• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CuAg nanoparticles on TiO2 for high-efficiency photodegradation of acetaldehyde

    2022-06-18 02:36:22XUJiliangWANGLiufengJIANGPengyanLIShuhuiHUANGJiwuWANGLiangbing
    貴金屬 2022年1期
    關(guān)鍵詞:電荷轉(zhuǎn)移光電流吸收光譜

    XU Ji-liang,WANG Liu-feng,JIANG Peng-yan,LI Shu-hui,HUANG Ji-wu ,WANG Liang-bing

    (1.State Key Laboratory for Powder Metallurgy,School of Materials Science and Engineering,Central South University,Changsha 410083,China;2.Zhejiang NHU Company Ltd.,Shaoxin 312500,Zhejiang,China)

    Abstract:Photodegradation of acetaldehyde serves as a novel and efficient approach for removing acetaldehyde,and TiO2 is generally used as a photocatalyst.However,TiO2 has a weak adsorption capacity for acetaldehyde,low product selectivity,and high electron-hole pair recombination rate,which significantly limit the treatment performance of acetaldehyde.In this study,we successfully constructed a highly active and stable photocatalyst for photocatalytic degradation of acetaldehyde by loading CuAg nanoparticles on TiO2 (CuAg/TiO2),which efficiently solved the inherent defects of TiO2.The degradation rate of acetaldehyde on CuAg/TiO2 was up to 42.49 % under the irradiation of natural sunlight.CuAg/TiO2 retained above 98.89% of initial activity after four successive rounds of full spectrum photodegradation.Further mechanism studies indicated that CuAg nanoparticles in CuAg/TiO2 generated hot electrons under light,followed by the transfer of hot electrons to TiO2 and oxygen adsorbed on Ag sites.The generated superoxide radicals on CuAg/TiO2 can efficiently degradate acetaldehyde,resulting in the remarkable performance in the removal process of acetaldehyde.

    Key words:silver;surface plasmon resonance;copper;acetaldehyde photodegradation;plasmonic catalysis

    Acetaldehyde,as a volatile organic chemical,is one of the typical air pollutants[1].Especially in the modern residential and commercial buildings,cars and other indoor spaces,the concentration of acetaldehyde is often higher than outside.Long-term inhalation of acetaldehyde pollutants could cause a range of symptoms,including headache,nausea,and even damage of liver’s function[2-3].Currently,many techniques,such as physical adsorption,biodegradation,thermal catalysis technology,and photocatalytic oxidation,have been used to remove acetaldehyde pollutant[3-4].Among them,photocatalysis has become one of the most effective techniques for acetaldehyde removalbecause of its non-toxic,low cost,convenient operation,and eco-friendly[3].Titanium dioxide (TiO2)with semiconductor properties is widely used in photocatalytic degradation of air pollutants[5-18].However,its application on degrading acetaldehyde has some limitations due to the inherent defects of TiO2[6,8,11].For instance,TiO2has low acetaldehyde adsorption capacity,low product selectivity and high electron-hole pair recombination rate[13,15,18].Thanks to the multitudinous efforts of several research groups,it has been found that the synergistic catalytic effect between plasmonic metals and semiconductors can effectively improve its photodegradation efficiency[4,19-20].For example,Jia and co-workers[4]proposed a heterogeneous catalyst consisting of plasmonic gold nanoparticles and TiO2for removing acetaldehyde.The synergistic effect enhances the photodegradation efficiency of acetaldehyde from two main aspects:1)the presence of TiO2particles leads to the enhancement of localized electric fields on the plasmonic surfaces,causing the enhanced adsorption of acetaldehyde and reaction intermediates on catalyst surfaces,and also changing its product selectivity.2) The interaction between the plasmonic particles and TiO2particles promotes the separation of photogenerated carriers and improves the life spans of catalysts[4,20].

    We reported a properly designed CuAg/TiO2catalyst for high-efficiency photocatalytic degradation of acetaldehyde,which showed remarkable catalytic activity for the photodegradation of acetaldehyde and also high CO2product selectivity.During the process of photodegradation of acetaldehyde,the degradation rate of acetaldehyde on CuAg/TiO2was up to 98.97% under the irradiation of 385 nm light.Impressively,CuAg/TiO2had an acetaldehyde degradation rate of 42.49%under the irradiation of natural sunlight.Furthermore,more than 98.89% of initial activity was maintained after four catalytic cycles.Further mechanism studies indicated that oxygen adsorbed on Ag sites obtained hot electrons generated by the localized surface plasmon resonance (LSPR) effect and then formed superoxide radicals,while TiO2efficiently adsorbed acetaldehyde molecules on CuAg/TiO2,directly contributing to the performance improvement of CuAg/TiO2.

    1 Experiments

    1.1 Materials and chemicals

    Silver nitrate (AgNO3) was purchased from Sinopharm Chemical Reagent Co.Ltd.Copper nitrate trihydrate (Cu(NO3)2·3H2O) was obtained from Shanghai Aladdin Biochemical Technology Co.Ltd.Hydrazine hydrate (N2H4·H2O,80%) was supplied by Hunan Huihong Chemical Reagent Co.Ltd.Commercial P25 powder was purchased from Degussa company.High purity carbon dioxide (CO2≥99.999%)was ordered from Saizhong Specail Gas Co.Ltd.All aqueous solutions were prepared using deionized (DI)water with a resistivity of 18.2 MΩ·cm-1.

    1.2 Synthesis of Cu/TiO2,Ag/TiO2 and CuAg/TiO2

    All catalysts were preparedviahydrazine hydrate reduction method.In general,the synthesis of Cu/TiO2catalysts is as follow:1 g of TiO2was dispersed in 5 mL of Cu(NO3)2solution (63 μmol/L),then stirred the mixture for 3 h in a 20 mL reaction flask at 80℃,and dropwisely added hydrazine hydrate into the mixture and stirred for another 1 h at 80℃;and washed the resulted precipitates with deionized (DI) water and centrifuged for several times.The obtained Cu/TiO2was dispersed in DI water for further use.The preparation methods of Ag/TiO2and CuAg/TiO2were similar to that of Cu/TiO2,except that 1 g of TiO2was dispersed in 5 mL of AgNO3(37 μmol/L) solution or a solution of AgNO3(23.3 μmol/L) and Cu(NO3)2(23.3 μmol/L).

    1.3 Photocatalytic tests

    The photocatalytic degradation of acetaldehyde was conducted in a 352 mL quartz topirradiation-type reaction vessel.First,100 mg of catalysts was evenly spread on the bottom of reaction vessel by gradually spraying the suspended catalyst mixture into the reactor,then injected acetaldehyde gas (~400×10-6) into the reactor.In order to achieve adsorption-desorption equilibrium between acetaldehyde and the photocatalyst,the reactor was kept under dark for 2 hours.After illumination,the concentration of acetaldehyde in the reactor was monitored at set intervals by a gas chromatography (GC) (9790Ⅱ,FULI) equiped with a flame ionization detector (FID).The acetaldehyde degradation (X,%) was calculated by the formula:

    whereC0andCrepresent the initial concentration and real-time concentration of acetaldehyde,respectively.

    1.4 Characterization

    The XRD patterns were obtained by a Rigaku Xray diffractometer (Rigaku,MiniFlex 600) with Cu-Kα radiation (λ=1.54178 ?).TEM and HAADF-STEM images were obtained on a field-emission transmission electron microscope (JEOL,ARM-200F) with an acceleration voltage of 200 kV.X-ray photoemission spectroscopy (XPS) experiments were implemented at BL10B beamline in the National Synchrotron Radiation Laboratory (NSRL) in Hefei,China.The UVVis absorption experiments were carried out on a double beam UV-Vis spectrophotometer (Persee,TU-1901) at room temperature.The inductively coupled plasma optical emission spectrometry (ICP-OES)experiments were implemented on a plasma spectrometer (Spectro,Spectro Blue SOP).The CO2concentration during the photodegradation of acetaldehyde was investigated using a gas chromatography (GC) (9790Ⅱ,FULI) equipped with a thermal conductivity detector (TCD).

    2 Results and discussions

    2.1 Structure characterizations of photocatalysts

    The samples were characterized by TEM,HAADF-STEM,and EDX elemental mapping,as shown in Fig.1.

    Fig.1 TEM images of (a) TiO2,(b) CuAg/TiO2 and (c) HAADF-STEM and the corresponding EDX elemental mapping images of CuAg/TiO2圖1 TiO2(a)和CuAg/TiO2(b)的透射電子顯微鏡圖像及CuAg/TiO2 的HAADF-STEM 及相應(yīng)的EDX 元素映射圖(c)

    Fig.1(a) showed the TEM image of TiO2,where the average particle size of TiO2was~50 nm.Fig.1(b)illustrated the TEM image of CuAg/TiO2preparedviahydrazine hydrate reduction method.Isolated metal nanoparticles with extremely small sizes were marked with white circles,and metal nanoparticles uniformly distributedn on the surface of TiO2nanoparticles.HAADF-STEM image and the corresponding energy dispersive X-ray (EDX) elemental mapping of CuAg/TiO2showed thatCu,Ag,Ti,and O elements evenly distributed in the nanostructure (Fig.1(c)).

    The crystalline structures and compositions of the as-synthesized samples were further analyzed by X-ray diffraction (XRD).As shown in Fig.2,the main lattice type of TiO2nanoparticles was anatase.As for Cu/TiO2,Ag/TiO2,and CuAg/TiO2,the characteristic peaks of Cu and Ag were weak,which might be due to the amorphous Cu,Ag,and CuAg nanoparticles.The XRD results agreed with the analysis of TEM images.

    Fig.2 XRD patterns of samples圖2 樣品的X 射線衍射圖譜

    2.2 Catalytic performances of photocatalysts in the degradation of acetaldehyde

    The catalytic performances of as-obtained Cu/TiO2,Ag/TiO2,CuAg/TiO2,and TiO2in photocatalytic degradation of acetaldehyde were evaluated,and the experimental methods were described in the Experiments section.A blank test was conducted without any catalyst,and no product was observed.

    Fig.3(a) illustrated the reaction profiles of TiO2,Ag/TiO2,Cu/TiO2and CuAg/TiO2versus time during photocatalytic degradation of acetaldehyde.CuAg/TiO2attained the highest acetaldehyde conversion rate of 98.84% within 20 minutes.In comparison,the degradation rates of acetaldehyde on Cu/TiO2,Ag/TiO2,and TiO2reduced to 95.76%,94.11%,and 98.08% under the same conditions,respectively.The photocatalytic activities of as-obtained catalysts under visible light (λ > 400 nm) irradiation were evaluated.As shown in Fig.3(b),the acetaldehyde concentration on CuAg/TiO2was quickly decreased,reaching a turning point at about 15 min,and a acetaldehyde conversion rate of 98.36% was obtained within 45 min.The catalytic performance of Cu/TiO2was similar to that of CuAg/TiO2,and its acetaldehyde conversion rate reached to 98.24%.The catalytic performances of Ag/TiO2and TiO2were far inferior to Cu/TiO2and CuAg/TiO2,only 12.52% and nearly 0 conversion rate under visible light irradiation were obtained,respectively.To explore reaction path of acetaldehyde photodegradation,we collected products during reaction.Fig.3(c) showed the time function of generating CO2from the photodegradation of acetaldehyde under visible light irradiation.There was no CO2released on TiO2catalyst,and the amount of produced CO2also followed the order of CuAg/TiO2>Cu/TiO2>Ag/TiO2.When the reaction time was 60 min,the concentration of CO2on CuAg/TiO2catalyst reached to 651.42×10-6,which was much higher than that of other catalysts.Fig.3(d) revealed that the conversion rate of acetaldehyde increased with catalyst mass.The effects of different wavelengths of light irradiation on acetaldehyde degradation were investigated.As shown in Fig.3(e),CuAg/TiO2had an optimal degradation rate of 98.97% under the light wavelength of 385 nm,which was much higher than that of other wavelengths.Impressively,the degradation rate of acetaldehyde on CuAg/TiO2was up to 42.49% under the irradiation of natural sunlight,which was of great significance for practical application.

    Fig.3 Time course under irradiation圖3 光照下反應(yīng)時間歷程

    The cyclic catalytic performance of CuAg/TiO2photocatalyst was tested.As shown in Fig.3(f),CuAg/TiO2retained more than 98.89% of the initial activity after four successive rounds,indicating its excellent stability.In brief,CuAg/TiO2showed a good applicability in the photocatalytic degradation of acetaldehyde.

    Besides the degradation of acetaldehyde,we also evaluated the catalytic performances of CuAg/TiO2and TiO2for the photodegradation of benzene.As shown in Fig.4(a),both CuAg/TiO2and TiO2exhibited catalytic activities under full spectrum irradiation of xenon lamp.The degradation rate of benzene on CuAg/TiO2was higher than that of TiO2,which reached to 98.63%within 30 minutes.Under the irradiation of visible light,there was no activity on TiO2catalyst,while the optimal conversion rate on CuAg/TiO2was 96.15% (Fig.4(b)).Thus,CuAg/TiO2catalyst can be extended to photodegradation of benzene in the air.

    Fig.4 Time course of photocatalytic degradation of benzene on CuAg/TiO2,and TiO2 under irradiation圖4 CuAg/TiO2 和TiO2 光催化降解苯的時間歷程

    2.3 Mechanism studies of excellent catalytic activity for CuAg/TiO2 in photocatalytic degradation of acetaldehyde

    In order to elucidate the mechanisms of the remarkable catalytic activity of CuAg/TiO2in photodegradation of acetaldehyde,we investigated its optical and electronic structure.

    Fig.5(a) showed the diffuse reflectance ultravioletvisible (UV-Vis) spectra,where CuAg/TiO2and Ag/TiO2exhibited similar optical properties with strong absorption in the full spectrum of 300~750 nm.A broad characteristic plasmonic absorption band of CuAg/TiO2at~510 nm was clearly observed,while that of Ag/TiO2was showed at~490 nm.In contrast,Cu/TiO2had no such characteristic absorption band in the visible light region while the absorbance of light was constantly enhanced.It can be inferred that CuAg/TiO2had the effects of both Ag/TiO2and Cu/TiO2,resulting in the high absorption at about 510 nm.The absorbance of CuAg/TiO2in the visible light region was much higher than that of Ag/TiO2,resulting in the outstanding degradation rate of acetaldehyde on CuAg/TiO2catalyst under visible light irradiation.

    Fig.5 (a).UV-Vis absorption spectroscopy;(b) Schematic diagram of the indirect charge-transfer mechanism on CuAg/TiO2;(c) Transient photocurrent responses of CuAg/TiO2 under irradiation of different wavelengths of light圖5 (a).紫外-可見吸收光譜;(b).CuAg/TiO2間接電荷轉(zhuǎn)移機理示意圖;(c).CuAg/TiO2在不同波長光照射下的瞬態(tài)光電流響應(yīng)

    In addition,a Schottky barrier was created at the interface between CuAg nanoparticles and TiO2(Fig.5(b)).The hot electrons generated by the LSPR effect can transfer to the conduction band of TiO2phase,and enter into lowest unoccupied molecular orbital (LUMO) of the adsorbed acetaldehyde through an indirect charge-transfer mechanism[21].The absorbed acetaldehyde molecules were activated,leading to the next level chemical transformation.Fig.5(c) revealed the changes of photocurrent on CuAg/TiO2catalyst under the irradiation of monochromatic light across 385~740 nm.The highest photocurrent signal located at 535 nm,which agreed with the results of UV-Vis absorption spectra.Even under the irradiation of monochromatic light of 740 nm,the signal of photocurrent was also observed.

    In order to verify the electrons transferring process and the reaction intermediates of photodegrading acetaldehyde,we analyzed thein situX-ray photoelectron spectroscopy (XPS) spectra of CuAg/TiO2during reaction process (in Fig.6).

    Fig.6 In situ XPS spectra of CuAg/TiO2 with/without light irradiation or CH3CHO圖6 有光照及無光照、有甲醛及無甲醛時CuAg/TiO2 的原位X 射線光電子能譜

    As displayed in the Ti 2p XPS spectra of CuAg/TiO2(Fig.6(a)),a peak of Ti4+appeared in the CuAg/TiO2catalyst,which was corresponding to TiO2[22].After adding acetaldehyde,a peak of Ti3+appeared in the sample without light irradiation,which was presumed to be the peak of acetaldehyde adsorbed on the Ti sites (Ti-C).The peak of Ti3+disappeared under illumination,indicating the change of Ti-C into TiO2owing to the conversion of acetaldehyde.The Ag 3d XPS spectra (Fig.6(b)) showed the peak binding energy of the oxygen adsorbed on the Ag sites was 376.95 eV without illumination.The peak of Ag-O2changed back to the peak of Ag,indicating that O2on Ag sites was reacted under light irradiation.In the absence of light,acetaldehyde molecules and oxygen were attached to the surface of the catalyst,so the oxygen got hot electrons from Ag sites to form superoxide radicals that reacted quickly with acetaldehyde molecules to produce carbon dioxide[20].As shown in the Cu 2p XPS spectra (Fig.6(c)),the valence state of Cu did not change significantly before and after lighting,indicating that Cu was indeed light absorption units that generated a lot of hot electrons by the LSPR effect under light irradiation rather than active sites.Hot electrons generated by the LSPR effect could activate acetaldehyde molecules and produce superoxide radicals.The O 1s XPS spectra of CuAg/TiO2(Fig.6(d)) exhibited that there were three peaks whose binding energy was respectively corresponding to C=O,C-O and O-H under illumination,manifesting that the products of the photodegradation of acetaldehyde at least had CO2,while other products need to be further confirmed[23-27].

    The reaction process and product compositions of photodegrading acetaldehyde were further verified byin situdiffuse reflectance infrared Fourier transform(DRIFT) measurement.As shown in the DRIFT spectra(Fig.7),the inverted peaks indicated that CH3CHO was consumed during the reaction process.The absorption peaks which were corresponding to OH,CO2,and C=C species appeared at the same time[28].After 10 minutes reaction under light irradiation,the amount of OH species in the product significantly increased comparedwith that of under unilluminated condition,suggesting that acetaldehyde degradation occurred rapidly under light irradiation.Cu not only promoted the light absorption,but also solved the intrinsic problems of a wide band gap and short lifetime of charge carriers in TiO2through the indirect charge-transfer mechanism.In addition,TiO2efficiently adsorbed acetaldehyde molecules without light irradiation,while oxygen was absorbed on Ag sites in CuAg/TiO2.Upon the irradiation of light,oxygen absorbed on Ag sites obtained hot electrons and transformed into superoxide radicals,which reacted with acetaldehyde quickly.

    Fig.7 In situ DRIFT spectra for CuAg/TiO2圖7 CuAg/TiO2 的原位漫反射紅外傅里葉變換光譜

    3 Conclusions

    In conclusion,we reported a well-designed CuAg/TiO2catalyst with remarkable catalytic performance towards the acetaldehyde photodegradation.CuAg/TiO2exhibited a splendid catalytic performance under the full spectrum and visible light irradiation.After four cycles of catalytic experiments,CuAg/TiO2still retained 98.89% of the initial activity,proving that CuAg/TiO2had an excellent stability and was of great significance on practical application.This work not only exploits a hybrid catalyst with plasmonic metals and semiconductors to achieve an efficient performance toward photodegradation of acetaldehyde,but also opens up new possibilities for designing a series of highly efficient catalysts for removing volatile organic chemicals in the air.

    猜你喜歡
    電荷轉(zhuǎn)移光電流吸收光譜
    揭示S型電荷轉(zhuǎn)移機理
    一例具有可逆熱誘導(dǎo)電荷轉(zhuǎn)移行為的二維氰基橋聯(lián)WⅤ?CoⅡ配合物
    基于第一性原理的摻雜單層WS2的光電效應(yīng)
    基于SOI 工藝的二極管瞬時劑量率效應(yīng)數(shù)值模擬*
    電子與封裝(2021年3期)2021-03-29 06:31:28
    原子吸收光譜分析的干擾與消除應(yīng)用研究
    淺析原子吸收光譜法在土壤環(huán)境監(jiān)測中的應(yīng)用
    茶油氧化過程中紫外吸收光譜特性
    常壓微等離子體陽極與離子溶液界面的電荷轉(zhuǎn)移反應(yīng)
    量子點紅外探測器的性能優(yōu)化
    基于分子內(nèi)電荷轉(zhuǎn)移機制的巰基熒光比色化學(xué)傳感器
    国产探花在线观看一区二区| 人人妻人人澡人人爽人人夜夜 | 最近视频中文字幕2019在线8| 国产欧美另类精品又又久久亚洲欧美| 精品人妻偷拍中文字幕| 91精品一卡2卡3卡4卡| 天天一区二区日本电影三级| 伦理电影大哥的女人| 国产精品一区二区性色av| 一级黄色大片毛片| 亚洲国产高清在线一区二区三| 精品一区二区三区人妻视频| 日产精品乱码卡一卡2卡三| 久久亚洲精品不卡| 精品久久久久久电影网 | 国产黄色小视频在线观看| 五月玫瑰六月丁香| 在线免费观看的www视频| 亚洲美女视频黄频| 26uuu在线亚洲综合色| 99久久中文字幕三级久久日本| av免费在线看不卡| 国产精品一及| av免费在线看不卡| 五月玫瑰六月丁香| 青春草亚洲视频在线观看| a级毛片免费高清观看在线播放| 欧美一区二区亚洲| av在线播放精品| 久久人人爽人人片av| 午夜精品一区二区三区免费看| 亚洲三级黄色毛片| 久久精品国产亚洲av涩爱| 神马国产精品三级电影在线观看| 日韩强制内射视频| 国产精品国产三级国产专区5o | 偷拍熟女少妇极品色| 国产麻豆成人av免费视频| 99热精品在线国产| 午夜福利高清视频| 我的女老师完整版在线观看| 美女cb高潮喷水在线观看| 在线播放国产精品三级| 亚洲成人av在线免费| 亚洲av成人精品一二三区| 91久久精品国产一区二区成人| 亚洲精品456在线播放app| 色5月婷婷丁香| 神马国产精品三级电影在线观看| 18禁在线播放成人免费| 色视频www国产| 波多野结衣巨乳人妻| 在线a可以看的网站| 特级一级黄色大片| 可以在线观看毛片的网站| 亚洲无线观看免费| 看十八女毛片水多多多| 国产免费福利视频在线观看| 亚洲乱码一区二区免费版| 国产精品国产三级国产av玫瑰| 国产高清国产精品国产三级 | 日本免费a在线| av又黄又爽大尺度在线免费看 | 成人鲁丝片一二三区免费| 欧美成人免费av一区二区三区| 特大巨黑吊av在线直播| 免费黄网站久久成人精品| 精品人妻一区二区三区麻豆| 亚洲丝袜综合中文字幕| 国产激情偷乱视频一区二区| 日韩国内少妇激情av| 亚洲自拍偷在线| 综合色丁香网| 亚洲人成网站在线播| 久久鲁丝午夜福利片| 97人妻精品一区二区三区麻豆| av视频在线观看入口| 女的被弄到高潮叫床怎么办| 国产精品.久久久| 热99在线观看视频| 亚洲精品国产av成人精品| 国产精品永久免费网站| 欧美三级亚洲精品| 床上黄色一级片| 日韩 亚洲 欧美在线| 国产精品人妻久久久久久| 日本五十路高清| 欧美性猛交╳xxx乱大交人| 啦啦啦啦在线视频资源| 欧美不卡视频在线免费观看| 亚洲av成人精品一二三区| 久久午夜福利片| 国产综合懂色| 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区三区| 建设人人有责人人尽责人人享有的 | 高清av免费在线| 我要搜黄色片| 直男gayav资源| 亚洲中文字幕日韩| 国产精品三级大全| 久久久国产成人精品二区| 亚洲无线观看免费| 久久这里只有精品中国| 好男人在线观看高清免费视频| 美女被艹到高潮喷水动态| 男人舔奶头视频| 深爱激情五月婷婷| 成人无遮挡网站| 美女高潮的动态| 午夜精品国产一区二区电影 | 纵有疾风起免费观看全集完整版 | 国产亚洲av片在线观看秒播厂 | 欧美成人精品欧美一级黄| 精品人妻一区二区三区麻豆| 成人午夜精彩视频在线观看| 亚洲国产精品合色在线| 在线a可以看的网站| 久久精品91蜜桃| 亚洲av中文av极速乱| 国产精品久久久久久精品电影| 变态另类丝袜制服| 精品久久久久久久末码| 国产精品蜜桃在线观看| 免费无遮挡裸体视频| 久久精品夜夜夜夜夜久久蜜豆| 一级毛片我不卡| 男女那种视频在线观看| 一区二区三区高清视频在线| 一个人免费在线观看电影| 久久精品国产亚洲av天美| 成年女人看的毛片在线观看| 青春草亚洲视频在线观看| 嘟嘟电影网在线观看| 欧美不卡视频在线免费观看| 国产一区亚洲一区在线观看| 人妻系列 视频| 不卡视频在线观看欧美| 日韩大片免费观看网站 | 色网站视频免费| 97超视频在线观看视频| 能在线免费观看的黄片| 天天一区二区日本电影三级| 亚洲av免费在线观看| 日韩一区二区视频免费看| 免费看a级黄色片| 99国产精品一区二区蜜桃av| 九九爱精品视频在线观看| 在线观看66精品国产| 国产国拍精品亚洲av在线观看| 国产精品一区www在线观看| 亚洲国产日韩欧美精品在线观看| 婷婷六月久久综合丁香| 91精品伊人久久大香线蕉| 亚洲在线自拍视频| 蜜臀久久99精品久久宅男| or卡值多少钱| 成年av动漫网址| 国产午夜福利久久久久久| 丰满乱子伦码专区| 午夜精品国产一区二区电影 | 久久精品熟女亚洲av麻豆精品 | www日本黄色视频网| 99久久无色码亚洲精品果冻| 欧美潮喷喷水| 少妇被粗大猛烈的视频| 99久国产av精品国产电影| 国产又色又爽无遮挡免| 菩萨蛮人人尽说江南好唐韦庄 | 国产熟女欧美一区二区| 狂野欧美激情性xxxx在线观看| 18禁动态无遮挡网站| 国产av码专区亚洲av| 国产黄a三级三级三级人| 久久久国产成人精品二区| 国产高清不卡午夜福利| 成人特级av手机在线观看| 欧美成人免费av一区二区三区| 亚洲电影在线观看av| 最近视频中文字幕2019在线8| 高清毛片免费看| 人妻夜夜爽99麻豆av| 我要搜黄色片| 亚洲在线自拍视频| 亚洲成人中文字幕在线播放| 老司机影院成人| 欧美日韩国产亚洲二区| 亚洲一级一片aⅴ在线观看| 中文字幕精品亚洲无线码一区| 国产白丝娇喘喷水9色精品| 中文精品一卡2卡3卡4更新| 女人被狂操c到高潮| 国产精品1区2区在线观看.| 九色成人免费人妻av| 亚洲精品456在线播放app| 亚洲国产高清在线一区二区三| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av天美| 日韩人妻高清精品专区| 久久午夜福利片| 亚洲人成网站在线观看播放| 亚洲av成人精品一二三区| 精品人妻熟女av久视频| 波野结衣二区三区在线| 青春草亚洲视频在线观看| 99久久成人亚洲精品观看| ponron亚洲| 69av精品久久久久久| 国产日韩欧美在线精品| 欧美bdsm另类| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱| 国产成年人精品一区二区| 午夜激情欧美在线| 国产视频首页在线观看| 日韩av在线大香蕉| 天堂√8在线中文| 插阴视频在线观看视频| 色尼玛亚洲综合影院| 麻豆一二三区av精品| 成人毛片60女人毛片免费| 91久久精品国产一区二区三区| 又爽又黄无遮挡网站| 少妇人妻一区二区三区视频| 日本一本二区三区精品| 国产av在哪里看| 国产精品久久久久久av不卡| 欧美变态另类bdsm刘玥| 国产老妇女一区| 永久网站在线| 成人午夜精彩视频在线观看| 日韩视频在线欧美| 国产精品蜜桃在线观看| 国产亚洲一区二区精品| 九九热线精品视视频播放| 黑人高潮一二区| 久久国产乱子免费精品| 永久网站在线| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看免费完整高清在| av在线亚洲专区| a级一级毛片免费在线观看| 别揉我奶头 嗯啊视频| 久久精品国产亚洲av天美| 欧美+日韩+精品| 国产91av在线免费观看| videos熟女内射| a级一级毛片免费在线观看| 夫妻性生交免费视频一级片| 岛国毛片在线播放| 你懂的网址亚洲精品在线观看 | 国产黄片美女视频| 精品熟女少妇av免费看| 国产亚洲5aaaaa淫片| 少妇被粗大猛烈的视频| 美女黄网站色视频| 岛国在线免费视频观看| 中文字幕亚洲精品专区| 亚洲人成网站在线观看播放| 中文资源天堂在线| 26uuu在线亚洲综合色| 国语对白做爰xxxⅹ性视频网站| 国产午夜精品论理片| 久久久久久伊人网av| 三级国产精品片| 成人欧美大片| 精品一区二区免费观看| 水蜜桃什么品种好| 在线天堂最新版资源| 天美传媒精品一区二区| 欧美变态另类bdsm刘玥| 男女下面进入的视频免费午夜| 日韩高清综合在线| 日韩,欧美,国产一区二区三区 | 日韩视频在线欧美| 成人国产麻豆网| 午夜激情欧美在线| 国产免费一级a男人的天堂| 99国产精品一区二区蜜桃av| 日韩成人伦理影院| 日本猛色少妇xxxxx猛交久久| 99久国产av精品| 永久免费av网站大全| 91精品伊人久久大香线蕉| a级一级毛片免费在线观看| 美女国产视频在线观看| 亚洲精品456在线播放app| 成年女人看的毛片在线观看| 91久久精品国产一区二区成人| 在线播放无遮挡| av又黄又爽大尺度在线免费看 | 国产免费福利视频在线观看| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| 欧美一区二区国产精品久久精品| 久久人妻av系列| 国产精品国产三级专区第一集| 日韩高清综合在线| 国产精品一区二区在线观看99 | 国模一区二区三区四区视频| 久久久久国产网址| 一级毛片久久久久久久久女| 久久久欧美国产精品| 在线免费观看的www视频| 国产一级毛片在线| 2022亚洲国产成人精品| 午夜爱爱视频在线播放| 亚洲第一区二区三区不卡| 两个人视频免费观看高清| 麻豆一二三区av精品| av免费在线看不卡| 成年av动漫网址| 亚洲精品,欧美精品| 久久久国产成人免费| 亚洲色图av天堂| 一级二级三级毛片免费看| 亚洲在线观看片| 国产伦精品一区二区三区视频9| 少妇人妻精品综合一区二区| ponron亚洲| 最近手机中文字幕大全| 搞女人的毛片| ponron亚洲| 国产 一区精品| 亚洲怡红院男人天堂| 美女高潮的动态| 深爱激情五月婷婷| 国产精品,欧美在线| 亚洲av男天堂| www日本黄色视频网| 有码 亚洲区| 精品欧美国产一区二区三| 一级毛片aaaaaa免费看小| 日日啪夜夜撸| 99国产精品一区二区蜜桃av| 啦啦啦观看免费观看视频高清| 久久久午夜欧美精品| 国产黄片视频在线免费观看| 亚洲欧美精品综合久久99| 欧美不卡视频在线免费观看| 九九久久精品国产亚洲av麻豆| 午夜精品在线福利| 在线播放无遮挡| 精品久久久久久电影网 | 99久久九九国产精品国产免费| 日韩三级伦理在线观看| 精品无人区乱码1区二区| 白带黄色成豆腐渣| 亚洲精品乱久久久久久| 国产人妻一区二区三区在| av在线亚洲专区| 美女黄网站色视频| 国产精品一二三区在线看| av福利片在线观看| 国产男人的电影天堂91| 亚洲精品456在线播放app| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 亚洲在线观看片| 成人三级黄色视频| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 亚州av有码| 中文字幕精品亚洲无线码一区| 亚洲在久久综合| 亚洲怡红院男人天堂| 女人被狂操c到高潮| 成年女人看的毛片在线观看| 成人午夜高清在线视频| 成人午夜精彩视频在线观看| 成人国产麻豆网| 麻豆精品久久久久久蜜桃| 亚洲欧美精品自产自拍| 成年女人永久免费观看视频| 高清毛片免费看| 日韩av在线免费看完整版不卡| 欧美成人a在线观看| 中文字幕av在线有码专区| 国产精品av视频在线免费观看| 最近2019中文字幕mv第一页| 免费av不卡在线播放| 美女xxoo啪啪120秒动态图| 亚洲国产精品国产精品| 村上凉子中文字幕在线| 大香蕉97超碰在线| 伊人久久精品亚洲午夜| 最近视频中文字幕2019在线8| 人妻系列 视频| av.在线天堂| 美女内射精品一级片tv| 欧美人与善性xxx| 亚洲国产欧美在线一区| 国产精品久久电影中文字幕| 日韩人妻高清精品专区| 最近手机中文字幕大全| 国产探花极品一区二区| 日韩,欧美,国产一区二区三区 | 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品 | 少妇熟女aⅴ在线视频| 99久久精品热视频| 麻豆乱淫一区二区| 亚洲av二区三区四区| 深爱激情五月婷婷| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品sss在线观看| 最近2019中文字幕mv第一页| 免费观看在线日韩| 校园人妻丝袜中文字幕| 99久久精品一区二区三区| 精品久久久久久久久亚洲| 在线免费十八禁| av天堂中文字幕网| 青春草亚洲视频在线观看| 成人亚洲精品av一区二区| 蜜臀久久99精品久久宅男| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 久久久久久久久大av| 久久草成人影院| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 成人欧美大片| 久久久久久伊人网av| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 一本一本综合久久| 国产探花极品一区二区| 亚洲国产欧美人成| 亚洲不卡免费看| 全区人妻精品视频| 观看美女的网站| 国产成人a区在线观看| 国产午夜精品久久久久久一区二区三区| 村上凉子中文字幕在线| 亚洲最大成人手机在线| 男人狂女人下面高潮的视频| 青春草视频在线免费观看| 国产一区二区三区av在线| 人妻系列 视频| 精品人妻偷拍中文字幕| 日本欧美国产在线视频| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| av在线老鸭窝| 免费电影在线观看免费观看| 国产精品久久电影中文字幕| 精品久久久久久久久亚洲| 啦啦啦啦在线视频资源| 精华霜和精华液先用哪个| 午夜福利高清视频| av视频在线观看入口| 尾随美女入室| 亚洲av免费在线观看| 国产综合懂色| 免费av毛片视频| 99久久成人亚洲精品观看| 黄片wwwwww| 男人狂女人下面高潮的视频| 亚洲成人精品中文字幕电影| 女人被狂操c到高潮| 日本与韩国留学比较| 午夜精品在线福利| 成年女人看的毛片在线观看| 最后的刺客免费高清国语| 在线a可以看的网站| 嫩草影院入口| 少妇熟女aⅴ在线视频| 亚洲精品国产成人久久av| 国产精品麻豆人妻色哟哟久久 | 女人久久www免费人成看片 | 国产精品野战在线观看| av又黄又爽大尺度在线免费看 | 国产高潮美女av| 中文乱码字字幕精品一区二区三区 | 国产精品野战在线观看| 波多野结衣高清无吗| 99久国产av精品国产电影| 全区人妻精品视频| 亚洲av免费高清在线观看| 国产极品精品免费视频能看的| 能在线免费看毛片的网站| 久久精品国产亚洲av天美| 亚洲精品成人久久久久久| 午夜激情福利司机影院| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 99视频精品全部免费 在线| 一级二级三级毛片免费看| 国产精品不卡视频一区二区| 免费播放大片免费观看视频在线观看 | 欧美性猛交黑人性爽| 午夜久久久久精精品| 只有这里有精品99| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 精品欧美国产一区二区三| 亚洲电影在线观看av| 日日干狠狠操夜夜爽| 国产伦理片在线播放av一区| 听说在线观看完整版免费高清| 国产淫语在线视频| 免费av毛片视频| 中文在线观看免费www的网站| 日韩制服骚丝袜av| 18禁动态无遮挡网站| 黄片无遮挡物在线观看| 好男人在线观看高清免费视频| 欧美最新免费一区二区三区| av在线播放精品| 亚洲国产日韩欧美精品在线观看| 国产一区二区亚洲精品在线观看| 精品国内亚洲2022精品成人| 少妇人妻一区二区三区视频| 99热全是精品| 女人十人毛片免费观看3o分钟| 免费看日本二区| 亚洲精品久久久久久婷婷小说 | 中文字幕免费在线视频6| 日本色播在线视频| 99热这里只有是精品在线观看| 国产精品一区二区性色av| 亚洲av免费高清在线观看| 精品国产一区二区三区久久久樱花 | 成年版毛片免费区| 观看美女的网站| 久久鲁丝午夜福利片| 免费大片18禁| 99久久九九国产精品国产免费| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产成人久久av| 欧美高清成人免费视频www| 免费看a级黄色片| 亚洲一级一片aⅴ在线观看| 成人亚洲精品av一区二区| www日本黄色视频网| 99热这里只有精品一区| 3wmmmm亚洲av在线观看| 韩国av在线不卡| 边亲边吃奶的免费视频| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 国产精品美女特级片免费视频播放器| 边亲边吃奶的免费视频| 乱系列少妇在线播放| 人人妻人人澡欧美一区二区| 国产精品久久久久久久久免| 国产精品国产三级专区第一集| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 国产黄色小视频在线观看| 国产黄片美女视频| 国产淫片久久久久久久久| 午夜福利在线在线| 久久久久久久国产电影| 精华霜和精华液先用哪个| 亚洲国产精品国产精品| 国产精品三级大全| 国产伦理片在线播放av一区| 91久久精品国产一区二区成人| 永久网站在线| 韩国av在线不卡| 色噜噜av男人的天堂激情| 国产高清三级在线| 有码 亚洲区| 久久鲁丝午夜福利片| 中文字幕熟女人妻在线| 18+在线观看网站| www日本黄色视频网| 男女那种视频在线观看| 久久久久久大精品| 免费看光身美女| 成人无遮挡网站| 欧美一区二区精品小视频在线| 久久久国产成人精品二区| 26uuu在线亚洲综合色| 日本一本二区三区精品| 综合色av麻豆| 一个人看视频在线观看www免费| 久久6这里有精品| 国产极品精品免费视频能看的| 少妇人妻精品综合一区二区| 免费观看a级毛片全部| 欧美极品一区二区三区四区| 黑人高潮一二区| 国产精品不卡视频一区二区| 精品久久久久久久末码| 永久免费av网站大全| 午夜激情福利司机影院| 99久久精品热视频| 美女被艹到高潮喷水动态| 69人妻影院| 白带黄色成豆腐渣| 禁无遮挡网站| 国产三级在线视频| 亚洲国产精品久久男人天堂| 床上黄色一级片| 久久久久久久久中文| 我要搜黄色片| 亚洲色图av天堂| 久久久色成人| 日产精品乱码卡一卡2卡三| 欧美高清性xxxxhd video| 床上黄色一级片| 18+在线观看网站| 精品久久久久久久末码| 午夜福利网站1000一区二区三区| 亚洲一区高清亚洲精品| 免费播放大片免费观看视频在线观看 | 淫秽高清视频在线观看| 久久久久国产网址| 亚洲欧美日韩卡通动漫| 亚洲av日韩在线播放| 午夜爱爱视频在线播放|