• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    片狀碳載金屬納米顆粒復合物的制備及其氧還原電活性

    2023-02-27 03:29:26章巧麗王雅萍孫萬杰易清風
    無機化學學報 2023年2期
    關(guān)鍵詞:大學化學化工學院湘潭

    章巧麗 王雅萍 孫萬杰 易清風*,,2

    (1湖南科技大學化學化工學院,湘潭 411201)

    (2新能源儲存與轉(zhuǎn)換先進材料湖南省重點實驗室,湘潭 411201)

    0 Introduction

    As a non?renewable energy source,fossil fuels have been gradually depleted through continuous min?ing and utilization by human beings,and the use of fos?sil fuels has also brought many environmental prob?lems.These problems are always affecting the progress and development of our society,making the develop?ment of green and clean technology necessary[1?2].Oxygen reduction reaction(ORR)is a cathode reaction of fuel cells.The high binding energy of O2molecules leads to high overpotential and poor performance for the catalysts of ORR,which limits the energy conver?sion efficiency and greatly hinders the large?scale com?mercial application of fuel cells[3?5].Platinum and platinum?based materials are considered to be the best catalysts discovered so far due to their low overpoten?tial and kinetic improvement.However,platinum also has some disadvantages such as high price,scarcity,and poor stability[6?8].Therefore,the research and devel?opment of novel ORR catalysts with low prices,easy ac?quisition,and good stability have always been the focus of the research[9].

    Although carbon?based materials themselves do not have excellent ORR catalytic properties,they can act as excellent catalyst carriers because of their good electrical conductivity,mechanical stability,chemical stability,abundant resources,and low price[10].The modified carbon?based materials show efficient ORR activity in the cathode reaction of fuel cells and become the most promising catalyst materials.Metal nanoparticles can increase the active sites on the sur?face of carbon?based materials and promote the graphi?tization degree of carbon?based materials;Heteroatoms(such as N,P,B,S,etc.)doping can change the charge distribution and spin of the carbon conducting network and promote the adsorption of oxygen,thus improving the electrical conductivity and catalytic performance of the material[11?14].It was found that metal?loaded lamel?lar N?doped carbon nanocomposites could combine the advantages of metal nanoparticles and heteroatoms to improve the electroactivity and stability of the catalysts.Among them,the transition metal?nitrogen?carbon(M?N?C)moiety has abundant M?NXactive sites on carbon?based materials and has good electrocatalytic activity,stability,and tolerance in acidic and alkaline media[15?18].The highly electronegative nitrogen atoms can effectively regulate the electron distribution and charge density of the adjacent carbon atoms.Transition metal cobalt and iron are rich in resources and easy to be prepared.The combination of their nanoparticle and carbon?based materials can greatly improve the electro?activity of the formed catalysts,so they are widely used in the design and preparation of ORR catalysts[3?4].

    Considering that the current preparation process of the M?N?C catalysts is complicated and their ORR electroactivity in acidic media is generally weak,we synthesized the nitrogen?doped carbon nanosheet sup?ported metal nanoparticles(Co/C?N,Fe/C?N,and Fe?Co/C?N)by using an all?solid?state method through a simple high?temperature pyrolysis;Subsequently,based on the electroactivity test of ORR,a small amount of platinum was further deposited on the Co/C?N with good ORR electroactivity by thermal reduction method to obtain Co?Pt/C?N.The samples were charac?terized in detail and their ORR electrocatalytic proper?ties were tested in full pH ranges(acidic,neutral,and alkaline).

    1 Experimental

    1.1 Materials

    Dicyandiamide and Nafion solution(5%,Dupont)were purchased from Sinopharm Chemical Reagent Co.,Ltd.Sucrose was purchased from Tianjin Kemiou Chemical Reagent Co.,Ltd.Cobalt phthalocyanine,iron phthalocyanine,and acetylacetone platinum were purchased from Aladdin Chemical Reagent Co.,Ltd.Pt/C(40%,Johnson Matthey Corp.)was purchased from Shanghai Qunyi Energy Equipment Co.,Ltd.Anhy?drous ethanol was purchased from Hunan Huihong Reagent Co.,Ltd.Ultrapure water was made by ultra?pure water generator.

    1.2 Preparation of Co/C?N,Fe/C?N,and Fe?Co/C?N

    3 g dicyandiamide,0.4 g sucrose,and 0.1 g cobalt phthalocyanine(or 0.1 g iron phthalocyanine,or 0.05 g cobalt phthalocyanine+0.05 g iron phthalocyanine mixture)were mixed in a mortar.Next,the mixture was ground thoroughly with a small amount of ethanol in the mortar.The mixture was transferred to a beaker and dried in a vacuum oven at 60℃.Then it was ground again to form a powder,placed in a crucible,and transferred to a tubular furnace to be subjected to the pyrolysis treatment.Before heating,pure N2gas was passed through the furnace for 15 min to drain O2from the tubular furnace.In the N2atmosphere,it was heated to 550 ℃ at a heating rate of 4 ℃·min?1for 2 h and then heated to 800℃at the same heating rate for another 2 h.After cooling to room temperature,the black powder was collected and transferred to a mortar for grinding to obtain the sample Co/C?N.Other two samples Fe/C?N and Fe?Co/C?N were also prepared using the same steps as the Co/C?N when 0.1 g cobalt phthalocyanine was replaced with 0.1 g iron phthalocy?anine,or 0.05 g cobalt phthalocyanine+0.05 g iron phthalocyanine mixture,respectively.

    1.3 Preparation of Co?Pt/C?N

    50 mg Co/C?N and 10 mg acetylacetone platinum were mixed and fully ground with a small amount of ethanol.The mixture was then dried in a vacuum oven at 60℃.The solid obtained was transferred to a tubu?lar furnace and heated to 260 ℃ at a rate of 4 ℃·min?1in an N2atmosphere for 2 h.Co?Pt/C?N was obtained after cooling to room temperature.The preparation pro?cess is shown in Fig.1.

    Fig.1 Schematic diagram for preparation of the catalyst Co?Pt/C?N

    1.4 Characterization and testing

    The morphology and structure of the catalysts were characterized by scanning electron microscopy(SEM,FEI Inspect F50 SEM,10 kV)and transmission electron microscopy(TEM,JEOL JEM?2100,200 kV).The types and contents of elements in the samples were analyzed by energy dispersive spectroscopy(EDS,super?octane).The elemental composition and bonding state of the catalysts were analyzed by X?ray diffraction(XRD,Cu Kα radiation,λ=0.154 18 nm,40 kV,250 mA,2θ=10°?85°)and X?ray photoelectron spectrosco?py(XPS,Thermo Fisher,ESCALAB Xi+).

    The ORR performances of the catalysts were test?ed on AutoLab PGSTAT30/FRA electrochemical work?station in a three?electrode system using a rotating disk electrode(RDE).The working electrode was glassy car?bon(GC,0.071 cm2)electrode coated with a catalyst.The auxiliary and reference electrodes were Pt wire and Ag/AgCl(sat.KCl)electrodes respectively.All potentials in this work were against the Ag/AgCl elec?trode.The working electrode was fabricated by coating 20μL the ink dispersion of the sample catalyst on the GC surface.The ink was prepared by ultrasonically mixing a 3 mg sample,30μL Nafion solution,and 570μL anhydrous ethanol to form a uniform ink dispersion.As a comparison,the Pt/C working electrode was also prepared by coating 10μL Pt/C ink on GC.The cyclic voltammetry(CV)and linear sweep voltammetry(LSV)curves of the catalysts in acidic(0.1 mol·L?1HClO4),alkaline(0.1 mol·L?1KOH),and neutral(4 mol·L?1NH4Cl+1 mol·L?1KCl)solution were tested under satu?rated O2and N2.

    According to the Koutecky?Levich Formula 1[19],the number of ORR transferred electrons(n)was calcu?lated:

    where j,jk,and jdrespectively refer to the measured cur?rent density,dynamic current density,and limit diffu?sion current density;B is the slope of the Levich curve;ω is the rotating speed;and n value is reckoned accord?ing to Formula 2:

    where n was the number of transferred electrons,F refers to the Faraday constant(96 500 C·mol?1);cO2is the concentration of saturated O2in the electrolyte solu?tion at room temperature(1.2×10?6mol·cm?3);DO2is the diffusion coefficient of O2in water(1.93×10?5cm2·s?1);v is the kinematic viscosity of the solution at room temperature(0.01 cm2·s?1)[20].

    2 Results and discussion

    2.1 Morphology of catalyst

    The morphology of the catalysts was observed by SEM images.As shown in Fig.2a?2d,all samples pre?sented morphology characteristics of a large number of micron?sized sheet?like carbon structures,which were stacked together to form a thickness of tens of nanome?ters.During pyrolysis,carbon nanosheets with rich folds and distinct stratified structured were formed from dicyandiamide,exposing more active sites at the edge and thus further improving the performance of the sample[9,14].No obvious metal nanoparticles could be seen in the SEM images,which may be attributed to the fact that the metal nanoparticles are tightly wrapped by the graphitic carbon shell formed and they also present small sizes[21].

    Fig.2 SEM images of Co/C?N(a),Fe/C?N(b),Fe?Co/C?N(c),and Co?Pt/C?N(d);TEM images of Co/C?N(e?h);EDS mappings of C,N,O,Co,and Pt of Co?Pt/C?N(i?m)

    The 3D fine structure inside Co/C?N was further observed by TEM.TEM images(Fig.2e)show that Co/C?N revealed a sheet?like morphology similar to multi?layer graphene with many folds.In Fig.2f?2h,Co nanoparticles were evenly distributed on graphite car?bon nanosheets without obvious agglomeration[21?22].Fur?thermore,Fig.2g demonstrates that graphene layers were formed during pyrolysis with a lattice spacing of 0.355 nm,consistent with crystal planes of graphite(002)[23].As shown in Fig.2g,particles with a lattice spacing of 0.199 nm correspond to the face?centered cubic crystal plane of Co(111)[21],while the lattice dis?tance of 0.228 nm might correspond to the crystal plane of Co or Co3C(200).The increase of lattice spac?ing of Co nanoparticles might be caused by the combi?nation of C and N with Co.It could be seen from Fig.2h that the graphene layer formed has a 23?layer structure with a rich carbon layer and abundant active sites.Also,the sizes of Co nanoparticles fall into the range of ca.2?2.4 nm with high uniformity.Fig.2i?2m was the mapping image of C,N,O,Co,and Pt elements in cata?lyst Co?Pt/C?N.All elements were evenly dispersed on the catalyst,proving that Co and Pt were successfully loaded on N?doped carbon nanosheets.

    2.2 Composition analysis of catalysts

    XRD and EDS were used to analyze the types and contents of elements in the catalysts.According to the XRD patterns of the catalysts shown in Fig.3a,all the catalysts Co/C?N,Fe/C?N,Fe?Co/C?N,and Co?Pt/C?N displayed a well?defined diffraction peak at 2θ=26.6°,which is attributed to graphite C(002).The catalyst Co/C?N did not show an obvious Co diffraction peak,because the Co nanoparticles were tightly encapsulated by the graphite carbon shell and low metal content is present in the sample.According to the standard colori?metric card of Fe(PDF No.06?0696),the weak diffrac?tion peak of Fe/C?N at 2θ=44.37°corresponds to the standard peak of Fe at 2θ=44.67°,which could be attributed to the face?centered cubic crystal plane of Fe(110)[6].According to the standard cards of Fe(PDF No.06?0696)and Co(PDF No.15?0806),a weak peak of Fe?Co/C?N at 2θ=44.48°was between the standard peaks of Co(2θ=44.22°)and Fe(2θ=44.67°).The result indicates that Fe?Co alloy was formed during pyrolysis and could be attributed to crystal planes of Fe or Co face?centered cubic structure(111)[3].For Co?Pt/C?N,the diffraction peak at 2θ=39.42°corresponds to the standard peak of Pt at 2θ=39.76°according to the standard card of Pt(PDF No.04?0802),which could be attributed to Pt(111)plane.Fig.3b,3c shows the ele?mental composition and mass percentage of all cata?lysts,showing the characteristic peaks of C,N,O,Co,Fe,and Pt.The peaks at 0.78 and 6.92 keV are charac?teristic peaks of Co,and the peaks at 0.71 and 6.40 keV are characteristic peaks of Fe.The peak at 2.06 keV is the unique peak of Pt.Results indicate that vari?ous metal elements were successfully loaded onto the carbon nanosheets.

    Fig.3 XRD patterns of all catalysts(a);EDS spectra of all elements(b);Element content of all catalysts by EDS(c)

    The catalyst Co/C?N was further analyzed by XPS to understand its chemical composition and structure.As shown in Fig.4a,the XPS spectra of the Co/C?N cat?alyst show elemental energy peaks corresponding to C(78.16%),N(20.82%),and Co(1.02%).The XPS spec?tra of C1s(Fig.4b)were deconvoluted into four peaks at 284.7,285.9,287.3,and 288.9 eV corresponding to the characteristic peaks of C=C,C—O/C=N,O—C=O/C—N,and O—C=O respectively,confirming the successful combination of carbon and nitrogen.As can be seen from Fig.4c,there is the main peak of N1s at 398.3 eV,which is attributed to pyridine nitrogen.Peaks at 400.7 and 401.7 eV correspond to pyrrole nitrogen and graphite nitrogen respectively.Pyridine and graphite nitrogen could enhance ORR activity because the C atom near pyridine nitrogen and graph?ite nitrogen could be the active site of ORR.The con?tent of pyridine nitrogen determines the onset potential of ORR,and the content of graphite nitrogen plays a key role in the limiting current density of ORR[24?26].The nitrogen contents of pyridine,pyrrole,and graphite were 57.84%,22.35%,and 19.81%,respectively.The high content of pyridine nitrogen for Co/C?N indicates that the catalyst might have a high onset potential and outstanding electrocatalytic performance for ORR.Fig.4d shows that Co2p can be deconvoluted into three peaks at 778.2,779.8,and 781.3 eV,corresponding to Co,Co2+,and Co3+respectively.

    Fig.4 XPS full survey of Co/C?N(a)and corresponding high?resolution XPS spectra of C1s(b),N1s(c),and Co2p(d)

    2.3 Electrochemical testing of catalyst

    CV curves of all catalysts were measured in O2and N2saturated alkaline,acidic,and neutral solu?tions.In an alkaline solution,the CV curves of the sam?ples are shown in Fig.5a.Compared with the curves in the N2?saturated solution,all the catalysts in saturated O2showed obvious cathodic peaks,and the current den?sity increases significantly.As shown in Fig.5a,the cathodic peak potentials of Co/C?N,Fe/C?N,Fe?Co/C?N,Co?Pt/C?N,and Pt/C were located at?0.124,?0.180,?0.168,?0.112,and ?0.182 V respectively,indicating that the samples present better electrocata?lytic activity for ORR than Pt/C.In an acidic solution(Fig.5b),the CV curves of Co/C?N,Co?Pt/C?N,and Pt/C catalysts showed obvious oxygen reduction peaks.The peak potentials of Co/C?N,Co?Pt/C?N,and Pt/C catalysts were 0.252,0.608,and 0.642 V respectively,showing the significant improvement of the Co?Pt/C?N catalyst on ORR activity.However,Fe/C?N and Fe?Co/C?N showed weak electrocatalytic performances for ORR in an acidic medium.In a neutral solution(Fig.5c),the CV curves of all catalysts showed weak cathodic peaks under O2saturation,although the cur?rent density was higher than that under a nitrogen atmosphere.The cathodic peak potentials of the Co/C?N,Fe/C?N,Fe?Co/C?N,Co?Pt/C?N,and Pt/C were 0.150,0.235,0.194,0.152,and 0.230 V respectively,showing their efficient ORR activity in neutral medium.

    Fig.5 CV curves of all catalysts in alkaline(a),acidic(b),and neutral(c)solutions saturated with O2and N2at a scanning rate of 50 mV·s?1

    The ORR performances of the catalysts were fur?ther evaluated on a RDE.Fig.6a?6c show LSV and Koutecky?Levich curves of different catalysts in alka?line,acidic,and neutral solutions at 1 600 r·min?1,respectively.The ORR onset potential,half?wave potential,and limiting diffusion current density(jd)of the prepared catalysts and Pt/C are listed in Table 1.As the potential shifted to the negative direction,all catalysts exhibited a rapid increase of current density after the onset potential,followed by a well?defined cur?rent plateau.And Co/C?N reveals more positive onset and half?wave potentials and higher limiting diffusion current density than Fe/C?N and Fe?Co/C?N.This may be related to the abundant pyridine nitrogen of Co/C?N obtained from XPS analysis.On this basis,a small amount of platinum was loaded on Co/C?N to form the Co?Pt/C?N.According to Koutecky?Levich formula[19]and the illustration in Fig.6a?6c,the number of trans?ferred electrons for ORR could be calculated.As shown in Fig.6d?6f,the numbers of transferred elec?trons of all catalysts were between 3.7 and 4,showing a dominant four?electron transfer process of ORR on the prepared samples in full pH ranges(alkaline,acidic,and neutral)[27].The corresponding catalytic mechanism for ORR on the prepared catalysts is depicted in Fig.1.Compared with the two?electron transfer process,the four?electron transfer process can output a higher ener?gy density for fuel cells and metal?air batteries[7,20,28].Further,Fig.6b and Table 1 show that the onset poten?tial and half?wave potential values of the Co?Pt/C?N were greatly improved in an acidic medium,which is comparable to that of the Pt/C.The stability of the cata?lysts in a full pH range was also investigated by using successively sweeping cycle voltammetry.Fig.7 shows the 500 consecutive scanning CV profiles of the Co/C?N and Co?Pt/C?N catalysts in alkaline(Fig.7a),acidic(Fig.7b),and neutral(Fig.7c)media.It is seen from Fig.7 that whether in acidic,alkaline,or neutral media,no significant change in the CV profile for the two cata?lysts was observed after 500 times repeated cycles.A slight change in current density would be caused by a small change in oxygen gas concentration after consec?utive scans.Results reveal excellent stability of the prepared catalyst in different pH electrolytes.It is gen?erally considered that the ORR performance of the cat?alyst in an acidic medium is critical for its potential application to proton exchange membrane fuel cells(PEMFCs)[29?30].Unfortunately,the PEMFCs with non ?precious metal cathodic catalysts generally exhibit poor performance due to their commonly lower ORR electroactivity in the acidic medium[31?32].The prepared catalyst Co?Pt/C?N with low Pt loading reveals a prom?ising application to PEMFCs.

    Fig.6 LSV curves and Koutecky?Levich curves in alkaline(a),acidic(b),and neutral(c)solutions obtained for all catalysts at saturated O2at a scanning rate of 5 mV·s?1and 1 600 r·min?1;Number of transferred electrons in alkaline(d),acidic(e),and neutral(f)solutions of all catalysts at O2saturation

    Table 1 Onset potential,half?wave potential,and limiting diffusion current density of the catalysts at 1 600 r·min-1under alkaline,acidic,and neutral conditions

    Fig.7 CV curves of Co/C?N and Co?Pt/C?N in O2?saturated alkaline(a),acidic(b),and neutral(c)solutions at 50 mV·s?1for the first and 500th cycles

    3 Conclusions

    In summary,we proposed an all?solid?state synthe?sis method of highly efficient ORR electrocatalysts.Carbon nanosheets supported Co/Fe nanoparticles(Co/C?N,Fe/C?N,and Fe?Co/C?N)were first synthesized by a simple pyrolysis method.Then,a cobalt?platinum cat?alyst Co?Pt/C?N with low Pt loading was further synthe?sized by thermal reduction based on Co/C?N.The mor?phological structure of Co/C?N presents abundant car?bon nanosheet folds,obvious stratification,and uniform dispersion of metal nanoparticles.And it contains high pyridine nitrogen and lots of active groups such as Co?N.These lead to the excellent ORR electrocatalytic activity of the catalyst.The catalyst Co/C?N in alkaline and neutral solutions showed superior ORR electrocata?lytic activity to Pt/C.And the onset potential,half?wave potential,and limiting diffusion current density of the Co?Pt/C?N catalysts were significantly improved,and its ORR electrocatalytic activity was close to Pt/C in an acidic medium.

    Acknowledgments:Authors thank the financial support from the National Natural Science Foundation of China(Grant No.21875062)and the Innovation Training Program for College Students in Hunan Province(Grant No.S202210534022).

    猜你喜歡
    大學化學化工學院湘潭
    使固態(tài)化學反應(yīng)100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    湘潭是個好地方
    湘潭紅色文化軟實力的提升研究
    活力(2019年21期)2019-04-01 12:16:10
    湘潭大學藝術(shù)學院作品選
    流行色(2017年12期)2017-10-26 03:08:22
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    基于SCIE的大學化學學科文獻計量學研究——以河南大學為例
    信息技術(shù)在大學化學專業(yè)英語教學中的應(yīng)用
    亞太教育(2015年18期)2015-02-28 20:54:31
    湘潭高新區(qū)兩大特色產(chǎn)業(yè)園躋身“湖南隊”
    国产精品av视频在线免费观看| 欧美日本视频| 久久国内精品自在自线图片| 国产一区亚洲一区在线观看| 日本与韩国留学比较| av在线蜜桃| 特级一级黄色大片| 乱码一卡2卡4卡精品| 午夜精品在线福利| 观看美女的网站| 99久久中文字幕三级久久日本| 色5月婷婷丁香| 国产精品熟女久久久久浪| 日韩强制内射视频| av免费观看日本| 国产极品天堂在线| 亚洲色图av天堂| 91精品国产九色| 简卡轻食公司| 69av精品久久久久久| 亚洲最大成人av| 色噜噜av男人的天堂激情| 人妻制服诱惑在线中文字幕| 亚洲欧美精品综合久久99| 97热精品久久久久久| 欧美性猛交╳xxx乱大交人| 国产亚洲午夜精品一区二区久久 | 欧美激情久久久久久爽电影| 久久人人爽人人片av| 久久99热这里只频精品6学生 | 搡女人真爽免费视频火全软件| 国产精品国产三级专区第一集| 伦理电影大哥的女人| 99久久精品一区二区三区| 亚洲精品一区蜜桃| 成人鲁丝片一二三区免费| 毛片一级片免费看久久久久| 国产一区二区在线av高清观看| 亚洲欧美日韩无卡精品| 精品国产露脸久久av麻豆 | 日本免费a在线| 精品久久国产蜜桃| 最新中文字幕久久久久| 午夜福利网站1000一区二区三区| 亚洲色图av天堂| 搞女人的毛片| 亚洲av中文字字幕乱码综合| 久久久久久久亚洲中文字幕| 欧美丝袜亚洲另类| 毛片一级片免费看久久久久| av在线天堂中文字幕| 又粗又硬又长又爽又黄的视频| 久久婷婷人人爽人人干人人爱| 国产亚洲5aaaaa淫片| 亚洲电影在线观看av| 久久鲁丝午夜福利片| 91狼人影院| 亚洲人成网站高清观看| 中文字幕制服av| 亚洲人与动物交配视频| 精品欧美国产一区二区三| 欧美成人一区二区免费高清观看| 久久精品久久精品一区二区三区| 亚洲欧洲日产国产| 亚洲精品成人久久久久久| 亚洲精品亚洲一区二区| 夜夜看夜夜爽夜夜摸| 成人高潮视频无遮挡免费网站| 中国美白少妇内射xxxbb| 51国产日韩欧美| 色播亚洲综合网| 日本色播在线视频| 午夜福利在线在线| 日本免费一区二区三区高清不卡| 色综合色国产| 国产成人一区二区在线| 秋霞伦理黄片| 99热精品在线国产| 日韩欧美国产在线观看| 老司机福利观看| 亚洲一区高清亚洲精品| av女优亚洲男人天堂| 免费搜索国产男女视频| 日韩成人av中文字幕在线观看| 久久久久久国产a免费观看| 国产精品,欧美在线| 免费av毛片视频| 精品一区二区免费观看| 亚洲精品久久久久久婷婷小说 | 亚洲国产精品专区欧美| 亚洲国产精品专区欧美| 日韩中字成人| 精品人妻视频免费看| 麻豆久久精品国产亚洲av| 亚洲国产高清在线一区二区三| 精品熟女少妇av免费看| 一个人看的www免费观看视频| av天堂中文字幕网| 日本一本二区三区精品| 欧美一级a爱片免费观看看| 欧美成人午夜免费资源| 久久草成人影院| 亚洲av不卡在线观看| 在线免费观看不下载黄p国产| 乱系列少妇在线播放| 国产精品熟女久久久久浪| 久久久色成人| 男人的好看免费观看在线视频| 亚洲精品影视一区二区三区av| 91在线精品国自产拍蜜月| 色播亚洲综合网| 免费观看人在逋| 亚洲国产欧美人成| 乱人视频在线观看| 欧美成人一区二区免费高清观看| 亚洲国产精品专区欧美| 美女大奶头视频| 最新中文字幕久久久久| 草草在线视频免费看| 美女黄网站色视频| 亚洲国产精品sss在线观看| 少妇人妻一区二区三区视频| 又粗又爽又猛毛片免费看| 91久久精品电影网| 国产乱人视频| 美女脱内裤让男人舔精品视频| 小说图片视频综合网站| 少妇熟女aⅴ在线视频| 亚洲欧美日韩东京热| 久久久久久久久久久免费av| 成人亚洲欧美一区二区av| 人体艺术视频欧美日本| 永久免费av网站大全| 成人毛片60女人毛片免费| 日韩一本色道免费dvd| 日本色播在线视频| 亚洲欧美成人综合另类久久久 | 51国产日韩欧美| 非洲黑人性xxxx精品又粗又长| 日韩一区二区三区影片| 国产精品蜜桃在线观看| 中文在线观看免费www的网站| 久久人妻av系列| 99热这里只有是精品50| 人人妻人人看人人澡| 国产在线男女| 国产成人一区二区在线| 伦精品一区二区三区| 国产精品国产高清国产av| 精品国产露脸久久av麻豆 | 成人鲁丝片一二三区免费| 国产麻豆成人av免费视频| 麻豆av噜噜一区二区三区| 亚洲国产成人一精品久久久| 国产综合懂色| 看黄色毛片网站| 国产精品1区2区在线观看.| 成年版毛片免费区| 在线观看66精品国产| 午夜福利在线观看免费完整高清在| 天天躁夜夜躁狠狠久久av| 国产真实伦视频高清在线观看| 精华霜和精华液先用哪个| 美女国产视频在线观看| 亚洲内射少妇av| 中国国产av一级| 亚洲av一区综合| 日韩av在线大香蕉| 久久久国产成人免费| 午夜激情欧美在线| 精品久久久久久久久久久久久| 中文字幕av在线有码专区| 在线观看66精品国产| 久久欧美精品欧美久久欧美| 亚洲美女视频黄频| 久久精品综合一区二区三区| 18禁在线播放成人免费| 午夜免费激情av| 午夜激情福利司机影院| 18禁动态无遮挡网站| 国产亚洲av片在线观看秒播厂 | 少妇人妻精品综合一区二区| 国产精品久久久久久久久免| 久久久久久久久久久丰满| 中国美白少妇内射xxxbb| 最近中文字幕2019免费版| 波多野结衣高清无吗| www.色视频.com| 亚洲精品国产成人久久av| 免费观看性生交大片5| 国内精品宾馆在线| 精品99又大又爽又粗少妇毛片| 成人欧美大片| 亚洲经典国产精华液单| 中文字幕av成人在线电影| 日韩中字成人| 久久久久久久午夜电影| 天天躁日日操中文字幕| 亚洲欧美清纯卡通| 一区二区三区四区激情视频| 中国国产av一级| 国产精品熟女久久久久浪| 亚洲av电影不卡..在线观看| 亚洲人成网站在线观看播放| 亚洲经典国产精华液单| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久黄片| 亚洲国产精品成人综合色| 毛片女人毛片| 欧美3d第一页| 青春草视频在线免费观看| 看免费成人av毛片| 亚洲av日韩在线播放| 国产午夜精品久久久久久一区二区三区| 亚洲精品色激情综合| 欧美激情在线99| 国产麻豆成人av免费视频| 又爽又黄a免费视频| 成人高潮视频无遮挡免费网站| 国产午夜精品久久久久久一区二区三区| 国产一区二区亚洲精品在线观看| 91精品伊人久久大香线蕉| 精品无人区乱码1区二区| 国产成人精品一,二区| 久久鲁丝午夜福利片| 免费看a级黄色片| 国产亚洲91精品色在线| 69av精品久久久久久| 精品无人区乱码1区二区| 久久久久久久久久久丰满| 国产伦一二天堂av在线观看| 寂寞人妻少妇视频99o| 久久这里只有精品中国| 我要看日韩黄色一级片| 久久国内精品自在自线图片| 晚上一个人看的免费电影| 国产探花在线观看一区二区| www.av在线官网国产| 日本五十路高清| 国产精品三级大全| 亚洲五月天丁香| 啦啦啦啦在线视频资源| 精品久久久久久久人妻蜜臀av| 一级黄色大片毛片| 日本色播在线视频| 超碰av人人做人人爽久久| 99在线视频只有这里精品首页| 亚洲不卡免费看| 亚洲在久久综合| 欧美三级亚洲精品| 亚洲欧洲国产日韩| 听说在线观看完整版免费高清| 亚洲国产精品成人久久小说| 中文在线观看免费www的网站| 伦精品一区二区三区| 又粗又爽又猛毛片免费看| 黑人高潮一二区| 嫩草影院入口| 91精品国产九色| 欧美日韩国产亚洲二区| 熟女电影av网| 午夜a级毛片| 一夜夜www| 人妻系列 视频| 99久久精品一区二区三区| 亚洲成人av在线免费| 午夜a级毛片| 亚洲五月天丁香| 免费黄网站久久成人精品| 黄色配什么色好看| 婷婷色综合大香蕉| 激情 狠狠 欧美| a级毛色黄片| 91狼人影院| 欧美日本亚洲视频在线播放| 成人特级av手机在线观看| 亚洲国产精品成人久久小说| 日本一本二区三区精品| 国产老妇女一区| 久久久久久久久大av| 日日摸夜夜添夜夜爱| 国产精品一二三区在线看| 久久这里有精品视频免费| 两个人的视频大全免费| 天堂√8在线中文| 丰满乱子伦码专区| 国产精品嫩草影院av在线观看| 国产麻豆成人av免费视频| 国产久久久一区二区三区| 大香蕉久久网| eeuss影院久久| 美女xxoo啪啪120秒动态图| 三级国产精品片| 日韩欧美在线乱码| 亚洲精品亚洲一区二区| 亚洲最大成人av| 精品无人区乱码1区二区| 亚洲成av人片在线播放无| 汤姆久久久久久久影院中文字幕 | 天堂中文最新版在线下载 | 一个人观看的视频www高清免费观看| 欧美丝袜亚洲另类| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久 | 午夜福利视频1000在线观看| 波多野结衣高清无吗| 久99久视频精品免费| 女人久久www免费人成看片 | 国产精品永久免费网站| 欧美一级a爱片免费观看看| 在线a可以看的网站| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利在线观看吧| 国产在线一区二区三区精 | 全区人妻精品视频| 男女下面进入的视频免费午夜| 国产高清有码在线观看视频| 成人二区视频| 大又大粗又爽又黄少妇毛片口| 精品一区二区三区人妻视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩av在线大香蕉| 午夜爱爱视频在线播放| 99久久精品一区二区三区| 欧美区成人在线视频| 搡女人真爽免费视频火全软件| 美女内射精品一级片tv| 亚洲人成网站在线播| h日本视频在线播放| 在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频 | 亚洲成人av在线免费| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 男插女下体视频免费在线播放| 在线播放国产精品三级| 一个人看的www免费观看视频| 亚洲综合色惰| 99久久精品国产国产毛片| 蜜桃久久精品国产亚洲av| 搞女人的毛片| 3wmmmm亚洲av在线观看| 国产精品久久久久久av不卡| 国产精品久久久久久久久免| 白带黄色成豆腐渣| 99久久精品热视频| 亚洲国产最新在线播放| 久久草成人影院| 精品酒店卫生间| 日日撸夜夜添| 天天躁日日操中文字幕| 色尼玛亚洲综合影院| 精品国产露脸久久av麻豆 | 国产精品1区2区在线观看.| 国产精品av视频在线免费观看| 男人的好看免费观看在线视频| 国产免费又黄又爽又色| 日本免费一区二区三区高清不卡| 亚洲最大成人av| 干丝袜人妻中文字幕| 国产成人freesex在线| 草草在线视频免费看| 美女cb高潮喷水在线观看| 老师上课跳d突然被开到最大视频| 99视频精品全部免费 在线| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说| 欧美潮喷喷水| av在线观看视频网站免费| 久久久精品欧美日韩精品| 国产精品永久免费网站| 永久网站在线| 亚洲最大成人av| 99热这里只有精品一区| 大香蕉久久网| 美女国产视频在线观看| 国产片特级美女逼逼视频| 国产欧美日韩精品一区二区| 亚洲乱码一区二区免费版| 亚洲高清免费不卡视频| 久久人妻av系列| 1000部很黄的大片| 有码 亚洲区| 特大巨黑吊av在线直播| 在线观看66精品国产| 亚洲欧洲日产国产| 婷婷色av中文字幕| 最近中文字幕2019免费版| 久久精品综合一区二区三区| 成人亚洲精品av一区二区| 欧美日韩一区二区视频在线观看视频在线 | 国产精品.久久久| 免费播放大片免费观看视频在线观看 | 听说在线观看完整版免费高清| 婷婷色av中文字幕| 国产亚洲精品av在线| 成人国产麻豆网| 99在线视频只有这里精品首页| 久久亚洲国产成人精品v| 久久久成人免费电影| 麻豆成人午夜福利视频| 国产成人freesex在线| 成人国产麻豆网| 亚洲国产最新在线播放| 亚洲在线自拍视频| 国产午夜精品久久久久久一区二区三区| 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 日韩欧美 国产精品| 国产精品女同一区二区软件| 乱码一卡2卡4卡精品| 中文字幕av成人在线电影| 亚洲av熟女| 欧美97在线视频| 午夜日本视频在线| 99久久无色码亚洲精品果冻| 天堂网av新在线| 汤姆久久久久久久影院中文字幕 | 午夜日本视频在线| 国产一区二区亚洲精品在线观看| 在线免费观看不下载黄p国产| 国产精品.久久久| 国产精品日韩av在线免费观看| 如何舔出高潮| 三级男女做爰猛烈吃奶摸视频| 国产高清视频在线观看网站| 午夜爱爱视频在线播放| 欧美不卡视频在线免费观看| 99在线人妻在线中文字幕| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 国产精品女同一区二区软件| videos熟女内射| 神马国产精品三级电影在线观看| 毛片一级片免费看久久久久| 看片在线看免费视频| 欧美日本亚洲视频在线播放| 午夜免费激情av| 欧美+日韩+精品| 变态另类丝袜制服| 免费看日本二区| 亚洲精品乱码久久久v下载方式| 亚洲国产高清在线一区二区三| 免费看美女性在线毛片视频| 欧美一级a爱片免费观看看| 神马国产精品三级电影在线观看| av天堂中文字幕网| 伊人久久精品亚洲午夜| 天堂√8在线中文| 99久国产av精品| 欧美又色又爽又黄视频| 国产精品久久视频播放| kizo精华| 亚洲国产精品专区欧美| 国产亚洲一区二区精品| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 国产伦精品一区二区三区四那| 男女下面进入的视频免费午夜| 日韩 亚洲 欧美在线| 亚洲国产精品合色在线| 国产精品三级大全| 国产在视频线在精品| 只有这里有精品99| 大香蕉97超碰在线| 少妇熟女aⅴ在线视频| 97在线视频观看| 真实男女啪啪啪动态图| 亚洲精品成人久久久久久| 最近的中文字幕免费完整| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 亚洲在线自拍视频| 日本与韩国留学比较| 国内精品宾馆在线| 国产黄片美女视频| 最近视频中文字幕2019在线8| 中文字幕人妻熟人妻熟丝袜美| 国产三级在线视频| 99久国产av精品国产电影| 国产探花极品一区二区| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 日本色播在线视频| 99热全是精品| 欧美日韩一区二区视频在线观看视频在线 | 丰满乱子伦码专区| 乱码一卡2卡4卡精品| eeuss影院久久| 日韩一区二区三区影片| 两个人的视频大全免费| 一级毛片我不卡| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 国产激情偷乱视频一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久电影中文字幕| 久久99蜜桃精品久久| 亚洲人与动物交配视频| 欧美区成人在线视频| 国产黄色小视频在线观看| 国产午夜精品论理片| 国产精品一区二区三区四区久久| 天堂影院成人在线观看| 五月伊人婷婷丁香| 日本黄色片子视频| 国产乱人视频| 最近手机中文字幕大全| 亚洲成色77777| 两个人视频免费观看高清| 91精品一卡2卡3卡4卡| 变态另类丝袜制服| av在线老鸭窝| www.色视频.com| 色尼玛亚洲综合影院| 欧美日韩精品成人综合77777| 日韩一区二区三区影片| 久久久亚洲精品成人影院| 国产亚洲av嫩草精品影院| 成人亚洲欧美一区二区av| av卡一久久| 亚洲最大成人中文| 欧美性猛交黑人性爽| 可以在线观看毛片的网站| 久久婷婷人人爽人人干人人爱| 成人亚洲精品av一区二区| 国产真实伦视频高清在线观看| 日韩一区二区三区影片| 久久热精品热| 精品欧美国产一区二区三| 日本免费在线观看一区| 能在线免费看毛片的网站| 亚洲成色77777| 女人十人毛片免费观看3o分钟| 两性午夜刺激爽爽歪歪视频在线观看| 国国产精品蜜臀av免费| videos熟女内射| 亚洲av男天堂| 级片在线观看| 国产成人91sexporn| 国产在线一区二区三区精 | 一夜夜www| 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| 国产在线男女| 色综合站精品国产| 一级毛片aaaaaa免费看小| 国产私拍福利视频在线观看| 亚洲精品乱码久久久v下载方式| 91av网一区二区| 国产单亲对白刺激| 国产av在哪里看| 最近的中文字幕免费完整| 精品人妻偷拍中文字幕| 乱系列少妇在线播放| 国产精品一区二区性色av| 国产精品久久久久久精品电影小说 | 亚洲在线自拍视频| 99热网站在线观看| 亚洲美女搞黄在线观看| 国产不卡一卡二| 中文字幕制服av| 欧美bdsm另类| 免费看av在线观看网站| 日日啪夜夜撸| 精品一区二区三区视频在线| 久久精品91蜜桃| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线 | 搡老妇女老女人老熟妇| 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| 少妇的逼水好多| 久久久精品欧美日韩精品| 午夜精品一区二区三区免费看| АⅤ资源中文在线天堂| 亚洲丝袜综合中文字幕| 亚洲国产欧美人成| 免费一级毛片在线播放高清视频| 男女国产视频网站| 久久久久免费精品人妻一区二区| 嫩草影院新地址| 看免费成人av毛片| 欧美成人a在线观看| h日本视频在线播放| 99久久无色码亚洲精品果冻| 欧美最新免费一区二区三区| 男人的好看免费观看在线视频| 天堂中文最新版在线下载 | 免费黄色在线免费观看| 日韩精品青青久久久久久| 日本黄色片子视频| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆| 亚洲av免费在线观看| 天堂网av新在线| АⅤ资源中文在线天堂| 久久久久久久久中文| 嫩草影院精品99| 伊人久久精品亚洲午夜| 丝袜美腿在线中文| 亚洲成色77777| 毛片女人毛片| 中文字幕av成人在线电影| 国产视频内射| 97人妻精品一区二区三区麻豆| 别揉我奶头 嗯啊视频| 国产私拍福利视频在线观看| 联通29元200g的流量卡| 成人特级av手机在线观看| 国产伦理片在线播放av一区| 亚洲av一区综合| 九草在线视频观看| 男插女下体视频免费在线播放| 一区二区三区高清视频在线|