• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells?

    2019-11-06 00:46:50LingXiong熊玲YanpingLiu劉艷平RuchuanLiu劉如川WeiYuan袁偉GaoWang王高YiHe何益JianweiShuai帥建偉YangJiao焦陽(yáng)XixiangZhang張溪祥WeijingHan韓偉靜JunleQu屈軍樂andLiyuLiu劉靂宇
    Chinese Physics B 2019年10期
    關(guān)鍵詞:袁偉

    Ling Xiong(熊玲), Yanping Liu(劉艷平),Ruchuan Liu(劉如川),Wei Yuan(袁偉),Gao Wang(王高),Yi He(何益),Jianwei Shuai(帥建偉),Yang Jiao(焦陽(yáng)),Xixiang Zhang(張溪祥),Weijing Han(韓偉靜),Junle Qu(屈軍樂),?,and Liyu Liu(劉靂宇),§

    1Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials,College of Physics,Chongqing University,Chongqing 401331,China

    2Department of Physics,Xiamen University,Xiamen 361005,China

    3Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,Shenzhen University,Shenzhen 518060,China

    4Materials Science and Engineering,Arizona State University,Tempe,Arizona 85287,USA

    5Division of Physical Science and Engineering,King Abdullah University of Science and Technology,Thuwal 23955-6900,Saudi Arabia

    6Shenzhen Shengyuan Biotechnology Co.,Ltd,Shenzhen 518060,China

    Keywords:cancer metastasis,motility heterogeneity,three-dimensional microenvironment,invasion potential

    1.Introduction

    As metastasis leads to the majority of human cancerrelated deaths,tumor dissemination,including invasion and metastasis,is a great therapeutic challenge.[1,2]During tumor cell metastasis,the sub-group cells must recognize the extracellular matrix barrier and cross the barrier to achieve distant proliferation.[3]In addition,cell motility has become a strategy for anti-tumor invasion and metastasis.[4]Therefore,cell subpopulation classification based on the motility of cells will help to identify essential cells in tumor cell metastasis.Due to the stimulation of epithelial growth factor(EGF)as a growth factor that promotes cell movement,[5–7]the cell subpopulations will change. Moreover,it has been reported that cell heterogeneity together with microenvironment heterogeneity are essential in cancer cell motility and metastasis.[8]Studies have also suggested that,besides characteristic phenotypes of tumor heterogeneity and other phenotypes,highly motile invasive cells present great heterogeneity in their motility.[9–11]In addition,the existence of heterogeneous cancer cells during the invasion process,e.g.,leader and follower cells,was proven by both in vivo and in vitro experiments[12–14]and indicated that several related genes and pathways are involved.[15,16]Therefore,an easily handled quantitative characterization/classification approach for tumor cell motility heterogeneity in 3D microenvironments[17]could provide deeper insights into the differences between cells within a tumor and promote highly mobile/invasive subgroup cell identification in cancer invasion,metastasis,and evolution.Although there are already some approaches to discriminate various cell types[18]and their separations,[19]it still remains a technical challenge to well characterize cell motility heterogeneity and identify cell subgroups due to great complexity in tumor cell heterogeneity and usually subtle differences among cells in each cell-line.

    To identify sub-groups of cells with various mobility,we combined a microfluidic chip inside a 3D microenvironment,a cell-tracking technique,and an improved method to characterize velocity auto-covariance(VACV)and power spectra of tumor cells. Consequently,cell motility heterogeneity in a set of designed and easily controllable medium conditions,i.e.,an EGF-supplemented medium,were analyzed.VACV and power spectra were effective factors to reveal cells with higher migration persistence,which likely included highinvasive leader cells[12,20]in collective cancer cell invasion.As a demonstration,we applied this method to quantify and compare motility heterogeneity between high metastatic potential MDA-MB-231 and low metastatic potential MCF-7 breast cancer cells.

    2.Materials and methods

    2.1.Cell culture

    Human breast carcinoma MDA-MB-231(China Infrastruture of Cell Line Resource,Beijing,China)were cultured in DMEM(GIBICO,Life Tech)supplemented with 10%Fetal bovine serum(FBS).Breast cancer cell line MCF-7(China Infrastruture of Cell Line Resource,Beijing,China)was cultured in MEM medium containing 10%FBS and 0.01-mg/mL insulin.All of the medium were containing 1%penicillin/streptomycin(Corning). These cells are cultured in a 37-?C incubator with 5%CO2.

    2.2.Microchip fabrication and cell culturing in chip

    Fig.1.The microfluidic chip structure and cell classification steps.(a)Structure hierarchical diagram of the polydimethylsiloxane(PDMS)microfluidic chips. The PDMS scaffold(top layer)is bonded to a glass substrate(bottom layer),forming three channels(middle layer)separated by two arrays of micro-sized pillars(upper sides 200-μm long,bottom side 400-μm long,and high 200μm)that center spacing 400μm.Tumor cells are injected into the middle channel(7200-μm long and 3000-μm wide)with a collagen solution,which gelatinizes after incubation for 30 min at 37 ?C and 5.0%CO2.The two shoulder channels are supplied with culture medium pools in experiments.This is also illustrated in the middle-right insert.Bottom-right insert displays a representative photo of a microfluidic chip.(b)and(c)Images of cell movement in collagen(scale bar,50μm)and trajectory diagram,respectively.(d)and(e)Cell classification process diagram,based on VACV with different persistent times(τp)of cells and power spectra,respectively.

    Based on soft-lithographic technology,a polydimethylsiloxane(PDMS)chip in 300-μm depth was designed for incubation of live cells on a microscope.As shown in Fig.1(a),the chip[8]consisted of three parallel PDMS channels on a glass substrate,with four medium reservoirs on top. Two micro-sized pillars arrays separated the side channels,where media with various components could be added for microenvironmental control and exchange of nutrition/signaling biomolecules. In experiments,the middle channel was used for cell injection in the final density of 2 mg/mL and the PH value of 7.2 Collagen I(Corning,#354236,U.S.A)adjusted by 1-mol/L NaOH(Fluka),which forms a 3D network microenvironment[21]after gelatinization for 30 min at 37?C.Subsequently,two side channels were filled with medium or medium containing the final concentration 25-ng/ml EGF,and the entire chip was kept in an incubator with 5.0%CO2 at 37?C during cell tracking.

    2.3.Cell tracking

    Cells were monitored in the bright-field mode by an inverted fluorescence microscope Ti(Nikon,Tokyo,Japan)with 20×objective. Time lapse videos were captured using a charge-coupled device(CCD)camera(HAMAMATSU,MODEL C11440-22CU)head DS-Ri 1,and the interval time is 2 minutes.Data collection and imaging analysis were performed using the ImageJ(National Institutes of Health).The acquired images were then processed with ImageJ first and CellTracker[22](Hungarian Academia of Sciences,Hungary)to acquire the trajectories of individual cells in the x–y plane.Therefore,the trajectories were the projections of the 3D motions,a simplified representation with the well characteristics of the latter.The coordinates data were obtained in the semiautomatic tracking model with two tunable parameters,the maximal cell displacement and the cell diameter. The displacement was chosen between 20μm and 50μm,and the cell diameter was chosen between 20μm and 40μm,for different tracking cell,which will have better tracking effect by changing the parameters multiple times.

    3.Data analysis

    3.1.Mean square displacement(MSD)

    In order to quantify the differences,the average MSD versus time trajectories is calculated for both cells as shown in Fig.2,and it is larger for MDA-MB-231 cells than MCF-7 cells in all respective media.

    For a rough understanding of the ability of cells migration,we computed the MSD during a time-lapse of duration t,and which is defined in Eq.(1)

    where τ=n·?t and n=1,2,...,and ?t is the time interval of each frame,anddenotes averaging over time t.

    3.2.Migration speed

    After obtaining migratory trajectory,we could directly estimate corresponding velocity vectors by

    3.3.Velocity auto-covariance function

    On the basis of velocity vectors, the velocity autocovariance function is defined as follows:

    3.4.Cells classification based on VACV

    After obtaining the relationship between the velocity auto-covariance function and time,we have found that there are two kind of exponential decays of auto-covariance function,one is bi-exponential decay,another mono-exponential decay for the same type of cells in same micro-environment.To determine which decay mode the velocity auto-covariance function obeys,we take a few steps as follows:first,fitting experimental velocity auto-covariance function of all cells with Eqs.(6)and(7)

    Table 1.The meaning of the obtaining motile parameters.

    Table 2.The thresholds of physical quantities.

    3.5.Power spectrum

    Due to the highly correlation of values of auto-covariance function in time,a least-squares fit to those data does not return reliable estimates,what’s more,fits of VACV function cannot return migration speeds of cells.However,the power spectrum can be decoupled from time and not only return persistent time P but also return the speed of cell migration,thus a fit to power spectrum can make up the defect and return reliable values.

    According to Wiener–Khinchin theorem,the power spectrum of velocities of cell migration is the Fourier transformation(FT)of the velocity auto-covariance function.There is a definition of discrete FT as follows:

    where fk=k·?f,?f=1/tmsr,tmsr=N·?t,k=1,2...,N/2,?t is the time interval of each frame,N is the total steps in the tracking trajectory.Thus

    On the basis of velocity vectors derived from cell trajectories,we could compute experimental power spectrum that fitted by maximum likelihood method(See Supplementary material for detail)using above Eq.(9).

    4.Results and discussions

    4.1.EGF enhances the motility difference between high metastatic MDA-MB-231 cells and low metastatic MCF-7 cells

    In order to study the motility of high-metastatic MDAMB-231 cells and low-metastatic MCF-7 cells,the individual cell trajectories and the changes of MSD over time can be used to illustrate the average motility of the two types of cells[Fig.2(b)].Both the broader migration range and larger MSD of MDA-MB-231 cells(See Supplementary material,Fig.S1)clearly show the higher motility of this metastatic breast cancer cell line.In addition,the motility of MDA-MB-231 cells is significantly improved by the addition of EGF[Fig.2(c)],which EGF is a growth factor that can induce tumor cell invasion.It is noteworthy that uniform EGF environment was constructed by introducing medium of the same concentration into the channels on both sides of the chip,which effectively avoided cell movement caused by EGF gradient.[23]Obviously,the average speed of MDA-MB-231 cells is raised in the presence of EGF,while the change of MCF-7 cells is almost unobservable,in consistent with their metastatic potential.

    Fig.2.Motility of the two breast cancer cell lines.(a)Trajectories of MDA-MB-231 breast tumor cells show a larger range of motion after EGF addition.(b)The average MSD vs.time for MDA-MB-231 cells and MCF-7 cells in EGF-and EGF+medium conditions.(c)The speed histograms of MDA-MB-231 and MCF-7 cells in two medium conditions.

    The velocity power spectrum is the Fourier transform of the VACV function,and is uncorrelated between various frequencies,[24]so is better for the quantification of cell motility and comparison.To determine factors in cell migration factor contributing to the high mobility of MDA-MB-231 cells,VACV and power spectrum of each cell is analyzed in details. Figure 3 illustrates the average VACVs and power spectra of two cell-lines in two medium conditions.Specifically,EGF addition differentiates the average VACVs between MDA-MD-231 and MCF-7 cells. For MDA-MB-231 cells,the average VACVs remains positive until 20 min in EGFsupplemented medium[Fig.3(b)].For MCF-7 cells,the average VACVs is approximately zero for two medium conditions[Figs.2(a)and Fig.2(b)].This reflects the larger persistence time for MDA-MD-231 cell migrations,indicating it as an appropriate parameter to highlight the diverse mobility between these two cell-lines.

    To further confirm and quantify the persistent time difference,velocity power spectra are analyzed. As displayed in Figs.3(c)and 3(d),the average power spectra of two celllines demonstrate significant differences.At the low frequency region,i.e.,<0.02 min?1(corresponding to long persistent time),power is higher for MDA-MB-231 cells,and the difference is enhanced with EGF addition.In contrast,the velocity power for MCF-7 cells shows limited changes with EGF addition and stays at a low level in the whole frequency region analyzed.Therefore,both VACV and power spectra well characterize distinct persistence in migration between two celllines. Moreover,they also showed that MDA-MB 231 cells were more active than MCF-7 cells.

    Fig.3.Velocity auto-covariance(VACVs)and power spectra of two breast cancer cell-lines.(a)and(b)Average VACVs of MDA-MB-231(blue)and MCF-7(red)cells in two medium conditions,as indicated.The dashed line refers to t=20 min.(c)and(d)The corresponding power spectra of MDAMB-231(blue)and MCF-7(red)cells.Higher power in the low frequency part of the spectra is found for MDA-MB-231 cells in two medium conditions,and its highest power spectrum is found in EGF+medium.The dashed line highlights the frequency of 0.02 min?1,which is referred to as the low frequency region in the discussion.

    4.2.There are subpopulations in each cell line showing different migration modes

    Above results clearly display differences in motility by average between two cell lines.It is necessary to analyze the VACV of single cells to look into the details in their motility variations.At the individual cell level,persistence displays great heterogeneity,which could be used as a characteristic for cell mobility heterogeneity.In contrast to clear differences in average trajectories,significant overlap in VACV and power trajectories of individual cells smears the difference between cell-lines.Even for the same cell line,these trajectories from various medium are also overlapping. Nevertheless,we believe that the broad distributions of VACV and power spectra for individual cells could become one of the aspects to characterize heterogeneous cell mobility. Analysis of individual VACV trajectories reveals two behavioral types.Some VACV trajectories could be well fitted by mono-exponential decay,and the others are better fitted by bi-exponential decay(see data analysis section for detailed fitting protocol).

    Fig.4.Differentiation of active cells from normal cells by VACVs.(a)and(b)Typical VACV trajectories of individual MDA-MB-231 and MCF-7 cells:active cells(blue or red circles)and normal cells(green crosses),and the fitting curves(solid lines).(c)and(d)Comparison between active and normal cells in EGF+medium:average VACVs of active cells(red or blue)and normal cells(green),compared to average VACV(black)of all cells,for MDA-MB-231 and MCF-7 cells,respectively.(e)and(f)Corresponding power spectra for MDA-MB-231 and MCF-7 cells.These VACVs and power spectra show similar trends for normal cells of both cell-lines.

    Figures 4(a)and 4(b)present typical mono-and biexponential VACV trajectories,where bi-exponential trajectories display an additional component with a persistent time longer than that for mono-exponential trajectories.According to this aspect,individual cells are categorized into two subgroups: normal cells(mono-exponential VACV)and active cells(bi-exponential VACV).The general steps of cell subpopulation separation are shown in Figs.1(b)–1(e).Normal cells show a fast decay to zero in their average VACVs,regardless of cell-line[Figs.4(c)and4(d)].In contrast,average VACVs remain positive for ~20 min and ~10 min for active groups of MDA-MB-231 and MCF-7 cells in EGF+medium,respectively.Furthermore,the average power spectra[Figs.4(e)and 4(f)]for normal cells from both cell-lines remain at a low level over the whole frequency range,while those for active cells are well separated from normal cells with significant higher power in the low frequency region(i.e.,<0.02 min?1).Similar trends in average VACVs and power spectra for each cell group have been obtained for other medium,regardless of celllines(See Supplementary material,Fig.S3).This validates the above categorization of cell subgroups by persistence heterogeneity.

    4.3.The heterogeneity in motility positively correlates to the invasive potential of the two cancer cell lines

    To further verify cell categorization and to characterize migration persistence,the power spectrum of each cell is fitted following the reported protocol[24](See Supplementary material,Fig.S4).Figures 5(a)–5(c)and 5(d)–5(f)show histograms of persistent time from power spectra fitting for MDA-MB-231 and MCF-7 cells in EGF+medium,respectively.Clearly,persistent times for normal cells demonstrate similar narrowranged distributions within the experimental time resolution(2 min),irrespective of cell types.This suggests a similar limited memory in the motion of these cells. For active cells,two distinct persistent times are identified.The other persistent time P2(See Supplementary material,Fig.S5)is longer and indicative of“active”cells,i.e.,advancing much further with a better persistence than normal cells.Consequently,the migration mode of P2is expected to contribute significantly to the higher motility potential of invasive cancer cells. These results demonstrate that aforementioned classification of cells into two subgroups is a successful step toward clarifying their mobility heterogeneity.

    Next,we investigated differences in subgroup ratios between the two cell-lines. Figure 5(g)illustrates that active cells generally occupy at least 40%of the overall cells in two medium conditions. The ratio of active cells(ract)is consistently higher for high-invasive MDA-MB-231 cells in all tested medium,i.e.,ractclose to or above 60%.In addition,the ract(>70%)for MDA-MB-231 cells in EGF-supplemented medium is higher than(~60%)without EGF.In contrast,the ractis only around 40%for MCF-7 cells and does not rise upon EGF addition.Furthermore,in EFG+culture medium,more cells in the MDA-MB-231 active subgroup possess a P2longer than 10 min[Figs.5(c)and 5(f)].This suggests ractas a good quantitative parameter for mobility heterogeneity among each cell line.Additionally,it quantifies differences in persistence time between these two cell-lines.

    Fig.5.Persistent time of cells in EGF+medium with and ratio of active cells.(a)–(f)Histograms of persistence times from maximum likelihood estimation fitting of power spectra for MDA-MB-231(blue)and MCF-7(red)cells:(a)and(d)persistent time of normal cells,(b)and(e)short persistent time component of active cells,(c)and(f)long persistent time component of active cells.(g)Ratio of active cells in four media types for MDA-MB-231(blue)and MCF-7(red)cells.

    Reasonably,ractcould be positively correlated to the metastatic potential of cancer cells,potentially making it a useful reference.It has been reported that in collective invasion of MDA-MB-231 cells,leader and follower cells co-exist.[12,25]The leader cells are expected to possess higher motility and better directionality in comparison to follower cells. Obviously,better persistence increases the chance of tumor cells to migrate further from the original site,and thus extraordinarily mobile leader cells are likely to evolve from the active cell subgroup.In this way,cancer cell heterogeneity in migration persistence could significantly influence invasion processes,and thus the ratio of active cells(ract)is an essential indicator.At the same time,the above approach to obtain the ratio racthas the following advantages:(i)while it evaluates mobility and heterogeneity of cells,ractfocuses more on active cells with a large migration persistent time,i.e.,potential leader cells in collective invasion;(ii)ractprovides a relative scale from 0 to 100%that could be useful in comparison across cell-lines and types;(iii)the absolute ractis independent of other cells;(iv)acquisition of ractis fast(as short as 4 hours),in contrast to no less than 24 hours in conventional methods to evaluate cancer cell invasiveness;(v)the approach could identify active cells while keeping them alive for further investigations,including,but not limited to,the molecular mechanisms(e.g.cell contractive force,cell adhesion to collagen,secreted protease,etc.)of cancer cell invasion,[16,26–28]impact of physiological conditions,and environmental factors(e.g.growth factor gradient,matrix fiber orientation,etc.[29,30]

    5.Conclusion

    In order to quantify the motility of breast tumor cells and identify the subgroup of more mobile cells(potentially high invasive)for cancer metastasis investigation and future clinic application,we developed a rapid and unique approach in combination of the microfluidic chip,3D tracking analysis and cell sub-group identification to distinguish the higher invasive MDA-MB-231 and the low invasive MCF-7 cells by their motility and heterogeneity. Significant heterogeneity among the motility of individual cells in each cell group is successfully quantified by the ratio ractof active cell subgroup identified with our approach.It turns out that the EGF is a good promoter to differentiate active cells from normal cells and enhances the ratio ractof high-metastatic potential cells,but not low-metastatic potential cells.The higher population of active MDA-MD-231 cells together with its much enhanced motility and persistence,are positively correlated to the high invasiveness of MDA-MD-231 cells in contrast to MCF-7 cells.Thus,the method of identify active cell population,ract,in an EGF+media introduces a new,rapid and effective way to evaluate the invasive potential of cancer cells.In addition,the separation of active motile cells from normal cells also provides a well-defined approach for cancer invasion and metastasis investigation.We believe that the above approaches may apply to primary tumor cells in clinics and potentially provide physicians with a quantitative reference.

    猜你喜歡
    袁偉
    把握未來戰(zhàn)爭(zhēng)制勝脈搏
    閱江樓
    青春(2021年6期)2021-06-01 09:59:04
    一名飛行員的生死抉擇
    遙望星空(鋼琴小品)
    蒸餾儀
    青春(2019年8期)2019-10-20 09:26:10
    袁偉:一定要把飛機(jī)帶回來
    北廣人物(2017年35期)2018-02-06 22:58:32
    Power—Discourse Theory in TheirEyes Were Watching God
    袁偉 ,駕駛著火殲15安全著陸
    小康(2017年26期)2017-09-26 07:42:23
    石油環(huán)保:責(zé)任之路
    河南農(nóng)民在獄中卻成貸款擔(dān)保人 信用社遭投訴
    金融周刊(2013年39期)2013-11-29 05:18:06
    视频区图区小说| 国产激情久久老熟女| 久久精品熟女亚洲av麻豆精品| 晚上一个人看的免费电影| 一边摸一边做爽爽视频免费| 久久久久国产精品人妻一区二区| 午夜福利影视在线免费观看| 亚洲情色 制服丝袜| 久久影院123| 精品午夜福利在线看| 色吧在线观看| 免费高清在线观看视频在线观看| 国产男女超爽视频在线观看| 久久久久久久久久久免费av| 日韩,欧美,国产一区二区三区| 久久久久精品人妻al黑| 高清视频免费观看一区二区| 老司机影院毛片| 最新的欧美精品一区二区| 大片电影免费在线观看免费| 亚洲欧美精品综合一区二区三区| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 看免费av毛片| 免费黄网站久久成人精品| 午夜福利乱码中文字幕| 欧美在线一区亚洲| 黑人猛操日本美女一级片| 久久精品亚洲熟妇少妇任你| 精品一品国产午夜福利视频| 电影成人av| 一边亲一边摸免费视频| 亚洲欧美日韩另类电影网站| 1024香蕉在线观看| 老司机在亚洲福利影院| 老汉色∧v一级毛片| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 欧美国产精品va在线观看不卡| 狠狠精品人妻久久久久久综合| 久久久久久久国产电影| 青春草国产在线视频| 国产亚洲精品第一综合不卡| 十八禁网站网址无遮挡| av网站免费在线观看视频| 国产精品人妻久久久影院| av卡一久久| 老司机靠b影院| av视频免费观看在线观看| 欧美老熟妇乱子伦牲交| 女性生殖器流出的白浆| 麻豆av在线久日| 亚洲精品乱久久久久久| 黄色怎么调成土黄色| a 毛片基地| 欧美 亚洲 国产 日韩一| 男人舔女人的私密视频| 久久亚洲国产成人精品v| 波野结衣二区三区在线| 91aial.com中文字幕在线观看| 最黄视频免费看| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 超碰成人久久| 欧美日韩av久久| 久久精品久久久久久久性| 新久久久久国产一级毛片| 免费黄网站久久成人精品| 国产深夜福利视频在线观看| 999久久久国产精品视频| 成年av动漫网址| 亚洲av成人不卡在线观看播放网 | 国产熟女欧美一区二区| 大陆偷拍与自拍| 纵有疾风起免费观看全集完整版| 亚洲一区二区三区欧美精品| 日韩一本色道免费dvd| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频| 日韩 欧美 亚洲 中文字幕| 男女下面插进去视频免费观看| 一边亲一边摸免费视频| 蜜桃国产av成人99| 成人亚洲欧美一区二区av| av片东京热男人的天堂| 男人爽女人下面视频在线观看| 男女无遮挡免费网站观看| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 国产精品99久久99久久久不卡 | 久久精品久久精品一区二区三区| 中文字幕亚洲精品专区| 黄色一级大片看看| 少妇人妻久久综合中文| a 毛片基地| 亚洲精华国产精华液的使用体验| 国产极品粉嫩免费观看在线| netflix在线观看网站| 新久久久久国产一级毛片| 天堂中文最新版在线下载| 中文字幕色久视频| 国产精品一区二区精品视频观看| 欧美激情极品国产一区二区三区| 国产成人欧美在线观看 | 美女中出高潮动态图| av网站免费在线观看视频| 国产精品一区二区在线不卡| 亚洲av成人不卡在线观看播放网 | 久久久久久久久久久免费av| 美女扒开内裤让男人捅视频| 美国免费a级毛片| 麻豆乱淫一区二区| 成人亚洲欧美一区二区av| a级毛片在线看网站| 中文精品一卡2卡3卡4更新| 久久久久国产精品人妻一区二区| 国产免费现黄频在线看| 午夜久久久在线观看| 免费黄色在线免费观看| 亚洲av日韩精品久久久久久密 | 国产亚洲最大av| 亚洲三区欧美一区| 亚洲av日韩精品久久久久久密 | 青春草亚洲视频在线观看| 国产一级毛片在线| 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| videos熟女内射| 高清黄色对白视频在线免费看| 国产精品 欧美亚洲| 国产无遮挡羞羞视频在线观看| 黄色视频不卡| 成人国产av品久久久| 夫妻性生交免费视频一级片| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 欧美日本中文国产一区发布| 精品久久蜜臀av无| 亚洲欧美日韩另类电影网站| 欧美日韩综合久久久久久| 亚洲av福利一区| 青春草国产在线视频| 国产一区二区激情短视频 | 亚洲色图 男人天堂 中文字幕| 午夜福利视频精品| 国产精品久久久人人做人人爽| 如日韩欧美国产精品一区二区三区| 亚洲精品av麻豆狂野| 水蜜桃什么品种好| 国产探花极品一区二区| 成人毛片60女人毛片免费| 国产亚洲最大av| 欧美 亚洲 国产 日韩一| 日韩一区二区三区影片| 久久久久久免费高清国产稀缺| 女的被弄到高潮叫床怎么办| 波多野结衣av一区二区av| 18禁国产床啪视频网站| 欧美黑人欧美精品刺激| 久久人妻熟女aⅴ| 操美女的视频在线观看| 亚洲欧洲日产国产| 国产视频首页在线观看| 国产亚洲最大av| av在线播放精品| 一本久久精品| 9热在线视频观看99| 婷婷色av中文字幕| videos熟女内射| 成年动漫av网址| 亚洲人成77777在线视频| 日韩av不卡免费在线播放| 91aial.com中文字幕在线观看| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品高潮呻吟av久久| a级毛片在线看网站| 最近中文字幕高清免费大全6| 亚洲伊人色综图| 国产成人精品久久二区二区91 | 美女中出高潮动态图| 亚洲精品,欧美精品| 嫩草影院入口| 18禁国产床啪视频网站| 各种免费的搞黄视频| 侵犯人妻中文字幕一二三四区| 看免费成人av毛片| 国产精品三级大全| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版| 91精品伊人久久大香线蕉| 国产xxxxx性猛交| 久久久亚洲精品成人影院| 最近中文字幕高清免费大全6| 免费黄频网站在线观看国产| 波多野结衣一区麻豆| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| 99久久精品国产亚洲精品| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区 | 热99久久久久精品小说推荐| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| 男女之事视频高清在线观看 | 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| 七月丁香在线播放| 亚洲精品中文字幕在线视频| 亚洲欧美精品自产自拍| 国产1区2区3区精品| 久久国产精品男人的天堂亚洲| 国产精品国产三级专区第一集| 久久精品国产综合久久久| 秋霞伦理黄片| 成人国产av品久久久| 精品国产乱码久久久久久男人| 搡老乐熟女国产| 777久久人妻少妇嫩草av网站| 精品酒店卫生间| 爱豆传媒免费全集在线观看| 久久久久久人妻| av网站免费在线观看视频| 一二三四中文在线观看免费高清| 亚洲第一青青草原| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 日韩熟女老妇一区二区性免费视频| 亚洲综合色网址| 亚洲成人一二三区av| 99国产综合亚洲精品| 一级毛片电影观看| 国产亚洲av片在线观看秒播厂| 这个男人来自地球电影免费观看 | 免费观看人在逋| 国产人伦9x9x在线观看| 在线观看一区二区三区激情| 最黄视频免费看| 亚洲欧美中文字幕日韩二区| 天天添夜夜摸| 国产精品女同一区二区软件| 男女无遮挡免费网站观看| 99香蕉大伊视频| 久久久久精品性色| 国产av精品麻豆| 丰满迷人的少妇在线观看| 精品亚洲成a人片在线观看| 亚洲精品久久久久久婷婷小说| 欧美日韩国产mv在线观看视频| 一区福利在线观看| 欧美日韩一级在线毛片| 亚洲精品久久久久久婷婷小说| 国产成人a∨麻豆精品| 一区福利在线观看| 精品国产乱码久久久久久男人| 精品午夜福利在线看| 欧美 日韩 精品 国产| 久久99一区二区三区| 国产99久久九九免费精品| 国产免费又黄又爽又色| 性少妇av在线| 中文字幕亚洲精品专区| 又大又爽又粗| 久久久久网色| 国产精品.久久久| 男女高潮啪啪啪动态图| 欧美在线黄色| 少妇人妻久久综合中文| 中文字幕制服av| 日韩人妻精品一区2区三区| 国产免费一区二区三区四区乱码| 91精品三级在线观看| 熟女少妇亚洲综合色aaa.| 日韩制服丝袜自拍偷拍| 久久精品亚洲av国产电影网| 一二三四在线观看免费中文在| 国产男女超爽视频在线观看| 啦啦啦在线免费观看视频4| 精品人妻在线不人妻| 精品一区二区免费观看| 18禁动态无遮挡网站| 久久天躁狠狠躁夜夜2o2o | 久久精品国产a三级三级三级| 这个男人来自地球电影免费观看 | 免费高清在线观看视频在线观看| 老司机在亚洲福利影院| 狠狠婷婷综合久久久久久88av| 精品第一国产精品| 考比视频在线观看| 熟女少妇亚洲综合色aaa.| 久久精品国产a三级三级三级| 成人手机av| 美女国产高潮福利片在线看| 中文字幕另类日韩欧美亚洲嫩草| 91精品国产国语对白视频| 国产不卡av网站在线观看| 一本色道久久久久久精品综合| 国产成人欧美| 91国产中文字幕| 美女国产高潮福利片在线看| 51午夜福利影视在线观看| 在线观看免费高清a一片| 亚洲精华国产精华液的使用体验| 免费久久久久久久精品成人欧美视频| 国产精品麻豆人妻色哟哟久久| 欧美日韩福利视频一区二区| 亚洲精品在线美女| 只有这里有精品99| 在线免费观看不下载黄p国产| 成年美女黄网站色视频大全免费| 一本久久精品| 最近中文字幕2019免费版| 久久青草综合色| 国产又色又爽无遮挡免| www.熟女人妻精品国产| 久热这里只有精品99| 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久小说| 国产精品国产三级国产专区5o| 男女免费视频国产| 无限看片的www在线观看| 亚洲av日韩精品久久久久久密 | 午夜91福利影院| 深夜精品福利| 在线观看国产h片| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 老熟女久久久| 一区二区av电影网| 亚洲av成人不卡在线观看播放网 | 久久天躁狠狠躁夜夜2o2o | 日韩一区二区视频免费看| 最近最新中文字幕免费大全7| 999久久久国产精品视频| 香蕉国产在线看| 亚洲五月色婷婷综合| 成人毛片60女人毛片免费| 一本久久精品| 免费观看人在逋| 9191精品国产免费久久| 色94色欧美一区二区| 午夜免费鲁丝| 国产毛片在线视频| 综合色丁香网| 男女床上黄色一级片免费看| 国产一区二区 视频在线| 亚洲精品久久成人aⅴ小说| 爱豆传媒免费全集在线观看| 午夜影院在线不卡| 爱豆传媒免费全集在线观看| 一级爰片在线观看| 狂野欧美激情性xxxx| 亚洲精品一区蜜桃| 七月丁香在线播放| 少妇精品久久久久久久| 大码成人一级视频| 亚洲av在线观看美女高潮| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦啦在线视频资源| 欧美日韩视频精品一区| 老汉色∧v一级毛片| 欧美亚洲 丝袜 人妻 在线| 9热在线视频观看99| 国产福利在线免费观看视频| 中文乱码字字幕精品一区二区三区| 精品国产露脸久久av麻豆| 99久久99久久久精品蜜桃| www.av在线官网国产| 天美传媒精品一区二区| 亚洲久久久国产精品| 亚洲av福利一区| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 国产精品99久久99久久久不卡 | 黄色毛片三级朝国网站| 午夜福利免费观看在线| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 好男人视频免费观看在线| 久久女婷五月综合色啪小说| 美国免费a级毛片| 精品国产乱码久久久久久男人| 夜夜骑夜夜射夜夜干| 肉色欧美久久久久久久蜜桃| 久久久久网色| 这个男人来自地球电影免费观看 | 99热网站在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲国产一区二区在线观看 | 久久人人97超碰香蕉20202| 香蕉国产在线看| 老司机靠b影院| 欧美日韩一级在线毛片| 亚洲少妇的诱惑av| 国产男人的电影天堂91| 精品人妻在线不人妻| 国产视频首页在线观看| 捣出白浆h1v1| 精品卡一卡二卡四卡免费| 国产精品av久久久久免费| 亚洲精品国产av成人精品| 成年美女黄网站色视频大全免费| 黄色视频在线播放观看不卡| 婷婷色麻豆天堂久久| 亚洲三区欧美一区| 欧美人与性动交α欧美精品济南到| 国产精品久久久久久久久免| 精品一区二区免费观看| 欧美精品高潮呻吟av久久| 熟女少妇亚洲综合色aaa.| av视频免费观看在线观看| 久久午夜综合久久蜜桃| 黄色一级大片看看| 亚洲国产最新在线播放| 亚洲一码二码三码区别大吗| 午夜激情av网站| 十八禁人妻一区二区| 亚洲成人一二三区av| 在线观看免费午夜福利视频| 十八禁高潮呻吟视频| 久久久久国产一级毛片高清牌| h视频一区二区三区| 久久久久精品国产欧美久久久 | 另类精品久久| 午夜老司机福利片| av在线老鸭窝| 免费av中文字幕在线| 亚洲国产精品999| 亚洲婷婷狠狠爱综合网| 精品免费久久久久久久清纯 | 午夜免费男女啪啪视频观看| 91老司机精品| 亚洲av日韩精品久久久久久密 | 人人妻人人澡人人爽人人夜夜| 久久99热这里只频精品6学生| 黄色视频不卡| 一级毛片我不卡| 亚洲一码二码三码区别大吗| 亚洲三区欧美一区| 日韩不卡一区二区三区视频在线| 免费黄频网站在线观看国产| 免费av中文字幕在线| 亚洲成av片中文字幕在线观看| 高清不卡的av网站| 狠狠婷婷综合久久久久久88av| 9热在线视频观看99| 免费人妻精品一区二区三区视频| 亚洲专区中文字幕在线 | 考比视频在线观看| av在线播放精品| 最近中文字幕2019免费版| 成年人午夜在线观看视频| 亚洲精品自拍成人| 纯流量卡能插随身wifi吗| 一区二区av电影网| 国产淫语在线视频| 久久久久久久久免费视频了| 国产男女超爽视频在线观看| 欧美日韩精品网址| 观看av在线不卡| 亚洲图色成人| 国产男女内射视频| 深夜精品福利| av电影中文网址| 老鸭窝网址在线观看| 亚洲精品在线美女| av片东京热男人的天堂| av视频免费观看在线观看| 久久99热这里只频精品6学生| 黑丝袜美女国产一区| 下体分泌物呈黄色| 观看av在线不卡| 久久久国产欧美日韩av| 久久久久精品国产欧美久久久 | 人人妻,人人澡人人爽秒播 | 卡戴珊不雅视频在线播放| 免费女性裸体啪啪无遮挡网站| 少妇 在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区三区| 亚洲成人av在线免费| 欧美日韩精品网址| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看| 成人漫画全彩无遮挡| 波野结衣二区三区在线| 国产黄色视频一区二区在线观看| 99精品久久久久人妻精品| tube8黄色片| 中文字幕最新亚洲高清| 午夜福利免费观看在线| 777久久人妻少妇嫩草av网站| 一区在线观看完整版| 免费黄频网站在线观看国产| 亚洲国产精品一区三区| 人体艺术视频欧美日本| 亚洲欧美日韩另类电影网站| 久久久精品国产亚洲av高清涩受| 久热这里只有精品99| 高清不卡的av网站| 中文天堂在线官网| 亚洲精品国产av蜜桃| 亚洲国产欧美在线一区| 亚洲久久久国产精品| 午夜福利影视在线免费观看| 免费高清在线观看视频在线观看| 97在线人人人人妻| av一本久久久久| 久久精品人人爽人人爽视色| av女优亚洲男人天堂| 免费观看a级毛片全部| 国产精品麻豆人妻色哟哟久久| 国产日韩一区二区三区精品不卡| 老司机影院毛片| 免费黄色在线免费观看| 精品久久久久久电影网| 久久久精品免费免费高清| 一区二区三区四区激情视频| 亚洲欧美一区二区三区黑人| 亚洲精品中文字幕在线视频| 国产精品人妻久久久影院| 亚洲,欧美,日韩| 日韩免费高清中文字幕av| 久久99精品国语久久久| 国产亚洲精品第一综合不卡| 精品第一国产精品| 狠狠婷婷综合久久久久久88av| 久久精品久久久久久久性| 亚洲美女视频黄频| 欧美97在线视频| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| 国产一级毛片在线| 国产亚洲欧美精品永久| www.av在线官网国产| 国产精品久久久久久精品电影小说| 亚洲精品视频女| 中文字幕亚洲精品专区| 国产亚洲午夜精品一区二区久久| 19禁男女啪啪无遮挡网站| 五月天丁香电影| 日本色播在线视频| 美女午夜性视频免费| 国产99久久九九免费精品| 永久免费av网站大全| 亚洲精品国产av蜜桃| 夫妻午夜视频| 成人亚洲欧美一区二区av| 国产日韩欧美视频二区| 最近最新中文字幕免费大全7| 一本一本久久a久久精品综合妖精| 女人爽到高潮嗷嗷叫在线视频| 国产精品偷伦视频观看了| 国产精品麻豆人妻色哟哟久久| 我的亚洲天堂| 亚洲七黄色美女视频| 久久久久久久大尺度免费视频| 一边亲一边摸免费视频| 90打野战视频偷拍视频| 麻豆乱淫一区二区| 少妇的丰满在线观看| 老汉色av国产亚洲站长工具| 成年人午夜在线观看视频| 日本一区二区免费在线视频| 国产精品国产av在线观看| 午夜91福利影院| 中文欧美无线码| 亚洲第一av免费看| 亚洲色图综合在线观看| 日韩一本色道免费dvd| 极品少妇高潮喷水抽搐| 久久人人爽av亚洲精品天堂| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲高清精品| 男女高潮啪啪啪动态图| 精品国产乱码久久久久久男人| 亚洲精品中文字幕在线视频| 熟女少妇亚洲综合色aaa.| 人人妻人人澡人人爽人人夜夜| 青春草国产在线视频| 久久久久国产一级毛片高清牌| 黄色一级大片看看| 精品少妇一区二区三区视频日本电影 | 午夜福利视频精品| 国产精品国产三级专区第一集| 亚洲欧美色中文字幕在线| 久久99热这里只频精品6学生| 母亲3免费完整高清在线观看| 亚洲av成人不卡在线观看播放网 | 丰满乱子伦码专区| 国产熟女欧美一区二区| 国产成人欧美| 黑人猛操日本美女一级片| 美女脱内裤让男人舔精品视频| 老汉色∧v一级毛片| 国产亚洲午夜精品一区二区久久| 最近中文字幕2019免费版| 丝袜在线中文字幕| av一本久久久久| 亚洲第一区二区三区不卡| 久久久久久人妻| 亚洲情色 制服丝袜| 交换朋友夫妻互换小说| 亚洲少妇的诱惑av| 久久精品久久精品一区二区三区| 久久久亚洲精品成人影院| 波多野结衣av一区二区av| 啦啦啦视频在线资源免费观看| 免费高清在线观看视频在线观看| 国产xxxxx性猛交| 9191精品国产免费久久| 成人黄色视频免费在线看| 久久精品aⅴ一区二区三区四区|