• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theory and method of dual-energy x-ray grating phase-contrast imaging?

    2019-11-06 00:46:52FengRong榮鋒YanGao高艷CuiJuanGuo郭翠娟WeiXu徐微andWeiXu徐偉
    Chinese Physics B 2019年10期
    關(guān)鍵詞:徐偉

    Feng Rong(榮鋒),Yan Gao(高艷),Cui-Juan Guo(郭翠娟),Wei Xu(徐微),and Wei Xu(徐偉)

    1College of Electronics and Information Engineering,Tianjin Polytechnic University,Tianjin 300387,China

    2Tianjin Key Laboratory of Optoelectronic Detection Technology and System,Tianjin Polytechnic University,Tianjin 300387,China

    Keywords:x-ray imaging,dual-energy analyzer grating,phase retrieval

    1.Introduction

    Traditional x-ray imaging is based on the varied absorption of x-rays by the different materials in the object of interest.While it is widely used in medical imaging and industrial non-destructive testing,the poor absorption of x-rays by soft tissues in organisms,such as in ligaments and tumors,results in poor absorption contrast.Fortunately,phase contrast imaging can compensate for this deficiency.Absorption and phase contrast of x-rays result from the attenuation of their amplitudes and shifts of their phases,respectively.Upon exposure to hard x-rays(0.01 nm–0.1 nm),the shift of phase is at least three orders of magnitude higher than that caused by the attenuation of amplitude.Even for thin specimens,the presence of light elements can cause an obvious phase contrast.This means that phase-contrast imaging can achieve more detailed imaging of specimens that are unrecognizable when imaged by absorption contrast.Therefore,for objects composed of light elements,detecting a shift of phase is easier and more efficient than detecting an attenuation of the amplitudes.

    Since the late twentieth century,various forms of x-ray phase-contrast imaging have gradually been developed. Although the crystal interferometer[1]and free-space propagation techniques[2]yield ideal results for specific problems,none of them has found wide applications in medical or industrial area,which typically require the use of a laboratory x-ray source,a large imaging field of view and good imaging system stability.Grating phase contrast imaging represented by the Talbot–Lau interferometer[3]can solve the above problems. However,its corresponding method of retrieving the phase,called“phase stepping”,requires the multi-stepping of the grating in its single period with the sample existing,which will bring two limitations. The first limitation is that the objects need to be exposed to x-rays at least three times(generally 5–11 times),prolonging the data acquisition time,and causing the ionizing x-ray radiation to be absorbed excessively,which may leads organisms to suffer from genetic disease or even carcinosis.The second limitation is that the grating must be moved in micron-sized steps,thus requiring a high-level mechanical precision. The reduction of radiation doses during x-ray imaging and the number of phase steps have been a focus of recent investigation.

    Zhu et al.[4]proposed a method of projecting objects forward and backward without a stepping device for grating in 2010. Their method reduces the exposure time but requires high grating uniformity. Liu et al.[5]proposed a two-step method by combining the analyzer grating with fluorescent screen in 2010.However,a stepping device was still required.In 2017,for free-space propagation techniques,Wang et al.[6]proposed an excellent method,which is expected to be used in zero-step grating phase contrast imaging. In 2010,Kottler et al.[7]applied the dual-energy modality of the traditional x-ray imaging to the Talbot–Lau interferometer,thus enabling the phase contrast imaging to discriminate the information about the specific material composition.With this background,Rong[8]et al.proposed the dual-energy x-ray grating phase contrast imaging(DEPCI)with a dual-energy analyzer grating[9]in 2018. With omitting the stepping device,only the working energy in the DEPCI system needs to be changed once in the imaging experiment.However,accurate theoretical calculations have not yet been made for this method of retrieving the phase.In this paper,the theoretical framework of DEPCI is first elaborated.Furthermore,a new method of retrieving the phase is proposed.The relevant simulation and experimental results demonstrate the effectiveness of this method.

    2.Theoretical background

    As shown in Fig.1,the DEPCI system is composed of a normal x-ray source,a source grating G0,a phase grating G1,a dual-energy analyzer grating G2,and a charge coupled device(CCD)detector.The object is placed near the front of G1.All components are centrally coaxial.The G0–G1distance,l,is larger than G1–G2distance,d.

    Fig.1.Model of DEPCI system.

    The source grating G0divides the normal x-rays into several slit x-rays.In particular,x-rays within the same slit are coherent.The Talbot effect occurs when the spatial coherence length lcohmeets the condition lcoh=lλ/s>p1,where λ,p1,and s denote the wavelength of the x-rays,period of grating G1,and slit width of G0,respectively.The coherent x-rays in each slit produce an interference fringe called the self-image of G1at the Talbot distance downstream of G1.As shown in Fig.2,self-images and grating G2have the same period.[10]In order to improve the transmission efficiency of x-rays,a π phase grating is selected as G1.The m-th order Talbot distance dmcan be calculated from[11]

    Then,the Lau effect occurs if p0/p2=l/d,where p0and p2denote the periods of G0and G2,respectively.All the interference fringes are staggered by one period and superimposed incoherently.Therefore,the contrast of the total interference fringe is greatly enhanced,even without a highly coherent xray source.

    However,the period of a self-image is typically a few microns,which is smaller than the minimum resolution of CCD detector.Therefore,a dual-energy analyzer grating G2is overlapped with the self-image at an angle to form large-period moirè fringes. The coordinates of the self-image and dualenergy analyzer grating are shown in Fig.2. A dual-energy analyzer grating is staggered with low-energy and high-energy grid bars.The joints of low-and high-energy grid bars align with the center of bright or dark stripes in the self-image.The low-energy grid bars convert the low-energy x-rays into visible light,and the high-energy grid bars block low-energy xrays from passing through.The high-energy grid bars convert high-energy x-rays into visible light,and the low-energy grid bars allow high-energy x-rays from passing through directly without being converted to visible light.[8]

    Fig.2.Effect diagram for the dual-energy analyzer grating.

    The alternating response of the high-and low-energy grid bars of G2to high-and low-energy x-rays are equivalent to a step in the traditional grating of Talbot–Lau interferometer.Therefore,it is necessary to ensure that the Talbot distance and fringe distribution of the self-images in high-and low-energy x-rays are consistent with each other. According to Eq.(1),if λl=3λh,where λhand λldenote the wavelengths of highand low-energy x-rays,respectively,the third-order Talbot distance of low-energy x-ray imaging is equal to the first-order Talbot distance of high-energy x-ray imaging. Therefore,d can be calculated from

    The physical description of object can be expressed by a complex refractive index n=1?δ+iβ,where the real part δ and the imaginary part β represent the phase factor and absorption factor,respectively.The formula for the phase factor[12]can be derived from Maxwell’s equations as δ=ρλ2NA?reZ/2πA?,where ρ is the mass density,reis the classical radius of the electron,NA?is Avogadro’s constant,Z is the atomic number of the element,and A?is the atomic mass. Therefore,if λl=3λh,the relationship between the phase factors of the high-energy x-rays δhand the phase factor of the low-energy x-rays δlis

    Assuming that δgis the phase factor of G1,which has thickness T,the phase change ?? of the x-rays caused by G1can be calculated from[13]

    In DEPCI,G1is designed to shift the phase of the lowenergy x-rays by π.Correspondingly,G1shifts the phase of the low-energy x-rays by 3π.The self-images of the π and 3π phase grating are consistently distributed.[14]

    3.Intensity distribution

    As shown in Fig.3,Σs,Σp,and ΣDrepresent the sourcegrating,phase-grating,and detector planes,respectively,with Σsbeing far away from Σp.Furthermore,the size of each slit s is so small that the incident x-rays are approximated as divergent spherical waves.

    Fig.3.Schematic diagram of coherent x-rays propagating in DEPCI system.

    The complex wave-front amplitude propagating from the point source a of Σsto Σpis expressed as

    where T(x,y)is the transfer function of the phase grating and k=2π/λ is a wavevector. After passing through the phase grating,the spherical wave follows the Fresnel–Kirchhoff diffraction.The complex wavefront amplitude U(x,y)at ΣDis

    where r represents the distance from a point in Σpto a point in ΣD.The sample size is much larger than the x-ray wavelength,so it conforms to the paraxial approximation,i.e.,

    The approximation is reached by substituting d for r in the denominator of Eq.(6).In the numerator,a change in r will cause the exponential value to change dramatically.Therefore,if r in the numerator takes a second-order approximation as shown as Eq.(7),then equation(6)can be written as

    Equation(8)can be reorganized into

    with

    The Fourier series of the transfer function of G1is

    where cn=sin(π/2)sinc(n/2)(n=±1±2,...)is the Fourier coefficient. In DEPCI,ld,so the magnification M=(l+d)/l ≈1.Combining Eq.(9)with Eq.(10)yields

    When a sample is placed in the DEPCI system,x-rays undergo amplitude(A(x))attenuation and phase(?(x))shift.According to Ref.[15],the transmission function M(x)of the sample is

    The phase grating G1splits the x-rays,producing a shear expressed as s=zλ/p1. In particular,zeroth-order diffraction results in enhanced background imaging,which reduces the fringe contrast.The π phase grating eliminates the zerothorder diffraction,allowing more than 80%of the intensity to be concentrated on the±1st order diffraction.[16]Therefore,in this paper we only consider the±1st order diffraction and p2=p1/2.[17]Combined with Eq.(12),equation(11)can be written as

    For hard x-rays in light-element objects,the shear quantity of the amplitude attenuation is quite small,so we can reasonably take the following approximation: A(x?s)≈A(x+s)≈A(x). Due to c1=c?1=π/2,the intensity distribution at ΣDis

    It should be noted that as the x-ray energy increases,the values of the absorption cross sectionstend to be constant and their dimensions are on the order of 10?23.This means that the linear absorption coefficientμl(x,y,z)of the lowenergy x-ray and the linear absorption coefficientμh(x,y,z)of the high energy x-ray are approximately consistent with each other.

    Fig.4. Curves of absorption cross section versus x-ray energy for 4 different light elements.

    4.Phase recovery method

    As shown in Fig.5,χ represents the relative displacement between the self-image and G2.With alternating highand low-energy grid bars along the x axis,the normalized intensity of a pixel changes sinusoidally.The duty cycle of G2is 1:2.When a single pixel contains N periods of self-imaged fringes,the intensity of a single pixel is given by

    If we assume the optical coupling efficiency of G2to be an ideal value,and consider Eq.(14),we can rewrite Eq.(15)as

    where θ=(λ/2π)(??(x)/?x)is the refraction angle[20]and α=2πχ/p2.In the DEPCI experiment,two interferograms are collected by using the setup as shown in Fig.1,first at low energy corresponding to χ=?p2/4,and second at high energy corresponding to χ=p2/4.The refraction angle caused by the same object under low-and high-energy x-rays are expressed by θland θh,respectively.The intensity obtained by the detector in low-and high-energy x-ray imagings are denoted by Iland Ih,respectively.According to the expression for θ,we can conclude that θl=9θh.Consequently,the intensities Iland Ihare

    Solving the above equations gives

    This is similar to the formula mentioned in Ref.[21].The absorption information of the sample can also be further obtained as follows:

    Fig.5.Model for detecting self-image by using dual-energy analyzer grating.

    5.Simulation and experiment

    5.1.Simulation of DEPCI system

    To demonstrate the feasibility of the proposed method,we simulated the imaging procedure of DEPCI with a PMMA-formvar ball. The ball had an average density ρ=1.19 gm/cm3,and filled half of the entire field of view. To meet λl=3λh,20-keV and 60-keV x-rays were selected as sources with low energy Eland high energy Ehby using λ=1.24×10?9/E(keV).[22]After the appropriate normalization of the two interferograms in intensity,the calculations of the normalized interferograms as shown in Eq.(18)yielded the phase contrast image of the sample,which is shown in Fig.6(a).Its relevant line profile is shown in Fig.6(b).

    As shown in Fig.6(a),a clear phase contrast image of the PMMA-formvar ball can successfully and clearly be obtained.Furthermore,it can be seen from Fig.6(b)that the simulation results are consistent with the experimental results from Ref.[3]. The refraction effect is obvious at the edge of the ball,which proves that the method of phase retrieval given by Eq.(18)is applicable to DEPCI.

    Fig.6.(a)Phase contrast image,(b)line profile corresponding to red line in panel(a).

    5.2.Experiments

    During the DEPCI experiment,the focal spot size of the conventional tungsten target x-ray source was 1 mm×0.8 mm.An x-ray energy radiation detector was used to calibrate the energy of x-rays.Since the required exposure decreased as the difference between the two energies increased,[23]the widespectrum x-rays with the central photon energy of 20 keV and 60 keV were selected as the values of low and high energies,respectively.The tube current was also adjustable from 2 mA to 4 mA.The duty ratios of G0and G1were 1:3 and 1:2,respectively.The following parameters were used in the simulation:p0=24.6μm,p1=9.6μm,p2=6μm,d=55.7 cm,and l=228.4 cm. The sample was a crayfish,and p2was coupled with a 2048×2048 pixel(96μm/pixel)CCD camera.The exposure time of each interferogram was 8 s.The phase and absorption contrast images of the sample can be obtained by Eqs.(18)and(19).The effects of the reconstructed images are shown in Figs.7(a)and 7(c).Furthermore,for the sake of analysing the effect of DEPCI,we performed a four-step phase stepping by using a Talbot–Lau interferometer. The central photon energy of wide spectrum x-rays was 30 keV.The effects of the reconstructed images are shown in Figs.7(b)and 7(d).Two body parts of the sample marked in Figs.7(a)and 7(b)were used to fit the data,and the results are shown in Figs.7(e)and 7(f).

    Fig.7.(a)Phase contrast image using DEPCI system,(b)phase contrast image using Talbot–Lau interferometer,(c)absorption contrast image using DEPCI system,(d)absorption contrast image using Talbot–Lau interferometer,(e)data fitting for the cross-section of solid line in panels(a)and(b),and(f)data fitting for cross-section of dashed line in panels(a)and(b).

    From the extracted information shown in Fig.7,it can be intuitively seen that the structural characteristics of the sample are successfully demonstrated.The energy of the x-rays used in the Talbot–Lau interferometer was different from that used in DEPCI during the experiments.Illuminating the same object,the x-rays with different energies will produce different phase shifts. In this case,if the trends presented in the two reconstructed phase contrast images are consistent and correspond to the structure of sample,we can determine that the reconstructed images are correct.As can be seen in Figs.7(e)and 7(f),the trend of the differential phase obtained by the proposed method is almost the same as that obtained by four-step phase stepping.

    However,the DEPCI has a disadvantage that it cannot be used for dark field imaging.In Ref.[24],equation(16)is written in Fourier series.The 0th and 1st Fourier coefficients constitute the expression of dark field information of object.In the DEPCI,only the ratio of 0th Fourier coefficients can be calculated through the relationship between high and low energies of x-rays,while the 1st Fourier coefficients cannot.Furthermore,the surface contrast in dark field imaging requires sufficient intensity of incident x-rays.[25]From Figs.7(a)and 7(c),we can see clearly that the intensity obtained by the DEPCI system is weak,compared with the intensity obtained by the Talbot–Lau interferometer. This indicates that the x-ray energy utilization in the DEPCI system was low.Future improvements to the design of the dual-energy analyzer grating and grating fabrication process may break through this limitation.

    6.Conclusions and perspectives

    In this paper,we present theoretical calculations for DEPCI.Furthermore,by exploiting the intrinsic phase change and characteristics of linear absorption coefficient of lowand high-energy x-rays,a method of retrieving the phase for DEPCI is found. The results of simulation and experiment demonstrate that this method is suitable for DEPCI.The phase-contrast image recovered from the two interferograms collected by the DEPCI without moving any device has a similar effect to the phase-contrast image recovered from the four interferograms collected by the Talbot–Lau interferometer by moving the grating four times.Due to the short exposure time,high stability,and computed tomography(CT)compatibility,the DEPCI may become,we believe,a popular method of obtaining the x-ray grating phase contrast imaging.

    猜你喜歡
    徐偉
    徐偉:野菊
    Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force
    高階時(shí)頻變換理論與應(yīng)用
    Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak
    An investigation on improving the homogeneity of plasma generated by linear microwave plasma source with a length of 1550 mm
    武漢工程大學(xué)土木工程與建筑學(xué)院 徐偉 水彩作品選登
    跨越三十年的師生情
    Quantification of CP4-EPSPS in genetically modifiedNicotianatabacum leaves by LC-MS/MS with 18O-labeling
    NOVEL HIGH-SPEED FPGA-BASED FFT PROCESSOR
    “2006大學(xué)生年度人物”徐偉,一個(gè)貧困大學(xué)生的快樂經(jīng)
    做人與處世(2007年7期)2007-06-30 03:04:36
    午夜精品在线福利| 黄片大片在线免费观看| 国产精品精品国产色婷婷| av视频在线观看入口| 97超级碰碰碰精品色视频在线观看| 国产高清有码在线观看视频| 男人的好看免费观看在线视频| 法律面前人人平等表现在哪些方面| 欧美日韩国产亚洲二区| 欧美又色又爽又黄视频| 变态另类丝袜制服| 十八禁人妻一区二区| 日本在线视频免费播放| 九九在线视频观看精品| 精品国产美女av久久久久小说| 一夜夜www| e午夜精品久久久久久久| 天堂av国产一区二区熟女人妻| 三级男女做爰猛烈吃奶摸视频| 日韩欧美精品v在线| 久久久久久大精品| 国产69精品久久久久777片| 人妻丰满熟妇av一区二区三区| 久久香蕉精品热| 男女做爰动态图高潮gif福利片| 欧美日韩乱码在线| 成人亚洲精品av一区二区| netflix在线观看网站| 日韩人妻高清精品专区| 国产黄a三级三级三级人| 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 亚洲 国产 在线| 国产欧美日韩精品亚洲av| 午夜免费激情av| 色尼玛亚洲综合影院| 手机成人av网站| www日本黄色视频网| 一个人免费在线观看电影| 日本黄色片子视频| 欧美日韩瑟瑟在线播放| 国产精品久久久人人做人人爽| 亚洲欧美日韩卡通动漫| 精品久久久久久久久久久久久| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 亚洲av第一区精品v没综合| 在线看三级毛片| 亚洲国产欧美网| ponron亚洲| 久久精品影院6| 亚洲av免费高清在线观看| 国产色爽女视频免费观看| 又紧又爽又黄一区二区| 国产高清视频在线观看网站| 美女 人体艺术 gogo| av专区在线播放| 一进一出抽搐gif免费好疼| 十八禁网站免费在线| 亚洲最大成人手机在线| 亚洲中文日韩欧美视频| 日韩成人在线观看一区二区三区| 日本a在线网址| 蜜桃亚洲精品一区二区三区| 亚洲av五月六月丁香网| 在线免费观看的www视频| 久久性视频一级片| 成人一区二区视频在线观看| 亚洲精品在线观看二区| 免费看美女性在线毛片视频| 亚洲人成网站在线播| 亚洲av五月六月丁香网| 在线免费观看的www视频| 欧美乱妇无乱码| 亚洲在线自拍视频| 国产精品久久久久久亚洲av鲁大| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久久久久| 99视频精品全部免费 在线| 午夜免费观看网址| 久99久视频精品免费| 波多野结衣巨乳人妻| 成人国产一区最新在线观看| 亚洲av第一区精品v没综合| 亚洲av电影不卡..在线观看| 欧美日韩精品网址| 在线免费观看的www视频| 午夜精品在线福利| 一级毛片高清免费大全| 在线视频色国产色| 99国产精品一区二区蜜桃av| 男女那种视频在线观看| 亚洲 国产 在线| 亚洲性夜色夜夜综合| 日本黄色片子视频| 麻豆成人av在线观看| 色综合亚洲欧美另类图片| 免费看十八禁软件| 日日摸夜夜添夜夜添小说| 此物有八面人人有两片| 免费大片18禁| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 听说在线观看完整版免费高清| 亚洲一区高清亚洲精品| 女同久久另类99精品国产91| 午夜两性在线视频| 少妇的逼好多水| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 搡老岳熟女国产| 一个人观看的视频www高清免费观看| 精品久久久久久久久久久久久| 亚洲电影在线观看av| 亚洲熟妇熟女久久| 又爽又黄无遮挡网站| 国产精品一区二区三区四区免费观看 | 久久久成人免费电影| 久久久久九九精品影院| 可以在线观看毛片的网站| 97碰自拍视频| 天天躁日日操中文字幕| 窝窝影院91人妻| 午夜福利在线在线| 母亲3免费完整高清在线观看| 天堂影院成人在线观看| av在线蜜桃| 中文字幕熟女人妻在线| 色综合欧美亚洲国产小说| 国产精品98久久久久久宅男小说| 国产黄a三级三级三级人| 两人在一起打扑克的视频| 757午夜福利合集在线观看| 九九久久精品国产亚洲av麻豆| 一本久久中文字幕| 日本一本二区三区精品| 欧美+亚洲+日韩+国产| 欧美日韩乱码在线| 琪琪午夜伦伦电影理论片6080| 亚洲七黄色美女视频| 女人被狂操c到高潮| 亚洲精品一卡2卡三卡4卡5卡| 97超视频在线观看视频| 亚洲成a人片在线一区二区| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 国产97色在线日韩免费| 国产精品久久久久久久电影 | 一个人看视频在线观看www免费 | 无限看片的www在线观看| 国产主播在线观看一区二区| 国产麻豆成人av免费视频| 日韩国内少妇激情av| 一进一出好大好爽视频| 国产麻豆成人av免费视频| 国产精品乱码一区二三区的特点| 天堂动漫精品| 老司机福利观看| 精品国产亚洲在线| 狠狠狠狠99中文字幕| 日韩欧美国产在线观看| 午夜影院日韩av| 亚洲五月天丁香| 免费在线观看日本一区| 男女下面进入的视频免费午夜| 精品国产超薄肉色丝袜足j| 搡女人真爽免费视频火全软件 | 国产乱人伦免费视频| 欧美黑人欧美精品刺激| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 国产色爽女视频免费观看| 男人的好看免费观看在线视频| 成人鲁丝片一二三区免费| 国产免费男女视频| avwww免费| 欧美黑人巨大hd| 91麻豆av在线| 伊人久久精品亚洲午夜| 人人妻,人人澡人人爽秒播| 少妇的逼好多水| bbb黄色大片| 欧美高清成人免费视频www| 亚洲美女黄片视频| 日本黄大片高清| 亚洲欧美日韩东京热| 午夜福利18| 99国产综合亚洲精品| 精品无人区乱码1区二区| 国产激情欧美一区二区| 91久久精品电影网| 变态另类丝袜制服| 日本撒尿小便嘘嘘汇集6| 中文资源天堂在线| 一级a爱片免费观看的视频| 国产精品精品国产色婷婷| 国产精品美女特级片免费视频播放器| 欧美国产日韩亚洲一区| 欧美激情久久久久久爽电影| 日韩成人在线观看一区二区三区| 精品久久久久久久毛片微露脸| 国产麻豆成人av免费视频| 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 色综合站精品国产| 国产美女午夜福利| a级一级毛片免费在线观看| 色哟哟哟哟哟哟| 国产精品一区二区三区四区久久| 午夜福利视频1000在线观看| 国产色爽女视频免费观看| 久久精品91蜜桃| 亚洲内射少妇av| 97超级碰碰碰精品色视频在线观看| 亚洲无线观看免费| 此物有八面人人有两片| 亚洲最大成人手机在线| av天堂中文字幕网| 我要搜黄色片| 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 精品日产1卡2卡| 久久精品91蜜桃| 18禁美女被吸乳视频| 午夜精品一区二区三区免费看| 美女大奶头视频| 精品一区二区三区视频在线 | 亚洲内射少妇av| 亚洲人成网站在线播| 亚洲 国产 在线| 欧美xxxx黑人xx丫x性爽| 免费av观看视频| 97超视频在线观看视频| 国产精品永久免费网站| 婷婷精品国产亚洲av在线| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 伊人久久大香线蕉亚洲五| 国模一区二区三区四区视频| 欧美激情久久久久久爽电影| 免费看美女性在线毛片视频| 高潮久久久久久久久久久不卡| www日本黄色视频网| 精品熟女少妇八av免费久了| 999久久久精品免费观看国产| 亚洲aⅴ乱码一区二区在线播放| 国产激情偷乱视频一区二区| 亚洲精品色激情综合| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 日本一二三区视频观看| 亚洲av二区三区四区| 一个人免费在线观看的高清视频| 免费人成在线观看视频色| 99久久精品热视频| 精品久久久久久成人av| 亚洲国产精品sss在线观看| 欧美色视频一区免费| 精品福利观看| 极品教师在线免费播放| 午夜日韩欧美国产| 久久香蕉国产精品| 怎么达到女性高潮| 日韩欧美三级三区| 精品久久久久久久久久久久久| 日韩成人在线观看一区二区三区| 一级黄片播放器| 夜夜看夜夜爽夜夜摸| 久久久久久久精品吃奶| 国产亚洲精品一区二区www| 国产欧美日韩一区二区精品| 国语自产精品视频在线第100页| 国产精品三级大全| 看免费av毛片| 亚洲精品美女久久久久99蜜臀| 国产精品永久免费网站| 一级a爱片免费观看的视频| 无人区码免费观看不卡| 午夜福利高清视频| 午夜免费激情av| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩卡通动漫| 欧美性猛交╳xxx乱大交人| 99热这里只有精品一区| 国产不卡一卡二| 国产亚洲欧美98| 亚洲人成网站在线播放欧美日韩| 99久久无色码亚洲精品果冻| 欧美精品啪啪一区二区三区| 亚洲欧美一区二区三区黑人| 欧美绝顶高潮抽搐喷水| 亚洲性夜色夜夜综合| 日日夜夜操网爽| 高清日韩中文字幕在线| 国产高清videossex| av国产免费在线观看| x7x7x7水蜜桃| 午夜福利在线在线| 少妇人妻精品综合一区二区 | 欧美+亚洲+日韩+国产| 免费观看的影片在线观看| h日本视频在线播放| 51午夜福利影视在线观看| 99久久99久久久精品蜜桃| 天堂√8在线中文| 欧美大码av| 亚洲美女视频黄频| 日本三级黄在线观看| av国产免费在线观看| 国产97色在线日韩免费| 亚洲乱码一区二区免费版| 日韩有码中文字幕| 亚洲成人久久性| 青草久久国产| 亚洲电影在线观看av| 精品久久久久久久末码| 三级男女做爰猛烈吃奶摸视频| 成人午夜高清在线视频| 757午夜福利合集在线观看| 超碰av人人做人人爽久久 | 国产精品一区二区三区四区久久| 夜夜躁狠狠躁天天躁| 亚洲激情在线av| 亚洲精品乱码久久久v下载方式 | 国产激情偷乱视频一区二区| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 99在线人妻在线中文字幕| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月| 91麻豆av在线| 国内揄拍国产精品人妻在线| svipshipincom国产片| 国产一区二区在线观看日韩 | 国产三级中文精品| 非洲黑人性xxxx精品又粗又长| 午夜福利高清视频| 午夜激情欧美在线| 国产三级中文精品| av片东京热男人的天堂| 亚洲美女黄片视频| 亚洲第一欧美日韩一区二区三区| 久久精品国产自在天天线| 欧美一级毛片孕妇| 日本 av在线| 欧美极品一区二区三区四区| 草草在线视频免费看| 欧美另类亚洲清纯唯美| 黄色女人牲交| 狂野欧美激情性xxxx| 中文亚洲av片在线观看爽| 成人特级av手机在线观看| 在线播放国产精品三级| 免费电影在线观看免费观看| 精品久久久久久久久久免费视频| 久久精品影院6| 免费在线观看日本一区| 久久精品综合一区二区三区| 午夜免费男女啪啪视频观看 | 欧美日韩精品网址| 色精品久久人妻99蜜桃| 成人特级黄色片久久久久久久| 男人的好看免费观看在线视频| 国产亚洲精品久久久久久毛片| 一区二区三区免费毛片| 全区人妻精品视频| 久久久色成人| ponron亚洲| 久99久视频精品免费| 精品人妻偷拍中文字幕| 非洲黑人性xxxx精品又粗又长| 日韩精品青青久久久久久| 亚洲人成伊人成综合网2020| 日韩成人在线观看一区二区三区| 欧美极品一区二区三区四区| 国产精品久久久久久精品电影| 久久伊人香网站| 丰满的人妻完整版| 淫妇啪啪啪对白视频| 波多野结衣高清作品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一二三四社区在线视频社区8| 人妻丰满熟妇av一区二区三区| 国产欧美日韩精品亚洲av| 国产精品电影一区二区三区| 国产一区二区三区在线臀色熟女| 熟妇人妻久久中文字幕3abv| 免费人成视频x8x8入口观看| 一级黄色大片毛片| 真人一进一出gif抽搐免费| 亚洲成人久久性| 欧美日韩福利视频一区二区| 亚洲精品一区av在线观看| 国产精品亚洲av一区麻豆| 亚洲国产精品999在线| 亚洲精品456在线播放app | 国产三级在线视频| 亚洲av电影不卡..在线观看| 91麻豆精品激情在线观看国产| 九色国产91popny在线| 91麻豆精品激情在线观看国产| 国产高清三级在线| 亚洲国产欧美人成| 欧美+日韩+精品| 国产高清有码在线观看视频| 国产老妇女一区| 青草久久国产| 97碰自拍视频| 中出人妻视频一区二区| 色综合亚洲欧美另类图片| 国产精品一区二区免费欧美| 有码 亚洲区| 色综合婷婷激情| 我要搜黄色片| 国产精品1区2区在线观看.| 18美女黄网站色大片免费观看| 日本黄色视频三级网站网址| 黄色片一级片一级黄色片| 精品人妻1区二区| 成年女人毛片免费观看观看9| 国产真人三级小视频在线观看| 亚洲久久久久久中文字幕| 少妇的逼好多水| a级一级毛片免费在线观看| 国产精品自产拍在线观看55亚洲| 成人国产综合亚洲| 午夜免费激情av| 日韩欧美 国产精品| 国内精品久久久久久久电影| 国产不卡一卡二| 中文字幕人妻熟人妻熟丝袜美 | 国产精品亚洲美女久久久| 最近最新中文字幕大全免费视频| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 色在线成人网| 亚洲不卡免费看| 亚洲欧美一区二区三区黑人| 一级黄色大片毛片| 成人性生交大片免费视频hd| 亚洲成人精品中文字幕电影| 99久久成人亚洲精品观看| www.999成人在线观看| 免费一级毛片在线播放高清视频| 少妇裸体淫交视频免费看高清| 亚洲av五月六月丁香网| tocl精华| av中文乱码字幕在线| 成熟少妇高潮喷水视频| 深夜精品福利| 中文资源天堂在线| 色精品久久人妻99蜜桃| 国产精品综合久久久久久久免费| 国产亚洲欧美98| 久久亚洲精品不卡| 国产色婷婷99| 欧美性感艳星| 国产精品1区2区在线观看.| 久久久色成人| 午夜影院日韩av| 国产久久久一区二区三区| 深夜精品福利| 国产亚洲精品一区二区www| 99久久无色码亚洲精品果冻| 两个人的视频大全免费| 成人鲁丝片一二三区免费| 久久99热这里只有精品18| 免费在线观看日本一区| 天美传媒精品一区二区| 成人特级黄色片久久久久久久| 黄色片一级片一级黄色片| 18禁黄网站禁片免费观看直播| 尤物成人国产欧美一区二区三区| 国产三级黄色录像| 久久久久国产精品人妻aⅴ院| 俺也久久电影网| 久久精品人妻少妇| 99热这里只有精品一区| 国产国拍精品亚洲av在线观看 | 久久精品综合一区二区三区| 欧美激情久久久久久爽电影| 1024手机看黄色片| 精品久久久久久,| 成人18禁在线播放| 色综合站精品国产| 免费无遮挡裸体视频| 久久久色成人| 日韩成人在线观看一区二区三区| 国产综合懂色| 淫秽高清视频在线观看| 国产精品99久久99久久久不卡| 精品一区二区三区视频在线 | 九色国产91popny在线| 综合色av麻豆| 网址你懂的国产日韩在线| 精品欧美国产一区二区三| 亚洲美女黄片视频| 国产 一区 欧美 日韩| or卡值多少钱| 又紧又爽又黄一区二区| 美女 人体艺术 gogo| 国内揄拍国产精品人妻在线| 日日夜夜操网爽| 国产高清有码在线观看视频| 三级国产精品欧美在线观看| 欧美3d第一页| 97超视频在线观看视频| 一本综合久久免费| www.www免费av| 欧美又色又爽又黄视频| 99久久成人亚洲精品观看| 成人特级av手机在线观看| 成年版毛片免费区| 一进一出抽搐动态| 在线观看一区二区三区| 国产探花在线观看一区二区| 亚洲欧美日韩卡通动漫| 一区二区三区高清视频在线| 老司机福利观看| 国产欧美日韩精品亚洲av| 日本熟妇午夜| 一级作爱视频免费观看| 国产一区二区在线观看日韩 | 国产精品久久久久久精品电影| 成人精品一区二区免费| 国产精品久久视频播放| 成人国产一区最新在线观看| 高清在线国产一区| 国产精品爽爽va在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 黄色片一级片一级黄色片| 国产高清激情床上av| 精品久久久久久久人妻蜜臀av| 91久久精品国产一区二区成人 | 国产亚洲av嫩草精品影院| 国产午夜精品久久久久久一区二区三区 | 岛国在线观看网站| 一级作爱视频免费观看| 精品国产三级普通话版| 久久久久久久久中文| 欧美成人一区二区免费高清观看| 亚洲真实伦在线观看| 最近最新中文字幕大全电影3| 亚洲无线在线观看| 久久国产精品影院| e午夜精品久久久久久久| 亚洲,欧美精品.| 国产精品99久久久久久久久| 精品欧美国产一区二区三| 国产真人三级小视频在线观看| 国产精品电影一区二区三区| 夜夜爽天天搞| 日韩精品青青久久久久久| 国产高清videossex| 欧美性感艳星| 亚洲一区二区三区色噜噜| 久久草成人影院| 久久精品影院6| 白带黄色成豆腐渣| 热99re8久久精品国产| 久久久久久久久大av| 国产午夜精品论理片| 一本一本综合久久| 在线观看一区二区三区| 在线国产一区二区在线| 桃红色精品国产亚洲av| 亚洲国产精品sss在线观看| 怎么达到女性高潮| 日本a在线网址| 久久久久久九九精品二区国产| 亚洲avbb在线观看| 色综合站精品国产| 国产亚洲精品久久久久久毛片| 亚洲一区高清亚洲精品| АⅤ资源中文在线天堂| 黄色日韩在线| 在线看三级毛片| 亚洲av美国av| 手机成人av网站| 免费在线观看亚洲国产| 18禁国产床啪视频网站| 久久精品亚洲精品国产色婷小说| 久久久国产成人免费| 日本 av在线| 在线观看舔阴道视频| 亚洲最大成人手机在线| 久久精品国产自在天天线| 国产欧美日韩精品一区二区| 啪啪无遮挡十八禁网站| 久久欧美精品欧美久久欧美| 久久久久久久亚洲中文字幕 | 日韩欧美在线二视频| 国产精品精品国产色婷婷| 三级国产精品欧美在线观看| 亚洲人成网站在线播| 亚洲性夜色夜夜综合| 亚洲中文字幕一区二区三区有码在线看| 成人亚洲精品av一区二区| 噜噜噜噜噜久久久久久91| 精品国产超薄肉色丝袜足j| 亚洲avbb在线观看| 乱人视频在线观看| av在线蜜桃| 尤物成人国产欧美一区二区三区| 性色av乱码一区二区三区2| 国产乱人视频| 观看免费一级毛片| 亚洲aⅴ乱码一区二区在线播放| 人人妻,人人澡人人爽秒播| 国内精品久久久久精免费| 精品久久久久久久末码| 亚洲精品日韩av片在线观看 | 深夜精品福利|