• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil

    2022-08-01 05:58:48KangYang楊康HongWeiZhang張宏偉QianNianZhang張千年JunJunZha查君君andDengChaoHuang黃登朝
    Chinese Physics B 2022年7期
    關鍵詞:張宏偉楊康

    Kang Yang(楊康), Hong-Wei Zhang(張宏偉), Qian-Nian Zhang(張千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黃登朝),?

    1College of Electrical Engineering,Anhui Polytechnic University,Wuhu 241000,China

    2Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment,Ministry of Education,Anhui Polytechnic University,Wuhu 241000,China

    Keywords: SQUID,magnetocardiography,bi-planar coil,active compensation

    1. Introduction

    Magnetocardiography (MCG) is a non-invasive imaging tool to measure and analyze the magnetic field generated from human heart activity, whose intensity is typically as low as several tens of pico-Tesla(pT).It has been verified by clinical trials that MCG can be a potential technique for heart disease diagnosis.[1,2]However,because of the inevitable environmental magnetic noise, whose intensity can reach up to several hundred micro-Tesla (μT), it is a huge challenge to obtain MCG signals if the extremely sensitive superconducting quantum interference devices (SQUIDs) are only utilized.[3,4]To suppress the environmental disturbance,many research groups have attempted various shielding techniques,such as magnetically shielded rooms(MSRs),hardware or software gradiometers,and signal post-processing algorithms.[5,6]Typically,the most straightforward and effective way to restrain the environmental field noise is using the MSR. But the high cost and large size of a strongly MSR limits the clinical application of the MCG technique. Furthermore, the gradiometer or signal post-processing method has the disadvantage of attenuating the useful signals when suppressing the dominant environmental noise.

    To control the MSR building costs while guarantee the MCG signal quality, active compensation method combined with a thin passive MSR seems to be a considerable compromise.[7,8]Traditionally, this scheme adopted by some groups is to arrange the compensation coils outside of the shielding walls, resulting in the low-frequency shielding performance ranging from 0 to 50 Hz still unsatisfying, because the compensation coils only protect the MSR from higher frequency noise. Recently, Botoet al.have successfully introduced six pairs of bi-planar coils to null the residual magnetic fields, i.e.,Bx,By,Bz, dBx/dz, dBy/dzand dBz/dz, in their wearable MEG system based on the optically-pumped magnetometer.[9]It has been proven that the bi-planar coil can form an open operating space allowing easy access for subjects and operators. Their work inspires us that the bi-planar coil can also be suitable in a SQUID-based MCG system to actively compensate the residual disturbance inside a thin MSR.

    In this paper, focusing on the compensation of the vertical component of the residual magnetic fieldBz, the design theory and simulation result of one pair of bi-planar coils are discussed in detail. And in order to actively suppress the time-varying residual field, a classical proportional-integralderivative (PID) controller is introduced to control the compensation current. Two SQUID magnetometers with different sizes but both based on weakly damped Josephson junctions are used as sensing magnetometer and reference magnetometer in the compensation system. The residual magnetic fields before and after the active compensation are measured and analyzed in time and frequency domain. And the comparison results show the validity of this active compensation method in SQUID-based MCG system.

    2. Theory and design

    In this part, we firstly introduce the design theory of the bi-planar coil based on the target-field method and the Tikhonov regularization method. After obtaining the coil winding patterns, the finite element method is used to verify the magnetic performance of the designed coil. Then a classical PID controller,which is utilized to control the active compensation current in the bi-planar coil,is discussed in detail.

    2.1. Bi-planar coil

    The bi-planar coil is used to generate high-uniformity magnetic field, which is opposite in direction with the residual field. According to the target-field theory,[10]we firstly define the size of the planes where the coil winding patterns fixed on as 2Lxand 2Lz, as shown in Fig. 1(a). The distance between these two planes is set to be 2a. And the target region is defined as a cube with a side length ofb, locating in the center of the Cartesian coordinate. Based on the symmetry and boundary condition, the two current density functions inx- andz-direction, i.e.,Jx(x,z) andJz(x,z), can be expanded as[11]

    wherePmnis a series of unknown Fourier coefficients with different orders,which are limited by the integral numbersNandM.

    By using the Bio–Savart law,thez-component of the magnetic field in the target region produced by the bi-planar coil can be expressed as

    where

    Here,μ0is the magnetic permeability of vacuum,and(x,y,z),(xt,yt,zt) are the coordinates of the source point and the target point, respectively. Theoretically, thez-component of the magnetic field should be set as a constant,Btarget, in order to keep the magnetic field uniform in the target region, and this relationship can be written as

    Note that the current density can be obtained ifPmnare successfully solved here. However,it turns out to be a Fredholm integral equation of the first kind after substituting Eqs. (3)–(5) into Eq. (6). Generally, an objective function together with a penalty item based on the Tikhonov regularization method can be constructed to handle this problem.[12]After setting the magnetic field value at NUM selected target points,Btarget,1=Btarget,2=···=Btarget,NUM,the objective functionFcan be given as

    Here,Erepresents the dissipated power, which restrains the length of wires on the coil plane,and hence reduces the complexity of the designed coil.[13]λis a weight factor which should be carefully determined. Given the resistivity and the thickness of the wire,δandt, respectively, the dissipated powerEcan be expressed as

    ThenPmncan be obtained by requiring the derivative of the objective function to be zero

    According to the target field method, the coil winding patterns are transformed from the contours of the stream functionS(x,z).[14]And the stream function is related with the solved current density and can be expressed as

    Finally, based on the maximum and minimum values of the stream function, i.e.,SmaxandSmin, and the pre-determined coil turnsNc, the winding patterns can be visualized by a set of contours which are defined by

    For this paper,considering the space limit of our MCG system in the thin MSR,the side length of the bi-planar coil is set as 2Lx=2Ly=1 m, and the distance 2ais set to be 1 m. The side length of the cubic target regionbis set to be 0.3 m,and a total number of NUM=729 target points are selected in this region. Thez-component of the magnetic field in these points are all set to be 1 nT.The integral numbersMandNare both chosen to be 6 after several numerical calculations.The weight factorλis optimized to be 2×10-14viaL-curve criterion.[15]Then the coil winding patterns can be calculated and drawn by the Matlab platform,and the final design result is shown in Fig.1(b). Specially,the solid red and black lines represent the driven current running clockwise and anticlockwise.

    Fig.1. (a)The schematic diagram for the design theory of bi-planar coil. (b)The final structure of the bi-planar coil used for residual field compensation.

    After importing the coordinates of the obtained coil winding patterns into the COMSOL platform,we can simulate and verify the magnetic performance of this bi-planar coil based on the finite element method. As shown in Fig. 2, the magnetic uniformity error map is used to represent the magnetic distribution characteristics. These three maps exhibit a maximum uniformity error of 50%onXOY,XOZ,andYOZplanes with a side length of 1 m. Whereas in the target region, the auxiliary contours show a magnetic uniformity error less than 0.5%can be provided by this bi-planar coil. This result is satisfying not only because the target region is large enough to cover the whole human thoracic area,but also because the magnetic uniformity in this region is high enough to create a near-zero field area after compensation.

    Fig. 2. Magnetic uniformity error maps on (a) XOY plane, (b) XOZ plane,and(c)YOZ plane.

    2.2. PID controller

    As the residual field is always time-varying inside the thin MSR, the compensation current running in the bi-planar coil should change dynamically in order to keep the field in the target region constantly near zero. To achieve this,a classical PID controller,[16]which is based on the feedback mechanism tracking the real environment, is integrated into the compensation system. The PID theory is usually described by the following mathematical expression:

    Here,u(t) denotes the control signal which is generated by the PID controller, ande(t)represents the deviation error between the desired result and the measured state. The first part of Eq.(12)is called P-term,which can immediately reduce the errore(t)through proportional response once the deviation occurs. The second part, I-term, is used to eliminate the steady state error through deviation accumulation. And the third part D-term is able to foresee the trend of deviation change and thus produce advanced control.KP,KI, andKDare the proportional, integral, and derivative gains, respectively, whose values should be well tuned to ensure the effectiveness of the P-,I-,and D-term.

    Figure 3 shows the schematic diagram of our compensation system based on the PID controller.First of all,in order to obtain a near-zero magnetic field,the set value of this system should be defined to 0 pT. A reference SQUID magnetometer is used here to monitor whether the residual field reaches this set value. The output of the referenceBoutis amplified by the readout electronics and sampled by an analog-to-digital converter(ADC).The output of ADC feeds the difference between the set value and the current measured field into the PID controller, whose output is transformed to a compensation voltageVCOMPvia a digital-to-analog converter (DAC).AndVCOMPcan directly affect the compensation currentICOMPrunning in the bi-planar coil through a voltage-controlled current source. When the residual field after compensation is smaller than the set value,ICOMPshould immediately decrease according to the feedback strategy and the decreased current is strictly controlled by the PID-controller. In contrast,when the compensated field is larger than the set value,the current in the bi-planar coil can also automatically increase after conducting the PID calculation.

    Fig.3. Schematic diagram of the close-loop of the PID-based compensation system.

    2.3. System setup

    Two SQUID magnetometers, both based on weakly damped Josephson junctions with a large Stewart–McCumber parameter,[17,18]are served as sensing magnetometer and reference magnetometer in our compensation system. As shown in Fig. 4, the sensing magnetometer with a size of 10 mm×10 mm has an intrinsic noise of 4.5 fT/(Hz1/2),and the reference magnetometer whose size is 5 mm×5 mm has an intrinsic noise of 8 fT/(Hz1/2). Specially,the magnetic field noise of these two magnetometers at 1 Hz are 12 fT/(Hz1/2) and 21 fT/(Hz1/2), respectively. In general, the sensing magnetometer is arranged at the bottom of the Dewar (see Fig. 5).And the reference magnetometer is placed above the sensing magnetometer coaxially with a distance of 7 cm, which refers to the baseline of a hardware gradiometer we optimized before.[19]Moreover, this thin MSR is manufactured by two layers of permalloy plates and one layer of Al. The thickness of each permalloy plate is 1.75 mm and these two plates are separated by a 100 mm distance. The Al layer,put in the middle of two permalloy plates, is 12 mm thick. The shielding factor of this thin MSR is larger than 40 dB at 1 Hz.[20]

    After printing the designed winding patterns on two wooden boards, the bi-planar coil can be fabricated by gluing copper wires on each board. Note that the distance between two boards is 1 m, forming an open space which is large enough to contain a Dewar and a patient. And the Dewar should be carefully arranged to ensure two SQUID magnetometers are located in the high-uniformity target region.Both two SQUID magnetometers can be adjusted to optimal working points via the control units,which are put outside the MSR to avoid additional disturbance.The ADC(NI-9218)and DAC(NI-9260), integrated in a NI CompactDAQ system, are two independent I/O modules operating at 16-bit resolution. In order to tune three PID gains conveniently,the PID controller is embedded in a Labview platform which can be connected to the NI CompactDAQ via a USB interface. The current source(Thorlabs, LDC200CV)provides compensation current ranging from-20 mA to 20 mA. As the coil constant of the biplanar coil is measured to be 0.4 nT/mA, the compensation ability of this system can reach to±8 nT,which is surely sufficient to cover the amplitude range of the residual field in this thin MSR.

    Fig. 4. Magnetic field noises of the sensing magnetometer and reference magnetometer.

    Fig.5. Schematic diagram of the compensation system.

    3. Measurement and discussion

    After the SQUID magnetometers are immersed into the liquid Helium and tuned to the flux-locked loop mode,the output of the reference magnetometer which carries the residual field information is amplified by the readout electronics and digitalized by the ADC.By using the Ziegler–Nichols method,three PID gains,i.e.,KP,KI,andKD,are fixed as 0.75,0.003,and 0.001 in this case,respectively. Here,the sensing magnetometer acts as a monitor to exhibit the residual field before and after magnetic compensation.

    As shown in Fig.6,the outputs of the sensing and reference SQUID magnetometer before compensation,which represent the original residual field in the thin MSR, are firstly measured in time domain. The measurements are conducted during daytime(12:00 am)and last for 30 s. Obviously,these two outputs are well in coincidence with each other, indicating a DC component of 2.8 nT and a fluctuation of 0.8 nT in the residual field alongz-direction. Then, the compensation system is open and the outputs of the magnetometers are recorded in the same way after several seconds,which is spent to track the change of the residual field and adjust the compensation current in the bi-planar coil. The DC component can be suppressed to 0 pT after compensation,but the magnetic fluctuation with an amplitude about 4 pT still exists. It can be assumed that the tracking speed of the reference magnetometer,the digitalized efficiency of the ADC and the calculation accuracy of the PID controller result in this remained fluctuation.And the fluctuation difference from the outputs of two magnetometers can be explained by the position difference between them.Nevertheless,this magnetic fluctuation is acceptable because the MCG signal is 10–20 times larger than it.

    Fig. 6. Residual field detected by the sensing and reference SQUID magnetometer before and after compensation in time domain. The measurement time is 30 s.

    The compared results can be further analyzed in frequency domain, as shown in Fig. 7. The white noises of the sensing magnetometer before and after compensation are both 11 fT/(Hz1/2),about 6.5 fT/(Hz1/2)higher than the intrinsic noise because of the electronic devices used in this system. At 1 Hz,the amplitude of the magnetic noise is 2000 fT/(Hz1/2)before compensation and 200 fT/(Hz1/2)after compensation,exhibiting a noise suppression ratio (NSR) of 20 dB. Specially, the magnetic field noise around 8 Hz with an amplitude of 1000 fT/(Hz1/2) can be effectively suppressed to a normal level with a NSR of 22 dB.And the power-line interference,whose initial amplitude is 800 fT/(Hz1/2),can also be restrained by this compensation system with a NSR of 26 dB.It is obvious that this compensation system shows an excellent suppression performance in the low frequency range from 0.1 Hz to 50 Hz. As can be seen in the inset, the compensation results of the reference magnetometer are similar with the sensing magnetometer’s, indicating that the residual field can be well compensated in the pre-defined target region.

    Fig. 7. Residual field from the sensing magnetometer in frequency domain before and after compensation. The inset shows the results of the reference magnetometer.

    4. Conclusion

    We have introduced a residual field compensation system inside a thin MSR based on a kind of bi-planar coil. The design theory of the bi-planar coil, derived from the target-field theory and the Tikhonov regularization method,has been discussed in detail. The performance of this coil has been well simulated after obtaining the winding patterns via the stream function. Then a classical PID controller has been utilized to control the compensation current in the bi-planar coil, based on the time-varying residual field information provided by a reference SQUID magnetometer. By using this compensation system,the DC component and the fluctuation of the residual field can be restrained to 0 pT and 4 pT,respectively. Also,it turns out that the NSR of the compensation system can reach above 20 dB in the low-frequency range,typically from 0.1 Hz to 50 Hz. Besides the excellent compensation performance,this compensation system can form an open operating space which is convenient for MCG measurement. In the future,this compensation system will be applied in a multichannel MCG system,and even be optimized for other biomagnetic measurement systems.

    Acknowledgments

    Project supported by the Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Anhui Polytechnic University(Grant No. JCKJ2021A03), the Introduced Talent Research Startup Funds of Anhui Polytechnic University (Grant Nos.2021YQQ006 and 2020YQQ040),and the National Natural Science Foundation of China(Grant No.62101004).

    猜你喜歡
    張宏偉楊康
    A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
    SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS?
    育學子之德行 潤桃李共芬芳
    《小Q》真實版:看不見的戀人,跨過山和大海來呵護你
    Elastic properties of anatase titanium dioxide nanotubes:A molecular dynamics study?
    張宏偉 危難時刻顯身手
    相遇
    從《射雕英雄傳》看孩子的家庭教育
    中華家教(2016年11期)2016-12-03 15:16:43
    遇上一個輸不起的創(chuàng)業(yè)者
    Filtering Surface Water with a Polyurethane-based Hollow Fiber Membrane: Effects of Operating Pressure on Membrane Fouling*
    a级毛片在线看网站| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 满18在线观看网站| 自线自在国产av| 美女福利国产在线| 一区在线观看完整版| 老汉色av国产亚洲站长工具| 欧美日韩黄片免| 精品第一国产精品| 十八禁人妻一区二区| 欧美老熟妇乱子伦牲交| 曰老女人黄片| 国产激情久久老熟女| 国产精品 国内视频| 一级a爱片免费观看的视频| 欧美国产精品va在线观看不卡| 久久久国产成人精品二区 | 飞空精品影院首页| 久久国产精品人妻蜜桃| 99riav亚洲国产免费| 欧美黑人欧美精品刺激| 国产精品亚洲一级av第二区| 午夜精品国产一区二区电影| 国产在线一区二区三区精| 乱人伦中国视频| 超碰97精品在线观看| 777久久人妻少妇嫩草av网站| 久久久久视频综合| 法律面前人人平等表现在哪些方面| 午夜久久久在线观看| 久久影院123| 成人三级做爰电影| 18禁黄网站禁片午夜丰满| 黄频高清免费视频| 亚洲成人国产一区在线观看| a级片在线免费高清观看视频| 亚洲一区中文字幕在线| av一本久久久久| 欧美精品一区二区免费开放| 捣出白浆h1v1| www.自偷自拍.com| 亚洲精品乱久久久久久| av网站免费在线观看视频| 久久精品国产清高在天天线| 悠悠久久av| 亚洲欧美一区二区三区久久| 人妻久久中文字幕网| 中国美女看黄片| 天堂动漫精品| 亚洲伊人色综图| 欧美日韩av久久| 精品第一国产精品| 精品无人区乱码1区二区| 精品免费久久久久久久清纯 | 99精品久久久久人妻精品| 99riav亚洲国产免费| tocl精华| 久久香蕉激情| 大香蕉久久成人网| 午夜福利在线观看吧| 母亲3免费完整高清在线观看| 如日韩欧美国产精品一区二区三区| а√天堂www在线а√下载 | 亚洲成人免费电影在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟女毛片儿| 高潮久久久久久久久久久不卡| 亚洲成a人片在线一区二区| 老鸭窝网址在线观看| 久久久久精品人妻al黑| videos熟女内射| 在线观看66精品国产| 国产激情欧美一区二区| 狂野欧美激情性xxxx| 18禁裸乳无遮挡免费网站照片 | 午夜视频精品福利| 亚洲一区二区三区不卡视频| 亚洲欧洲精品一区二区精品久久久| 视频区图区小说| 交换朋友夫妻互换小说| 大香蕉久久网| 亚洲精品久久成人aⅴ小说| 悠悠久久av| 亚洲午夜精品一区,二区,三区| 久久热在线av| 夜夜夜夜夜久久久久| 久久精品成人免费网站| 亚洲一区二区三区欧美精品| 国产精品久久久av美女十八| 欧美亚洲日本最大视频资源| 亚洲自偷自拍图片 自拍| 久久影院123| 成人国语在线视频| 两性夫妻黄色片| 在线看a的网站| 欧美激情极品国产一区二区三区| 日本欧美视频一区| 999精品在线视频| 曰老女人黄片| 热re99久久国产66热| 黑人猛操日本美女一级片| 日本wwww免费看| 亚洲精品自拍成人| 午夜福利在线免费观看网站| 久久久精品免费免费高清| 国产在线一区二区三区精| 国产无遮挡羞羞视频在线观看| 真人做人爱边吃奶动态| 精品欧美一区二区三区在线| 别揉我奶头~嗯~啊~动态视频| 狠狠狠狠99中文字幕| 99在线人妻在线中文字幕 | 国产精品秋霞免费鲁丝片| 免费看十八禁软件| 久久中文字幕一级| 男女床上黄色一级片免费看| 国产xxxxx性猛交| 欧美+亚洲+日韩+国产| 亚洲成人免费电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 免费观看精品视频网站| 国产成人啪精品午夜网站| 极品人妻少妇av视频| 午夜精品在线福利| 国产精品久久久久久人妻精品电影| av有码第一页| 欧美老熟妇乱子伦牲交| 在线视频色国产色| 国产欧美日韩一区二区三区在线| 精品福利观看| 无限看片的www在线观看| 国产精品电影一区二区三区 | 在线观看一区二区三区激情| 久久久久久人人人人人| 一边摸一边做爽爽视频免费| 757午夜福利合集在线观看| 午夜日韩欧美国产| 人妻丰满熟妇av一区二区三区 | 欧美日韩国产mv在线观看视频| 亚洲情色 制服丝袜| 中出人妻视频一区二区| 欧美人与性动交α欧美精品济南到| 久久天躁狠狠躁夜夜2o2o| 少妇裸体淫交视频免费看高清 | 制服诱惑二区| 18禁裸乳无遮挡免费网站照片 | videosex国产| 99香蕉大伊视频| 精品欧美一区二区三区在线| 啦啦啦视频在线资源免费观看| 国产精品一区二区精品视频观看| 日本五十路高清| 乱人伦中国视频| 国产在线观看jvid| 天堂俺去俺来也www色官网| 精品视频人人做人人爽| 叶爱在线成人免费视频播放| 亚洲熟女精品中文字幕| 欧美中文综合在线视频| 欧美精品啪啪一区二区三区| 亚洲少妇的诱惑av| 亚洲成av片中文字幕在线观看| 欧美精品人与动牲交sv欧美| 日本vs欧美在线观看视频| 成人影院久久| 一级毛片精品| 亚洲三区欧美一区| 99国产极品粉嫩在线观看| 一二三四社区在线视频社区8| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看 | 露出奶头的视频| 一个人免费在线观看的高清视频| 亚洲精品粉嫩美女一区| 热99在线观看视频| 五月玫瑰六月丁香| 观看美女的网站| 女生性感内裤真人,穿戴方法视频| 日本精品一区二区三区蜜桃| 国产精品,欧美在线| 国产欧美日韩一区二区三| 国产伦精品一区二区三区视频9 | 国产高清视频在线观看网站| www.色视频.com| 国产伦精品一区二区三区视频9 | 欧美一区二区亚洲| 叶爱在线成人免费视频播放| 90打野战视频偷拍视频| 久久久国产精品麻豆| 女生性感内裤真人,穿戴方法视频| 哪里可以看免费的av片| 老汉色av国产亚洲站长工具| 亚洲熟妇中文字幕五十中出| 高清日韩中文字幕在线| 亚洲激情在线av| 午夜免费观看网址| 欧美午夜高清在线| 91麻豆精品激情在线观看国产| 高清日韩中文字幕在线| 丰满人妻一区二区三区视频av | 亚洲av第一区精品v没综合| 亚洲av第一区精品v没综合| 亚洲七黄色美女视频| 国产黄色小视频在线观看| 狠狠狠狠99中文字幕| 69av精品久久久久久| 国产精品 国内视频| 精品久久久久久久末码| 一边摸一边抽搐一进一小说| 久久精品91无色码中文字幕| 成人无遮挡网站| 青草久久国产| 日韩亚洲欧美综合| 一级作爱视频免费观看| 国产成人av教育| 中文字幕精品亚洲无线码一区| 日本撒尿小便嘘嘘汇集6| 99久久精品国产亚洲精品| 欧美3d第一页| 欧美一级毛片孕妇| 亚洲男人的天堂狠狠| www.熟女人妻精品国产| 一本精品99久久精品77| 亚洲av成人精品一区久久| 成人欧美大片| 特级一级黄色大片| 女人高潮潮喷娇喘18禁视频| 波多野结衣高清作品| 一区二区三区免费毛片| 欧美3d第一页| 日韩大尺度精品在线看网址| 1000部很黄的大片| 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 成人午夜高清在线视频| 亚洲男人的天堂狠狠| 亚洲中文日韩欧美视频| av中文乱码字幕在线| 男女床上黄色一级片免费看| 桃红色精品国产亚洲av| 亚洲成a人片在线一区二区| 国产伦一二天堂av在线观看| 男女午夜视频在线观看| 嫩草影院精品99| 欧美xxxx黑人xx丫x性爽| 亚洲天堂国产精品一区在线| 久久精品国产综合久久久| av天堂在线播放| 久久久久久国产a免费观看| 热99re8久久精品国产| 少妇的逼水好多| 亚洲欧美日韩无卡精品| 听说在线观看完整版免费高清| 成人鲁丝片一二三区免费| 搡老熟女国产l中国老女人| 亚洲精品亚洲一区二区| 草草在线视频免费看| 久久精品国产自在天天线| 久久6这里有精品| 在线播放国产精品三级| 黄色日韩在线| 搡女人真爽免费视频火全软件 | 日本成人三级电影网站| 久久精品国产自在天天线| 一个人免费在线观看电影| 亚洲精品456在线播放app | 男插女下体视频免费在线播放| 日韩欧美在线二视频| 悠悠久久av| 国产精品自产拍在线观看55亚洲| 国产日本99.免费观看| 国产精品一区二区三区四区免费观看 | 免费观看精品视频网站| 大型黄色视频在线免费观看| 五月玫瑰六月丁香| 最新在线观看一区二区三区| 熟妇人妻久久中文字幕3abv| 国产伦精品一区二区三区视频9 | 亚洲av免费高清在线观看| 免费在线观看日本一区| 亚洲真实伦在线观看| 久久久久久大精品| 国产精品美女特级片免费视频播放器| 亚洲人成网站在线播| 三级男女做爰猛烈吃奶摸视频| 99精品欧美一区二区三区四区| 日韩亚洲欧美综合| 亚洲第一欧美日韩一区二区三区| 女同久久另类99精品国产91| 亚洲精品美女久久久久99蜜臀| 男插女下体视频免费在线播放| 最新在线观看一区二区三区| 伊人久久精品亚洲午夜| 亚洲美女视频黄频| 最近最新免费中文字幕在线| 99热这里只有精品一区| 久久精品亚洲精品国产色婷小说| 欧美午夜高清在线| 国内毛片毛片毛片毛片毛片| 一卡2卡三卡四卡精品乱码亚洲| 波野结衣二区三区在线 | 香蕉丝袜av| 制服人妻中文乱码| 国产免费一级a男人的天堂| 中文字幕熟女人妻在线| 欧美日韩福利视频一区二区| 天堂影院成人在线观看| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 成人18禁在线播放| 色老头精品视频在线观看| 亚洲精品日韩av片在线观看 | 日本一本二区三区精品| 国产午夜福利久久久久久| 变态另类丝袜制服| 欧美成狂野欧美在线观看| 免费观看精品视频网站| 午夜福利在线在线| 两个人视频免费观看高清| 欧洲精品卡2卡3卡4卡5卡区| 熟女电影av网| 19禁男女啪啪无遮挡网站| 99久久综合精品五月天人人| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 女人被狂操c到高潮| 成人国产综合亚洲| 热99在线观看视频| 桃红色精品国产亚洲av| 免费观看精品视频网站| 人人妻人人澡欧美一区二区| 亚洲欧美一区二区三区黑人| 精品99又大又爽又粗少妇毛片 | av女优亚洲男人天堂| 真实男女啪啪啪动态图| 国产免费一级a男人的天堂| 天天添夜夜摸| 精品久久久久久成人av| 日韩欧美 国产精品| 久久6这里有精品| 免费人成在线观看视频色| 国产av在哪里看| 可以在线观看的亚洲视频| 亚洲精品在线美女| 男人的好看免费观看在线视频| 白带黄色成豆腐渣| 久久国产精品影院| 免费电影在线观看免费观看| 制服丝袜大香蕉在线| 免费一级毛片在线播放高清视频| 最新中文字幕久久久久| 久久性视频一级片| 女人被狂操c到高潮| 在线观看66精品国产| 波多野结衣高清作品| 麻豆国产av国片精品| 国产午夜精品论理片| 亚洲激情在线av| 欧美日韩一级在线毛片| 亚洲av五月六月丁香网| 一二三四社区在线视频社区8| 欧美黄色淫秽网站| 亚洲精品在线美女| 舔av片在线| 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址| 狠狠狠狠99中文字幕| 中文在线观看免费www的网站| 免费在线观看影片大全网站| 天天躁日日操中文字幕| 久久久久免费精品人妻一区二区| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 婷婷精品国产亚洲av| 免费av毛片视频| 中出人妻视频一区二区| 1000部很黄的大片| 乱人视频在线观看| 免费人成在线观看视频色| av国产免费在线观看| 黄色片一级片一级黄色片| 一个人看的www免费观看视频| 久久久久久久午夜电影| 亚洲久久久久久中文字幕| 午夜影院日韩av| 午夜精品在线福利| 成熟少妇高潮喷水视频| 久久久久久人人人人人| а√天堂www在线а√下载| 九色国产91popny在线| 身体一侧抽搐| 俺也久久电影网| 老司机深夜福利视频在线观看| 97超视频在线观看视频| 国内久久婷婷六月综合欲色啪| 大型黄色视频在线免费观看| 色精品久久人妻99蜜桃| 香蕉久久夜色| 女生性感内裤真人,穿戴方法视频| 最近最新中文字幕大全电影3| av国产免费在线观看| 美女 人体艺术 gogo| 日本熟妇午夜| 国模一区二区三区四区视频| 国产伦精品一区二区三区四那| 高清日韩中文字幕在线| 精品久久久久久成人av| 国产三级在线视频| 三级毛片av免费| 12—13女人毛片做爰片一| 亚洲aⅴ乱码一区二区在线播放| 丁香六月欧美| 五月伊人婷婷丁香| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线美女| 制服丝袜大香蕉在线| 真人做人爱边吃奶动态| 久久久成人免费电影| 欧美一级毛片孕妇| 村上凉子中文字幕在线| 亚洲成人久久爱视频| 老汉色∧v一级毛片| 一本久久中文字幕| www日本在线高清视频| 久久精品国产清高在天天线| 国产v大片淫在线免费观看| 精品人妻偷拍中文字幕| 男人和女人高潮做爰伦理| 久久香蕉精品热| 欧美成人a在线观看| 国产熟女xx| 久久久国产精品麻豆| av黄色大香蕉| 身体一侧抽搐| 中国美女看黄片| 少妇熟女aⅴ在线视频| 五月玫瑰六月丁香| 国产精品 欧美亚洲| 国内精品久久久久精免费| 一个人看的www免费观看视频| 18美女黄网站色大片免费观看| 在线观看免费视频日本深夜| 天美传媒精品一区二区| 国产伦精品一区二区三区四那| 免费电影在线观看免费观看| 3wmmmm亚洲av在线观看| 亚洲国产精品成人综合色| 看片在线看免费视频| 国产91精品成人一区二区三区| 特大巨黑吊av在线直播| av天堂在线播放| 午夜精品久久久久久毛片777| 精品福利观看| 观看美女的网站| 午夜视频国产福利| 国产伦精品一区二区三区视频9 | 国产午夜精品久久久久久一区二区三区 | 99久久精品国产亚洲精品| 99久久九九国产精品国产免费| 亚洲熟妇熟女久久| 精品久久久久久久久久久久久| 99国产极品粉嫩在线观看| 亚洲精品久久国产高清桃花| 国产探花极品一区二区| 精品久久久久久久毛片微露脸| 国产探花在线观看一区二区| 91麻豆精品激情在线观看国产| 亚洲精品乱码久久久v下载方式 | 99热6这里只有精品| 亚洲欧美日韩无卡精品| 日韩欧美国产在线观看| 色综合站精品国产| 国内精品一区二区在线观看| 禁无遮挡网站| av天堂在线播放| 欧美另类亚洲清纯唯美| 99精品欧美一区二区三区四区| 看黄色毛片网站| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三| 一进一出抽搐动态| 五月伊人婷婷丁香| 99热这里只有是精品50| av在线天堂中文字幕| 老司机在亚洲福利影院| 亚洲国产色片| 村上凉子中文字幕在线| 中文字幕人妻熟人妻熟丝袜美 | 99国产精品一区二区三区| 久久亚洲真实| av在线蜜桃| 99久久精品国产亚洲精品| 国产高清激情床上av| 啦啦啦观看免费观看视频高清| 精品久久久久久久毛片微露脸| 成人国产综合亚洲| 99在线视频只有这里精品首页| 亚洲美女黄片视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | a级毛片a级免费在线| 日本熟妇午夜| 成年人黄色毛片网站| av中文乱码字幕在线| 久久伊人香网站| 亚洲av成人av| 国产探花极品一区二区| 久久性视频一级片| 色在线成人网| 国产在视频线在精品| 亚洲国产欧美人成| 少妇高潮的动态图| 一级作爱视频免费观看| 国产一区在线观看成人免费| 高潮久久久久久久久久久不卡| 嫩草影院精品99| 波野结衣二区三区在线 | 国产精品亚洲一级av第二区| 熟女人妻精品中文字幕| 色噜噜av男人的天堂激情| 亚洲在线观看片| 在线观看美女被高潮喷水网站 | 国产高潮美女av| 亚洲第一欧美日韩一区二区三区| 99精品欧美一区二区三区四区| 好看av亚洲va欧美ⅴa在| 中国美女看黄片| 嫩草影视91久久| 欧美中文综合在线视频| 久久精品综合一区二区三区| 网址你懂的国产日韩在线| 成人性生交大片免费视频hd| 3wmmmm亚洲av在线观看| 成人一区二区视频在线观看| 女人十人毛片免费观看3o分钟| 老汉色∧v一级毛片| 久久草成人影院| 中文字幕人妻丝袜一区二区| 久久精品国产亚洲av涩爱 | 九色国产91popny在线| 亚洲性夜色夜夜综合| 黄色日韩在线| 一级黄片播放器| 国产精品av视频在线免费观看| 国产激情偷乱视频一区二区| 免费搜索国产男女视频| 一进一出抽搐gif免费好疼| 亚洲av电影不卡..在线观看| 老汉色av国产亚洲站长工具| 日韩精品中文字幕看吧| 久99久视频精品免费| av欧美777| 成人欧美大片| 亚洲精品影视一区二区三区av| 亚洲专区中文字幕在线| svipshipincom国产片| 国产一区二区亚洲精品在线观看| 亚洲av二区三区四区| 一级黄片播放器| 国产精品一及| 欧美日韩国产亚洲二区| 国产亚洲av嫩草精品影院| 男女午夜视频在线观看| 亚洲人成网站高清观看| 搡老妇女老女人老熟妇| 国产高清视频在线播放一区| 精品日产1卡2卡| 女生性感内裤真人,穿戴方法视频| 网址你懂的国产日韩在线| 内地一区二区视频在线| 久久久久久国产a免费观看| 国产精品98久久久久久宅男小说| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 两性午夜刺激爽爽歪歪视频在线观看| 久9热在线精品视频| 国内揄拍国产精品人妻在线| 色综合婷婷激情| 一本久久中文字幕| 亚洲国产精品sss在线观看| 久久久精品大字幕| 亚洲aⅴ乱码一区二区在线播放| 91字幕亚洲| 中文在线观看免费www的网站| 亚洲av一区综合| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品乱码久久久v下载方式 | 欧美最新免费一区二区三区 | 国产精品永久免费网站| 国产精品自产拍在线观看55亚洲| 亚洲精品在线美女| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品国产精品久久久不卡| av天堂中文字幕网| 欧美黄色淫秽网站| 91麻豆精品激情在线观看国产| 久久久久免费精品人妻一区二区| tocl精华| 午夜a级毛片| 国产亚洲精品av在线| 黄片大片在线免费观看| 国产真人三级小视频在线观看| 免费人成在线观看视频色| 精品久久久久久久末码| 亚洲自拍偷在线| 一级毛片女人18水好多| 免费搜索国产男女视频| 男女午夜视频在线观看| 看免费av毛片| 欧美xxxx黑人xx丫x性爽| 欧美日本亚洲视频在线播放| 看免费av毛片| 免费看十八禁软件| 精华霜和精华液先用哪个|