• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil

    2022-08-01 05:58:48KangYang楊康HongWeiZhang張宏偉QianNianZhang張千年JunJunZha查君君andDengChaoHuang黃登朝
    Chinese Physics B 2022年7期
    關鍵詞:張宏偉楊康

    Kang Yang(楊康), Hong-Wei Zhang(張宏偉), Qian-Nian Zhang(張千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黃登朝),?

    1College of Electrical Engineering,Anhui Polytechnic University,Wuhu 241000,China

    2Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment,Ministry of Education,Anhui Polytechnic University,Wuhu 241000,China

    Keywords: SQUID,magnetocardiography,bi-planar coil,active compensation

    1. Introduction

    Magnetocardiography (MCG) is a non-invasive imaging tool to measure and analyze the magnetic field generated from human heart activity, whose intensity is typically as low as several tens of pico-Tesla(pT).It has been verified by clinical trials that MCG can be a potential technique for heart disease diagnosis.[1,2]However,because of the inevitable environmental magnetic noise, whose intensity can reach up to several hundred micro-Tesla (μT), it is a huge challenge to obtain MCG signals if the extremely sensitive superconducting quantum interference devices (SQUIDs) are only utilized.[3,4]To suppress the environmental disturbance,many research groups have attempted various shielding techniques,such as magnetically shielded rooms(MSRs),hardware or software gradiometers,and signal post-processing algorithms.[5,6]Typically,the most straightforward and effective way to restrain the environmental field noise is using the MSR. But the high cost and large size of a strongly MSR limits the clinical application of the MCG technique. Furthermore, the gradiometer or signal post-processing method has the disadvantage of attenuating the useful signals when suppressing the dominant environmental noise.

    To control the MSR building costs while guarantee the MCG signal quality, active compensation method combined with a thin passive MSR seems to be a considerable compromise.[7,8]Traditionally, this scheme adopted by some groups is to arrange the compensation coils outside of the shielding walls, resulting in the low-frequency shielding performance ranging from 0 to 50 Hz still unsatisfying, because the compensation coils only protect the MSR from higher frequency noise. Recently, Botoet al.have successfully introduced six pairs of bi-planar coils to null the residual magnetic fields, i.e.,Bx,By,Bz, dBx/dz, dBy/dzand dBz/dz, in their wearable MEG system based on the optically-pumped magnetometer.[9]It has been proven that the bi-planar coil can form an open operating space allowing easy access for subjects and operators. Their work inspires us that the bi-planar coil can also be suitable in a SQUID-based MCG system to actively compensate the residual disturbance inside a thin MSR.

    In this paper, focusing on the compensation of the vertical component of the residual magnetic fieldBz, the design theory and simulation result of one pair of bi-planar coils are discussed in detail. And in order to actively suppress the time-varying residual field, a classical proportional-integralderivative (PID) controller is introduced to control the compensation current. Two SQUID magnetometers with different sizes but both based on weakly damped Josephson junctions are used as sensing magnetometer and reference magnetometer in the compensation system. The residual magnetic fields before and after the active compensation are measured and analyzed in time and frequency domain. And the comparison results show the validity of this active compensation method in SQUID-based MCG system.

    2. Theory and design

    In this part, we firstly introduce the design theory of the bi-planar coil based on the target-field method and the Tikhonov regularization method. After obtaining the coil winding patterns, the finite element method is used to verify the magnetic performance of the designed coil. Then a classical PID controller,which is utilized to control the active compensation current in the bi-planar coil,is discussed in detail.

    2.1. Bi-planar coil

    The bi-planar coil is used to generate high-uniformity magnetic field, which is opposite in direction with the residual field. According to the target-field theory,[10]we firstly define the size of the planes where the coil winding patterns fixed on as 2Lxand 2Lz, as shown in Fig. 1(a). The distance between these two planes is set to be 2a. And the target region is defined as a cube with a side length ofb, locating in the center of the Cartesian coordinate. Based on the symmetry and boundary condition, the two current density functions inx- andz-direction, i.e.,Jx(x,z) andJz(x,z), can be expanded as[11]

    wherePmnis a series of unknown Fourier coefficients with different orders,which are limited by the integral numbersNandM.

    By using the Bio–Savart law,thez-component of the magnetic field in the target region produced by the bi-planar coil can be expressed as

    where

    Here,μ0is the magnetic permeability of vacuum,and(x,y,z),(xt,yt,zt) are the coordinates of the source point and the target point, respectively. Theoretically, thez-component of the magnetic field should be set as a constant,Btarget, in order to keep the magnetic field uniform in the target region, and this relationship can be written as

    Note that the current density can be obtained ifPmnare successfully solved here. However,it turns out to be a Fredholm integral equation of the first kind after substituting Eqs. (3)–(5) into Eq. (6). Generally, an objective function together with a penalty item based on the Tikhonov regularization method can be constructed to handle this problem.[12]After setting the magnetic field value at NUM selected target points,Btarget,1=Btarget,2=···=Btarget,NUM,the objective functionFcan be given as

    Here,Erepresents the dissipated power, which restrains the length of wires on the coil plane,and hence reduces the complexity of the designed coil.[13]λis a weight factor which should be carefully determined. Given the resistivity and the thickness of the wire,δandt, respectively, the dissipated powerEcan be expressed as

    ThenPmncan be obtained by requiring the derivative of the objective function to be zero

    According to the target field method, the coil winding patterns are transformed from the contours of the stream functionS(x,z).[14]And the stream function is related with the solved current density and can be expressed as

    Finally, based on the maximum and minimum values of the stream function, i.e.,SmaxandSmin, and the pre-determined coil turnsNc, the winding patterns can be visualized by a set of contours which are defined by

    For this paper,considering the space limit of our MCG system in the thin MSR,the side length of the bi-planar coil is set as 2Lx=2Ly=1 m, and the distance 2ais set to be 1 m. The side length of the cubic target regionbis set to be 0.3 m,and a total number of NUM=729 target points are selected in this region. Thez-component of the magnetic field in these points are all set to be 1 nT.The integral numbersMandNare both chosen to be 6 after several numerical calculations.The weight factorλis optimized to be 2×10-14viaL-curve criterion.[15]Then the coil winding patterns can be calculated and drawn by the Matlab platform,and the final design result is shown in Fig.1(b). Specially,the solid red and black lines represent the driven current running clockwise and anticlockwise.

    Fig.1. (a)The schematic diagram for the design theory of bi-planar coil. (b)The final structure of the bi-planar coil used for residual field compensation.

    After importing the coordinates of the obtained coil winding patterns into the COMSOL platform,we can simulate and verify the magnetic performance of this bi-planar coil based on the finite element method. As shown in Fig. 2, the magnetic uniformity error map is used to represent the magnetic distribution characteristics. These three maps exhibit a maximum uniformity error of 50%onXOY,XOZ,andYOZplanes with a side length of 1 m. Whereas in the target region, the auxiliary contours show a magnetic uniformity error less than 0.5%can be provided by this bi-planar coil. This result is satisfying not only because the target region is large enough to cover the whole human thoracic area,but also because the magnetic uniformity in this region is high enough to create a near-zero field area after compensation.

    Fig. 2. Magnetic uniformity error maps on (a) XOY plane, (b) XOZ plane,and(c)YOZ plane.

    2.2. PID controller

    As the residual field is always time-varying inside the thin MSR, the compensation current running in the bi-planar coil should change dynamically in order to keep the field in the target region constantly near zero. To achieve this,a classical PID controller,[16]which is based on the feedback mechanism tracking the real environment, is integrated into the compensation system. The PID theory is usually described by the following mathematical expression:

    Here,u(t) denotes the control signal which is generated by the PID controller, ande(t)represents the deviation error between the desired result and the measured state. The first part of Eq.(12)is called P-term,which can immediately reduce the errore(t)through proportional response once the deviation occurs. The second part, I-term, is used to eliminate the steady state error through deviation accumulation. And the third part D-term is able to foresee the trend of deviation change and thus produce advanced control.KP,KI, andKDare the proportional, integral, and derivative gains, respectively, whose values should be well tuned to ensure the effectiveness of the P-,I-,and D-term.

    Figure 3 shows the schematic diagram of our compensation system based on the PID controller.First of all,in order to obtain a near-zero magnetic field,the set value of this system should be defined to 0 pT. A reference SQUID magnetometer is used here to monitor whether the residual field reaches this set value. The output of the referenceBoutis amplified by the readout electronics and sampled by an analog-to-digital converter(ADC).The output of ADC feeds the difference between the set value and the current measured field into the PID controller, whose output is transformed to a compensation voltageVCOMPvia a digital-to-analog converter (DAC).AndVCOMPcan directly affect the compensation currentICOMPrunning in the bi-planar coil through a voltage-controlled current source. When the residual field after compensation is smaller than the set value,ICOMPshould immediately decrease according to the feedback strategy and the decreased current is strictly controlled by the PID-controller. In contrast,when the compensated field is larger than the set value,the current in the bi-planar coil can also automatically increase after conducting the PID calculation.

    Fig.3. Schematic diagram of the close-loop of the PID-based compensation system.

    2.3. System setup

    Two SQUID magnetometers, both based on weakly damped Josephson junctions with a large Stewart–McCumber parameter,[17,18]are served as sensing magnetometer and reference magnetometer in our compensation system. As shown in Fig. 4, the sensing magnetometer with a size of 10 mm×10 mm has an intrinsic noise of 4.5 fT/(Hz1/2),and the reference magnetometer whose size is 5 mm×5 mm has an intrinsic noise of 8 fT/(Hz1/2). Specially,the magnetic field noise of these two magnetometers at 1 Hz are 12 fT/(Hz1/2) and 21 fT/(Hz1/2), respectively. In general, the sensing magnetometer is arranged at the bottom of the Dewar (see Fig. 5).And the reference magnetometer is placed above the sensing magnetometer coaxially with a distance of 7 cm, which refers to the baseline of a hardware gradiometer we optimized before.[19]Moreover, this thin MSR is manufactured by two layers of permalloy plates and one layer of Al. The thickness of each permalloy plate is 1.75 mm and these two plates are separated by a 100 mm distance. The Al layer,put in the middle of two permalloy plates, is 12 mm thick. The shielding factor of this thin MSR is larger than 40 dB at 1 Hz.[20]

    After printing the designed winding patterns on two wooden boards, the bi-planar coil can be fabricated by gluing copper wires on each board. Note that the distance between two boards is 1 m, forming an open space which is large enough to contain a Dewar and a patient. And the Dewar should be carefully arranged to ensure two SQUID magnetometers are located in the high-uniformity target region.Both two SQUID magnetometers can be adjusted to optimal working points via the control units,which are put outside the MSR to avoid additional disturbance.The ADC(NI-9218)and DAC(NI-9260), integrated in a NI CompactDAQ system, are two independent I/O modules operating at 16-bit resolution. In order to tune three PID gains conveniently,the PID controller is embedded in a Labview platform which can be connected to the NI CompactDAQ via a USB interface. The current source(Thorlabs, LDC200CV)provides compensation current ranging from-20 mA to 20 mA. As the coil constant of the biplanar coil is measured to be 0.4 nT/mA, the compensation ability of this system can reach to±8 nT,which is surely sufficient to cover the amplitude range of the residual field in this thin MSR.

    Fig. 4. Magnetic field noises of the sensing magnetometer and reference magnetometer.

    Fig.5. Schematic diagram of the compensation system.

    3. Measurement and discussion

    After the SQUID magnetometers are immersed into the liquid Helium and tuned to the flux-locked loop mode,the output of the reference magnetometer which carries the residual field information is amplified by the readout electronics and digitalized by the ADC.By using the Ziegler–Nichols method,three PID gains,i.e.,KP,KI,andKD,are fixed as 0.75,0.003,and 0.001 in this case,respectively. Here,the sensing magnetometer acts as a monitor to exhibit the residual field before and after magnetic compensation.

    As shown in Fig.6,the outputs of the sensing and reference SQUID magnetometer before compensation,which represent the original residual field in the thin MSR, are firstly measured in time domain. The measurements are conducted during daytime(12:00 am)and last for 30 s. Obviously,these two outputs are well in coincidence with each other, indicating a DC component of 2.8 nT and a fluctuation of 0.8 nT in the residual field alongz-direction. Then, the compensation system is open and the outputs of the magnetometers are recorded in the same way after several seconds,which is spent to track the change of the residual field and adjust the compensation current in the bi-planar coil. The DC component can be suppressed to 0 pT after compensation,but the magnetic fluctuation with an amplitude about 4 pT still exists. It can be assumed that the tracking speed of the reference magnetometer,the digitalized efficiency of the ADC and the calculation accuracy of the PID controller result in this remained fluctuation.And the fluctuation difference from the outputs of two magnetometers can be explained by the position difference between them.Nevertheless,this magnetic fluctuation is acceptable because the MCG signal is 10–20 times larger than it.

    Fig. 6. Residual field detected by the sensing and reference SQUID magnetometer before and after compensation in time domain. The measurement time is 30 s.

    The compared results can be further analyzed in frequency domain, as shown in Fig. 7. The white noises of the sensing magnetometer before and after compensation are both 11 fT/(Hz1/2),about 6.5 fT/(Hz1/2)higher than the intrinsic noise because of the electronic devices used in this system. At 1 Hz,the amplitude of the magnetic noise is 2000 fT/(Hz1/2)before compensation and 200 fT/(Hz1/2)after compensation,exhibiting a noise suppression ratio (NSR) of 20 dB. Specially, the magnetic field noise around 8 Hz with an amplitude of 1000 fT/(Hz1/2) can be effectively suppressed to a normal level with a NSR of 22 dB.And the power-line interference,whose initial amplitude is 800 fT/(Hz1/2),can also be restrained by this compensation system with a NSR of 26 dB.It is obvious that this compensation system shows an excellent suppression performance in the low frequency range from 0.1 Hz to 50 Hz. As can be seen in the inset, the compensation results of the reference magnetometer are similar with the sensing magnetometer’s, indicating that the residual field can be well compensated in the pre-defined target region.

    Fig. 7. Residual field from the sensing magnetometer in frequency domain before and after compensation. The inset shows the results of the reference magnetometer.

    4. Conclusion

    We have introduced a residual field compensation system inside a thin MSR based on a kind of bi-planar coil. The design theory of the bi-planar coil, derived from the target-field theory and the Tikhonov regularization method,has been discussed in detail. The performance of this coil has been well simulated after obtaining the winding patterns via the stream function. Then a classical PID controller has been utilized to control the compensation current in the bi-planar coil, based on the time-varying residual field information provided by a reference SQUID magnetometer. By using this compensation system,the DC component and the fluctuation of the residual field can be restrained to 0 pT and 4 pT,respectively. Also,it turns out that the NSR of the compensation system can reach above 20 dB in the low-frequency range,typically from 0.1 Hz to 50 Hz. Besides the excellent compensation performance,this compensation system can form an open operating space which is convenient for MCG measurement. In the future,this compensation system will be applied in a multichannel MCG system,and even be optimized for other biomagnetic measurement systems.

    Acknowledgments

    Project supported by the Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Anhui Polytechnic University(Grant No. JCKJ2021A03), the Introduced Talent Research Startup Funds of Anhui Polytechnic University (Grant Nos.2021YQQ006 and 2020YQQ040),and the National Natural Science Foundation of China(Grant No.62101004).

    猜你喜歡
    張宏偉楊康
    A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
    SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS?
    育學子之德行 潤桃李共芬芳
    《小Q》真實版:看不見的戀人,跨過山和大海來呵護你
    Elastic properties of anatase titanium dioxide nanotubes:A molecular dynamics study?
    張宏偉 危難時刻顯身手
    相遇
    從《射雕英雄傳》看孩子的家庭教育
    中華家教(2016年11期)2016-12-03 15:16:43
    遇上一個輸不起的創(chuàng)業(yè)者
    Filtering Surface Water with a Polyurethane-based Hollow Fiber Membrane: Effects of Operating Pressure on Membrane Fouling*
    99久久人妻综合| 精品国产乱码久久久久久男人| 黄色一级大片看看| 国产 一区精品| av网站在线播放免费| 国产成人免费无遮挡视频| 久久国内精品自在自线图片| 日日啪夜夜爽| 亚洲久久久国产精品| 午夜福利网站1000一区二区三区| 亚洲精品国产一区二区精华液| 最近手机中文字幕大全| 亚洲少妇的诱惑av| av.在线天堂| 日韩制服骚丝袜av| 日韩免费高清中文字幕av| 国产深夜福利视频在线观看| 女人久久www免费人成看片| 国产 一区精品| 9色porny在线观看| 国产无遮挡羞羞视频在线观看| 在线观看免费视频网站a站| 天堂中文最新版在线下载| 国产成人免费观看mmmm| 欧美 亚洲 国产 日韩一| 国产在线一区二区三区精| 欧美激情极品国产一区二区三区| 免费播放大片免费观看视频在线观看| 高清不卡的av网站| 新久久久久国产一级毛片| 成人免费观看视频高清| 一级毛片 在线播放| 精品国产国语对白av| 男人舔女人的私密视频| 黑丝袜美女国产一区| 26uuu在线亚洲综合色| 看免费av毛片| 久久人人97超碰香蕉20202| 久久久久精品人妻al黑| 亚洲精品,欧美精品| 午夜日本视频在线| 亚洲国产毛片av蜜桃av| 日本91视频免费播放| 久久久久久久国产电影| 啦啦啦啦在线视频资源| 一级爰片在线观看| 在线亚洲精品国产二区图片欧美| 性色av一级| 一级a爱视频在线免费观看| 97精品久久久久久久久久精品| 最近2019中文字幕mv第一页| 在线免费观看不下载黄p国产| 午夜激情av网站| 国产精品99久久99久久久不卡 | 人人妻人人澡人人看| 亚洲成国产人片在线观看| 午夜老司机福利剧场| 精品亚洲乱码少妇综合久久| 国产熟女欧美一区二区| 中文字幕色久视频| av女优亚洲男人天堂| 亚洲国产看品久久| 交换朋友夫妻互换小说| 中国国产av一级| 黄网站色视频无遮挡免费观看| 18禁国产床啪视频网站| 日本色播在线视频| 卡戴珊不雅视频在线播放| 纯流量卡能插随身wifi吗| www.av在线官网国产| 最黄视频免费看| 日日爽夜夜爽网站| 国产精品久久久久久久久免| 丝袜在线中文字幕| 七月丁香在线播放| 日韩伦理黄色片| 高清av免费在线| 天堂8中文在线网| 一本色道久久久久久精品综合| 精品午夜福利在线看| 久久99热这里只频精品6学生| www日本在线高清视频| 天天躁夜夜躁狠狠躁躁| 国产不卡av网站在线观看| 成人亚洲欧美一区二区av| 91国产中文字幕| 国产精品亚洲av一区麻豆 | 国产成人精品无人区| 五月开心婷婷网| 永久网站在线| 国产av码专区亚洲av| 欧美xxⅹ黑人| av网站免费在线观看视频| 大香蕉久久成人网| 欧美人与性动交α欧美精品济南到 | kizo精华| 国产一区二区激情短视频 | 国产日韩一区二区三区精品不卡| 亚洲成人一二三区av| 国产欧美亚洲国产| 亚洲国产av影院在线观看| 天天躁日日躁夜夜躁夜夜| 一个人免费看片子| 成人毛片60女人毛片免费| √禁漫天堂资源中文www| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| 高清在线视频一区二区三区| 久久99一区二区三区| 国产精品 欧美亚洲| 99热全是精品| 国产精品一区二区在线观看99| 成人国语在线视频| 国产精品久久久久久精品电影小说| 80岁老熟妇乱子伦牲交| av福利片在线| 人妻人人澡人人爽人人| 久热这里只有精品99| 亚洲精品日韩在线中文字幕| 91精品国产国语对白视频| 国产在线一区二区三区精| av.在线天堂| 多毛熟女@视频| 丰满饥渴人妻一区二区三| 精品人妻熟女毛片av久久网站| 欧美日韩精品成人综合77777| 人人妻人人添人人爽欧美一区卜| 97人妻天天添夜夜摸| 少妇的逼水好多| av一本久久久久| 国产免费一区二区三区四区乱码| 精品少妇一区二区三区视频日本电影 | 国产有黄有色有爽视频| 满18在线观看网站| 99热网站在线观看| 美女福利国产在线| 欧美成人精品欧美一级黄| 午夜福利视频精品| 国产日韩一区二区三区精品不卡| 亚洲四区av| 好男人视频免费观看在线| 最新中文字幕久久久久| 欧美日韩精品网址| 一级黄片播放器| 哪个播放器可以免费观看大片| 久久99蜜桃精品久久| 26uuu在线亚洲综合色| 日韩伦理黄色片| 日韩av免费高清视频| 免费久久久久久久精品成人欧美视频| 黄片播放在线免费| 精品国产国语对白av| 国产片特级美女逼逼视频| 精品少妇一区二区三区视频日本电影 | 欧美人与性动交α欧美精品济南到 | 亚洲精品乱久久久久久| 国产在视频线精品| 深夜精品福利| 亚洲成国产人片在线观看| 一级a爱视频在线免费观看| 亚洲精品美女久久久久99蜜臀 | 亚洲色图 男人天堂 中文字幕| 亚洲国产最新在线播放| 秋霞伦理黄片| 哪个播放器可以免费观看大片| 性色avwww在线观看| av视频免费观看在线观看| 日本午夜av视频| 一级毛片我不卡| 人妻 亚洲 视频| 男人操女人黄网站| 曰老女人黄片| 日韩,欧美,国产一区二区三区| 少妇人妻久久综合中文| 亚洲精品成人av观看孕妇| 性高湖久久久久久久久免费观看| 黑人猛操日本美女一级片| 久久久久久人人人人人| 永久网站在线| 啦啦啦视频在线资源免费观看| 天天影视国产精品| 日韩中字成人| 最近的中文字幕免费完整| 国产欧美亚洲国产| 国产精品 欧美亚洲| 在线亚洲精品国产二区图片欧美| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| 免费看不卡的av| 久久久精品国产亚洲av高清涩受| 黄网站色视频无遮挡免费观看| 久久久久久久久久人人人人人人| 久久热在线av| 精品国产一区二区三区四区第35| 亚洲欧美成人综合另类久久久| 成年人午夜在线观看视频| 国产精品二区激情视频| 男女边吃奶边做爰视频| videos熟女内射| 亚洲精品久久久久久婷婷小说| 99久久综合免费| 欧美变态另类bdsm刘玥| 免费不卡的大黄色大毛片视频在线观看| 久久人人爽人人片av| 成人亚洲精品一区在线观看| 青青草视频在线视频观看| 久久久a久久爽久久v久久| av在线观看视频网站免费| 99九九在线精品视频| 欧美97在线视频| 在线看a的网站| 男女午夜视频在线观看| kizo精华| 日韩一本色道免费dvd| 夫妻午夜视频| 午夜老司机福利剧场| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 国产精品无大码| 日韩av免费高清视频| 亚洲精品国产av成人精品| 国产成人欧美| 美女中出高潮动态图| 你懂的网址亚洲精品在线观看| 又大又黄又爽视频免费| 黄色怎么调成土黄色| 少妇人妻精品综合一区二区| 日韩欧美一区视频在线观看| 日本免费在线观看一区| 日本vs欧美在线观看视频| 久久韩国三级中文字幕| 建设人人有责人人尽责人人享有的| 免费看不卡的av| 亚洲av成人精品一二三区| 97精品久久久久久久久久精品| 欧美最新免费一区二区三区| 两个人看的免费小视频| 午夜免费观看性视频| 精品一区二区免费观看| 婷婷色av中文字幕| 国产黄色免费在线视频| 五月天丁香电影| 久久精品人人爽人人爽视色| 美女xxoo啪啪120秒动态图| 日本91视频免费播放| 波多野结衣一区麻豆| av女优亚洲男人天堂| 日韩熟女老妇一区二区性免费视频| 一级毛片电影观看| 男女午夜视频在线观看| 亚洲欧美成人综合另类久久久| 秋霞在线观看毛片| 国产精品 国内视频| av国产久精品久网站免费入址| 尾随美女入室| 国产人伦9x9x在线观看 | 精品一区二区免费观看| 午夜精品国产一区二区电影| 午夜日本视频在线| 国产成人aa在线观看| 亚洲成人av在线免费| 黑人欧美特级aaaaaa片| 赤兔流量卡办理| 一本—道久久a久久精品蜜桃钙片| 如何舔出高潮| 久久久亚洲精品成人影院| 天天躁日日躁夜夜躁夜夜| 精品人妻熟女毛片av久久网站| 免费久久久久久久精品成人欧美视频| av在线app专区| 成人黄色视频免费在线看| 狂野欧美激情性bbbbbb| 人成视频在线观看免费观看| 久久午夜福利片| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 亚洲人成网站在线观看播放| 高清av免费在线| videos熟女内射| 美女主播在线视频| 精品少妇一区二区三区视频日本电影 | 亚洲男人天堂网一区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲三区欧美一区| 伊人亚洲综合成人网| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 中文字幕最新亚洲高清| 国产又色又爽无遮挡免| 久久久精品94久久精品| 亚洲第一av免费看| 亚洲国产av影院在线观看| 美女视频免费永久观看网站| 91aial.com中文字幕在线观看| 亚洲欧美精品综合一区二区三区 | 黄色毛片三级朝国网站| 99国产精品免费福利视频| 97在线视频观看| 在线观看一区二区三区激情| 国产97色在线日韩免费| 精品亚洲成国产av| 久久久久久伊人网av| 天天躁夜夜躁狠狠躁躁| 免费播放大片免费观看视频在线观看| 久久久久久久国产电影| 久久精品久久久久久噜噜老黄| 精品国产超薄肉色丝袜足j| 一级片免费观看大全| 我要看黄色一级片免费的| 国产免费现黄频在线看| 男男h啪啪无遮挡| 日本黄色日本黄色录像| 日本爱情动作片www.在线观看| 亚洲精品一二三| 欧美国产精品一级二级三级| 赤兔流量卡办理| 午夜激情久久久久久久| 美女中出高潮动态图| 爱豆传媒免费全集在线观看| 久久精品国产a三级三级三级| 国产熟女午夜一区二区三区| 18禁动态无遮挡网站| 久久99精品国语久久久| 日韩中文字幕欧美一区二区 | 久久精品国产亚洲av高清一级| 大片免费播放器 马上看| 国产一区二区激情短视频 | 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 欧美日韩一区二区视频在线观看视频在线| 大片免费播放器 马上看| 黄色一级大片看看| 卡戴珊不雅视频在线播放| 国产一区二区三区综合在线观看| 精品少妇久久久久久888优播| 亚洲,欧美精品.| 久久ye,这里只有精品| av视频免费观看在线观看| 国产激情久久老熟女| 巨乳人妻的诱惑在线观看| 各种免费的搞黄视频| 精品亚洲成a人片在线观看| 亚洲av成人精品一二三区| 纯流量卡能插随身wifi吗| 69精品国产乱码久久久| 国产欧美日韩一区二区三区在线| 欧美bdsm另类| 乱人伦中国视频| 又大又黄又爽视频免费| 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看| 亚洲少妇的诱惑av| 久久久久视频综合| 亚洲三级黄色毛片| 欧美另类一区| 亚洲国产精品999| 久久热在线av| 亚洲精品美女久久av网站| 校园人妻丝袜中文字幕| 国产欧美亚洲国产| 亚洲婷婷狠狠爱综合网| 熟女电影av网| 中文乱码字字幕精品一区二区三区| 国产免费福利视频在线观看| 欧美日韩精品网址| 国产极品天堂在线| 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 国产一级毛片在线| 搡女人真爽免费视频火全软件| 国产欧美日韩一区二区三区在线| 精品一区二区三区四区五区乱码 | www.熟女人妻精品国产| 亚洲精品第二区| 麻豆精品久久久久久蜜桃| 国产成人精品在线电影| 久久久久国产一级毛片高清牌| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| a级毛片黄视频| 岛国毛片在线播放| 国产一区亚洲一区在线观看| 久久精品久久久久久久性| 美女脱内裤让男人舔精品视频| 搡老乐熟女国产| 丁香六月天网| 国产精品偷伦视频观看了| 最近2019中文字幕mv第一页| 男女免费视频国产| 日日爽夜夜爽网站| 国产精品麻豆人妻色哟哟久久| 国产一区二区三区av在线| 亚洲av免费高清在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲色图综合在线观看| 两个人免费观看高清视频| 久久久久精品久久久久真实原创| 一级a爱视频在线免费观看| 亚洲成色77777| 日本av手机在线免费观看| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 久久人妻熟女aⅴ| 桃花免费在线播放| 免费黄色在线免费观看| 成年美女黄网站色视频大全免费| 黄片播放在线免费| 秋霞伦理黄片| 国产成人精品婷婷| 国产野战对白在线观看| 国产精品 国内视频| 色婷婷久久久亚洲欧美| 久久女婷五月综合色啪小说| 国产高清国产精品国产三级| 在线观看人妻少妇| 国产精品无大码| 最近2019中文字幕mv第一页| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 成年女人在线观看亚洲视频| 欧美人与性动交α欧美精品济南到 | 久久精品久久精品一区二区三区| 久久国产精品男人的天堂亚洲| 美女主播在线视频| 晚上一个人看的免费电影| 1024视频免费在线观看| 咕卡用的链子| 老汉色av国产亚洲站长工具| 熟女少妇亚洲综合色aaa.| 婷婷色av中文字幕| av网站免费在线观看视频| 我要看黄色一级片免费的| 久久久久久久久久久免费av| 国产精品女同一区二区软件| 一个人免费看片子| 五月伊人婷婷丁香| 久久久久久久国产电影| 如日韩欧美国产精品一区二区三区| 亚洲精品成人av观看孕妇| 男女免费视频国产| 久久精品国产综合久久久| 国产免费一区二区三区四区乱码| 亚洲第一青青草原| 国产成人免费无遮挡视频| 国产av码专区亚洲av| a级毛片黄视频| 欧美日韩成人在线一区二区| 自线自在国产av| 成年女人毛片免费观看观看9 | 99久国产av精品国产电影| 日韩一本色道免费dvd| 亚洲成人一二三区av| 精品国产一区二区久久| 亚洲第一av免费看| 美女xxoo啪啪120秒动态图| 五月开心婷婷网| 丰满少妇做爰视频| 成人毛片a级毛片在线播放| 一边摸一边做爽爽视频免费| 日韩中字成人| 丝袜喷水一区| www.精华液| a级片在线免费高清观看视频| 国产综合精华液| 成人免费观看视频高清| 99久国产av精品国产电影| 久久久亚洲精品成人影院| 亚洲精品在线美女| 日韩不卡一区二区三区视频在线| 在线观看一区二区三区激情| 中文字幕最新亚洲高清| 国产成人精品福利久久| av电影中文网址| 亚洲av欧美aⅴ国产| 少妇熟女欧美另类| 欧美bdsm另类| 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 久久亚洲国产成人精品v| 亚洲色图综合在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产黄色视频一区二区在线观看| 国产精品一国产av| 亚洲伊人色综图| 亚洲国产欧美在线一区| 亚洲国产精品999| 国产1区2区3区精品| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 大香蕉久久成人网| 亚洲伊人色综图| 啦啦啦在线观看免费高清www| 考比视频在线观看| 少妇猛男粗大的猛烈进出视频| 免费女性裸体啪啪无遮挡网站| 久久久久国产精品人妻一区二区| 免费观看a级毛片全部| 久久精品国产a三级三级三级| 又粗又硬又长又爽又黄的视频| 18禁国产床啪视频网站| 嫩草影院入口| 亚洲av欧美aⅴ国产| 亚洲av综合色区一区| 日本vs欧美在线观看视频| 日韩电影二区| 日本爱情动作片www.在线观看| 精品国产一区二区三区久久久樱花| 九色亚洲精品在线播放| 国产国语露脸激情在线看| 亚洲三级黄色毛片| 亚洲,一卡二卡三卡| 久久人妻熟女aⅴ| 人妻系列 视频| 亚洲美女视频黄频| h视频一区二区三区| 国产成人a∨麻豆精品| 久久人妻熟女aⅴ| 青春草国产在线视频| 精品一区二区三区四区五区乱码 | 美女福利国产在线| 亚洲国产精品一区二区三区在线| 性色av一级| 99热网站在线观看| 考比视频在线观看| 午夜福利视频精品| 久久久久久久久久久久大奶| 精品99又大又爽又粗少妇毛片| av网站在线播放免费| 久久鲁丝午夜福利片| 99久国产av精品国产电影| 亚洲熟女精品中文字幕| 亚洲三级黄色毛片| 一二三四中文在线观看免费高清| av网站免费在线观看视频| 精品99又大又爽又粗少妇毛片| 有码 亚洲区| 免费大片黄手机在线观看| 男人爽女人下面视频在线观看| 欧美日韩精品成人综合77777| 美女中出高潮动态图| 中文字幕av电影在线播放| 纵有疾风起免费观看全集完整版| 狠狠精品人妻久久久久久综合| 啦啦啦在线观看免费高清www| 在线天堂中文资源库| 丝袜脚勾引网站| 亚洲欧美成人综合另类久久久| av视频免费观看在线观看| 好男人视频免费观看在线| 亚洲av国产av综合av卡| 国产亚洲精品第一综合不卡| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区黑人 | 可以免费在线观看a视频的电影网站 | 国产精品一区二区在线观看99| 侵犯人妻中文字幕一二三四区| 亚洲综合色惰| 亚洲,欧美,日韩| 女性被躁到高潮视频| 免费在线观看黄色视频的| 欧美变态另类bdsm刘玥| 丰满少妇做爰视频| 香蕉国产在线看| 男人添女人高潮全过程视频| 国产1区2区3区精品| 麻豆av在线久日| 精品亚洲乱码少妇综合久久| 黑人欧美特级aaaaaa片| 久久99一区二区三区| 成年av动漫网址| 成人影院久久| 午夜福利在线观看免费完整高清在| 香蕉精品网在线| 国产精品 欧美亚洲| 欧美日韩综合久久久久久| 亚洲成人一二三区av| 高清av免费在线| 欧美最新免费一区二区三区| 韩国高清视频一区二区三区| 亚洲国产欧美在线一区| 久久久久久久久久久免费av| 麻豆精品久久久久久蜜桃| 日韩中文字幕视频在线看片| 九草在线视频观看| 亚洲五月色婷婷综合| 一级毛片 在线播放| 国产在线视频一区二区| 国产精品免费视频内射| 成人国语在线视频| 九草在线视频观看| 韩国av在线不卡| 精品午夜福利在线看| 久久久久久久久久久免费av| 一区二区三区激情视频| 欧美日韩亚洲国产一区二区在线观看 | 中文乱码字字幕精品一区二区三区| 国产国语露脸激情在线看| 欧美老熟妇乱子伦牲交| 亚洲综合精品二区| 观看av在线不卡| 欧美变态另类bdsm刘玥| 中文字幕精品免费在线观看视频| 欧美bdsm另类| 欧美老熟妇乱子伦牲交| 中文乱码字字幕精品一区二区三区| 精品一区二区三区四区五区乱码 | 女的被弄到高潮叫床怎么办| 色哟哟·www| 99精国产麻豆久久婷婷| 如何舔出高潮| 久久ye,这里只有精品| 寂寞人妻少妇视频99o|