• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Kuramoto-Tsuzuki方程一階線性向后歐拉有限元方法的最優(yōu)誤差估計(jì)

      2022-03-16 07:54:22崔雪微
      關(guān)鍵詞:實(shí)部高維歐拉

      崔雪微

      Kuramoto-Tsuzuki方程一階線性向后歐拉有限元方法的最優(yōu)誤差估計(jì)

      崔雪微

      (溫州大學(xué)數(shù)理學(xué)院,浙江溫州 325035)

      對(duì)于高維非線性Kuramoto-Tsuzuki方程,給出了一階向后歐拉有限元全離散格式,并對(duì)非線性項(xiàng)采用半隱格式,從理論上證明了離散解的穩(wěn)定性以及離散解與精確解的無(wú)條件最優(yōu)誤差估計(jì).

      一階線性向后歐拉有限元方法;無(wú)條件最優(yōu)化誤差估計(jì);Kuramoto-Tsuzuki方程;高維非線性問(wèn)題

      Kuramoto-Tsuzuki方程用于描述分叉點(diǎn)附近的兩個(gè)系統(tǒng)的行為[1-2],它也可以看作是復(fù)雜的Ginzburg-Landua方程的一個(gè)特例,該方程被廣泛用于描述從非線性波到二階相變,從超導(dǎo)和玻色-愛(ài)因斯坦凝聚到場(chǎng)論中的液晶和弦的大量現(xiàn)象①Feb. 2022 Kuramoto Y. Chemical Oscillations, Waves, and Turbulence [M]. Berlin: Springer Verlag, 1984.等.

      本文主要考慮如下的高維Kuramoto-Tsuzuki方程:

      本文建立Kuramoto-Tsuzuki方程的一階向后歐拉有限元全離散格式,以此證明離散解與精確解的無(wú)條件最優(yōu)誤差估計(jì).

      1 預(yù)備知識(shí)

      由經(jīng)典有限元理論可知有:

      成立.

      2 主要結(jié)果

      對(duì)于一階線性向后歐拉有限元解,有如下的穩(wěn)定性結(jié)論.

      考慮方程(8)的實(shí)部,有:

      即有:

      因此有:

      引理2得證.

      3 主要結(jié)果的證明

      用(11)式減去(7)式,并應(yīng)用Ritz投影定義,可得:

      考慮方程(13)的實(shí)部,并應(yīng)用Cauchy-Schwarz不等式可得:

      由(2)式及Taylor展式可得:

      由Young不等式及(2)式可得:

      由逆不等式及Young不等式可得:

      把(21)―(24)式代入(20)式,可得:

      同理可得:

      把(18)式、(19)式、(25)式和(26)式代入(17)式中可得:

      把(15)式、(16)式和(27)式代入(11)式中,可得:

      由逆不等式(6)和Sobolev嵌入定理(4)可得:

      由(4)式和(5)式可得:

      整理后可得:

      定理1得證.

      [1] Kuramoto Y, Tsuzuki T. On the Formation of Dissipative Structures in Reaction-diffusion Systems [J]. Progress of Theoretical Physics, 1975, 54(3): 678-699.

      [2] Akhromeeva T S, Kurdyumov S P, Malinetskii G G, et al. Classification of Solutions of a System of Nonlinear Diffusion Equations in a Neighborhood of a Bifurcation Point [J]. Journal of Soviet Mathematics, 1988, 41(5): 1292-1356.

      [3] Tsertsvadze G Z. On the Convergence of Difference Schemes for the Kuramoto-Tsuzuki Equation and Reaction- diffusion Type Systems [J]. Computational Mathematics & Mathematical Physics, 1992, 31(5): 40-47.

      [4] Sun Z Z. On Tsertsvadze’s Difference Scheme for the Kuramoto-Tsuzuki Equation [J]. Journal of Computational Applied Mathematics, 1998, 98(2): 289-304.

      [5] Omrani K. Convergence of Galerkin Approximations for the Kuramoto-Tsuzuki Equation [J]. Numerical Methods for Partial Differential Equations, 2005, 21(5): 961-975.

      [6] Wang S, Wang T, Zhang L, et al. Convergence of a Nonlinear Finite Difference Scheme for the Kuramoto-Tsuzuki Equation [J]. Communications in Nonlinear Science Numerical Simulation, 2011, 16(6): 2620-2627.

      [7] Sun Z Z. A Linear Difference Scheme for the Kuramoto-Tsuzuki Equation [J]. Journal of Computational Mathematics, 1996, 14(1): 1-7.

      [8] 孫志忠. 數(shù)值求解Kuramoto-Tsuzuki方程的廣義Box格式[J]. 東南大學(xué)學(xué)報(bào), 1996, 26(1): 87-92.

      [9] Wang T, Guo B. A Robust Semi-explicit Difference Scheme for the Kuramoto-Tsuzuki Equation [J]. Journal of Computational and Applied Mathematics, 2009, 233(4): 878-888.

      [10] Hu X, Chen S, Chang Q. Fourth-order Compact Difference Scheme for 1D Nonlinear Kuramoto-Tsuzuki Equation [J]. Numerical Methods for Partial Differential Equations, 2015, 31(6): 2080-2109.

      [11] Leonaviciene T, Bugajev A, Jankeviciute G, et al. On Stability Analysis of Finite Difference Schemes for Generalized Kuramoto-Tsuzuki Equation with Nonlocal Boundary Conditions [J]. Mathematical Modelling and Analysis, 2016, 21(5): 630-643.

      [12] Li B, Sun W. Error Analysis of Linearized Semi-implicit Galerkin Finite Element Methods for Nonlinear Parabolic Equations [J]. International Journal of Numerical Analysis Modeling, 2013, 10(3): 622-633.

      [13] Li B, Sun W. Unconditional Convergence and Optimal Error Estimates of a Galerkin-mixed FEM for Incompressible Miscible Flow in Porous Media [J]. SIAM Journal on Numerical Analysis, 2013, 51(4): 1959-1977.

      [14] Li D F. Optimal Error Estimates of a Linearized Crank-Nicolson Galerkin FEM for the Kuramoto-Tsuzuki Equations [J]. Communications in Computational Physics, 2019, 26(3): 838-854.

      Optimal Error Estimates of a First-order Linearized Backward Euler FEM for the Kuramoto-Tsuzuki Equations

      CUI Xuewei

      (College of Mathematics and Physics, Wenzhou University, Wenzhou, China 325035)

      For the high-dimensional nonlinear Kuramo-Tsuzuki equations, a first-order backward Euler finite factor is given in a fully discrete format. The semi-hidden format of nonlinear terms is used, which theoretically proves the stability of discrete solution and the unconditional optimal error estimates of discrete solution and precise solution.

      First-order Backward Euler FEM; Unconditional Optimal Error Estimates; Kuramo-Tsuzuki Equation; High Dimensional Nonlinear Problem

      O241.82

      A

      1674-3563(2022)01-0017-08

      10.3875/j.issn.1674-3563.2022.01.003

      本文的PDF文件可以從www.wzu.edu.cn/wzdxxb.htm獲得

      2020-11-26

      崔雪微(1993―),女,黑龍江綏化人,碩士研究生,研究方向:偏微分方程數(shù)值解

      (編輯:封毅)

      (英文審校:黃璐)

      猜你喜歡
      實(shí)部高維歐拉
      歐拉閃電貓
      歐拉魔盒
      精致背后的野性 歐拉好貓GT
      車(chē)迷(2022年1期)2022-03-29 00:50:26
      例談復(fù)數(shù)應(yīng)用中的計(jì)算兩次方法
      一種改進(jìn)的GP-CLIQUE自適應(yīng)高維子空間聚類(lèi)算法
      歐拉的疑惑
      基于加權(quán)自學(xué)習(xí)散列的高維數(shù)據(jù)最近鄰查詢(xún)算法
      淺談?wù)P推ヅ渚W(wǎng)絡(luò)的設(shè)計(jì)
      卷宗(2016年8期)2016-11-15 20:56:37
      一種基于電渦流和實(shí)部互阻抗檢測(cè)的金屬溫度監(jiān)測(cè)方法
      一般非齊次非線性擴(kuò)散方程的等價(jià)變換和高維不變子空間
      吉林省| 汨罗市| 天全县| 抚顺县| 广水市| 万载县| 邵武市| 界首市| 登封市| 铁岭市| 盘山县| 芷江| 哈巴河县| 新泰市| 满洲里市| 台安县| 清涧县| 临洮县| 那坡县| 柳州市| 平果县| 邵东县| 泰安市| 玛沁县| 德昌县| 宁陕县| 元朗区| 乌拉特中旗| 南雄市| 竹北市| 兴和县| 岳普湖县| 亚东县| 富宁县| 绍兴市| 玉门市| 长岛县| 九台市| 兴隆县| 信阳市| 宜章县|