• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一例具有可逆熱誘導(dǎo)電荷轉(zhuǎn)移行為的二維氰基橋聯(lián)WⅤ?CoⅡ配合物

    2023-02-27 03:29:26孟銀杉
    無機化學(xué)學(xué)報 2023年2期
    關(guān)鍵詞:電荷轉(zhuǎn)移大連理工大學(xué)精細(xì)化工

    劉 丹 趙 亮 邵 震 孟銀杉 劉 濤

    (大連理工大學(xué),精細(xì)化工國家重點實驗室,大連 116024)

    0 Introduction

    Magnetic molecular switchable materials exhibit?ing bistable chemical and physical properties associat?ed with the electron movement and charge redistribu?tion under external stimuli such as temperature[1?2],light[3?4],electric field[5],pressure[6],or guest mole?cules[7],are attracting considerable interest for both fun?damental interests and potential applications such as switching,display,sensors,information storage devic?es[8?14].Typical magnetic molecular switchable materi?als have been demonstrated concerning variations in electron configuration,such as spin crossover(SCO)of 3d4?3d7ions,valence tautomerism in a pair of metal ions,and ring?opening/closing and cis?trans isomeriza?tion[15?20]. Among them, ETCST (electron?transfer?coupled spin transition)compounds have emerged as the topic issue in this field because of their excellent adjustable bistable characters deriving from the inter?converted metal?to?metal charge transfer(MMCT)between two energetically adjacent metal sites[21?23].In the recent decade,the MMCT process has been utilized as the switchable unit to manipulate magnetic,electric,thermal expansion,and photochromic properties[24?25].The most famous MMCT system is the cyano?bridged bimetallic Fe?Co Prussian blue analogues(PBAs)that were first observed by Hashimoto et al.and widely used to construct molecular?based materials with a syn?ergistic response to multiple functions[26?31].Octacyano?metalate?based compounds have also been certified to be suitable systems to expand the family of ETCST materials,such as in CuⅡ?MoⅣ,WⅤ?CoⅡ,and WⅤ?FeⅡcompounds involving the valence?state conversion WⅣ/Ⅴand MoⅣ/Ⅴ[5,32?37].

    Moreover,octacyanometallate ions possessing more diffuse 4d/5d orbitals and large spin?orbit cou?pling constants can produce stronger magnetic interac?tion with another adjacent metal ion,which will give benefit in constructing multi?responsive molecular magnets with higher Curie temperature[3,38].In particu?lar,the W ?Co charge?transfer compounds display appealing features in their photo?induced magnetic states,such as huge magnetic hysteresis and site?selective switching[39?42].However,it is still a big chal?lenge to construct W?Co charge?transfer compounds.Until now,only a few samples have been reported,and most of them fail to obtain well?defined structures at different temperatures to confirm the occurrence of the charge?transfer process.First,it is because[W(CN)8]3?unit has a more flexible way to connect with CoⅡwith its eight cyano groups.As a result,it is not easy to con?trol the coordination sphere of CoⅡcenters and the dimensions of the overall structure.Second,the occur?rence of charge transfer requires the constituent CoⅡcenter located at a suitable coordination environment to provide equivalent redox potential with adjacent WⅤions.Therefore,rational selection of the auxiliary ligands is important.Third,the thermal hysteresis of the charge?transfer materials,which is crucial for practical application,needs suitable intermolecular interactions.With these concerns,we aim to assemble[W(CN)8]3?with CoⅡto obtain a novel WⅤ?CoⅡcharge?transfer compound,in which the auxiliary ligands 4?(2?naphthalene?1?yl)vinyl pyridine(4?nvp)is selected to adjust the coordination sphere of the CoⅡcenter and provide intermolecular π ?π interaction.Herein,a 2D reticular cyano?bridge compound{[WⅤ(CN)8]2[CoⅡ(4?nvp)4]3}·4CH3OH(1)is reported,which underwent incomplete MMCT in a temperature range of 90?180 K with a 27 K?width thermal hysteresis.

    1 Experimental

    1.1 Materials

    All chemicals were purchased from commercial suppliers and used without further purification.The building blocks(Bu4N)3[W(CN)8]·2H2O(Bu4N=tetrabu?tylammonium)were synthesized according to the litera?ture.

    1.2 Synthesis of 4?nvp

    In a 250 mL three?necked flask,reaction mixtures of 1?bromonaphthalene(2.25 g,10.937 mmol),4?vinyl pyridine(1.2 mL,11.288 mmol),tri(o?tolyl)phosphine(0.6 g,1.970 mmol),Pd(OAc)2(21 mg,0.093 5 mmol),and triethylamine(60 mL)in dry DMF(30 mL)were thoroughly mixed under argon.The reaction mixture was then degassed by free?pump?thaw five times before heating at 85℃for 12 h.After this time,the reaction mixture cooled to room temperature,and the triethyl?amine was removed by rotary evaporation,water(50 mL)was added.The mixture was extracted with CH2Cl2(3×50 mL).Then the organic phase was extracted with H2O(3×50 mL)and saturated NaHCO3(3×50 mL).The solution was dried over anhydrous MgSO4and concen?trated under a vacuum.The crude product was purified by column chromatography(silica gel,ethyl acetate/petroleum ether,2∶1,V/V)and a yellow product(2.115 g,69%)was got.

    1.3 Synthesis of compound 1

    Compound 1 was synthesized by diffusion method in a test tube.The aqueous solution(1.0 mL)of Co(ClO4)2·6H2O(1.83 mg,0.005 0 mmol)was slowly add?ed dropwise to the bottom of the test tube.Then a mix?ture of methanol/water(1∶1,V/V,3 mL)was layered as the middle buffer.Finally,1.0 mL methanol solution of(Bu4N)3[W(CN)8](0.010 mmol)and 4?nvp(0.010 mmol)was carefully added as the third layer.After a few weeks,black red crystals were collected(Yield:1.23 mg,19% based on Co(ClO4)2·6H2O).Anal.Calcd.for C224H172Co3W2N28O4(%):C 69.73,H 4.46,N 10.17;Found(%):C 69.81,H 4.45,N 10.20.

    1.4 Physical measurement

    The single?crystal X?ray diffraction data for 1 were collected on a Bruker D8 Venture CMOS?based diffractometer(Mo Kα radiation,λ=0.071 073 nm)using the SMART and SAINT programs.Final unit cell parameters were based on all observed reflections from the integration of all frame data.The structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization that was implanted in Olex2.The powder X?ray diffrac?tion(PXRD)patterns were collected on a Rigaku Smartlab 9 kW X?ray diffractometer(Cu Kα radiation,λ=0.154 178 nm,U=45 kV,I=200 mA)in a range of 5°?50°at a rate of 5(°)·min?1.Variable?temperature infrared spectra were measured on KBr pellet samples using a Nicolet iS10 FT?IR spectrometer equipped with a Bruker cryostat(Optistat CF2).UV?Vis absorption spectra were recorded on a HITACHI UH?4150 UV?Vis spectrophotometer.Magnetic measurement of the sample was performed on a PPMS magnetometer.Data were corrected for the diamagnetic contribution calcu?lated from Pascal constants.The sample(12.85 mg)was measured under a DC field of 1 000 Oe.The variable?temperature magnetization data were collected within a temperature range of 2?300 K at a rate of 2 K·min?1.The elemental analysis was performed by Ele?mentar Vario EL Ⅲ(Germany).Thermogravimetric analysis was performed under an N2atmosphere at 10 K·min?1using a TG/DTA STD ?Q600 system(TA Instruments,the United States).

    2 Results and discussion

    2.1 Crystal structure

    Compound 1 was synthesized by the diffusion method through the reaction of Co(ClO4)2·6H2O,4?nvp,and(Bu4N)3[W(CN)8]·2H2O in a methanol/water mix?ture,and the crystals were obtained after a few weeks.Single?crystal X ?ray diffraction analysis at 120 K revealed that 1 crystallizes in a monoclinic space group P21/n(Table S1,Supporting information).The unit cell consists of two[W(CN)8]3?units and three[Co(4?nvp)4]2+units,forming a wavy?like layer connected by CN?bond along the a?axis and c?axis(Fig.S1?S3).The layer is constituted with alternately WⅤand CoⅡions through cyano groups,presenting a hexagonal grid structure arranged in order(Fig.1).In the layers,each[W(CN)8]3?unit bridges three CoⅡions through three of its eight CN?groups,and each CoⅡion is coordinated to two nitrogen atoms from the cyanide ligand in the apical positions and four nitrogen atoms from the 4?nvp ligand in the equatorial positions.The coordination geometry of the W and CoⅡsite were square antiprism(D4d)and octahedron(Oh),respectively.Two free water molecules were located around[W(CN)8]3?,forming hydrogen bonds with the uncoordinated CN?ligands as hydrogen bond lengths of 0.192 1 and 0.201 6 nm(H…O),respectively(Fig.S4).The nearest metal?metal dis?tance between the two layers is 1.763 9 nm.

    Fig.1 Arrangement of 1 in the ab plane(left)and detailed structural linkage(right)

    Table 1 Selected bond lengths(nm)and bond angles(°)of 1 at 120 and 295 K,respectively

    At 295 K,the Co—Ncyanideand Co—N4?nvpbond distances are 0.213 8(4)?0.215 1(4)and 0.214 8(5)?0.217 4(5)nm,respectively,which are characteristic of the high spin(HS)CoⅡions.The angles of Co—N≡C are 166.1(4)°?176.9(6)°,departing from linearity slightly.The average distances of the W—C bond are 0.216 3(3)nm,and the angles of W—N≡C are close to 180°.Three independent Co—W—Co angles are 137.0(2)°,136.7(3)°,and 81.5(3)°,respectively.When the temperature declined to 120 K,Co1—Ncyanideand Co1—N4?nvpbond distances are shortened to 0.189 1(6)?0.190 6(6)and 0.195 9(6)?0.198 0(6)nm,respectively,whereas Co2—Ncyanideand Co2—N4?nvpbond lengths remain unchanged,which indicate Co1ⅡHSions change into Co1ⅢLS(LS=low spin).Moreover,Co1—N≡C and Co2—N≡C angles decrease by 4.3(2)°and 2.2(1)°to 170.4(6)°and 179.1(7)°,respectively(Table S1 ?S4).These structural characteristics variations and charge compensation indicate the occurrence of the charge transfer between Co1Ⅱand WⅤions,and 1 underwent a metal?to?metal charge?transfer from the paramagnetic WⅤ—CN—Co1ⅡHSlinkage to the diamagnetic WⅣ—CN—Co1ⅢLSlinkage.

    The π?π interaction is crucial not only in control?ling the assembly or packing of the structure but also in manipulating the properties of the compound.The usual π?π interaction is an offset or slipped stacking of the benzene rings or aromatic nitrogen heterocycles,and the effective distance is 0.330 0?0.380 0 nm.In the layer of compound 1,two kinds of the π?π interac?tion are observed between the naphthalene ring of 4?nvp molecules belonging to the Co1 and Co1 site,and Co1 and Co2 site,with the distance of 0.344 8 and 0.329 9 nm,respectively(Fig.S5).The distances between the ligands among adjacent layers are in a range of 0.363 8 to 0.371 8 nm(Fig.S6),which is in the normal range of the π?π interaction.Those observed π?π interactions directly affect the coordination mode of W—C≡N—Co.The sum of the angles of the three independent Co—W—Co angles is 355.2°,close to 360°.As a result,the plane only fluctuates slightly.For the PXRD analysis,the comparison of the powdered sample of 1 with the simulated pattern calculated by the single crystal structure proves that the single crys?tal and powder samples had the same crystallographic structure,so we used the polycrystalline sample for the next test(Fig.S6).

    2.2 Spectroscopic analysis

    The solid?state FT?IR spectroscopy provides fur?ther evidence for thermo?induced charge transfer.The spectrum of 1 was recorded in a range of 80?300 K,showing an explicit temperature dependence(Fig.2a).IR peaks caused by CN?stretching patterns were observed at 2 000 ?2 300 cm?1.At low temperatures,four peaks due to the cyanide stretching vibrations were observed:2 166,2 160,2 140,and 2 120 cm?1,where the peaks centered at 2 120 and 2 140 cm?1can be attributed to[WⅣ(CN)8]4?unit.As the temperature gradually rose,these peaks gradually diminished and finally disappeared,thus confirming the thermally?induced conversion of WⅣto WⅤ.Variable?tempera?ture solid?state UV?Vis?NIR absorption spectra of 1 were also performed in the temperature interval of 80?300 K to further investigated the charge?transfer pro?cess.As the temperature decreased,the broad absorp?tion bands in the region of 800?1 000 nm for the char?acteristic band of the WⅣ→CoⅢMMCT gradually increased,which demonstrates the occurrence of the charge transfer from WⅤions to CoⅡions(Fig.2b and S7).

    Fig.2 (a)Variable?temperature solid?state FT?IR spectra for 1;(b)Variable?temperature solid?state UV?Vis?NIR absorption spectra for 1

    2.3 Magnetic property

    The temperature?dependent magnetic susceptibili?ty measurement of 1 was measured from 2 to 300 K under the direct current(DC)field of 1 000 Oe(Fig.3).At 300 K,the χMT per[Co3W2]unit was 10.03 cm3·mol?1·K (χMis the molar magnetic susceptibility),which was higher than the expected spin?only value for two isolated WⅤ(S=1/2,g=2.04)and three CoⅡ(S=3/2,g=2.04)due to the orbital contributions of CoⅡions.Upon cooling,the χMT remained nearly constant until 180 K and then gradually decreased to 8.16 cm3·mol?1·K at 90 K with T1/2↓=127 K.When heating the sam?ple,the χMT could return to the initial value with T1/2↑=154 K,which represents a reversible,thermally induced charge?transfer process with a 27 K?wide ther?mal hysteresis.The transfer ratio was about 26.4%,which is probably attributed to the limited deformation of the coordination configuration of Co ions caused by the weak intra?and intermolecular π?π interactions of 1.Further cooling,the χMT gradually increased and got a sharp maximum of 161.35 cm3·mol?1·K at 9 K,which confirms the strong ferromagnetic interaction between WⅤand CoⅡcenter.Subsequently,the χMT dropped sharply to 58.25 cm3·mol?1·K at 3.7 K due to zero?field splitting and/or antiferromagnetic interactions.This magnetic behavior determines a reversible charge?transfer process that involves conversion between the high?temperature(HT)phase with WⅤ(S=1/2)?CoⅡHS(S=3/2)linkage and the low?temperature(LT)phase with diamagnetic WⅣ(S=0)?CoⅢLS(S=0)linkage.Tak?ing into account the change in the χMT values,only one pair of WⅤ?CoⅡHSlinkage converted to WⅣ?CoⅢLS,in accordance with the result of the crystallographic anal?ysis.Therefore,the transformation could be expressed as{[WⅤ(CN)8]2[CoⅡHS(4?nvp)4]3}·4CH3OH→{[WⅤ(CN)8][WIⅤ(CN)8][CoⅡHS(4?nvp)4]2[CoⅢLS(4?nvp)4]}·4CH3OH.

    Fig.3 Temperature?dependent magnetic susceptibilities of 1 in a temperature range of 2?300 K under an applied field of 1 000 Oe

    The field?dependent magnetization of 1 was mea?sured up to 50 kOe at 2 K(Fig.S8).The magnetization in the low field region increased rapidly to 4Nβ at 150 Oe,then gradually increased to 6.6Nβ at 50 kOe with?out saturation.To further investigate the change of sus?ceptibility with the applied magnetic field,a complete hysteresis loop was recorded at 2 K,in which a subtle hysteresis was observed with a remnant magnetization(Mr)of 4.15Nβ and a coercive field(Hc)of 250 Oe.Zero?field?cooled(ZFC)and field?cooled(FC)magnetization of 1 were measured at 10 Oe in a temperature range of 2?20 K to investigate the phase transformation at low temperatures(Fig.S9).The ZFC and FC curves were irreversible at 9 K,which indicates the presence of spontaneous magnetization of 1 below 9 K.According to all the magnetic analysis mentioned above,we can conclude that only one WⅤ?CoⅡHSlinkage in the[Co3W2]unit undergo charge?transfer to convert to WⅣ?CoⅢLSand the remanent WⅤ?CoⅡHSlinkage exhibit strong ferromagnetic coupling.However,no obvious photo?respond magnetic behavior of 1 has been observed at low temperatures because less distortion of the inner coordination sphere of the CoⅢLScenter results in the fast relaxation speed from the photo?induced excited state to the ground state.

    To date,the report of WⅤ?CoⅡcharge?transfer compounds is very limited.Here,we summarize four cases of related WⅤ?CoⅡcharge?transfer compounds in the literature to discover some instructive laws for fur?ther investigation.As shown in Table 2,firstly,both 2D and 3D compounds exhibited obvious thermal hystere?sis,whereas zero?dimensional(0D)clusters did not.Moreover,the width of hysteresis in 3D compounds was far broad than that of 2D ones.First,in general,ther?mal hysteresis is attributed to intermolecular interac?tions(interactions at transition sites)such as hydrogen bonding interaction and π?π interaction.Therefore,to construct bistable molecules with hysteresis,the inter?molecular interaction sites must be appropriately increased.Second,the cyanide?bridged WⅤ?CoⅡcom?pounds with 2D and 3D configurations show large mag?netic hysteresis than 0D ones,attributed to strong ferro?magnetic interaction and axis anisotropy of the com?pound.In a multidimensional structure,numerous metal sites could support stronger interactions and sys?tematic axial anisotropy,resulting in magnetic hystere?sis.Third,according to the∑Coand CShMCobefore and after spin transition in the well?defined structure,we inferred that the ideal octahedral coordination sphere of the CoⅡcan stabilize the CoⅢLSstate in the WⅤ?CoⅡcharge?transfer system.In summary,to constitute a WⅤ?CoⅡcharge?transfer material with large thermal and magnetic hysteresis,the auxiliary ligands are important.According to the literature,the smallest pyr?idine?based auxiliary ligands with π?π interaction site are preferred not only for their ability to release the spatial resistance of the CoⅡcenter to achieve the ideal octahedral coordination sphere of the CoⅡbut also to increase the magnetic dimension and intermolecular in?teraction of the compound.

    Table 2 W?Co metal?metal charge transfer compounds and related structure parameters

    3 Conclusions

    We synthesized a cyano?bridged 2D layer WⅤ?CoⅡcompound{[WⅤ(CN)8]2[CoⅡ(4?nvp)4]3}·4CH3OH(1)by using 4?(2?(naphthalene?1?yl)vinyl)pyridine(4?nvp)as the auxiliary ligands.Due to the intra?and intermolecular interaction,compound 1 shows a wave?like configuration.Magnetic and spectroscopic studies manifest that the 2D network displays incomplete reversible charge?transfer behaviors with a 27 K width of thermal hysteresis associated with the intermolecu?lar π?π interaction.In addition,we summarize and an?alyze the published WⅤ?CoⅡcharge?transfer com?pounds and gave rough guidance to construct the new charge?transfer materials,which will help expand the number of magnetic molecular switchable materials.

    Acknowledgments:This work was financially supported by the National Natural Science Foudation of China(Grants No.22103009,22025101,22222103,22173015,21871039,21801037,91961114,and 22071017).Liu Tao thanks the finan?cial support by the Fundamental Research Funds for the Central Universities of China(Grants No.PA2021GDSK0063 and PA2020GDJQ0028).

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    電荷轉(zhuǎn)移大連理工大學(xué)精細(xì)化工
    北京華立精細(xì)化工公司
    泉州永春駿能精細(xì)化工有限公司
    中國造紙(2022年8期)2022-11-24 09:43:40
    從軌道作用角度研究S…π非共價作用結(jié)構(gòu)特征
    廣州化工(2020年5期)2020-03-31 07:43:36
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    精細(xì)化工車間“三字訣” 讓精益安全理念落地生根
    精細(xì)化工廢水污染特性分析及控制策略
    化工管理(2017年23期)2017-03-04 07:59:02
    偽隨機碼掩蔽的擴頻信息隱藏
    考慮Duschinsky轉(zhuǎn)動效應(yīng)的電荷轉(zhuǎn)移速率理論
    常壓微等離子體陽極與離子溶液界面的電荷轉(zhuǎn)移反應(yīng)
    基于分子內(nèi)電荷轉(zhuǎn)移機制的巰基熒光比色化學(xué)傳感器
    少妇高潮的动态图| 综合色丁香网| 久久精品久久久久久噜噜老黄 | 日韩大尺度精品在线看网址| 国产综合懂色| 成年av动漫网址| 久久精品国产99精品国产亚洲性色| 久久久久性生活片| 午夜爱爱视频在线播放| 精品久久久久久久久av| 亚洲精品色激情综合| 一区福利在线观看| av免费观看日本| 哪个播放器可以免费观看大片| 国产乱人视频| 亚洲国产高清在线一区二区三| 精品不卡国产一区二区三区| 日本熟妇午夜| 亚洲国产日韩欧美精品在线观看| 99热精品在线国产| 亚洲第一电影网av| 高清在线视频一区二区三区 | 最近中文字幕高清免费大全6| 国产黄色小视频在线观看| 亚洲最大成人av| 免费大片18禁| or卡值多少钱| 国产一区亚洲一区在线观看| 亚洲综合色惰| 国内揄拍国产精品人妻在线| 国产一区二区在线观看日韩| 人人妻人人澡欧美一区二区| 久久99蜜桃精品久久| 男女啪啪激烈高潮av片| 久久久久久九九精品二区国产| 亚洲第一区二区三区不卡| 边亲边吃奶的免费视频| 国产亚洲5aaaaa淫片| 亚洲成人精品中文字幕电影| 国产真实伦视频高清在线观看| 2021天堂中文幕一二区在线观| 少妇人妻一区二区三区视频| 久久国产乱子免费精品| 3wmmmm亚洲av在线观看| 国产不卡一卡二| 午夜福利在线在线| 男人舔奶头视频| 亚洲精品自拍成人| 三级国产精品欧美在线观看| 国内精品美女久久久久久| 国产一级毛片七仙女欲春2| 国语自产精品视频在线第100页| 国产午夜精品论理片| 搞女人的毛片| 91狼人影院| 搞女人的毛片| 大香蕉久久网| 成人特级黄色片久久久久久久| 精品熟女少妇av免费看| 大香蕉久久网| 91狼人影院| 熟妇人妻久久中文字幕3abv| 久久鲁丝午夜福利片| 中文资源天堂在线| 看黄色毛片网站| 99久久成人亚洲精品观看| 国产成人影院久久av| 久久韩国三级中文字幕| 狠狠狠狠99中文字幕| 色播亚洲综合网| 在线观看午夜福利视频| 日本欧美国产在线视频| 亚洲国产精品成人久久小说 | 免费无遮挡裸体视频| 99久久中文字幕三级久久日本| 久久精品久久久久久噜噜老黄 | 日韩中字成人| 99久久精品热视频| 久久婷婷人人爽人人干人人爱| 久久亚洲精品不卡| 九九久久精品国产亚洲av麻豆| 丰满的人妻完整版| 国产精品人妻久久久影院| 中国国产av一级| 一个人免费在线观看电影| 一区二区三区四区激情视频 | 久久精品国产亚洲av涩爱 | 欧美日韩乱码在线| 女人十人毛片免费观看3o分钟| 亚洲婷婷狠狠爱综合网| 人妻少妇偷人精品九色| 夜夜夜夜夜久久久久| 精品久久久久久成人av| 久久久久久久久久久丰满| 欧美一级a爱片免费观看看| kizo精华| 国产精品人妻久久久久久| 国产午夜精品一二区理论片| 99精品在免费线老司机午夜| 欧美+日韩+精品| 黄色日韩在线| 国产亚洲精品久久久久久毛片| 一区二区三区高清视频在线| 日韩欧美精品v在线| 3wmmmm亚洲av在线观看| 在线免费观看的www视频| 亚洲欧洲日产国产| 日本爱情动作片www.在线观看| 欧美成人a在线观看| 在线观看午夜福利视频| 久99久视频精品免费| 人妻系列 视频| 欧美极品一区二区三区四区| 亚洲国产精品国产精品| 欧美潮喷喷水| av在线亚洲专区| 伦精品一区二区三区| 一个人看的www免费观看视频| 国产亚洲精品久久久久久毛片| 久久久久久九九精品二区国产| 国产亚洲5aaaaa淫片| 久久国产乱子免费精品| 色吧在线观看| 99在线人妻在线中文字幕| 美女国产视频在线观看| 亚洲最大成人av| 亚洲aⅴ乱码一区二区在线播放| 一本久久中文字幕| 三级毛片av免费| 一卡2卡三卡四卡精品乱码亚洲| 国内久久婷婷六月综合欲色啪| 亚洲丝袜综合中文字幕| 色综合色国产| 亚洲中文字幕日韩| 中文欧美无线码| 精品一区二区免费观看| 丰满乱子伦码专区| 岛国在线免费视频观看| 午夜福利视频1000在线观看| 乱系列少妇在线播放| 中文字幕制服av| av黄色大香蕉| 中文字幕av在线有码专区| 欧美激情久久久久久爽电影| 国产精品久久久久久久电影| 寂寞人妻少妇视频99o| 国产极品天堂在线| 国产伦精品一区二区三区视频9| 国产成人福利小说| 免费搜索国产男女视频| 午夜爱爱视频在线播放| 人妻久久中文字幕网| 赤兔流量卡办理| 亚洲性久久影院| 小说图片视频综合网站| 两个人的视频大全免费| 91av网一区二区| 国产精品一及| 国产精品精品国产色婷婷| 亚洲欧美清纯卡通| 色视频www国产| 精品人妻一区二区三区麻豆| 国产精品人妻久久久久久| 国产精品1区2区在线观看.| 只有这里有精品99| 日韩欧美三级三区| 偷拍熟女少妇极品色| 久久午夜亚洲精品久久| 日本黄色片子视频| 成人综合一区亚洲| 天天一区二区日本电影三级| 亚洲电影在线观看av| 亚洲国产精品sss在线观看| av国产免费在线观看| 蜜臀久久99精品久久宅男| 国产精品一区二区性色av| av在线观看视频网站免费| 亚洲国产欧洲综合997久久,| 国产黄片视频在线免费观看| 能在线免费观看的黄片| 精品人妻一区二区三区麻豆| av在线亚洲专区| 边亲边吃奶的免费视频| 日韩欧美一区二区三区在线观看| av在线天堂中文字幕| 1024手机看黄色片| 欧美高清性xxxxhd video| 久久久久免费精品人妻一区二区| 国产精品一区二区性色av| 九九久久精品国产亚洲av麻豆| 成人漫画全彩无遮挡| 免费搜索国产男女视频| 午夜激情欧美在线| 日韩欧美国产在线观看| 尾随美女入室| 成人毛片60女人毛片免费| 国产成人91sexporn| 一级毛片电影观看 | 人人妻人人澡欧美一区二区| 波多野结衣高清作品| 日韩av在线大香蕉| 国产黄色视频一区二区在线观看 | 真实男女啪啪啪动态图| 国产精品一区二区在线观看99 | 精品久久久久久久久av| 成人漫画全彩无遮挡| 国产片特级美女逼逼视频| 一卡2卡三卡四卡精品乱码亚洲| 99热精品在线国产| 在线观看免费视频日本深夜| 精品久久久久久久久亚洲| a级毛片免费高清观看在线播放| 春色校园在线视频观看| 欧美另类亚洲清纯唯美| 小蜜桃在线观看免费完整版高清| 不卡一级毛片| 国产伦精品一区二区三区视频9| 欧美性感艳星| 热99re8久久精品国产| 老师上课跳d突然被开到最大视频| 亚洲无线观看免费| 一进一出抽搐gif免费好疼| 在线观看一区二区三区| 我要搜黄色片| 国产亚洲欧美98| 午夜精品一区二区三区免费看| 免费av不卡在线播放| 免费观看a级毛片全部| 亚洲熟妇中文字幕五十中出| 少妇猛男粗大的猛烈进出视频 | 国产精品一二三区在线看| 真实男女啪啪啪动态图| 国产精品1区2区在线观看.| 欧美日韩精品成人综合77777| 亚州av有码| 嫩草影院入口| 国产精品伦人一区二区| 18+在线观看网站| 国产女主播在线喷水免费视频网站 | 全区人妻精品视频| 亚洲美女视频黄频| 嫩草影院新地址| 夜夜夜夜夜久久久久| 国产在线男女| 两个人的视频大全免费| 97超视频在线观看视频| 插阴视频在线观看视频| 一本精品99久久精品77| 女同久久另类99精品国产91| 亚洲美女视频黄频| av卡一久久| 欧美丝袜亚洲另类| 国产成人a区在线观看| 人体艺术视频欧美日本| 亚洲欧洲国产日韩| 日日摸夜夜添夜夜爱| 亚洲美女搞黄在线观看| 亚洲最大成人中文| av在线观看视频网站免费| 国产一区二区激情短视频| 久久九九热精品免费| 久久精品国产鲁丝片午夜精品| 国产精品.久久久| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 日本撒尿小便嘘嘘汇集6| 日韩成人伦理影院| 日本与韩国留学比较| 狂野欧美激情性xxxx在线观看| 成人鲁丝片一二三区免费| 一个人看视频在线观看www免费| 人人妻人人澡欧美一区二区| 中文字幕熟女人妻在线| 精品无人区乱码1区二区| 在线国产一区二区在线| 日韩一本色道免费dvd| 国产视频首页在线观看| 精品无人区乱码1区二区| a级一级毛片免费在线观看| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| 男人和女人高潮做爰伦理| 亚洲欧美日韩高清在线视频| 亚洲电影在线观看av| 亚洲自偷自拍三级| 久久久色成人| 欧美日韩综合久久久久久| 久久99热这里只有精品18| 精品久久久久久久末码| 国产精品久久久久久久久免| 欧美不卡视频在线免费观看| 五月伊人婷婷丁香| 少妇猛男粗大的猛烈进出视频 | av黄色大香蕉| 欧美日韩综合久久久久久| 国产精品久久久久久精品电影| 欧美zozozo另类| 国产精品蜜桃在线观看 | 国产 一区精品| а√天堂www在线а√下载| 欧美成人免费av一区二区三区| 亚洲欧美日韩东京热| 亚洲成人中文字幕在线播放| 69人妻影院| 亚洲图色成人| 婷婷精品国产亚洲av| 日韩制服骚丝袜av| 春色校园在线视频观看| 欧美最黄视频在线播放免费| 成人毛片a级毛片在线播放| 欧美精品国产亚洲| 99在线视频只有这里精品首页| 亚洲av成人精品一区久久| 国内精品美女久久久久久| 色哟哟·www| 免费在线观看成人毛片| 国产亚洲精品av在线| 日本与韩国留学比较| 日本爱情动作片www.在线观看| 精品99又大又爽又粗少妇毛片| 成年版毛片免费区| 波多野结衣高清作品| 一区二区三区四区激情视频 | 欧美+亚洲+日韩+国产| 欧美性猛交╳xxx乱大交人| 国产单亲对白刺激| 国产黄片美女视频| 草草在线视频免费看| 国产精品嫩草影院av在线观看| 99久久精品一区二区三区| 欧美+亚洲+日韩+国产| 在线观看美女被高潮喷水网站| 亚洲精品乱码久久久v下载方式| 变态另类成人亚洲欧美熟女| 国产伦精品一区二区三区视频9| 国产精品久久视频播放| 青春草视频在线免费观看| 蜜臀久久99精品久久宅男| av视频在线观看入口| 别揉我奶头 嗯啊视频| 亚洲中文字幕日韩| 一级毛片电影观看 | 亚洲婷婷狠狠爱综合网| 尤物成人国产欧美一区二区三区| 99久久久亚洲精品蜜臀av| 欧美性感艳星| 直男gayav资源| 久久久久久九九精品二区国产| 校园人妻丝袜中文字幕| 亚洲美女搞黄在线观看| 国产极品精品免费视频能看的| 日韩强制内射视频| 特大巨黑吊av在线直播| 成人特级黄色片久久久久久久| 久久精品影院6| 色视频www国产| 免费无遮挡裸体视频| 天堂√8在线中文| 日本黄色片子视频| 三级男女做爰猛烈吃奶摸视频| 中文精品一卡2卡3卡4更新| 成年免费大片在线观看| 久久久久久久久久久免费av| 亚洲精品色激情综合| 成人鲁丝片一二三区免费| 国产黄片美女视频| 国产精品三级大全| 国产精品蜜桃在线观看 | 国产成人精品婷婷| 色视频www国产| h日本视频在线播放| 日韩三级伦理在线观看| 最近2019中文字幕mv第一页| 一个人看视频在线观看www免费| 日日撸夜夜添| 99热全是精品| 免费无遮挡裸体视频| 亚洲内射少妇av| 久久精品国产99精品国产亚洲性色| av天堂中文字幕网| 久久久精品94久久精品| 中文字幕免费在线视频6| 永久网站在线| 免费大片18禁| 国产久久久一区二区三区| 久久久久久九九精品二区国产| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 国产真实伦视频高清在线观看| 免费观看的影片在线观看| 在线国产一区二区在线| 日韩制服骚丝袜av| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 成人特级av手机在线观看| 亚洲美女搞黄在线观看| 12—13女人毛片做爰片一| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 最新中文字幕久久久久| 秋霞在线观看毛片| 日本-黄色视频高清免费观看| 一个人观看的视频www高清免费观看| 亚洲精华国产精华液的使用体验 | 真实男女啪啪啪动态图| 日韩中字成人| 最近2019中文字幕mv第一页| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 蜜桃久久精品国产亚洲av| 又粗又爽又猛毛片免费看| 好男人在线观看高清免费视频| 在线观看免费视频日本深夜| 一级毛片久久久久久久久女| 成人美女网站在线观看视频| avwww免费| 日韩一区二区三区影片| 人体艺术视频欧美日本| 在线观看美女被高潮喷水网站| 欧美一级a爱片免费观看看| 亚洲成人精品中文字幕电影| 日本欧美国产在线视频| www.av在线官网国产| 舔av片在线| 又黄又爽又刺激的免费视频.| 欧美日韩精品成人综合77777| 麻豆乱淫一区二区| 看片在线看免费视频| 欧美日韩精品成人综合77777| 日韩av在线大香蕉| 亚洲美女搞黄在线观看| 免费无遮挡裸体视频| 色哟哟哟哟哟哟| 男的添女的下面高潮视频| 麻豆久久精品国产亚洲av| 人人妻人人澡欧美一区二区| 午夜福利在线在线| 日韩欧美一区二区三区在线观看| av又黄又爽大尺度在线免费看 | 男女边吃奶边做爰视频| 久久精品国产99精品国产亚洲性色| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 精品熟女少妇av免费看| 99久久精品热视频| 乱系列少妇在线播放| .国产精品久久| 国产精品爽爽va在线观看网站| 国产色爽女视频免费观看| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 国产熟女欧美一区二区| av在线天堂中文字幕| 国产av麻豆久久久久久久| av免费观看日本| 久99久视频精品免费| 在线天堂最新版资源| 一个人免费在线观看电影| 天堂av国产一区二区熟女人妻| 国产伦精品一区二区三区视频9| 一级av片app| 国内少妇人妻偷人精品xxx网站| 美女内射精品一级片tv| 欧美+日韩+精品| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 91av网一区二区| 久久精品夜色国产| 夜夜看夜夜爽夜夜摸| а√天堂www在线а√下载| av专区在线播放| 免费av毛片视频| 午夜精品国产一区二区电影 | 国产精品国产高清国产av| 成人特级av手机在线观看| 亚洲第一电影网av| 亚洲精品成人久久久久久| 国产美女午夜福利| 欧美三级亚洲精品| 美女内射精品一级片tv| 欧美人与善性xxx| 国产视频首页在线观看| 日韩视频在线欧美| 日韩欧美一区二区三区在线观看| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 精品人妻熟女av久视频| 精品熟女少妇av免费看| 69av精品久久久久久| 特级一级黄色大片| 亚洲最大成人av| 欧美最黄视频在线播放免费| 99久久中文字幕三级久久日本| 欧美另类亚洲清纯唯美| 亚洲乱码一区二区免费版| 最近的中文字幕免费完整| 成年女人看的毛片在线观看| 国产精品久久久久久av不卡| 欧美变态另类bdsm刘玥| 丰满人妻一区二区三区视频av| 直男gayav资源| 少妇被粗大猛烈的视频| 久久草成人影院| 亚洲乱码一区二区免费版| 热99re8久久精品国产| 12—13女人毛片做爰片一| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线 | 国产精品一区二区在线观看99 | 国内久久婷婷六月综合欲色啪| 最新中文字幕久久久久| 精品日产1卡2卡| 美女大奶头视频| 免费看av在线观看网站| 国产精品福利在线免费观看| 韩国av在线不卡| 欧美又色又爽又黄视频| 99热全是精品| 久久精品人妻少妇| 能在线免费观看的黄片| 寂寞人妻少妇视频99o| 国产亚洲av嫩草精品影院| 国产熟女欧美一区二区| 午夜福利在线观看吧| 久久久久久久久久久免费av| а√天堂www在线а√下载| 久久精品国产亚洲av涩爱 | 国产在线男女| 97在线视频观看| 天堂av国产一区二区熟女人妻| 国产一区二区亚洲精品在线观看| 亚洲在线自拍视频| 国产一区亚洲一区在线观看| 男女那种视频在线观看| 国产精品人妻久久久影院| 99热这里只有是精品50| 日韩欧美三级三区| 国产亚洲av片在线观看秒播厂 | 久久精品国产亚洲网站| 男女啪啪激烈高潮av片| 三级毛片av免费| 欧美+亚洲+日韩+国产| 美女 人体艺术 gogo| 又粗又爽又猛毛片免费看| 秋霞在线观看毛片| 蜜臀久久99精品久久宅男| 国产视频内射| 村上凉子中文字幕在线| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 在线免费观看不下载黄p国产| 神马国产精品三级电影在线观看| 免费在线观看成人毛片| 国产三级在线视频| 免费看日本二区| 亚洲精品日韩av片在线观看| 99久国产av精品| 午夜a级毛片| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 观看免费一级毛片| 国产一区亚洲一区在线观看| 99热这里只有是精品50| 变态另类丝袜制服| 亚洲av中文字字幕乱码综合| 舔av片在线| 伦精品一区二区三区| 69av精品久久久久久| 黄色日韩在线| 国产成人影院久久av| 寂寞人妻少妇视频99o| 国产精品美女特级片免费视频播放器| 久久久久久九九精品二区国产| 人妻系列 视频| 国产av一区在线观看免费| 久久久久久久久大av| av在线老鸭窝| 精品久久国产蜜桃| 在线播放无遮挡| 亚洲av一区综合| 精品少妇黑人巨大在线播放 | 欧美性感艳星| 国产伦理片在线播放av一区 | 欧美丝袜亚洲另类| 神马国产精品三级电影在线观看| 美女高潮的动态| 精华霜和精华液先用哪个| 别揉我奶头 嗯啊视频| 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| a级毛片a级免费在线| 欧美+日韩+精品| av卡一久久| 高清午夜精品一区二区三区 | 小说图片视频综合网站| 男人的好看免费观看在线视频| 国产免费一级a男人的天堂| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| 免费看av在线观看网站| 亚洲精品成人久久久久久| 校园春色视频在线观看| 亚洲av男天堂| 男女那种视频在线观看| 九色成人免费人妻av| 波多野结衣巨乳人妻| av在线天堂中文字幕| 老熟妇乱子伦视频在线观看| 午夜福利在线观看吧| 亚洲中文字幕一区二区三区有码在线看| 国产真实乱freesex| 久久欧美精品欧美久久欧美| 国产单亲对白刺激| 久久亚洲精品不卡| 国产日韩欧美在线精品|