• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      廣義Birnbaum-Saunders分布

      2022-03-16 07:54:04何慧姿
      關(guān)鍵詞:概率密度函數(shù)高斯分布失效率

      何慧姿

      廣義Birnbaum-Saunders分布

      何慧姿

      (溫州大學(xué)數(shù)理學(xué)院,浙江溫州 325035)

      提出了廣義Birnbaum-Saunders分布,完善了Birnbaum-Saunders分布.Birnbaum-Saunders分布是逆高斯分布和互補(bǔ)倒數(shù)的等權(quán)混合,通過將Birnbaum-Saunders分布中的逆高斯部分推廣到廣義逆高斯分布得到了廣義Birnbaum-Saunders分布,并給出了廣義Birnbaum-Saunders分布的參數(shù)的基本統(tǒng)計(jì)性質(zhì)和極大似然估計(jì),最后通過實(shí)際數(shù)據(jù)集說明了模型的有效性.

      Birnbaum-Saunders分布;廣義逆高斯分布;極大似然估計(jì)

      Birnbaum-Saunders(BS)分布最初是由Birnbaum和Saunders于1969年提出的一種疲勞壽命分布[1],可用于模擬金屬在周期性應(yīng)力作用下的疲勞壽命.BS分布是可靠性數(shù)據(jù)分析中最常用的壽命分布之一.一個(gè)雙參數(shù)BS隨機(jī)變量的累積分布函數(shù)(CDF)為:

      一般的推導(dǎo).文獻(xiàn)[3]于1986年研究了BS分布與逆高斯分布之間的關(guān)系,作者還證明了BS分布是逆高斯分布和互補(bǔ)倒數(shù)的等權(quán)混合,因此其概率密度函數(shù)(Probability Densinity Function,PDF)可以表示為:

      Diáz-Garciá和Leiva-Sánchez用Cauchy分布、Pearson type VII 分布、Bessel分布、Laplace分布和logistic分布等對稱分布代替正態(tài)核來推廣BS分布[4],Balakrishnan等對于預(yù)先確定的截?cái)鄷r(shí)間的壽命試驗(yàn),給出了這種廣義BS(Generalized Birnbaum-Saunders,GBS)分布的抽樣方法[5],Leiva等討論了這類分布的各種性質(zhì),并提出了一些推論方法[6].Kundu等提出了BS分布的雙變量模型[7-8],Kundu等研究了GBS分布的多元形式[9],而Caro-Lopera等提出了矩陣變量GBS分布[10].本文主要利用BS分布的性質(zhì)(1)來推廣BS分布.

      1953年,Good通過增加一個(gè)額外的參數(shù)(順序)提出了逆高斯分布的推廣,即廣義逆高斯分布[11].Barndorff-Nielsen等于1977年首次提出了廣義逆高斯分布的概念[12].廣義逆高斯分布的概率密度函數(shù)為[13]:

      本文研究的是Birnbaum-Saunders分布的推廣.由于BS分布是逆高斯分布和互補(bǔ)倒數(shù)的等權(quán)混合,因此我們將其中的逆高斯分布變?yōu)閺V義逆高斯分布,就得到了一個(gè)新的三參數(shù)的廣義Birnbaum-Saunders(GBS)分布.本文介紹了GBS分布,也給出了GBS分布的分布函數(shù)、基本統(tǒng)計(jì)性質(zhì)以及極大似然估計(jì),并進(jìn)行了數(shù)值模擬,最后,通過實(shí)際數(shù)據(jù)集說明了所給模型的有效性.

      1 廣義Birnbaum-Saunders分布

      1.1 概率密度函數(shù)

      則新分布為:

      其中

      因此GBS分布的概率密度函數(shù)為:

      圖1 GBS分布的概率密度函數(shù)

      1.2 分布函數(shù)

      Lemonte和Cordeiro[15]給出了廣義逆高斯分布的分布函數(shù)為:

      其中,

      因此,此混合分布的分布函數(shù)為:

      1.3 失效率函數(shù)

      前文已經(jīng)給出了GBS分布的概率密度函數(shù)和分布函數(shù).根據(jù)失效率函數(shù)的定義,我們可以直接寫出GBS分布的失效率函數(shù):

      1.4 矩

      計(jì)算GBS分布的矩,需要先得到廣義逆高斯函數(shù)的矩,這里首先引入了第三類修正貝塞爾函數(shù)[13]:

      期望和方差分別為:

      2 極大似然估計(jì)

      2.1 參數(shù)點(diǎn)估計(jì)

      同理,(5)式變?yōu)椋?/p>

      對(15)式求偏導(dǎo),得各參數(shù)的偏導(dǎo)數(shù)分別為:

      上面已經(jīng)得到各參數(shù)的偏導(dǎo)數(shù),令偏導(dǎo)數(shù)為零,便可得到3個(gè)參數(shù)的重估計(jì)公式,這里參數(shù)的重估計(jì)公式?jīng)]有顯示解.

      2.2 區(qū)間估計(jì)

      3 數(shù)值模擬

      表 1 GBS分布的模擬數(shù)據(jù)參數(shù)統(tǒng)計(jì)描述

      4 實(shí)例分析

      本節(jié)將用真實(shí)數(shù)據(jù)集進(jìn)行擬合,并對比GBS分布和BS分布的擬合效果.由于BS分布的起源,我們知道對于疲勞壽命數(shù)據(jù)BS分布是個(gè)很好的模型,因此本節(jié)用廣義BS分布和BS分布來擬合這類數(shù)據(jù)是恰當(dāng)?shù)模紫?,給出一個(gè)數(shù)據(jù)集,此數(shù)據(jù)集為空調(diào)系統(tǒng)連續(xù)故障的次數(shù)[15],完整的數(shù)據(jù)為:194,413,90,74,55,23,97,50,359,50,130,487,57,102,15,14,10,57,320,261,51,44,9,254,493,33,18,209,41,58,60,48,56,87,11,102,12,5,14,14,29,37,186,29,104,7,4,72,270,283,7,61,100,61,502,220,120,141,22,603,35,98,54,100,11,181,65,49,12,239,14,18,39,3,12,5,32,9,438,43,134,184,20,386,182,71,80,188,230,152,5,36,79,59,33,246,1,79,3,27,201,84,27,156,21,16,88,130,14,118,44,15,42,106,46,230,26,59,153,104,20,206,5,66,34,29,26,35,5,82,31,118,326,12,54,36,34,18,25,120,31,22,18,216,139,67,310,3,46,210,57,76,14,111,97,62,39,30,7,44,11,63,23,22,23,14,18,13,34,16,18,130,90,163,208,1,24,70,16,101,52,208,95,62,11,191,14,71.

      為了將GBS分布和BS分布的擬合進(jìn)行對比,這里給出了Akaike信息準(zhǔn)則(AIC),其一般定義為:

      表2 GBS分布的模型參數(shù)估計(jì)和AIC

      表3 BS分布的模型參數(shù)估計(jì)和AIC

      圖2是GBS分布和BS分布擬合的分布函數(shù)(Cumulative Density Function,CDF)圖,其中黑色散點(diǎn)代表真實(shí)數(shù)據(jù)的經(jīng)驗(yàn)分布函數(shù),紫色實(shí)線和紅色虛線分別代表GBS分布和BS分布擬合的CDF.

      圖2 GBS分布和 BS分布擬合CDF圖

      5 結(jié) 論

      本文提出了新的廣義Birnbaum-Saunders分布,完善了BS分布,給出了新分布的概率密度函數(shù)、分布函數(shù)、失效率函數(shù)、矩,也研究了模型參數(shù)的極大似然估計(jì),并對其進(jìn)行了數(shù)值模擬,最后,將新分布應(yīng)用于實(shí)際數(shù)據(jù)集中,證明了該方法可以提供更好的擬合效果.

      [1] Birnbaum Z W, Saunders S C. A New Family of Life Distributions [J]. Journal of Applied Probability, 1969, 6(2): 319-327.

      [2] Desmond A. Stochastic Models of Failure in Random Environments [J]. Canadian Journal of Stats, 1985, 13(3): 171-183.

      [3] Desmond A F. On the Relationship between Two Fatigue-life Models [J]. IEEE Transactions on Reliability, 1986, 35(2): 167-169.

      [4] Diáz-Garciá J A, Leiva-Sánchez V. A New Family of Life Distributions Based on the Elliptically Contoured Distributions [J]. Journal of Statistical Planning and Inference, 2005, 128(2): 445-457.

      [5] Balakrishnan N, Leiva V, Lopez J. Acceptance Sampling Plans From Truncated Life Tests Based on the Generalized Birnbaum-Saunders Distribution [J]. Communications in Statistics-Simulation and Computation, 2007, 36(3): 643-656.

      [6] Leiva V, Riquelme M, Balakrishnan N, et al. Lifetime Analysis Based on the Generalized Birnbaum-Saunders Distribution [J]. Computational Statistics and Data Analysis, 2008, 52(4): 2079-2097.

      [7] Kundu D, Balakrishnan N, Jamalizadeh A. Bivariate Birnbaum-Saunders Distribution and Associated Inference [J]. Journal of Multivariate Analysis, 2010, 101(1): 113-125.

      [8] Vilca F, Balakrishnan N, Zeller C B. A Robust Extension of the Bivariate Birnbaum-Saunders Distribution and Associated Inference [J]. Journal of Multivariate Analysis, 2014, 124: 418-435.

      [9] Kundu D, Balakrishnan N, Jamalizadeh A. Generalized Multivariate Birnbaum-Saunders Distributions and Related Inferential Issues [J]. Journal of Multivariate Analysis, 2013, 116: 230-244.

      [10] Caro-Lopera F J, Leiva V, Balakrishnan N. Connection between the Hadamard and Matrix Products with an Application to Matrix-variate Birnbaum-Saunders Distributions [J]. Journal of Multivariate Analysis, 2012, 104(1): 126-139.

      [11] Good I J. The Population Frequencies of Species and the Estimation of Population Parameters [J]. Biometrika, 1953, 40: 237-260.

      [12] Barndorff-Nielsen O, Halgreen C. Infinite Divisibility of the Hyperbolic and Generalized Inverse Gaussian Distributions [J]. Probability Theory and Related Fields, 1977, 38(4): 309-311.

      [13] Paolella M S. Intermediate Probability: A Computational Approach [M]. New Jersey: John Wiley and Sons, Ltd, 2007: 300-301.

      [14] Barndorff-Nielsen O. First Hitting Time Models for the Generalized Inverse Gaussian Distribution [J]. Stochastic Processes and Their Applications, 1978, 7(1): 49-54.

      [15] Lemonte A J, Cordeiro G M. The Exponentiated Generalized Inverse Gaussian Distribution [J]. Stats and Probability Letters, 2011, 81( 4): 506-517.

      [16] Chaudhry M A, Zubair S M. Generalized Incomplete Gamma Functions with Applications [J]. Journal of Computational and Applied Mathematics, 1994, 55(1): 99-123.

      [17] Meeker W Q, Escobar L A. Statistical Methods for Reliability Data [M]. New York: John Wiley and Sons, 1998: 186-187.

      Generalized Birnbaum-Saunders Distribution

      HE Huizi

      (College of Mathematics and Physics, Wenzhou University, Wenzhou, China 325035)

      The paper proposes the generalized Birnbaum-Saunders(GBS) distribution to extend the Birnbaum- Saunders (BS) distribution which is an equal weight mixture of the inverse Gaussian distribution and the complementary reciprocal. The GBS distribution is obtained by extending the inverse Gaussian distribution part of the BS distribution to the generalized inverse Gaussian distribution. The basic statistical properties and maximum likelihood estimation of its parameters are given and its usefulness is illustrated by means of a real data set.

      Birnbaum-Saunders Distribution; Generalized Inverse Gaussian Distribution; Maximum Likelihood Estimation

      O211

      1674-3563(2022)01-0008-09

      10.3875/j.issn.1674-3563.2022.01.002

      本文的PDF文件可以從www.wzu.edu.cn/wzdxxb.htm獲得

      2020-07-27

      何慧姿(1992― ),女,江西上饒人,碩士研究生,研究方向:應(yīng)用統(tǒng)計(jì)與數(shù)理金融

      (編輯:王一芳)

      (英文審校:黃璐)

      猜你喜歡
      概率密度函數(shù)高斯分布失效率
      PHMSA和EGIG的天然氣管道失效率對比研究
      化工管理(2023年17期)2023-06-16 05:56:54
      冪分布的有效估計(jì)*
      Archimedean copula刻畫的尺度比例失效率模型的極小次序統(tǒng)計(jì)量的隨機(jī)序
      利用Box-Cox變換對移動(dòng)通信中小區(qū)級(jí)業(yè)務(wù)流量分布的研究
      2種非對稱廣義高斯分布模型的構(gòu)造
      深入理解失效率和返修率?
      已知f(x)如何求F(x)
      一種基于改進(jìn)混合高斯模型的前景檢測
      固體電解質(zhì)鉭電容器失效率鑒定
      上海航天(2014年1期)2014-12-31 11:57:26
      基于概率密度函數(shù)的控制系統(tǒng)性能評價(jià)
      岢岚县| 宜君县| 盐亭县| 林口县| 南华县| 连江县| 囊谦县| 法库县| 汾西县| 陆丰市| 南涧| 济阳县| 隆化县| 营口市| 郁南县| 新民市| 科技| 同江市| 澄江县| 阿荣旗| 柏乡县| 长春市| 鹿邑县| 盈江县| 武邑县| 繁峙县| 祥云县| 山西省| 和田县| 镇原县| 吴旗县| 雷波县| 马公市| 新蔡县| 南川市| 开化县| 泗水县| 札达县| 五华县| 方正县| 延庆县|