崔雪微
Kuramoto-Tsuzuki方程一階線性向后歐拉有限元方法的最優(yōu)誤差估計(jì)
崔雪微
(溫州大學(xué)數(shù)理學(xué)院,浙江溫州 325035)
對(duì)于高維非線性Kuramoto-Tsuzuki方程,給出了一階向后歐拉有限元全離散格式,并對(duì)非線性項(xiàng)采用半隱格式,從理論上證明了離散解的穩(wěn)定性以及離散解與精確解的無(wú)條件最優(yōu)誤差估計(jì).
一階線性向后歐拉有限元方法;無(wú)條件最優(yōu)化誤差估計(jì);Kuramoto-Tsuzuki方程;高維非線性問(wèn)題
Kuramoto-Tsuzuki方程用于描述分叉點(diǎn)附近的兩個(gè)系統(tǒng)的行為[1-2],它也可以看作是復(fù)雜的Ginzburg-Landua方程的一個(gè)特例,該方程被廣泛用于描述從非線性波到二階相變,從超導(dǎo)和玻色-愛(ài)因斯坦凝聚到場(chǎng)論中的液晶和弦的大量現(xiàn)象①Feb. 2022 Kuramoto Y. Chemical Oscillations, Waves, and Turbulence [M]. Berlin: Springer Verlag, 1984.等.
本文主要考慮如下的高維Kuramoto-Tsuzuki方程:
本文建立Kuramoto-Tsuzuki方程的一階向后歐拉有限元全離散格式,以此證明離散解與精確解的無(wú)條件最優(yōu)誤差估計(jì).
由經(jīng)典有限元理論可知有:
和
成立.
對(duì)于一階線性向后歐拉有限元解,有如下的穩(wěn)定性結(jié)論.
考慮方程(8)的實(shí)部,有:
即有:
因此有:
引理2得證.
用(11)式減去(7)式,并應(yīng)用Ritz投影定義,可得:
考慮方程(13)的實(shí)部,并應(yīng)用Cauchy-Schwarz不等式可得:
由(2)式及Taylor展式可得:
由Young不等式及(2)式可得:
由逆不等式及Young不等式可得:
把(21)―(24)式代入(20)式,可得:
同理可得:
把(18)式、(19)式、(25)式和(26)式代入(17)式中可得:
把(15)式、(16)式和(27)式代入(11)式中,可得:
由逆不等式(6)和Sobolev嵌入定理(4)可得:
由(4)式和(5)式可得:
整理后可得:
定理1得證.
[1] Kuramoto Y, Tsuzuki T. On the Formation of Dissipative Structures in Reaction-diffusion Systems [J]. Progress of Theoretical Physics, 1975, 54(3): 678-699.
[2] Akhromeeva T S, Kurdyumov S P, Malinetskii G G, et al. Classification of Solutions of a System of Nonlinear Diffusion Equations in a Neighborhood of a Bifurcation Point [J]. Journal of Soviet Mathematics, 1988, 41(5): 1292-1356.
[3] Tsertsvadze G Z. On the Convergence of Difference Schemes for the Kuramoto-Tsuzuki Equation and Reaction- diffusion Type Systems [J]. Computational Mathematics & Mathematical Physics, 1992, 31(5): 40-47.
[4] Sun Z Z. On Tsertsvadze’s Difference Scheme for the Kuramoto-Tsuzuki Equation [J]. Journal of Computational Applied Mathematics, 1998, 98(2): 289-304.
[5] Omrani K. Convergence of Galerkin Approximations for the Kuramoto-Tsuzuki Equation [J]. Numerical Methods for Partial Differential Equations, 2005, 21(5): 961-975.
[6] Wang S, Wang T, Zhang L, et al. Convergence of a Nonlinear Finite Difference Scheme for the Kuramoto-Tsuzuki Equation [J]. Communications in Nonlinear Science Numerical Simulation, 2011, 16(6): 2620-2627.
[7] Sun Z Z. A Linear Difference Scheme for the Kuramoto-Tsuzuki Equation [J]. Journal of Computational Mathematics, 1996, 14(1): 1-7.
[8] 孫志忠. 數(shù)值求解Kuramoto-Tsuzuki方程的廣義Box格式[J]. 東南大學(xué)學(xué)報(bào), 1996, 26(1): 87-92.
[9] Wang T, Guo B. A Robust Semi-explicit Difference Scheme for the Kuramoto-Tsuzuki Equation [J]. Journal of Computational and Applied Mathematics, 2009, 233(4): 878-888.
[10] Hu X, Chen S, Chang Q. Fourth-order Compact Difference Scheme for 1D Nonlinear Kuramoto-Tsuzuki Equation [J]. Numerical Methods for Partial Differential Equations, 2015, 31(6): 2080-2109.
[11] Leonaviciene T, Bugajev A, Jankeviciute G, et al. On Stability Analysis of Finite Difference Schemes for Generalized Kuramoto-Tsuzuki Equation with Nonlocal Boundary Conditions [J]. Mathematical Modelling and Analysis, 2016, 21(5): 630-643.
[12] Li B, Sun W. Error Analysis of Linearized Semi-implicit Galerkin Finite Element Methods for Nonlinear Parabolic Equations [J]. International Journal of Numerical Analysis Modeling, 2013, 10(3): 622-633.
[13] Li B, Sun W. Unconditional Convergence and Optimal Error Estimates of a Galerkin-mixed FEM for Incompressible Miscible Flow in Porous Media [J]. SIAM Journal on Numerical Analysis, 2013, 51(4): 1959-1977.
[14] Li D F. Optimal Error Estimates of a Linearized Crank-Nicolson Galerkin FEM for the Kuramoto-Tsuzuki Equations [J]. Communications in Computational Physics, 2019, 26(3): 838-854.
Optimal Error Estimates of a First-order Linearized Backward Euler FEM for the Kuramoto-Tsuzuki Equations
CUI Xuewei
(College of Mathematics and Physics, Wenzhou University, Wenzhou, China 325035)
For the high-dimensional nonlinear Kuramo-Tsuzuki equations, a first-order backward Euler finite factor is given in a fully discrete format. The semi-hidden format of nonlinear terms is used, which theoretically proves the stability of discrete solution and the unconditional optimal error estimates of discrete solution and precise solution.
First-order Backward Euler FEM; Unconditional Optimal Error Estimates; Kuramo-Tsuzuki Equation; High Dimensional Nonlinear Problem
O241.82
A
1674-3563(2022)01-0017-08
10.3875/j.issn.1674-3563.2022.01.003
本文的PDF文件可以從www.wzu.edu.cn/wzdxxb.htm獲得
2020-11-26
崔雪微(1993―),女,黑龍江綏化人,碩士研究生,研究方向:偏微分方程數(shù)值解
(編輯:封毅)
(英文審校:黃璐)