• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force

    2022-06-29 08:52:52JinlianJiang姜金連WeiXu徐偉PingHan韓平andLizhiNiu牛立志
    Chinese Physics B 2022年6期
    關(guān)鍵詞:徐偉立志

    Jinlian Jiang(姜金連), Wei Xu(徐偉), Ping Han(韓平), and Lizhi Niu(牛立志)

    School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710072,China

    Keywords: eutrophicated lake ecosystem,Freidlin–Wentzell action functional,Onsager–Machlup action functional,most probable transition path

    1. Introduction

    The evolution of the lake system is a natural process and may take decades to hundreds of years from the state dominated by phytoplankton to the state governed by higher aquatic plants. However, disturbances and forces from outside the ecosystem can quickly break the natural evolution process.[1]Many investigations have manifested that ecosystem sometimes experience rapid regime shifts, as shown by transition from one stable state to another. This transition will change the nature of the ecosystem, leading to the degradation of ecosystem services.[2–5]For example, eutrophication due to excessive inputs of nutrients, mainly phosphorus, is a common problem in lakes, rivers, estuaries and coastal oceans.[6]Excess phosphorus will cause the clear-water attractor of lake change to the turbid one, which comes from sewage and industrial discharges.[7,8]Lake eutrophication has proven to be a stubborn environmental problem,[9]which seriously affects the ecological balance of the lake system. In addition,it may induce important social,economic,and environmental consequences.

    Eutrophicated lake ecosystems have two stable attractors for specific parameters,corresponding to the oligotrophic and eutrophic states.[8,10]The stable states are generally related to the circulation of phosphorus between sediment and water.[8]Recently, an extensive number of researches have been conducted to explore the early warning indicators, in order to predict and describe the beginning of tipping points or critical transitions. Carpenteret al.indicated that the increase in the variance of dynamical variables can predict the upcoming catastrophic changes in the lake eutrophication model in advance.[11]Dakoset al.suggested that the flickering could serve as a warning indicator which could predict the critical transition to the eutrophic state.[12,13]Maet al.considered the amplitude difference, phase lag, largest Lyapunov exponent and the Shannon entropy to detect early-warning signals of the regime shifts of the lake eutrophication system. In addition, Maet al.showed that it is possible to slow down the upcoming critical transition in lake eutrophication system by Gaussian white noise and periodic excitation.[14–16]Unlike the existing works in detecting the early warning signals,we study the most probable transition paths to characterize the rapid regime shifts in lake eutrophication system between the two stable states as time goes on.

    For a system with multiple attractors,the random perturbation will cause the sample trajectories of the system to depart from the basin of attraction and cross the boundary of the attract basin,or even lead to the system to transfer among multiple steady states.[17–21]Generally speaking, we utilize the deterministic trajectories to characterize the deterministic system. However, it is hard to find useful information from the trajectories to analyze the dynamics of the stochastic systems.Consequently, the most probable transition paths[22]will be introduced to research the dynamics of the stochastic system.The most probable transition path has been widely applied to many scientific fields.[23–27]However,for the ecosystem,it has few documents to research the most probable transition path.In an attempt to further characterize the state transition mechanism between the oligotrophic state and the eutrophic state in the lake eutrophication system, we employ the most probable transition path to research the impact of the noise on the eutrophicated lake ecosystem.

    Based on the above researches, it is worthy of further study on the most probable transition paths of the lake eutrophication system under the random perturbation. This paper is organized as follows. In Section 2, we introduce the lake eutrophication model with and without period force, whose deterministic structure are discussed. Furthermore, the system under white noises is provided. Next,we give two kinds of action functionals,that is,Freidlin–Wentzell(FW)and Onsager–Machlup (OM) action functionals, to obtain the most probable transition paths in Section 3. Section 4 presents the most probable transition paths for the lake eutrophication system under Gaussian white noise and periodic excitations. Finally,we summarize the above results in Section 5.

    2. Lake eutrophication system

    2.1. Lake eutrophication model

    We firstly introduce the one-dimensional lake eutrophication model established by Carpenteret al.[8]The lake eutrophication model considers the phosphorus exchange between the interface of water and sediment in the lake as one of the main sources of water nutrients,and represents the level of eutrophication with the dynamic changes in the water environment of the lake. It has the following form:

    The bifurcation diagram for the parameterαis given in Fig. 1(a). Its middle-dashed line indicates the unstable equilibrium points.In the bistable region(shaded part),Eq.(2)has three equilibria under certain control parametersα. We usexSto represent the unstable equilibrium point,and usexLandxHto represent the oligotrophic state and the eutrophic state,respectively.

    Figure 1(b) shows the potentials of Eq. (2) for three differentα, whereU(x) =-f(x)dxrepresents the potential function of system (2). From the perspective of the potential well, the oligotrophic state is more stable than the eutrophic stateα=0.40.Nevertheless,the eutrophic state is more stable than the oligotrophic state atα=0.64. Specially,the stability ofxLandxHis almost the same whenα=0.52.

    Fig. 1. (a) Bifurcation diagram for the parameter α of the system (2).The cyan shaded part defines the bistable region,where the system has three equilibria. (b)The potential of the lake eutrophication system for different α.

    2.2. Lake eutrophication model with period force

    The change of season,annual cycle,rainfall and so on all affect the ecosystem. And research shows that periodic force can slow down the upcoming critical transition of the lake eutrophication system.[16]The effect of the periodic excitation on the ecosystem is worthy of the further study,

    in whichAcos(ωt)represents the periodic force with the amplitudeAand the frequencyω.

    The time history diagram shows that nullclinesf(x,t)=0 have different features for differentAandα,in the(t,x)-plane in Fig.2.

    In Fig. 2(a), the nullines consist of three independent curves and divide the(x,t)plane into four parts,which means thatf(x,t) = 0 has three different roots at any time. And given the parameters, the system (3) has two stable periodic solutions and one unstable periodic solution. Letx*Landx*Hcorrespond to the oligotrophic stable periodic solution and the eutrophic stable periodic solution, respectively, andx*Scorresponds to the unstable periodic solution.

    In Figs. 2(b) and 2(c),f(x,t) = 0 has three different solutions at some times, and only one solution at other times. Which means the double well structure of the original system is temporarily lost during certain stages. And the number of periodic solutions is affected by parameterω. In Fig.2(b),the nulline divides the(x,t)plane into two parts by a curve. In Fig. 2(c), the nullines are composed of several independent curves, among which one nulline always exists,while other closed curves only appear in certain periods.

    Fig.2. The nullclines(f(x,t)=0)of the system(3)with ω =0.2. (a)A=0.1,α =0.52;(b)A=0.15,α =0.52;(c)A=0.1,α =0.58;(d)A=0.1,α =0.8.

    In Fig.2(d),a nulline divides the(x,t)plane into two parts by a curve.In this region,f(x,t)=0 there is only one root at any time, and the system has only one eutrophic stable periodic solution.

    2.3. Lake eutrophication system with Gaussian white

    In order to describe the ecological model of lake eutrophication more accurately, the influence of environmental disturbance must be considered. Environmental disturbance has always been considered as an important factor in ecosystem modeling.On the one hand,it is the inherent uncertainty of the ecosystem.On the other hand,anthropogenic disturbances add to the uncertainty of the ecosystem.[28]In lake eutrophication system, Carpenter and Brock[29]pointed out that phosphorus input rates are affected by external fluctuations. This means that the phosphorus input rateαis a random variable. Consequently,we consider the systems(2)and(3)with Gaussian white noise

    whereξ(t)satisfies〈ξ(t)〉=0,〈ξ(t)ξ(t+τ)〉=σδ(τ).

    With three representative potentials as shown in Fig. 2,we consider the most probable transition paths under Gaussian white noise. For system with periodic excitation,the double well structure is temporarily lost and the periodic solution is affected by parameters. Hence, we choose two groups of appropriate parameters to study the most probable paths of the periodic excitation system.

    3. Two kinds of action functionals

    3.1. Freidlin–Wentzell action functional

    For the stochastic bistable system, noise could lead to transitions from one stable state to another stable state. If the noise intensityσis small, the large deviation theory is a powerful method to study the noise induced transition. Freidlin and Wentzell introduced the action functional with path as the variable, which describes the probability of sample trajectory[22]

    Equation(11)is an auxiliary Hamiltonian system,[33]andprepresents the disturbance term in the original equation.Thus,the most probable transition path can be obtained from Eq. (11). If the original fixed point is a stable equilibrium point, the noise disturbance can add an unstable manifold; if the original fixed point is an unstable equilibrium point, the noise disturbance can lead to a stable manifold. We apply the action plot to get the FW action functionals of the escape paths. From this we can acquire the minimum of the FW action functional and the corresponding most probable transition path.

    3.2. Onsager–Machlup action functional

    The noise intensity also has an important effect on lake eutrophication system, so it is worthy to further discuss the most probable transition paths under different noise intensities. We obtain the most probable transition path by minimizing the OM action functional[34–36]for the stochastic lake eutrophication systems(4)and(5). According to the principle of least action principle,the most probable transition pathxmcan be obtained by Therefore,the most probable transition pathxm(t)satisfies the following equation:

    4. Results

    In this section, we use the above two methods to compute the most probable transition paths. The characteristics of the most probable transition path can help analyze how the lake transfers between the oligotrophic state and the eutrophic state. For stochastic systems,we utilize FW action functional to get the most probable transition paths in weak noise. In addition,we use the OM action functional to study the influence of the noise intensity on the most probable transition path.

    4.1. Lake eutrophication system under Gaussian white noise

    For system (4), we display the most probable transition paths betweenxLandxHfor differentα. According to the FW large deviation theory,we acquire the most probable transition paths and the momentum required to transition fromxLtoxHwith different parameters. Furthermore, by minimizing OM functional,the most probable transition paths betweenxLandxHunder different noise intensity can be obtained.

    As can be seen from Fig.3,the changes of the most probable path and momentum have same characteristics. The most probable transition paths start at the stable equilibrium pointxL, and it wanders in the basins ofxLand the momentumpstarts at zero and grows slowly. As time goes on,the momentumpsuddenly increases and the large momentum makes the system transition fromxLtoxS.Then the momentumprapidly decreases to zero,while the system stays atxS(unstable state)for a long time. But because of the attraction ofxH,the system will eventually reachxH.

    Under different parametersα, the relative stability between the attractors is different,and the maximum momentum required for transition are different. The value of theY-axis on the right of Fig. 3 represents the momentum of the system. The larger momentumpis, the more energy is needed to escape from the stable equilibrium point. By comparing Figs. 3(a)–3(c), it can be seen that the maximum momentum decreases successively, indicating that within a certain range,with the increase of parameterα, the lake system is easier to transition from the oligotrophic state to the eutrophic state.

    Fig. 3. The most probable paths and momentum of lake eutrophication system from xL to xH under different parameters α. The black lines represent the most probable escape paths,and the red lines represents the momentum change during transition. (a)α =0.40;(b)α =0.52;(c)α =0.64.

    In Fig. 4, it is easy to understand that the most probable transition path is a heteroclinic orbit connecting three fixed points. Heterotonic orbitals visually show that the momentumpchanges the topology of the original system. The most probable paths connect the three equilibrium points of the system,but not just along thex-axis. Because of the influence ofp,the system transition occurs. The most probable path of the system fromxLtoxSis an arc orbit containing the manifold of the auxiliary Hamiltonian system.Once the system reachesxS,the disturbance forcepbecomes zero and the system will relax to another equilibrium point. With the increase of parameterα,the heteroclinic orbitals fromxLtoxHare shrinking,while the heteroclinic orbitals fromxHtoxLare increasing. With the increase of parameterα, the lake system transition from the oligotrophic state to the eutrophic state requiring less energy.The results of Fig.4 confirm the conclusion of Fig.3.

    Fig.4. Phase portrait of the Hamilton equation. The green and magenta curves represent the most probable paths from xL to xH and from xH to xL,respectively. (a)α =0.40;(b)α =0.52;(c)α =0.64.

    In Fig. 5, we obtain the most probable transition pathsxm(t) beginning at the oligotrophic statexLand ending at the eutrophic statexHwith different noise intensities. On the whole, the residence time of the system in oligotrophic state became shorter with the increase of parameterα. And with the increase of noise intensity,the transition time occurs earlier and the residence time in the unstable equilibriumxSbecomes shorter.

    The inset diagrams of Figs. 5(a) and 5(b) show that the most probable paths transition between the two stable equilibrium states. Whenα=0.40,although the potential well in the eutrophic state is not deep,the system will still stay in the eutrophic state for some time. Whenα=0.52, the system will wander in the eutrophic state for a longer time. Although the difference between the depths of potential well is not great,the eutrophic state is more stable than the oligotrophic state from the perspective of the transition path. That is, eutrophication is a very difficult problem to solve. Whenα=0.64, the system switches from the oligotrophic statexLto the eutrophic statexHquickly,because eutrophic state is more stable at this parameter.

    Fig.5. Most probable transition paths xm(t)starting at the oligotrophic state xL and ending at the eutrophic state xH for different noise intensities. (a) α =0.40, the inset figure displays the most probable path between xL and xH at σ =0.03. (b)α =0.52,the inset figure displays the most probable path between xL and xH at σ =0.01. (c)α =0.64.

    4.2. Lake eutrophication system under Gaussian white noise and periodic excitations

    Now,we consider not only white Gaussian noise but also periodic excitation on the most probable transition path between the oligotrophic state and the eutrophic state. Based on the characteristic of the nullines of the periodic system, the most probable paths of the system with two sets of parameters are considered in this paper.

    According to Subsection 3.1, we have the Hamiltonian for Eq.(4)as follows:

    Fig.6. Freidlin–Wentzell action functionals of escape paths from x*L to x*H. The minimum of Freidlin–Wentzell action functional is marked by the red asterisk. (a)α=0.52,A=0.1,ω=0.1;(b)α=0.58,A=0.1,ω =0.5.

    Figure 6 shows the action functional for different (x,θ).Its global minimum, indicated by a red asterisk, corresponds to the most probable path of the system.

    In Fig.7,the thick solid red line represents the most probable escape path. It can be seen that the transition of the most probable path occurs at the closest distance betweenx*Landx*S. And the most probable path tox*His near the intersection of the nulline and periodic solution.

    For Fig.7(a),the most probable path does not move along the unstable periodic solution after exiting fromx*Ltox*H,but directly reachesx*H. As can be seen from other escape paths,they firstly move towards the unstable periodic solutionx*Sbut their momenta are too small to escape. Then they will fluctuate between the original stable periodic solution and the unstable periodic solution to prepare for a next trial to escape. For Fig.7(b),after the most probable path switches fromx*Ltox*S,it moves along the unstable periodic solutionx*S,and the most probable path begins to transition tox*Hnear the intersection of the unstable periodic solution and the nulline.

    Fig. 7. Escape paths from x*L to x*H. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solutions. The black lines represent the nullclines.The red thick line represents most probable transition path, and the other lines for other escape paths. (a) α =0.52, A=0.1, ω =0.1;(b)α =0.58,A=0.1,ω =0.5.

    In Fig.8,we compare the most probable transition paths obtained from Eq.(19)for various values ofσ. Herein,for all the most probable transition paths, we choose the same start pointx*L(0), the same end pointx*H(T) and the total time for five periods. Given the parameters,the nullines are very close to the periodic solutions but they do not overlap. The nullines only intersect the highest and lowest points of the periodic solutions. The insets in Fig.8 indicate that the transition occurs in the gap between the stable periodic solution and nullcline,where the flow of the period solutions will change directions.

    Fig. 8. Most probable transition paths for different σ with α =0.52,A=0.1,ω=0.1. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solution,the black lines represent the nullclines. The arrow-1 to arrow-3 mark where paths arrive at x*S,and the arrow-4 to arrow-6 mark where paths leave x*L and x*H. And the insets indicate that the transition occurs in the gap between the stable periodic solution and the nullcline.

    We observe that the transition of the system occurs between two stable periodic solutions three times in five periods.The first transition is fromx*Ltox*H,and the places leavingx*Land reachingx*Sare not different with the change of noise intensity. The second transition is fromx*Htox*L. The residence time inx*Landx*Hvaries greatly under different noise intensities. Whenσ=0.05, the most probable path stays longer inx*H, while forσ=0 andσ=0.01, the most probable paths stay longer inx*L. The third transition is fromx*Ltox*H. Every transition indicates that the transition occurs near the nearest distance between the stable periodic solution and the unstable periodic solution.

    Whenσ= 0, the most probable transition path moves alongx*Sfor a half cycle after reaching the unstable periodic solution.Nevertheless,the most probable transition paths switch quickly to the other stable period solution forσ=0.01 andσ=0.05. And there have interesting phenomenon forσ=0 andσ=0.01. For each transition, the most probable transition paths follow a similar trajectory to the unstable periodic solutionx*S, marked by arrow-1 to arrow-3. And the transitions begin at a similar point at stable periodic solutions,that is, they all leave the stable periodic solutionx*Landx*Haround the same phase,marked by arrow-4 to arrow-6.

    In Fig.9,we compare the most probable transition paths obtained from Eq.(15)for various values ofσ. Herein,for all the most probable transition paths, we choose the same start pointx*L(0), the same end pointx*H(T) and the total time for four periods.

    As shown in Fig. 9, the influence of noise intensity on the most probable paths is not very large. Basically,the most probable paths move alongx*Lto the red square and transition tox*H. The place where the most probable paths transition is the same,and the higher the noise intensity,the earlier the system reachesx*H. Whenσ=0, the most probable transition path moves alongx*Sfor a half cycle, while whenσ/=0, the most probable paths hardly stay atx*S.

    Fig.9.Most probable transition paths for different σ with α=0.58,A=0.1,ω =0.5. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solution,the black lines represent the nullclines. The red square indicates the most probable paths transition occurs at the same place under different noise intensity.

    The most probable paths will deviate fromx*Lwhere the double-well structure disappears. In particular, where the double-well structure of the system disappears,the most probable path atσ=0 initially moves up tox*Sand along it. After the unstable periodic solution intersects the nulline,the system begins to move down tox*Lunder the action of the deterministic vector field. It can be seen that when the double-well structure disappears,the distance betweenx*Landx*Sis closest,and the system is prone to transition.

    5. Conclusions

    In this paper,we have investigated the most probable transition paths of the lake eutrophication system under Gaussian white noise and the periodic force. The characterization of the most probable paths provides a new perspective for the study of the lake eutrophication system. We visualized transitions between the eutrophic state and the oligotrophic state. We introduced two kinds of action functionals,FW action functional and OM action functional,for the calculation of the most probable transition paths under different noise intensities.

    Firstly,the influence of noise is only considered.We used large deviation theory to observe the most probable transition paths. In weak noise intensity, the Hamilton–Jacobi equation is obtained by using WKB approximation for the system,and the FW action functional is obtained by using the method of characteristics. We used the minimum of the FW action functional to obtain the most probable transition paths between the oligotrophic state the eutrophic state. Further, we examined the most probable transition pathsxm(t)from the oligotrophic statexLto the eutrophic statexHwith different noise intensities by minimizing the OM action functional. By characterizing the most probable transition paths under certain parameters,we have found that the stability of the eutrophic state and the oligotrophic state has different results from the two perspectives of potential well and the most probable transition path.

    Then,Gaussian white noise and periodic excitation were considered. Considering the influence of parameters on the periodic solutions and nullines of the system,we have chosen two groups of parameters to study the most probable path of the system with periodic excitation. The most probable transition paths fromx*Ltox*Hwere obtained by using the large deviation theory. In addition, by minimizing the OM functional,we obtained the most probable transition paths starting at the same initial point onx*Land terminating onx*Hfor different noise intensities. The transition points in periodic lake eutrophication system have same characteristics,and the transition is more likely to occur near the closest distance between stable and unstable periodic solutions.

    Acknowledgement

    Projected supported by the National Natural Science Foundation of China(Grant Nos.12072261 and 11872305).

    猜你喜歡
    徐偉立志
    徐偉:野菊
    立志鄉(xiāng)村振興的筑夢人
    華人時刊(2021年15期)2021-11-27 09:16:34
    姚立志繪畫作品
    感悟關(guān)懷厚望 立志跟黨前進
    少先隊活動(2021年5期)2021-07-22 08:59:46
    An investigation on improving the homogeneity of plasma generated by linear microwave plasma source with a length of 1550 mm
    蘇夢飛
    書香兩岸(2020年3期)2020-06-29 12:33:45
    Theory and method of dual-energy x-ray grating phase-contrast imaging?
    依靠新科技、新理念“易騎”立志殺出重圍!
    Quantification of CP4-EPSPS in genetically modifiedNicotianatabacum leaves by LC-MS/MS with 18O-labeling
    張立志將軍:把美好年華奉獻給祖國
    中國火炬(2014年7期)2014-07-24 14:21:26
    亚洲情色 制服丝袜| 精品久久久久久电影网| 自拍欧美九色日韩亚洲蝌蚪91| 青青草视频在线视频观看| 精品午夜福利在线看| 国产欧美另类精品又又久久亚洲欧美| 久久久久视频综合| 亚洲美女黄色视频免费看| 国产 一区精品| 超色免费av| 最近最新中文字幕大全免费视频 | 天天躁夜夜躁狠狠久久av| 最近最新中文字幕大全免费视频 | 成人国语在线视频| 亚洲av中文av极速乱| a级毛片在线看网站| 亚洲一区二区三区欧美精品| 亚洲精品,欧美精品| 国产精品一国产av| 国产极品天堂在线| 人成视频在线观看免费观看| 国产女主播在线喷水免费视频网站| 香蕉丝袜av| 少妇高潮的动态图| 亚洲久久久国产精品| 午夜免费男女啪啪视频观看| 日韩视频在线欧美| 国产av一区二区精品久久| 国产免费福利视频在线观看| 五月玫瑰六月丁香| 黄色视频在线播放观看不卡| 亚洲欧美成人精品一区二区| 黄片无遮挡物在线观看| 搡老乐熟女国产| 最近的中文字幕免费完整| 精品视频人人做人人爽| a级毛片在线看网站| 国产精品免费大片| 亚洲精品第二区| 亚洲精品久久成人aⅴ小说| 精品国产一区二区三区久久久樱花| 日韩中字成人| av国产精品久久久久影院| 啦啦啦啦在线视频资源| 久久久久国产网址| 草草在线视频免费看| 国产免费视频播放在线视频| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 精品一区二区免费观看| 最近手机中文字幕大全| 精品视频人人做人人爽| 欧美日韩成人在线一区二区| av天堂久久9| 国产精品一区www在线观看| 亚洲在久久综合| 伊人亚洲综合成人网| 午夜激情久久久久久久| 最近的中文字幕免费完整| 少妇被粗大的猛进出69影院 | 欧美日韩国产mv在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲经典国产精华液单| 免费在线观看黄色视频的| 免费观看无遮挡的男女| 精品亚洲成国产av| 日本-黄色视频高清免费观看| 日韩大片免费观看网站| 国产亚洲精品久久久com| 国产色爽女视频免费观看| 中文字幕人妻丝袜制服| 久久久久视频综合| 免费黄色在线免费观看| 亚洲精品美女久久久久99蜜臀 | 欧美精品高潮呻吟av久久| 你懂的网址亚洲精品在线观看| 我的女老师完整版在线观看| 中文字幕精品免费在线观看视频 | 人人澡人人妻人| 韩国高清视频一区二区三区| 性高湖久久久久久久久免费观看| 女人精品久久久久毛片| 久久久久网色| 久久av网站| 国产一区二区三区av在线| 久久99热这里只频精品6学生| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 又大又黄又爽视频免费| 咕卡用的链子| videos熟女内射| 亚洲第一区二区三区不卡| 亚洲国产欧美在线一区| 三级国产精品片| 中国美白少妇内射xxxbb| 全区人妻精品视频| 夫妻性生交免费视频一级片| 亚洲在久久综合| 美女大奶头黄色视频| 欧美bdsm另类| 制服人妻中文乱码| 亚洲四区av| 欧美3d第一页| av视频免费观看在线观看| 国产精品久久久久久久电影| 亚洲天堂av无毛| 多毛熟女@视频| 夜夜骑夜夜射夜夜干| 天堂俺去俺来也www色官网| 伊人久久国产一区二区| 日本欧美视频一区| 国产成人精品一,二区| 啦啦啦啦在线视频资源| 亚洲国产色片| 国产精品国产三级国产专区5o| 女的被弄到高潮叫床怎么办| 十八禁高潮呻吟视频| 高清在线视频一区二区三区| 少妇被粗大的猛进出69影院 | 婷婷色麻豆天堂久久| 国产成人91sexporn| 欧美国产精品va在线观看不卡| 男女无遮挡免费网站观看| 亚洲av中文av极速乱| 人人妻人人添人人爽欧美一区卜| 十八禁高潮呻吟视频| 最近最新中文字幕大全免费视频 | 免费av不卡在线播放| 爱豆传媒免费全集在线观看| 久久精品夜色国产| videosex国产| 九色成人免费人妻av| 久久99热6这里只有精品| 亚洲国产日韩一区二区| 成人国产av品久久久| 精品久久国产蜜桃| 欧美丝袜亚洲另类| 成人亚洲精品一区在线观看| 免费久久久久久久精品成人欧美视频 | 黄色 视频免费看| 女性生殖器流出的白浆| 亚洲内射少妇av| 久久人人爽人人片av| 亚洲精品美女久久av网站| 美女脱内裤让男人舔精品视频| 欧美人与性动交α欧美精品济南到 | 久久人人爽人人片av| 欧美成人午夜免费资源| 久久鲁丝午夜福利片| 这个男人来自地球电影免费观看 | 大香蕉久久成人网| av有码第一页| 肉色欧美久久久久久久蜜桃| 久久99蜜桃精品久久| 亚洲av成人精品一二三区| 久久热在线av| 国产乱来视频区| 少妇精品久久久久久久| 午夜福利视频精品| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站| 色婷婷av一区二区三区视频| 中文字幕av电影在线播放| 久久99热6这里只有精品| 日韩精品免费视频一区二区三区 | 五月开心婷婷网| av播播在线观看一区| 男人操女人黄网站| 美女国产视频在线观看| 国产高清国产精品国产三级| 精品卡一卡二卡四卡免费| 成年人午夜在线观看视频| 老熟女久久久| 免费看不卡的av| 精品国产一区二区三区久久久樱花| 这个男人来自地球电影免费观看 | 欧美激情极品国产一区二区三区 | 热re99久久精品国产66热6| 国产在线视频一区二区| 国产男女内射视频| 亚洲美女搞黄在线观看| 天天操日日干夜夜撸| 观看美女的网站| 91成人精品电影| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 欧美bdsm另类| 一级黄片播放器| 色94色欧美一区二区| 国产成人精品婷婷| 国产深夜福利视频在线观看| 国产极品天堂在线| 国产精品嫩草影院av在线观看| 色5月婷婷丁香| 99热网站在线观看| 国产精品久久久久久久久免| 一级片免费观看大全| 久久精品久久精品一区二区三区| 一区二区日韩欧美中文字幕 | 99热全是精品| 全区人妻精品视频| 免费观看无遮挡的男女| 国产精品不卡视频一区二区| 精品午夜福利在线看| 蜜桃国产av成人99| 伊人亚洲综合成人网| 中文字幕av电影在线播放| 日韩精品免费视频一区二区三区 | 建设人人有责人人尽责人人享有的| 欧美最新免费一区二区三区| 视频中文字幕在线观看| 久久精品aⅴ一区二区三区四区 | 久久午夜综合久久蜜桃| 亚洲第一av免费看| 亚洲伊人久久精品综合| 少妇熟女欧美另类| 成人毛片60女人毛片免费| 免费观看性生交大片5| 国产成人精品一,二区| 国产精品一国产av| 99热6这里只有精品| 国产高清不卡午夜福利| 国产综合精华液| 日本91视频免费播放| 久久99蜜桃精品久久| 我要看黄色一级片免费的| 国产毛片在线视频| 国产激情久久老熟女| 韩国精品一区二区三区 | 中文字幕免费在线视频6| 交换朋友夫妻互换小说| 中文字幕精品免费在线观看视频 | 亚洲综合精品二区| 国产在线视频一区二区| 中国国产av一级| 午夜福利视频在线观看免费| 成人国产麻豆网| 99热全是精品| 国产永久视频网站| 日本欧美国产在线视频| 国产男女超爽视频在线观看| 国产1区2区3区精品| 两个人免费观看高清视频| 国产精品秋霞免费鲁丝片| 少妇熟女欧美另类| 欧美精品人与动牲交sv欧美| 99久国产av精品国产电影| 国产欧美亚洲国产| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 女人精品久久久久毛片| 国产深夜福利视频在线观看| 美女主播在线视频| a级毛色黄片| 亚洲av日韩在线播放| 美女福利国产在线| 国产欧美亚洲国产| 久久久久久久精品精品| 久热这里只有精品99| 女人精品久久久久毛片| 香蕉精品网在线| 国产永久视频网站| 人妻人人澡人人爽人人| 亚洲成色77777| 黄片播放在线免费| 久久毛片免费看一区二区三区| 色吧在线观看| av线在线观看网站| av福利片在线| 国产无遮挡羞羞视频在线观看| 免费观看在线日韩| 咕卡用的链子| 老司机影院毛片| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 在线观看三级黄色| 久久久a久久爽久久v久久| 最黄视频免费看| 毛片一级片免费看久久久久| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 欧美亚洲日本最大视频资源| 中文欧美无线码| 下体分泌物呈黄色| 男女免费视频国产| 日韩免费高清中文字幕av| 国产欧美亚洲国产| av在线播放精品| 免费看不卡的av| 久久久国产一区二区| 国产乱人偷精品视频| 国产精品国产三级专区第一集| 桃花免费在线播放| av卡一久久| 男女无遮挡免费网站观看| 黄片无遮挡物在线观看| 99久久精品国产国产毛片| 精品亚洲成国产av| 中文欧美无线码| 欧美人与性动交α欧美软件 | 欧美少妇被猛烈插入视频| 婷婷色av中文字幕| 国产精品.久久久| 在线观看三级黄色| 热99国产精品久久久久久7| 老女人水多毛片| 国产高清不卡午夜福利| www.色视频.com| 男男h啪啪无遮挡| 91成人精品电影| 日本黄大片高清| 国产精品欧美亚洲77777| 97精品久久久久久久久久精品| 不卡视频在线观看欧美| 观看av在线不卡| 午夜老司机福利剧场| 少妇精品久久久久久久| 日韩人妻精品一区2区三区| 制服人妻中文乱码| 性色av一级| 欧美日韩一区二区视频在线观看视频在线| 久久热在线av| 免费在线观看完整版高清| 国产精品三级大全| 午夜视频国产福利| 亚洲av.av天堂| 免费看av在线观看网站| 精品熟女少妇av免费看| 草草在线视频免费看| 国产精品人妻久久久影院| 久热久热在线精品观看| 午夜日本视频在线| 国产精品国产三级国产av玫瑰| 日本欧美国产在线视频| 熟女av电影| 国产极品天堂在线| 我要看黄色一级片免费的| 捣出白浆h1v1| 国产国拍精品亚洲av在线观看| 国产精品免费大片| 久久精品国产a三级三级三级| 香蕉国产在线看| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区| 中文精品一卡2卡3卡4更新| 国产精品国产三级国产专区5o| 久久久久久久久久成人| 高清av免费在线| av在线app专区| 波多野结衣一区麻豆| 国产在视频线精品| 亚洲精品一二三| 精品久久蜜臀av无| 免费看av在线观看网站| 成年美女黄网站色视频大全免费| 视频中文字幕在线观看| 天天影视国产精品| 欧美日韩精品成人综合77777| a级毛片黄视频| 性高湖久久久久久久久免费观看| 多毛熟女@视频| 自线自在国产av| 丝袜人妻中文字幕| 日韩欧美精品免费久久| 色5月婷婷丁香| 亚洲国产欧美在线一区| 久久久久久久大尺度免费视频| 永久免费av网站大全| 久久 成人 亚洲| 亚洲人成网站在线观看播放| 99热网站在线观看| 啦啦啦啦在线视频资源| 最近最新中文字幕大全免费视频 | 久久人人爽人人片av| 欧美日韩综合久久久久久| 午夜免费鲁丝| 日韩一区二区视频免费看| 久久久久久伊人网av| 亚洲成人一二三区av| 久久精品国产鲁丝片午夜精品| 免费在线观看完整版高清| 亚洲av.av天堂| 性色av一级| 亚洲第一区二区三区不卡| 制服人妻中文乱码| 亚洲国产色片| 三上悠亚av全集在线观看| 久久久亚洲精品成人影院| 午夜老司机福利剧场| 亚洲精品美女久久久久99蜜臀 | 9191精品国产免费久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 交换朋友夫妻互换小说| 亚洲婷婷狠狠爱综合网| 中国美白少妇内射xxxbb| 亚洲av福利一区| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 9191精品国产免费久久| 99国产精品免费福利视频| 国产精品三级大全| 乱码一卡2卡4卡精品| 日韩中字成人| 国产日韩欧美视频二区| 国产成人精品久久久久久| 在线观看免费高清a一片| 18禁国产床啪视频网站| 精品久久蜜臀av无| 丝瓜视频免费看黄片| 国产精品成人在线| 亚洲国产色片| 夫妻性生交免费视频一级片| 成人影院久久| 精品亚洲乱码少妇综合久久| 国产黄频视频在线观看| 成年人午夜在线观看视频| 成人亚洲精品一区在线观看| 欧美日韩视频高清一区二区三区二| 亚洲三级黄色毛片| 亚洲av男天堂| 国产乱来视频区| 免费看光身美女| 亚洲综合色网址| 国产一级毛片在线| 90打野战视频偷拍视频| 国产视频首页在线观看| 一级爰片在线观看| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 婷婷色综合www| 女性生殖器流出的白浆| 综合色丁香网| 久久婷婷青草| 精品久久蜜臀av无| 高清在线视频一区二区三区| 亚洲欧洲国产日韩| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人 | 精品久久久精品久久久| 精品人妻熟女毛片av久久网站| 各种免费的搞黄视频| 侵犯人妻中文字幕一二三四区| 永久网站在线| 一二三四中文在线观看免费高清| 尾随美女入室| √禁漫天堂资源中文www| 国产高清三级在线| 搡女人真爽免费视频火全软件| 蜜桃国产av成人99| 在线观看免费日韩欧美大片| 久久久久国产精品人妻一区二区| 亚洲欧美精品自产自拍| av电影中文网址| av有码第一页| av国产精品久久久久影院| 人妻一区二区av| 黑人猛操日本美女一级片| 久久婷婷青草| xxx大片免费视频| 极品少妇高潮喷水抽搐| 国产极品粉嫩免费观看在线| 黄色 视频免费看| 大香蕉久久成人网| 午夜激情av网站| 国产黄频视频在线观看| 国产乱人偷精品视频| 大码成人一级视频| 久久av网站| 99久久综合免费| 高清黄色对白视频在线免费看| 一级黄片播放器| 国产欧美日韩综合在线一区二区| 免费观看av网站的网址| a级毛片黄视频| 18在线观看网站| 纯流量卡能插随身wifi吗| 女人精品久久久久毛片| 亚洲人成网站在线观看播放| 精品少妇久久久久久888优播| 亚洲成人av在线免费| 亚洲国产色片| av免费观看日本| 一个人免费看片子| 在线观看国产h片| 亚洲成色77777| 亚洲欧美中文字幕日韩二区| 国产一区二区三区av在线| 久久精品国产鲁丝片午夜精品| 国产男女内射视频| 十八禁网站网址无遮挡| 亚洲欧美清纯卡通| 2022亚洲国产成人精品| 熟妇人妻不卡中文字幕| 又粗又硬又长又爽又黄的视频| 久久av网站| 午夜老司机福利剧场| 亚洲精品乱码久久久久久按摩| 三上悠亚av全集在线观看| xxx大片免费视频| 国产成人一区二区在线| 一本久久精品| 亚洲精品,欧美精品| 高清在线视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩视频高清一区二区三区二| 色网站视频免费| 亚洲欧美一区二区三区国产| 亚洲欧洲国产日韩| 成人午夜精彩视频在线观看| 久久国产亚洲av麻豆专区| 午夜福利网站1000一区二区三区| 欧美 日韩 精品 国产| 大码成人一级视频| 不卡视频在线观看欧美| 18禁裸乳无遮挡动漫免费视频| 国产精品不卡视频一区二区| 最后的刺客免费高清国语| 亚洲av国产av综合av卡| 高清毛片免费看| 国产亚洲午夜精品一区二区久久| 女性生殖器流出的白浆| 水蜜桃什么品种好| 一区二区av电影网| 久久毛片免费看一区二区三区| 国产精品久久久久久av不卡| 久久久亚洲精品成人影院| 九九爱精品视频在线观看| 男女边吃奶边做爰视频| videosex国产| 免费黄色在线免费观看| 色婷婷av一区二区三区视频| 国产精品国产av在线观看| 好男人视频免费观看在线| 午夜日本视频在线| 国产日韩欧美亚洲二区| 亚洲情色 制服丝袜| 国产熟女欧美一区二区| 性色av一级| 黑人高潮一二区| 国产探花极品一区二区| 亚洲国产色片| 搡女人真爽免费视频火全软件| 欧美变态另类bdsm刘玥| 久久午夜福利片| 亚洲av国产av综合av卡| 丁香六月天网| 人人妻人人添人人爽欧美一区卜| 在线看a的网站| 午夜精品国产一区二区电影| 男女边吃奶边做爰视频| 免费高清在线观看日韩| 久久99热6这里只有精品| 成人国语在线视频| 在线精品无人区一区二区三| 久久久久网色| 久久99蜜桃精品久久| 在线亚洲精品国产二区图片欧美| www.色视频.com| 国产精品久久久av美女十八| 又大又黄又爽视频免费| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 成年女人在线观看亚洲视频| 国产男人的电影天堂91| 日韩精品免费视频一区二区三区 | 欧美国产精品va在线观看不卡| 黄色一级大片看看| 欧美精品亚洲一区二区| 日本vs欧美在线观看视频| 人妻一区二区av| 五月天丁香电影| 人人妻人人澡人人看| 18+在线观看网站| 精品久久久精品久久久| 欧美日韩视频精品一区| 亚洲精品久久成人aⅴ小说| 亚洲婷婷狠狠爱综合网| 国产精品成人在线| 日韩电影二区| 9191精品国产免费久久| 国产精品无大码| 久久婷婷青草| 成人无遮挡网站| 亚洲精品,欧美精品| 国产xxxxx性猛交| 午夜福利视频精品| 在线观看免费日韩欧美大片| 国产色婷婷99| 午夜福利视频精品| 大香蕉久久成人网| 国产淫语在线视频| 成人无遮挡网站| 日本色播在线视频| 午夜福利乱码中文字幕| 丰满少妇做爰视频| 国产一区二区三区av在线| 在线观看免费视频网站a站| 大片免费播放器 马上看| 成人手机av| 亚洲国产看品久久| 大片免费播放器 马上看| 1024视频免费在线观看| 飞空精品影院首页| www.色视频.com| 乱码一卡2卡4卡精品| av免费在线看不卡| 亚洲国产毛片av蜜桃av| 欧美另类一区| 捣出白浆h1v1| 咕卡用的链子| 亚洲激情五月婷婷啪啪| 中文字幕制服av| 亚洲国产欧美在线一区|