional solitons has a big corner.[42]The field autocorrelation trace of PQS molecules in Figs.4(i)and 4(j)shows that there is no complex interaction before the formation of stable PQS molecules, but eruption exists, which may be related to the intra-cavity large negativeβ4.

    Figures 4(e)–4(h) present the single-shot spectrums, and the single-shot time profiles of pulsating PQSs are presented in Figs.4(a)–4(d).The time-domain oscillating tail and breathing spectrum at?g=10 nm are more obvious compared with pulsation at?g=50 nm.Due to the fact that they are characterized by successive or periodic time shifts,spectrum fragmentation, and energy improvement, some researchers classify erupting traditional solitons as pulsating,[34–36,41,43–46]but more researchers classify this as explosion.[47–51]Also, the time profile evolution of erupting PQSs in Figs.5(a)and 5(b)reveals the quartic time shifts of PQSs, i.e., one typical eruption characteristic.It can be seen that although the pulsating characteristics of the PQSs are similar under two values,their eruption processes are significantly different.Also, the second PQSs appear at different time delay positions, i.e., the erupting direction of the PQSs is not fixed, but it will cause an increase in pulse intensity and energy, laying a foundation for subsequent splitting.The nonlinear phase shift that is accumulated(related to intensity)after the solitons run one RT will affect the shape of the soliton spectrums or time profiles,and even cause solitons to split.[52]The single-shot time profiles of the erupting PQSs in Figs.5(a) and 5(b) indicate that during successive eruption,the intensity may be continuously increased(Fig.5(a)),or there may be a tiny weakening(Fig.5(b)), resulting in the accumulation of different nonlinear phase shifts,so that the second PQS after splitting appears at different time delay positions.The fragmented single-shot spectrum in Figs.5(c)and 5(d)further proves the existence of erupting PQSs after pulsating and different erupting intensities caused different degrees of fragmentation.High-order dispersion and high-order nonlinearity have important influences on erupting traditional solitons,[48]and proper pairwise conjugation of these high-order effects can eliminate eruption.[47,49]Therefore,erupting PQSs can be attributed to the intra-cavity large negativeβ4in this simulation.

    Fig.4.Evolution of(a),(b)the time profiles,(c),(d)spectrums,and(i),(j)field autocorrelations when g=9.1 m-1,9.2 m-1 (inset in(c),(d):energy).Single-shot(e),(f)spectrums and(g),(h)time profiles at different RTs in one pulsating period.

    For erupting traditional solitons,periodic eruption will appear when one adds high-order nonlinearity and high-order dispersion to equations to model soliton transmission.[47–49]The time profile evolution will show periodic time shifts.An intra-cavity large negativeβ4makes the PQSs exhibit similar periodic eruption in this simulation.An example is shown in Figs.6(a)–6(c),where PQSs first pulsate and then erupt periodically.The 3D time profile evolution of erupting PQSs shown in Fig.6(d)shows that PQSs erupt periodically with two peaks as one period,making the spectrum evolution exhibit periodic changes(Fig.6(e)).Single-shot spectrums of the erupting PQSs will also be“broken”(Figs.6(f)–6(i)),but they will return to the original spectrum shape at the beginning of a new eruption period(Fig.6(j)).The center of the time profiles moves slightly and the intensity of the oscillating tails changes slightly during eruption(Fig.6(k)),which is also important for periodically erupting PQSs.

    4.Conclusion

    In conclusion, we numerically found that the gain bandwidth, saturation power, small-signal gain, and splitting ratio of the output coupler in passively mode-locked fiber lasers will all affect PQS dynamics.Stationary PQSs, pulsating PQSs,and creeping PQS molecules appear one after another with modulated parameters when?g= 50 nm.The analysis of single-shot spectrums and single-shot time profiles in one pulsating period proved that pulsating PQSs can be attributed not only to its oscillating tail but also to an intra-cavity large negativeβ4.The?gis also a limiting factor for soliton transmission in passively mode-locked fiber lasers.PQSs appear as pulsating,erupting,periodically erupting,and splitting in turn with modulated parameters when?g=10 nm,which is quite different from the pulsating dynamics at 50 nm.This may be due to the change in the soliton spectrum caused by the narrow gain bandwidth during amplification, which makes it act as a spectral filter.At the same time, the influence of highorder dispersion and high-order nonlinearity on erupting traditional solitons,erupting PQSs,and periodically erupting PQSs in this simulation can also be attributed to the intra-cavity largeβ4.These results deepen our understanding of PQS dynamics,such as high-energy erupting PQSs.

    Acknowledgement

    We acknowledge the financial support from Science and Technology Project of the Jilin Provincial Department of Education(Grant No.JJKH20231171KJ).

    猜你喜歡
    高博
    Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
    塔式太陽(yáng)能電站定日鏡場(chǎng)布局研究
    分?jǐn)?shù)階傅里葉變換改進(jìn)算法在時(shí)頻分析中的應(yīng)用
    匿于藝術(shù)
    家居廊(2020年4期)2020-05-25 02:50:11
    Thinking Through Visual Communication
    山東青年(2018年6期)2018-11-06 05:50:56
    優(yōu)雅(2018年5期)2018-05-09 02:36:00
    高職高專自考本科“專、本銜接”研究
    ——以高博學(xué)院自考為例
    高博:黯然赴歐
    汽車觀察(2015年11期)2015-12-23 08:41:46
    高博 可愛(ài)的英國(guó)“老頭”
    英才(2014年10期)2014-10-11 13:22:14
    數(shù)字營(yíng)銷在未來(lái)占有更重要位置 專訪捷豹路虎大中華區(qū)總裁高博
    超色免费av| 日本vs欧美在线观看视频| 18美女黄网站色大片免费观看| 涩涩av久久男人的天堂| 亚洲一区二区三区不卡视频| 窝窝影院91人妻| 国产激情久久老熟女| 女人精品久久久久毛片| 人人妻人人澡人人看| 性色av乱码一区二区三区2| 男女之事视频高清在线观看| 国产成年人精品一区二区 | 久久精品成人免费网站| 欧美在线一区亚洲| 国产午夜精品久久久久久| 亚洲av日韩精品久久久久久密| 嫩草影视91久久| 欧美性长视频在线观看| 丝袜美足系列| 精品国产乱子伦一区二区三区| 久久精品国产99精品国产亚洲性色 | 亚洲avbb在线观看| 满18在线观看网站| 久久精品人人爽人人爽视色| 午夜福利一区二区在线看| 亚洲国产毛片av蜜桃av| 丁香欧美五月| 黑人巨大精品欧美一区二区mp4| 一本大道久久a久久精品| 中文字幕av电影在线播放| 国产精品一区二区在线不卡| 国内久久婷婷六月综合欲色啪| 日本撒尿小便嘘嘘汇集6| 欧美成狂野欧美在线观看| 51午夜福利影视在线观看| 啦啦啦免费观看视频1| 亚洲三区欧美一区| 日韩免费av在线播放| 国内久久婷婷六月综合欲色啪| 一级毛片女人18水好多| 精品一区二区三区av网在线观看| 欧美黄色淫秽网站| 亚洲一区高清亚洲精品| 一级,二级,三级黄色视频| 日韩av在线大香蕉| 午夜福利在线免费观看网站| 人人妻,人人澡人人爽秒播| 国产精品影院久久| 人妻久久中文字幕网| 亚洲一区二区三区欧美精品| 亚洲国产精品999在线| 国产亚洲精品一区二区www| www.熟女人妻精品国产| 免费高清在线观看日韩| 成人av一区二区三区在线看| 国产伦一二天堂av在线观看| 俄罗斯特黄特色一大片| 久久亚洲精品不卡| 精品久久久精品久久久| 亚洲成a人片在线一区二区| 一二三四社区在线视频社区8| 欧美av亚洲av综合av国产av| 亚洲第一青青草原| 亚洲成人免费电影在线观看| 午夜免费鲁丝| 9色porny在线观看| 看片在线看免费视频| 国产激情欧美一区二区| 看免费av毛片| 女人精品久久久久毛片| 国产精品久久电影中文字幕| 99热国产这里只有精品6| 国产成人一区二区三区免费视频网站| 国产精品久久视频播放| 久久午夜亚洲精品久久| 亚洲九九香蕉| 亚洲视频免费观看视频| 国产xxxxx性猛交| 亚洲国产精品999在线| 欧美黑人欧美精品刺激| 日韩 欧美 亚洲 中文字幕| 午夜免费观看网址| 宅男免费午夜| 国产一区二区三区视频了| av天堂在线播放| 丝袜在线中文字幕| videosex国产| 男人舔女人的私密视频| 男女下面进入的视频免费午夜 | 1024香蕉在线观看| 三上悠亚av全集在线观看| 精品电影一区二区在线| 老司机靠b影院| 午夜免费成人在线视频| 久久国产精品影院| 成年女人毛片免费观看观看9| 黄频高清免费视频| 91成人精品电影| 在线观看66精品国产| 亚洲男人的天堂狠狠| 美女高潮到喷水免费观看| 午夜视频精品福利| 久久草成人影院| 亚洲精品美女久久av网站| 免费看a级黄色片| 亚洲精品av麻豆狂野| 老司机福利观看| 两个人免费观看高清视频| 国产精品一区二区精品视频观看| 人妻丰满熟妇av一区二区三区| 欧美在线黄色| 国产精品99久久99久久久不卡| 高清在线国产一区| aaaaa片日本免费| 国产av一区二区精品久久| 国产深夜福利视频在线观看| 亚洲成人精品中文字幕电影 | 国产免费现黄频在线看| 日韩成人在线观看一区二区三区| 岛国视频午夜一区免费看| 欧美在线黄色| 国产亚洲欧美在线一区二区| 男女下面插进去视频免费观看| 日本黄色日本黄色录像| 日韩欧美免费精品| 国产黄色免费在线视频| 男人的好看免费观看在线视频 | 最近最新中文字幕大全免费视频| 精品熟女少妇八av免费久了| 日韩有码中文字幕| 亚洲avbb在线观看| 中文字幕高清在线视频| 亚洲在线自拍视频| 免费一级毛片在线播放高清视频 | 欧美国产精品va在线观看不卡| 一级毛片女人18水好多| 手机成人av网站| 久久久国产一区二区| 久久久久精品国产欧美久久久| 欧美日韩国产mv在线观看视频| 日韩精品中文字幕看吧| 亚洲欧美激情在线| 中文字幕精品免费在线观看视频| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美激情在线| 一级黄色大片毛片| av在线播放免费不卡| 国产欧美日韩一区二区三区在线| 欧美老熟妇乱子伦牲交| av在线天堂中文字幕 | 国产精品成人在线| 久久精品国产99精品国产亚洲性色 | 国产黄a三级三级三级人| 在线看a的网站| 日本vs欧美在线观看视频| 怎么达到女性高潮| 人人妻人人添人人爽欧美一区卜| 一级毛片高清免费大全| 999精品在线视频| 黄色女人牲交| 午夜福利免费观看在线| 波多野结衣av一区二区av| 亚洲中文av在线| 黄色视频不卡| 国产成人精品久久二区二区91| 制服诱惑二区| 一个人观看的视频www高清免费观看 | 搡老岳熟女国产| 国产精品二区激情视频| 美女高潮到喷水免费观看| 欧美日韩视频精品一区| 亚洲一卡2卡3卡4卡5卡精品中文| x7x7x7水蜜桃| 高清av免费在线| 好看av亚洲va欧美ⅴa在| 国产乱人伦免费视频| 日本黄色视频三级网站网址| 在线观看66精品国产| 波多野结衣av一区二区av| 久久中文字幕人妻熟女| 啦啦啦 在线观看视频| 久久精品亚洲av国产电影网| 黄频高清免费视频| 1024香蕉在线观看| 在线观看午夜福利视频| 亚洲一区二区三区欧美精品| 欧美日韩一级在线毛片| 亚洲免费av在线视频| 老司机午夜十八禁免费视频| 亚洲精品av麻豆狂野| 欧美乱码精品一区二区三区| 一边摸一边做爽爽视频免费| 日韩免费高清中文字幕av| 亚洲精品一卡2卡三卡4卡5卡| 黄色 视频免费看| 婷婷六月久久综合丁香| 中文字幕人妻丝袜一区二区| 日韩大码丰满熟妇| 亚洲人成电影观看| www国产在线视频色| 最新美女视频免费是黄的| 老熟妇乱子伦视频在线观看| 国产欧美日韩一区二区三区在线| 国产午夜精品久久久久久| 亚洲五月婷婷丁香| 亚洲人成伊人成综合网2020| 中文字幕高清在线视频| 精品久久久精品久久久| 一本综合久久免费| 自线自在国产av| 啦啦啦免费观看视频1| 一个人免费在线观看的高清视频| 天堂中文最新版在线下载| 欧美丝袜亚洲另类 | 欧洲精品卡2卡3卡4卡5卡区| 精品日产1卡2卡| 黄色怎么调成土黄色| 国产视频一区二区在线看| 久久亚洲精品不卡| 欧美成人性av电影在线观看| 老司机福利观看| 午夜日韩欧美国产| av中文乱码字幕在线| 免费高清视频大片| 国产一区二区在线av高清观看| 在线观看日韩欧美| 久久久久精品国产欧美久久久| 亚洲午夜精品一区,二区,三区| 无限看片的www在线观看| 12—13女人毛片做爰片一| ponron亚洲| 波多野结衣高清无吗| av中文乱码字幕在线| 亚洲一区二区三区不卡视频| 又黄又爽又免费观看的视频| 午夜91福利影院| 欧美最黄视频在线播放免费 | 亚洲欧洲精品一区二区精品久久久| 精品久久久久久成人av| 国产成人精品久久二区二区91| 久久天躁狠狠躁夜夜2o2o| 久久狼人影院| 亚洲 欧美 日韩 在线 免费| 一级a爱视频在线免费观看| 超碰成人久久| 亚洲一区二区三区不卡视频| 国产成人啪精品午夜网站| 亚洲av片天天在线观看| 热re99久久国产66热| av电影中文网址| 麻豆久久精品国产亚洲av | 亚洲欧美精品综合久久99| av片东京热男人的天堂| 日日夜夜操网爽| 精品国产国语对白av| 国产高清视频在线播放一区| 国产黄a三级三级三级人| 一级,二级,三级黄色视频| 正在播放国产对白刺激| 麻豆一二三区av精品| 乱人伦中国视频| 国产三级黄色录像| 国产av又大| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| 欧美一区二区精品小视频在线| 1024香蕉在线观看| 久久中文字幕一级| 欧美一级毛片孕妇| 欧美丝袜亚洲另类 | 变态另类成人亚洲欧美熟女 | 国产一卡二卡三卡精品| 成在线人永久免费视频| 91九色精品人成在线观看| 国产三级在线视频| 亚洲视频免费观看视频| 国产欧美日韩一区二区精品| 久久国产精品人妻蜜桃| 亚洲成人免费电影在线观看| 午夜免费观看网址| 久久精品aⅴ一区二区三区四区| 又大又爽又粗| 自拍欧美九色日韩亚洲蝌蚪91| 高潮久久久久久久久久久不卡| 亚洲国产欧美日韩在线播放| 欧美午夜高清在线| 免费观看人在逋| 少妇裸体淫交视频免费看高清 | 女警被强在线播放| 久久人妻熟女aⅴ| 久久久国产成人免费| 叶爱在线成人免费视频播放| 满18在线观看网站| 美女高潮到喷水免费观看| 五月开心婷婷网| 日韩欧美三级三区| 亚洲熟妇中文字幕五十中出 | 99久久国产精品久久久| 久99久视频精品免费| 成人亚洲精品av一区二区 | 国产伦一二天堂av在线观看| 人人妻人人添人人爽欧美一区卜| 欧美人与性动交α欧美软件| 九色亚洲精品在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧洲精品一区二区精品久久久| 国产熟女xx| 亚洲美女黄片视频| 一边摸一边做爽爽视频免费| 黄色视频,在线免费观看| 99精品久久久久人妻精品| 女人精品久久久久毛片| 变态另类成人亚洲欧美熟女 | 无限看片的www在线观看| 在线观看免费视频网站a站| 婷婷精品国产亚洲av在线| 88av欧美| 久久久国产成人免费| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 男女下面进入的视频免费午夜 | 欧美成人免费av一区二区三区| 欧美 亚洲 国产 日韩一| 一进一出抽搐gif免费好疼 | 国产高清国产精品国产三级| 国产激情欧美一区二区| 亚洲成人精品中文字幕电影 | 精品国产一区二区久久| 91九色精品人成在线观看| 久久精品国产亚洲av香蕉五月| 欧美乱妇无乱码| 在线观看免费午夜福利视频| 亚洲午夜理论影院| 每晚都被弄得嗷嗷叫到高潮| 大陆偷拍与自拍| 亚洲成a人片在线一区二区| 黄色成人免费大全| 国产一区二区三区在线臀色熟女 | 99久久99久久久精品蜜桃| 日日摸夜夜添夜夜添小说| av在线播放免费不卡| 亚洲视频免费观看视频| 操美女的视频在线观看| www.熟女人妻精品国产| 超碰97精品在线观看| 丰满的人妻完整版| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 亚洲av成人av| 国产成人一区二区三区免费视频网站| 久久精品亚洲熟妇少妇任你| 国产成年人精品一区二区 | 一级片'在线观看视频| 国产精品久久久久成人av| 国产91精品成人一区二区三区| 高清毛片免费观看视频网站 | 看免费av毛片| 久久伊人香网站| 好看av亚洲va欧美ⅴa在| 18禁观看日本| 婷婷六月久久综合丁香| 日韩三级视频一区二区三区| 宅男免费午夜| 18禁国产床啪视频网站| 大陆偷拍与自拍| 无人区码免费观看不卡| 国产精品一区二区在线不卡| 桃色一区二区三区在线观看| 精品久久蜜臀av无| 色播在线永久视频| 女人被躁到高潮嗷嗷叫费观| 亚洲中文av在线| 国产精品 欧美亚洲| 成人特级黄色片久久久久久久| 天天影视国产精品| 国产成人影院久久av| 中文字幕av电影在线播放| 女人被躁到高潮嗷嗷叫费观| cao死你这个sao货| 日日夜夜操网爽| 亚洲专区中文字幕在线| a级毛片在线看网站| 精品一区二区三区四区五区乱码| 一级黄色大片毛片| 亚洲av电影在线进入| 欧美色视频一区免费| 黄色怎么调成土黄色| 久久人人精品亚洲av| 99在线人妻在线中文字幕| 亚洲avbb在线观看| 黄色怎么调成土黄色| 日本 av在线| 日本wwww免费看| 无限看片的www在线观看| 男男h啪啪无遮挡| 他把我摸到了高潮在线观看| 天天添夜夜摸| 久久热在线av| 亚洲va日本ⅴa欧美va伊人久久| 日韩三级视频一区二区三区| 欧美成狂野欧美在线观看| 正在播放国产对白刺激| 丁香欧美五月| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 一二三四在线观看免费中文在| 亚洲熟妇中文字幕五十中出 | 免费看a级黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合一区二区三区| 成在线人永久免费视频| 50天的宝宝边吃奶边哭怎么回事| 国产成人欧美| 女生性感内裤真人,穿戴方法视频| 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 一级片免费观看大全| 精品久久久精品久久久| 久久久久久免费高清国产稀缺| 一夜夜www| 夜夜躁狠狠躁天天躁| 精品一区二区三区视频在线观看免费 | 一边摸一边抽搐一进一出视频| 国产免费现黄频在线看| 老司机午夜福利在线观看视频| 身体一侧抽搐| 国产成人精品无人区| 国内久久婷婷六月综合欲色啪| 色哟哟哟哟哟哟| 国产成人精品无人区| 高清黄色对白视频在线免费看| 亚洲一区二区三区不卡视频| 在线永久观看黄色视频| 制服诱惑二区| 国产人伦9x9x在线观看| 色精品久久人妻99蜜桃| 又黄又粗又硬又大视频| 啦啦啦免费观看视频1| 1024视频免费在线观看| 美女福利国产在线| 亚洲视频免费观看视频| 欧美中文综合在线视频| 亚洲欧美日韩无卡精品| 69精品国产乱码久久久| 老汉色∧v一级毛片| 18禁裸乳无遮挡免费网站照片 | 亚洲片人在线观看| 欧美黄色淫秽网站| 麻豆久久精品国产亚洲av | 妹子高潮喷水视频| 少妇裸体淫交视频免费看高清 | 在线国产一区二区在线| 免费高清视频大片| 黑人猛操日本美女一级片| 亚洲欧美日韩无卡精品| 一个人免费在线观看的高清视频| 99精品在免费线老司机午夜| 欧美午夜高清在线| 波多野结衣一区麻豆| 欧美精品亚洲一区二区| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 午夜91福利影院| 久久久国产精品麻豆| 黄色怎么调成土黄色| 午夜福利欧美成人| www.www免费av| 国产精品1区2区在线观看.| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| 国产高清激情床上av| 精品午夜福利视频在线观看一区| 久久婷婷成人综合色麻豆| www.999成人在线观看| 欧美一级毛片孕妇| 亚洲男人天堂网一区| 国产亚洲欧美精品永久| 精品久久久久久成人av| 亚洲美女黄片视频| 免费女性裸体啪啪无遮挡网站| 麻豆一二三区av精品| 十八禁网站免费在线| 国产欧美日韩综合在线一区二区| 不卡一级毛片| 久久狼人影院| 精品日产1卡2卡| av天堂在线播放| 国产精品 国内视频| 欧美 亚洲 国产 日韩一| 88av欧美| 午夜免费鲁丝| 国产黄a三级三级三级人| 女警被强在线播放| 韩国精品一区二区三区| 亚洲一码二码三码区别大吗| 在线国产一区二区在线| 在线观看一区二区三区激情| 精品久久蜜臀av无| 亚洲第一av免费看| 成人黄色视频免费在线看| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看| netflix在线观看网站| 久久久国产精品麻豆| 色婷婷av一区二区三区视频| 涩涩av久久男人的天堂| 在线观看免费午夜福利视频| 中文字幕高清在线视频| 看片在线看免费视频| 国产黄a三级三级三级人| 高清毛片免费观看视频网站 | 久久精品国产亚洲av香蕉五月| 日本vs欧美在线观看视频| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 咕卡用的链子| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久亚洲精品国产蜜桃av| 在线视频色国产色| 69精品国产乱码久久久| 91字幕亚洲| 久久中文看片网| 精品第一国产精品| 搡老岳熟女国产| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 亚洲熟妇中文字幕五十中出 | 国产精品影院久久| 久久久久久久久久久久大奶| 一级黄色大片毛片| 国产xxxxx性猛交| 精品日产1卡2卡| 国产成人欧美| 在线观看免费午夜福利视频| 窝窝影院91人妻| 国产一区二区三区在线臀色熟女 | 99re在线观看精品视频| 欧美精品一区二区免费开放| 在线观看www视频免费| 亚洲精品美女久久久久99蜜臀| 99精品在免费线老司机午夜| 宅男免费午夜| 搡老乐熟女国产| 欧美黄色片欧美黄色片| 免费在线观看亚洲国产| 精品国产亚洲在线| 免费看十八禁软件| 动漫黄色视频在线观看| 88av欧美| 成人精品一区二区免费| 久久久精品欧美日韩精品| 国产精品野战在线观看 | 丰满迷人的少妇在线观看| 深夜精品福利| 黄色a级毛片大全视频| 欧美成人午夜精品| 视频在线观看一区二区三区| 日本黄色视频三级网站网址| 99国产综合亚洲精品| 国产精品乱码一区二三区的特点 | 久久中文字幕一级| 不卡av一区二区三区| 琪琪午夜伦伦电影理论片6080| 国产熟女xx| 在线看a的网站| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 免费在线观看日本一区| 国产亚洲精品第一综合不卡| 精品欧美一区二区三区在线| 在线视频色国产色| 男女高潮啪啪啪动态图| 精品国产亚洲在线| 国产成人一区二区三区免费视频网站| 夜夜看夜夜爽夜夜摸 | 国产精品 欧美亚洲| 91精品三级在线观看| 最新美女视频免费是黄的| 1024香蕉在线观看| 丰满迷人的少妇在线观看| 99精品欧美一区二区三区四区| 成人精品一区二区免费| 国产av一区二区精品久久| 9色porny在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看免费视频网站a站| 亚洲男人的天堂狠狠| 巨乳人妻的诱惑在线观看| 久久伊人香网站| 国产91精品成人一区二区三区| 这个男人来自地球电影免费观看| 欧美亚洲日本最大视频资源| 97超级碰碰碰精品色视频在线观看| 巨乳人妻的诱惑在线观看| 搡老乐熟女国产| 一级a爱片免费观看的视频| 国产片内射在线| 久久精品国产清高在天天线| 正在播放国产对白刺激| 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频| 黄色视频不卡| 免费观看精品视频网站| 老汉色∧v一级毛片| 亚洲成a人片在线一区二区| avwww免费| 国产高清国产精品国产三级| 日本黄色日本黄色录像| 久久 成人 亚洲| 国产有黄有色有爽视频| 久热爱精品视频在线9| 在线观看免费日韩欧美大片| av中文乱码字幕在线| 可以免费在线观看a视频的电影网站| 国产深夜福利视频在线观看|