• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elastic properties of anatase titanium dioxide nanotubes:A molecular dynamics study?

    2019-11-06 00:43:44KangYang楊康LiangYang楊亮ChangZhiAi艾長智ZhaoWang王趙andShiWeiLin林仕偉
    Chinese Physics B 2019年10期
    關(guān)鍵詞:楊康

    Kang Yang(楊康),Liang Yang(楊亮),?,Chang-Zhi Ai(艾長智),Zhao Wang(王趙),and Shi-Wei Lin(林仕偉),?

    1State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University,Haikou 570228,China

    2School of Materials Science and Engineering,Hainan University,Haikou 570228,China

    3School of Science,Hainan University,Haikou 570228,China

    Keywords:molecular dynamics,elastic properties,TiO2 nanotube,chiral angle,radius

    1.Introduction

    With the development of science and technology in the past few years,nanostructures have received much attention from many researchers because of their important role in the fields of energy,environment,and production.Among them,titanium dioxide nanotubes(TNTs)have attracted extensive attention.Due to its large specific surface area,high chemical stability,excellent catalytic property,great acid,and alkaline resistance,[1]the TNTs have been widely used in fuel cells,[2,3]photocatalytic systems,[4,5]energy storage devices,[6,7]gassensitive sensors,[8]pH sensors,[9]and other fields. The main preparation methods of titanium dioxide nanotubes are the template-assisted,[10,11]hydrothermal,[12–14]sol–gel,[15]and electrochemical anodization methods.[16,17]However,the TNTs structures prepared by different methods are different from each other and thus present different performances.In order to optimize the composite performance by using TNTs as the addition,the investigation into their elastic and other mechanical properties are of great importance.For example,titanium dioxide nanotubes play an important role in mechanically enhancing bone bonding and epoxy resin.[18,19]However,the elastic and mechanical properties of a single titanium dioxide nanotube are hard to obtain experimentally. Thus,there is still much room for studying the elastic and mechanical properties of titanium dioxide nanotubes.

    Like carbon nanotubes,titanium dioxide nanotubes are made of transversely isotropic materials,so they are highly symmetrical in elastic properties and sensitive to the helicity and the radius of nanotubes.[20–22]In order to obtain the elastic properties of TNTs effectively,the elastic constants can be calculated by density functional theory or molecular dynamics. The first principles Vienna ab initio simulation package(VASP)has already predicted the elastic constants of bulk anatase and rutile TiO2at 0 K,[23,24]and the elastic constants of bulk rutile at various temperatures have been measured experimentally.[25–27]But the elastic constants of TNTs have not been measured nor calculated yet.

    In this paper,the single-cycle sheet of TiO2anatase(101)is curled into a single wall nanotube structure along different chiral directions. The elastic constants of the nanotubes are calculated by the Matsui and Akaogi(MA)potential function through using molecular dynamics.In order to verify the calculated results,we first use this potential function to calculate the elastic constants of bulk anatase and rutile,which demonstrate good accuracy.Then,the elastic constants of the titanium dioxide nanotubes with different chiral angles are further calculated,including Young’s modulus,shear modulus,and Poisson ratio.Such a prediction of the TNT elastic properties can provide good theoretical guidance for both experimental and practical applications.

    2.Simulation methods

    2.1.Building models

    The nanotube symmetry and structure are described on the basis of the so-called layer folding.[28]The single-wall anatase TNT named(n,m)with open ends can be obtained by simple rotation of the(101)anatase surface along different crystalline orientations(Figs.1(a)and 1(b))and characterized by a chiral vector R,the expression of which is

    Fig.1.(a)Anatase(101)lattice and(b)rolling-up direction and process of nanotubes,with a and b denoting primitive translation vectors,and θ referring to chiral angle.(c)–(g)Different chiral structures of anatase(101)nanotubes.Solid red circle denotes oxygen atom and solid blue circle represents titanium atom.Radius of each nanotube is about 15 nm.

    In Eq.(1),a and b are the primitive translation vectors of the two-periodic(2D)lattice in the layer.The chirality(n,m)is obtained by folding the layer in a way that the chiral vector becomes the circumference of the cross section of the nanotubes,[29]where n and m must be integers.The angle θ betweenandis called chiral angle,and the range of θ is generally in a range of 0?–90?,and θ is determined by the following equation:

    Here we select five different chiral anatase TNTs.The ratios of n to m of the nanotubes are 0(90?),0.5(36.49?),1(20.29?),2(10.47?),and ∞(0?)(Figs.1(c)–1(g)),respectively.And the radius of nanotubes is nearly 15 nm.

    2.2.Potential functions

    Here we use the well-known MD(Molecular Dynamics)software package large-scale atomic/molecular massively parallel simulator(LAMMPS)to perform the calculation.[30]In this calculation,a classical potential function in the form of a pair of potential expressions with clear physical meaning is selected,which is an MA potential function.[31,32]The MA potential function is expressed as

    where U(rij)is the interaction potential between atoms,and rijis the distance between atom i and atom j. The charge of Ti and O atom are+2.196e and ?1.098e,respectively and more potential function parameters are listed in Table 1. A Langevin thermostat is used for the temperature control with NVE ensemble.[33]Long-range electrostatic interactions are calculated by a particle mesh Ewald summation method.[34]The Newton’s equations of motion are integrated by Verletleapfrog algorithm. The cutoff radius is 10and periodic boundary condition is utilized in all three dimensions. The time step used in the simulation is 0.001 ps.

    Table 1.Key parameters of MA potential function.

    2.3.Calculation of elastic modulus

    Bulk anatase,rutile,and TNTs are made of transversely isotropic materials,so they have a high degree of symmetry in their elastic properties. Based on Hooke’s law for elastic materials and using Voigt notation,the engineering moduli Cijcan be calculated from the following formula:

    Both stress σiand strain εjare second rank tensors.In Voigt notation,[35]engineering moduli Cijcan be represented by a 6×6 symmetric matrix as[36]

    For transversely isotropic materials:C11=C22,C23=C31,C44=C55,and C66=(C11?C12)/2,the engineering compliances Sijare also defined in the isotropic direction along the axis,similarly,in Voigt notation:

    with S11=S22,S23=S31,S44=S55,and S66=2(S11?S12).The relationship between engineering moduli Cijand engineering compliances Sijis as follows:

    3.Results and discussion

    Rutile is relatively stable in nature and the elastic constants of rutile are obtained experimentally.We use the MA potential function to calculate the elastic constants of bulk rutile from room temperature to 1000 K,and a fairly good agreement is found between our computed elastic constants and those from the experiments.[25,26](See Table A1 in Appendix A for more details). It is worth pointing out that the elastic constants gradually reduce as the temperature increases.The calculated value of C11is larger than the experimental value,and the rest of the elastic constants are in good agreement with the experimental values,which shows that the MA potential function can effectively predict the elastic properties of rutile TiO2.

    However,the experimental values of anatase elastic constants have not been effectively measured.There exists only the bulk modulus for reference.[38]The elastic constants of anatase at 0 K can be accurately calculated by VASP,and the values are C11=395.2,C12=153.9,C13=156.0,C33=195.9,C44=47.3,C66=59.5(LDA/UPP);C11=336.5,C12=138.6,C13=136.0,C33=192.1,C44=49.4,C66=58.3(GGA/UPP);C11=320,C12=151,C13=143,C33=190,C44=54,C66=60.[23,24]The elastic constants calculated by LAMMPS with MA potential function are C11=419.3,C12=110.5,C13=105.6,C33=202.1,C44=52.5,and C66=50.4.And the calculation results of LAMMPS are in good agreement with those of VASP.Many properties of titanium dioxide have been investigated successfully by using the MA potential function.[39–41]Therefore,the MA potential function can also predict the elastic constants of anatase and nanotubes.

    Figures 2(a)–2(e)show that neither of the elastic constants is significantly affected by temperature for each chiral anatase(101)nanotube. Therefore,temperature will not be an impact factor in the change of Young’s modulus nor Poisson ratio nor shear modulus.Hence,the following calculation results are all obtained at 300 K.

    As can be seen from Table 2,the elastic constants of anatase(101)nanotubes are calculated to be smaller than those of anatase and rutile,and the difference in chiral angle will make the elastic constants of nanotubes different under the condition of the same radius.For the same chiral angle,the elastic constants C11and C33are larger than other elastic constants because of the transversely isotropic structures for nanotubes,which have a stronger load capacity on the Z-axis direction than on the other directions. For the different chiral angles that generally range from 0?to 90?,when the chiral angle of TNT is 0?,its elastic constants are basically the minimum,which is the same as Young’s modulus and shear modulus. When the chiral angle of titanium dioxide nanotubes is 90?,the elastic constants are the biggest in all elastic constants,which case is the same as those for Young’s modulus,shear modulus,and Poisson ratio.The Young’s modulus,Poisson ratio,and shear modulus of the nanotubes can be obtained from Eqs.(7)and(8),and Young’s modulus is determined by C11,C12,C13,and C33.But C11and C33are much larger than other elastic constants,so Young’s modulus of the nanotubes is mainly affected by C11and C33. Poisson ratio is affected not only by the elastic constant but also by Young’s modulus.Shear modulus is determined by Young’s modulus and Poisson ratio.By comparing the nanotubes(9,3),(9,6)as shown in the Supplementary information(Tables A2,A3 in Appendix A)with those in Table 2,it is found that when the radius of the nanotubes is nearly 15 nm,Young’s modulus does not change linearly with the increase of the chiral angle.However,when the chiral angle is 0?,Young’s modulus,Poisson ratio,and shear modulus of the nanotubes are lowest.So the nanotubes with a certain chiral angle will improve the mechanical properties of nanotubes.

    Fig.2.Elastic constants C11,C12,C13,C33,C44,and C66 at temperatures ranging from 100 to 500 K with chiral angles of(a)90?,(b)36.49?,(c)10.47?,(d)20.29?,(e)0?,respectively.

    Table 2.Elastic constants,Young’s moduli,Poisson ratios,and shear moduli(in unit GPa)of anatase(101)nanotubes with different chiral angles at 300 K,and radius of each nanotube of about 15 nm.

    The elastic constants are also sensitive to the radius of the nanotubes.The relationship between the elastic constants and the radius of nanotubes under the same chiral angle is calculated,where the chiral angles are 7.03?(Table A2),10.47?(Table 3),13.85?(Table A3),36.49?(Table A4)respectively.

    Table 3 displays that as the radius of each chiral nanotube increases,the elastic constants first increase and then gradually decrease.And C11and C33are most obvious because of the transversely isotropic structure.The four kinds of nanotubes with different chirality described above have an optimal radius range from about 10 nm to 15 nm.This means that the anatase(101)nanotubes should have maximum elastic constants in a radius range of about 10 nm–15 nm no matter what kind of chirality they have.

    Table 3.Elastic constants,Young’s moduli,Poisson ratios,and shear moduli(in unit GPa)of anatase(101)nanotubes with different radii at chiral angle 10.47?and temperature 300 K.

    Fig.3.Plots of radius-dependent(a)Young’s modulus,(b)Poisson ratio,and(c)shear modulus(in unit GPa)of anatase(101)nanotubes with chiral angle 7.03?and different radii.(d)Young’s modulus,(e)Poisson ratio,and(f)shear modulus(in unit GPa)of anatase(101)nanotubes with chiral angle 10.47?and different radii.

    Fig.4.Plots of radius-dependent(a)Young’s modulus,(b)Poisson ratio,(c)shear modulus(in unit GPa)of anatase(101)nanotubes with chiral angle 13.85?and different radii;(d)Young’s modulus,(e)Poisson ratio,and(f)shear modulus(in unit GPa)of anatase(101)nanotubes with chiral angle 36.49?and different radii.

    Because Young’s modulus is mainly determined by C11and C33,Young’s modulus also presents an increase and then decrease trend as radius increases.From Figs.3 and 4,it can follow that shear modulus and Young’s modulus have maximum values in a range of 10 nm–15 nm.The variation trends of Young’s modulus in an isotropic planeand Young’s modulus perpendicular to the isotropic plane E⊥are basically the same,so areandμ⊥.However,Poisson ratio fluctuates in a certain range.The calculated elastic modulus values are very similar to Young’s modulus values obtained from the direct compressive measurements of individual TiO2nanotubes[42](23 GPa–44 GPa)and nanoindentation[43](36 GPa–43 GPa)in a diameter range of about 35 nm–70 nm.From the analysis above,it can be concluded that in a nanotube radius range of 10 nm–15 nm,Young’s modulus and shear modulus will have maximum values.Saeed et al.[19]successfully improved the mechanical properties of epoxy resin by using nanotubes with a diameter range of 10 nm–20 nm.Because the chiral distribution of nanotubes used experimentally is so wide that it is difficult to determine a single chiral angle of the nanotubes,and thus there will be a lot of nanotubes with different chiral angles in the experiment.However,figures 3 and 4 show that among all the nanotubes,those in a radius range below 15 nm dominate their optimal mechanical properties.And for chiral nanotubes at 36.49?in a radius range of 8 nm–14 nm,Young’s modulus does not differ from each other very much.Therefore,making the diameter of nanotubes as small as possible can improve the mechanical properties of composites.

    Fig.5.Plots of phonon density of states(DOS)versus frequency with chiral angle of 10.47?and different radii from(4,2)to(20,10).

    As shown in Fig.5,phonon densities of states of TNTs with different radii are calculated. Because atoms continuously vibrate at the equilibrium position,there is an interaction between atoms in the crystal,and the vibrations of each atom are not isolated from but interconnected with each other,thus forming elastic waves of various modes.The elastic properties of the crystal can be further analysed from the frequency of crystal vibration.It is worth noting that the nanotubes(4,2),(6,3),(8,4)have additional vibration modes at high frequencies ranging from 25 THz to 28 THz,which means that there is a strong elastic force between atoms.With the increase of radius,the high frequency vibration disappears,which shows that the large nanotubes do not have high frequency vibration and have low elastic forces compared with the small nanotubes.Therefore,elastic properties of nanotubes with small radius are better than those with large radius.This confirms those observations in Figs.3 and 4. The variation of calculated Young’s modulus and shear modulus are small when the radius of nanotubes is small(5 nm–15 nm)due to the high vibration frequency.However,as the radius increases,the elastic constant sharply decreases.

    4.Conclusion and perspectives

    In this work,the elastic constants,Young’s modulus,Poisson ratio,and shear modulus of anatase nanotubes were calculated by using MA potential function and transversely isotropic structure model.The elastic constants of TNTs are found to be not significantly affected by temperature.By calculating the elastic constants of nanotubes with the same radius but different chirality,it can be found that the elastic constants are not proportional to the chiral angle.In addition,both C11andC33are larger than the other elastic constants due to the transversely isotropic structure.By calculating the elastic constants of nanotubes with the same chirality but different radii,the elastic constants,Young’s modulus and shear modulus first increase and then decrease as radius increases.The maximum values appear in a radius range of 10 nm–15 nm,and Poisson ratio fluctuates in a certain range. Nanotubes with a radius range of 5 nm–15 nm have high frequency vibration and large elastic constants compared with big nanotubes.Therefore,the radius of the nanotubes should be as small as possible to enhance their mechanical properties in practice.

    Acknowledgment

    The author would like to thank Dr.Caizhuang Wang at Ames Laboratory for useful guidance and discussion during the molecular dynamics study.

    Appendix A:Supplementary information

    The following are the supplementary data to this article:Elastic constants Cij(in unit GPa)of rutile TiO2from 300 K to 1000 K;Elastic constants,Young’s modulus,Poisson ratio,and shear modulus(in unit GPa)of anatase(101)nanotubes with different radii at different chiral angles(7.03?,13.85?,and 36.49?)at 300 K.

    Table A1.Calculated and experimental results of elastic constants Cij(in unit GPa)for rutile TiO2 from 300 K to 1000 K.

    Table A2.Elastic constants,Young’s moduli,Poisson ratios,and shear moduli(in unit GPa)of anatase(101)nanotubes with different radii at chiral angle 7.03?at 300 K.

    Table A3.Elastic constants,Young’s moduli,Poisson ratios,and shear moduli(in unit GPa)of anatase(101)nanotubes with different radii at chiral angle 13.85?at 300 K.

    Table A4.Elastic constants,Young’s moduli,Poisson ratio,and shear moduli(in unit GPa)of anatase(101)nanotubes with different radii at chiral angle 36.49?at 300 K.

    猜你喜歡
    楊康
    A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
    Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
    《小Q》真實(shí)版:看不見的戀人,跨過山和大海來呵護(hù)你
    面向自動問答的機(jī)器閱讀理解綜述
    Personal Deixis in English News Headlines
    梅超風(fēng)其實(shí)重情重義
    百家講壇(2018年5期)2018-08-23 11:08:44
    梅超風(fēng)其實(shí)重情重義
    《射雕》是一部失傳的教育真經(jīng)
    閱讀時代(2017年3期)2017-10-24 12:44:57
    相遇
    從《射雕英雄傳》看孩子的家庭教育
    中華家教(2016年11期)2016-12-03 15:16:43
    欧美日韩综合久久久久久| 国内少妇人妻偷人精品xxx网站| 精品久久久久久成人av| 乱系列少妇在线播放| 在线观看美女被高潮喷水网站| 国国产精品蜜臀av免费| 久久精品久久久久久噜噜老黄 | 又粗又爽又猛毛片免费看| 国产精品一区二区三区四区免费观看 | 一夜夜www| 精品人妻视频免费看| 色哟哟哟哟哟哟| 国产精品乱码一区二三区的特点| 国产大屁股一区二区在线视频| 好男人在线观看高清免费视频| 嫩草影院精品99| 亚洲成人中文字幕在线播放| 亚洲欧美精品自产自拍| 日韩,欧美,国产一区二区三区 | 国产一级毛片七仙女欲春2| 在线播放无遮挡| 日韩大尺度精品在线看网址| 国产精品一二三区在线看| av卡一久久| 一区二区三区四区激情视频 | 国产真实伦视频高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一本精品99久久精品77| 内地一区二区视频在线| 国产精品电影一区二区三区| 国产av麻豆久久久久久久| 欧美另类亚洲清纯唯美| 午夜福利在线观看吧| 国产精品精品国产色婷婷| av免费在线看不卡| 欧美又色又爽又黄视频| 久久久精品大字幕| 麻豆成人午夜福利视频| or卡值多少钱| 中国国产av一级| 观看美女的网站| 亚洲熟妇中文字幕五十中出| 有码 亚洲区| 亚洲18禁久久av| 久久久成人免费电影| 久久这里只有精品中国| 欧美bdsm另类| 精品久久久久久久久亚洲| 一区福利在线观看| www日本黄色视频网| 国产高清激情床上av| 欧美日韩精品成人综合77777| av天堂在线播放| 91久久精品电影网| 成年女人看的毛片在线观看| 波野结衣二区三区在线| 亚洲av中文字字幕乱码综合| 国产精品野战在线观看| 十八禁国产超污无遮挡网站| 可以在线观看的亚洲视频| 性色avwww在线观看| 一边摸一边抽搐一进一小说| 亚洲国产精品成人综合色| 最近中文字幕高清免费大全6| av在线播放精品| 狠狠狠狠99中文字幕| 搡老妇女老女人老熟妇| 男女做爰动态图高潮gif福利片| 国产乱人视频| 亚洲av二区三区四区| 国产精品亚洲美女久久久| 麻豆一二三区av精品| 国产探花在线观看一区二区| av专区在线播放| 久久鲁丝午夜福利片| 黄色配什么色好看| 国产精品国产高清国产av| 成人永久免费在线观看视频| 小蜜桃在线观看免费完整版高清| 久久久久国产网址| 久久精品91蜜桃| 伦理电影大哥的女人| 国产极品精品免费视频能看的| 精品熟女少妇av免费看| 人妻夜夜爽99麻豆av| 免费在线观看影片大全网站| av在线蜜桃| 免费看a级黄色片| 无遮挡黄片免费观看| 日韩一本色道免费dvd| 1000部很黄的大片| 免费观看在线日韩| 三级男女做爰猛烈吃奶摸视频| 又黄又爽又免费观看的视频| 在线播放无遮挡| 国产精品电影一区二区三区| 又黄又爽又刺激的免费视频.| 成年av动漫网址| 又爽又黄无遮挡网站| 乱系列少妇在线播放| 国产淫片久久久久久久久| 成人无遮挡网站| 一个人观看的视频www高清免费观看| 中国国产av一级| 九色成人免费人妻av| 美女黄网站色视频| 久久精品国产亚洲av香蕉五月| 18禁黄网站禁片免费观看直播| 日本五十路高清| 麻豆久久精品国产亚洲av| 熟女电影av网| 亚洲精品亚洲一区二区| 我的女老师完整版在线观看| 最近中文字幕高清免费大全6| 欧美xxxx性猛交bbbb| 亚洲天堂国产精品一区在线| 免费看光身美女| 又粗又爽又猛毛片免费看| 亚洲av美国av| 一个人观看的视频www高清免费观看| 欧美色欧美亚洲另类二区| 精品久久久噜噜| 国产精品1区2区在线观看.| 亚洲国产精品sss在线观看| 精品久久久久久久久av| 亚洲婷婷狠狠爱综合网| 国产一区二区三区在线臀色熟女| 男女边吃奶边做爰视频| 国产伦精品一区二区三区视频9| 日日啪夜夜撸| 国产蜜桃级精品一区二区三区| www.色视频.com| 欧美精品国产亚洲| 欧美性猛交黑人性爽| av在线观看视频网站免费| 最新中文字幕久久久久| 国产精品免费一区二区三区在线| 久久久久久大精品| 一级毛片久久久久久久久女| 少妇猛男粗大的猛烈进出视频 | 久久鲁丝午夜福利片| 欧美日韩综合久久久久久| 又粗又爽又猛毛片免费看| 精华霜和精华液先用哪个| 色综合亚洲欧美另类图片| 一级毛片电影观看 | 亚洲精品456在线播放app| 久久精品国产99精品国产亚洲性色| 尤物成人国产欧美一区二区三区| 日韩一区二区视频免费看| 中文资源天堂在线| 99视频精品全部免费 在线| 国产爱豆传媒在线观看| 色在线成人网| 国产 一区精品| 精华霜和精华液先用哪个| 久久久久久久久大av| 综合色丁香网| 免费观看的影片在线观看| 国产精品嫩草影院av在线观看| 熟女人妻精品中文字幕| 国产麻豆成人av免费视频| a级毛色黄片| 成年女人毛片免费观看观看9| 一卡2卡三卡四卡精品乱码亚洲| 黄色欧美视频在线观看| 午夜视频国产福利| 欧美绝顶高潮抽搐喷水| 插逼视频在线观看| av天堂在线播放| 亚洲自偷自拍三级| 亚洲高清免费不卡视频| 久久精品国产亚洲网站| 麻豆一二三区av精品| 国产高清不卡午夜福利| 国产高潮美女av| 国产精品福利在线免费观看| 婷婷色综合大香蕉| 国产男人的电影天堂91| 一级毛片久久久久久久久女| 日韩高清综合在线| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站高清观看| 久久久精品大字幕| 日日摸夜夜添夜夜添av毛片| 欧美人与善性xxx| 看十八女毛片水多多多| 亚洲一区二区三区色噜噜| 老熟妇仑乱视频hdxx| 3wmmmm亚洲av在线观看| 国内揄拍国产精品人妻在线| 亚洲av成人av| 天美传媒精品一区二区| 精品人妻熟女av久视频| 久久久久精品国产欧美久久久| 一级毛片aaaaaa免费看小| 亚洲性久久影院| 日产精品乱码卡一卡2卡三| 色吧在线观看| 国产精品一区二区三区四区久久| 国产精品女同一区二区软件| 99久久无色码亚洲精品果冻| 久久精品夜色国产| 亚洲美女搞黄在线观看 | av在线观看视频网站免费| 国产男靠女视频免费网站| 最新中文字幕久久久久| 国产黄a三级三级三级人| 校园人妻丝袜中文字幕| 国产精华一区二区三区| 最近2019中文字幕mv第一页| 亚洲图色成人| 亚洲在线自拍视频| 国语自产精品视频在线第100页| 精品人妻偷拍中文字幕| 亚洲国产欧洲综合997久久,| 精品免费久久久久久久清纯| 久99久视频精品免费| 国产91av在线免费观看| 尾随美女入室| 三级国产精品欧美在线观看| 国产一区二区三区av在线 | av黄色大香蕉| 在线免费观看不下载黄p国产| 成年av动漫网址| 搡老熟女国产l中国老女人| 天天躁夜夜躁狠狠久久av| 黄片wwwwww| 日日干狠狠操夜夜爽| 干丝袜人妻中文字幕| 欧美最黄视频在线播放免费| 国产伦在线观看视频一区| 日本黄大片高清| 亚洲美女黄片视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产中年淑女户外野战色| 丝袜喷水一区| 久久鲁丝午夜福利片| 亚洲成人精品中文字幕电影| 亚洲内射少妇av| 久久天躁狠狠躁夜夜2o2o| 欧美色欧美亚洲另类二区| 国产欧美日韩精品一区二区| 成年女人看的毛片在线观看| 国产精品福利在线免费观看| 精品午夜福利在线看| 男女视频在线观看网站免费| 免费人成视频x8x8入口观看| 国产亚洲欧美98| 99精品在免费线老司机午夜| 日韩,欧美,国产一区二区三区 | 三级毛片av免费| 日本撒尿小便嘘嘘汇集6| 亚洲av电影不卡..在线观看| 一级毛片aaaaaa免费看小| 亚洲经典国产精华液单| 91久久精品电影网| 男女下面进入的视频免费午夜| 听说在线观看完整版免费高清| 99久久精品国产国产毛片| 内地一区二区视频在线| 91狼人影院| 12—13女人毛片做爰片一| 免费av毛片视频| 欧美成人a在线观看| 亚洲美女搞黄在线观看 | 亚洲18禁久久av| 久久九九热精品免费| 级片在线观看| 欧美人与善性xxx| 91午夜精品亚洲一区二区三区| 欧美精品国产亚洲| 亚洲va在线va天堂va国产| 99久国产av精品| 看免费成人av毛片| 国产精品无大码| 午夜福利在线观看吧| 成人综合一区亚洲| 国产精品综合久久久久久久免费| 久久精品综合一区二区三区| 六月丁香七月| 啦啦啦啦在线视频资源| 国产aⅴ精品一区二区三区波| 黄色一级大片看看| 日本五十路高清| 免费高清视频大片| 18禁在线无遮挡免费观看视频 | 在线观看66精品国产| 午夜福利高清视频| 丰满的人妻完整版| av在线天堂中文字幕| 国产亚洲欧美98| 看黄色毛片网站| 欧美三级亚洲精品| 午夜a级毛片| 97热精品久久久久久| 成熟少妇高潮喷水视频| 人人妻人人看人人澡| 亚洲一区二区三区色噜噜| 久久这里只有精品中国| 日本爱情动作片www.在线观看 | 永久网站在线| 高清日韩中文字幕在线| 日本一二三区视频观看| 国产精品伦人一区二区| 赤兔流量卡办理| 日韩人妻高清精品专区| 长腿黑丝高跟| 成人av在线播放网站| 精品久久久噜噜| 成人特级黄色片久久久久久久| 搡女人真爽免费视频火全软件 | 晚上一个人看的免费电影| 搡老熟女国产l中国老女人| 国产乱人视频| 波多野结衣高清作品| 亚洲va在线va天堂va国产| 日本一本二区三区精品| 网址你懂的国产日韩在线| 亚洲精品成人久久久久久| 中国国产av一级| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 此物有八面人人有两片| 丰满乱子伦码专区| 男插女下体视频免费在线播放| 中文字幕久久专区| 99国产极品粉嫩在线观看| 成人无遮挡网站| 国产成人一区二区在线| 九九久久精品国产亚洲av麻豆| 18禁裸乳无遮挡免费网站照片| 十八禁国产超污无遮挡网站| 悠悠久久av| 黄色视频,在线免费观看| 如何舔出高潮| 精品少妇黑人巨大在线播放 | 国产精品嫩草影院av在线观看| 免费观看精品视频网站| 日本五十路高清| 丰满乱子伦码专区| 国产人妻一区二区三区在| 级片在线观看| 伦理电影大哥的女人| 精品午夜福利在线看| 国产精品美女特级片免费视频播放器| a级一级毛片免费在线观看| 国产一区二区三区av在线 | 久久久久久大精品| 国产黄色视频一区二区在线观看 | 成年女人毛片免费观看观看9| 日日摸夜夜添夜夜添小说| 又粗又爽又猛毛片免费看| 最近视频中文字幕2019在线8| 午夜激情欧美在线| 真人做人爱边吃奶动态| 日韩一本色道免费dvd| 黄色视频,在线免费观看| 别揉我奶头 嗯啊视频| 国产精品一区二区三区四区免费观看 | 亚洲美女黄片视频| 亚洲精品国产av成人精品 | 久久99热这里只有精品18| 99久久无色码亚洲精品果冻| 成年av动漫网址| 婷婷精品国产亚洲av| 色吧在线观看| 久久久国产成人免费| 日本熟妇午夜| 91麻豆精品激情在线观看国产| 精品久久久久久久末码| 一本精品99久久精品77| 欧美一区二区精品小视频在线| 亚洲熟妇熟女久久| 亚洲人与动物交配视频| 欧美人与善性xxx| 美女免费视频网站| av卡一久久| 国产 一区 欧美 日韩| 日本黄大片高清| 久久精品综合一区二区三区| 国产视频内射| 成人高潮视频无遮挡免费网站| 久久久久久伊人网av| 国产精品一区www在线观看| 亚洲性久久影院| 久久婷婷人人爽人人干人人爱| 99在线视频只有这里精品首页| a级一级毛片免费在线观看| 久久精品人妻少妇| av在线天堂中文字幕| 欧美成人免费av一区二区三区| 日本黄大片高清| 国产黄色小视频在线观看| 免费看日本二区| 国产精品国产高清国产av| 黑人高潮一二区| 美女高潮的动态| 成年版毛片免费区| 免费不卡的大黄色大毛片视频在线观看 | 成人国产麻豆网| 国产精品久久视频播放| 国产色婷婷99| 午夜福利在线在线| 日韩成人av中文字幕在线观看 | 99国产极品粉嫩在线观看| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 国产午夜福利久久久久久| 欧美激情在线99| 成人精品一区二区免费| 欧美bdsm另类| 在线免费十八禁| 日韩精品中文字幕看吧| 欧美精品国产亚洲| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女| 国产高清视频在线观看网站| 性欧美人与动物交配| 全区人妻精品视频| 丰满的人妻完整版| 午夜老司机福利剧场| 成人欧美大片| 国产精品无大码| 亚洲欧美清纯卡通| 亚洲人成网站在线观看播放| 精华霜和精华液先用哪个| 精品欧美国产一区二区三| 中文资源天堂在线| 久久99热这里只有精品18| 国产淫片久久久久久久久| 97超碰精品成人国产| 精华霜和精华液先用哪个| 最近手机中文字幕大全| 18+在线观看网站| 看非洲黑人一级黄片| 性色avwww在线观看| 欧美激情国产日韩精品一区| 一级毛片电影观看 | 免费电影在线观看免费观看| 午夜精品国产一区二区电影 | 啦啦啦啦在线视频资源| 人人妻人人澡人人爽人人夜夜 | 嫩草影视91久久| 99在线视频只有这里精品首页| 日韩,欧美,国产一区二区三区 | 欧美潮喷喷水| 免费看a级黄色片| 性插视频无遮挡在线免费观看| 亚洲av成人精品一区久久| 精品欧美国产一区二区三| videossex国产| 久久久欧美国产精品| 91麻豆精品激情在线观看国产| 国产69精品久久久久777片| 永久网站在线| а√天堂www在线а√下载| 午夜精品国产一区二区电影 | 国产黄色视频一区二区在线观看 | 男插女下体视频免费在线播放| 亚洲av中文字字幕乱码综合| 热99在线观看视频| 久久人人爽人人片av| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美免费精品| 尤物成人国产欧美一区二区三区| 国产精品无大码| 国内精品宾馆在线| 亚洲精品一卡2卡三卡4卡5卡| 丰满乱子伦码专区| 色尼玛亚洲综合影院| 91午夜精品亚洲一区二区三区| 一区二区三区免费毛片| 特级一级黄色大片| 18禁在线播放成人免费| 淫妇啪啪啪对白视频| 在线观看一区二区三区| 日韩 亚洲 欧美在线| 女同久久另类99精品国产91| 国产精品女同一区二区软件| 青春草视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 美女被艹到高潮喷水动态| 亚洲欧美成人综合另类久久久 | 两性午夜刺激爽爽歪歪视频在线观看| 香蕉av资源在线| 啦啦啦啦在线视频资源| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 国产 一区 欧美 日韩| 亚洲欧美日韩无卡精品| 麻豆国产av国片精品| 老熟妇乱子伦视频在线观看| 成人漫画全彩无遮挡| 看片在线看免费视频| 久久精品影院6| 乱码一卡2卡4卡精品| 精品久久久久久久久亚洲| 久久久久性生活片| 日韩欧美 国产精品| 一级毛片我不卡| 人妻制服诱惑在线中文字幕| 成人漫画全彩无遮挡| 啦啦啦韩国在线观看视频| 久久精品国产清高在天天线| 中出人妻视频一区二区| 天天躁夜夜躁狠狠久久av| 禁无遮挡网站| 白带黄色成豆腐渣| 激情 狠狠 欧美| 又黄又爽又刺激的免费视频.| 成人三级黄色视频| 啦啦啦啦在线视频资源| 又粗又爽又猛毛片免费看| 精品一区二区三区视频在线| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 久久人人爽人人片av| 人妻夜夜爽99麻豆av| 久久韩国三级中文字幕| 少妇熟女aⅴ在线视频| 国产成人福利小说| 女人被狂操c到高潮| 插逼视频在线观看| 日本爱情动作片www.在线观看 | 婷婷精品国产亚洲av| 一个人免费在线观看电影| 国产精品野战在线观看| 97超视频在线观看视频| 国产精品永久免费网站| 亚洲欧美成人综合另类久久久 | 欧美日本亚洲视频在线播放| 久久久色成人| 白带黄色成豆腐渣| 69人妻影院| 91在线观看av| 久久久久久国产a免费观看| 国产 一区 欧美 日韩| 少妇丰满av| 国产精品伦人一区二区| 蜜臀久久99精品久久宅男| 51国产日韩欧美| 永久网站在线| 一级毛片我不卡| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 成人特级av手机在线观看| 亚洲欧美日韩高清在线视频| 日韩欧美一区二区三区在线观看| 国产精品久久久久久久久免| 日日啪夜夜撸| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看| 性插视频无遮挡在线免费观看| 中文在线观看免费www的网站| 最新中文字幕久久久久| 国产精品久久久久久久久免| 国产精品无大码| a级毛色黄片| 国产乱人视频| 成人性生交大片免费视频hd| 国产极品精品免费视频能看的| 日韩高清综合在线| 国产高清不卡午夜福利| 久久韩国三级中文字幕| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 熟妇人妻久久中文字幕3abv| 国产高清有码在线观看视频| av在线亚洲专区| 亚洲性夜色夜夜综合| 国产精品人妻久久久久久| 日韩强制内射视频| 国产在线男女| 久久久久久国产a免费观看| 亚洲在线自拍视频| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一及| 又黄又爽又刺激的免费视频.| 免费高清视频大片| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| 国产综合懂色| av免费在线看不卡| 99热精品在线国产| 九九热线精品视视频播放| 看黄色毛片网站| 成人特级av手机在线观看| 麻豆一二三区av精品| 乱人视频在线观看| 人妻制服诱惑在线中文字幕| 女人十人毛片免费观看3o分钟| 成年版毛片免费区| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 成人av在线播放网站| 精品人妻视频免费看| 中文在线观看免费www的网站| 亚洲国产欧美人成| 国产伦在线观看视频一区| 国产成人a∨麻豆精品| 久久精品91蜜桃| 在线免费观看不下载黄p国产| 亚洲美女黄片视频| 亚洲av不卡在线观看| 丰满人妻一区二区三区视频av| 国产av麻豆久久久久久久| 99九九线精品视频在线观看视频| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 国产精品久久久久久久电影| 成人av在线播放网站| 91久久精品电影网| 亚洲成a人片在线一区二区|