• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth,characterization,and Raman spectra of the 1T phases of TiTe2,TiSe2,and TiS2

    2022-03-12 07:45:02XiaoFangTang唐筱芳ShuangXingZhu朱雙興HaoLiu劉豪ChenZhang章晨QiYiWu吳旗儀ZiTengLiu劉子騰JiaoJiaoSong宋姣姣XiaoGuo郭曉YongSongWang王永松HeMa馬赫YinZouZhao趙尹陬FanYingWu鄔釩穎ShuYuLiu劉姝妤KaiHuiLiu劉開(kāi)輝YaHuaYuan袁亞華HanHuang黃寒JunHe何軍
    Chinese Physics B 2022年3期
    關(guān)鍵詞:徐文

    Xiao-Fang Tang(唐筱芳) Shuang-Xing Zhu(朱雙興) Hao Liu(劉豪) Chen Zhang(章晨) Qi-Yi Wu(吳旗儀)Zi-Teng Liu(劉子騰) Jiao-Jiao Song(宋姣姣) Xiao Guo(郭曉) Yong-Song Wang(王永松) He Ma(馬赫)Yin-Zou Zhao(趙尹陬) Fan-Ying Wu(鄔釩穎) Shu-Yu Liu(劉姝妤) Kai-Hui Liu(劉開(kāi)輝)Ya-Hua Yuan(袁亞華) Han Huang(黃寒) Jun He(何軍) Wen Xu(徐文) Hai-Yun Liu(劉海云)Yu-Xia Duan(段玉霞) and Jian-Qiao Meng(孟建橋)

    1Key Laboratory of Materials Physics,Institute of Solid State Physics,Chinese Academy of Sciences,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    3School of Physics and Electronics,Central South University,Changsha 410083,China

    4State Key Laboratory for Mesoscopic Physics,Collaborative Innovation Center of Quantum Matter,School of Physics,Peking University,Beijing 100871,China

    5Beijing Academy of Quantum Information Sciences,Beijing 100085,China

    Keywords: transition-metal dichalcogenides,chemical vapor transport,Raman,phonon

    Following the discovery of graphene, layered transitionmetal dichalcogenides (TMDCs) with the chemical formulaTX2(T: transition metal;X: chalcogen) have attracted more attention.The quasi-two-dimensional(2D)TMDCs,attracted by relatively weak van der Waals-like forces, have rich physical properties such as topological superconductivity(SC),[1,2]charge density wave (CDW),[3,4]extremely large magnetoresistance,[5]and Dirac semimateal.[6,7]Due to the weak interaction between layers,it is possible for TMDCs materials to break the dimension limit and realize the application of few layers,[8]or even monolayer devices.[9,10]

    Titanium disulphides (TiX2,X=Te, Se, and S) are typical representatives of TMDCs. They have been studied extensively for their fascinating properties and potential applications. TiTe2[11-13]and TiSe2[14-16]are typical semimetals.Most researchers consider TiS2to be a semiconductor,[17,18]but some consider it to be semimetal.[19]1T-TiTe2has been considered as a textbook Fermi liquid system.[20]CDW and SC have been confirmed in both TiTe2[4,21,22]and TiSe2.[23-27]Bulk TiSe2undergoes a CDW phase transition at 202 K,[28,29]and that of the monolayer TiSe2increased to over 232 K.[25-27]Recently, CDW phase transition has been revealed in singlelayer TiTe2samples at 92±3 K,[4]while no CDW has been found in bulk TiTe2. For TiS2, theoretical calculation suggests that CDW and SC can be tuned by doping.[30]1Tphases of TiTe2[21,31,32]and TiSe2[33]have been suggested as possible candidates for exploring topological SC.In TMDCs compounds,both CDW and SC are considered to be closely related to phonons.[21,30,34]The systematic study of phonon properties in TiX2is helpful to understand CDW and SC better.

    High-quality large-size single crystals of TiX2were grown utilizing the chemical vapor transport method. Ti(99.99%, powder) andX(99.99%, powder) was mixed with a molar ratio of 1:2. Iodine (99.95%, powder) was used as the transport agent. We found that the growth of TiX2single crystals depends closely on many parameters, such as mixture heating temperature,crystal growth temperature,temperature gradient,growth time,and iodine concentration. We have tried different conditions, and the following parameters were applied to obtain high-quality large-size TiX2crystals. The mixture was sealed into quartz tubes in a vacuum(10-3Torr,1 Torr = 1.33322×102Pa) and placed in a two-zone furnace,and then heated to specified temperatures for nearly two weeks. For the growth of TiTe2, the mixture at one end was heated to 900°C, and the growth end was set at 800°C. For TiSe2and TiS2,the temperatures are set at 800°C and 700°C,700°C,and 600°C,respectively. For all three materials, the temperature gradient is~5°C/cm and the iodine concentration is~5 mg/mL.

    After two weeks of growth,Ti powder and chalcogenide powder can fully react to form large-size crystals. As-grown single crystals with the shiny surface are obtained,as shown in Figs.1(a)-1(c). The crystal size of TiTe2reaches centimeters.All three crystals show different metallic lusters and have distinct 120°angles related to their crystal structure. Figure 1(d)displays the x-ray diffraction(XRD)pattern for cleaved TiX2single crystals. All the observed diffraction peaks can be indexed by(0,0,h)withhbeing an integer,indicating a pure single phase of the obtained TiX2single crystal. It can be found from TiTe2to TiSe2to TiS2, the diffraction peak of the same indexed number shifts to the right. It means that thec-axis lattice constant decreases as chalcogens’ionic radius decreases.Thec-axis lattice constant is calculated from XRD data, as listed in Table 1. Our results are consistent with the results reported before.[20,35]

    Table 1. The chemical composition and c axis of the TiX2 single crystals.

    Fig.1.(a)-(c)Photograph of the as-grown crystals of TiTe2,TiSe2,and TiS2,respectively. (d) XRD patterns for cleaved single crystals of TiTe2, TiSe2,and TiS2,respectively. All peaks are indexed by(0,0,h).

    A scanning electron microscope(SEM)equipped with the energy dispersive spectrometer (EDS) was used to characterize the surface morphology and the chemical composition of the single crystals. Figures 2(a)-2(c)show the SEM observed smooth surfaces of TiTe2, TiSe2, and TiS2, respectively. Because of their layered structure, it can be readily cleaved to get sizeable, clean, and smooth surfaces, which is necessary for surface-sensitive experiments like angle-resolved photoemission spectroscopy and scanning tunneling microscope. As shown in Fig.2(a),the fracture between layers is usually along the edge direction.

    Figure 2(d) displays a typical EDS spectrum for TiSe2.The weight or atomic percentages of Ti and Se can be extracted.Table 1 summarizes the average chemical composition of TiX2single crystals.It can be seen that the actual atomic ratio of Ti andXin the three materials is close to 1:2,which is the ideal atomic ratio. Single-phase and accurate atomic ratios mean that we have obtained high-quality and stoichiometry TiX2single crystals.

    Fig.2.(a)-(c)The surface morphology of the TiTe2,TiSe2,and TiS2,respectively. (d)Typical EDS spectrum of for the single crystal TiSe2. The atomic ratio of Ti:Se=1:2.01.

    Raman spectroscopies were used to investigate the temperature-dependent phonon behavior of TiX2single crystals. Raman spectroscopy on TiTe2was measured using selfbuilt equipment in the range of 10 K-270 K, where the signal was excited by 532-nm laser and recorded by a Princeton SP2500 spectrometer equipped with a nitrogen-cooled silicon charge-coupled device camera. Raman spectroscopy (Renishaw)on TiSe2and TiS2single crystals were performed in the backscattering configuration under 633-nm laser excitation in the range of 80 K-300 K.

    The group-theoretical analysis suggested that the layered 1Tstructured TiX2has nine vibrational modes atΓpoint:[36]

    whereEgandA1gare Raman-active, andEuandA2uare infrared-active.TheEgandA1gmodes represent atomic vibrations along theabplane and parallel to thecaxis,respectively.

    Figures 3(a1)-(a3) show 2D pseudocolor maps of Raman spectra of TiTe2, TiSe2, and TiS2, respectively. The corresponding temperature evolution of Raman spectra of Figs. 3(a1)-(a3) at selected temperatures are displayed in Figs. 3(b1)-(b3). Several phonon modes with different strengths are observed in all three samples. These modes also behave differently with temperature.

    For TiTe2, five modes are observed at all temperatures[Figs. 3(a1) and 3(b1)]. At 10 K, the weak phonon modes at~105 cm-1(10 K)and~142 cm-1(10 K)are attributed toEgandA1gmodes,respectively.[36-38]A peak significantly stronger than theEgandA1gmodes was also observed at~125 cm-1,named theMmode and considered a zone-folded Raman-active mode.[37]However, in addition to these three phonon modes, we also observed two previously unreported modes at~183 cm-1(10 K)and~85 cm-1(10 K),respectively. Based on the existing theoretical calculations, the former phonon mode could be assigned toEusymmetry.[36,39]Follow the same analysis as Rajajiet al., the latter mode(namedKmode)could be a Raman mode resulting from zonefolding of phonon mode fromKorMof the Brillouin zone.However, it should be noted that CDW phase transition has not yet been detected in bulk TiTe2, which is different from TiSe2,[40]TaSe2,[41]and TaS2[42]with 1Tstructure referenced in Rajajiet al.’s analysis.[37]ForMandKmodes,further theoretical and experimental studies are necessary.

    Fig.3. (a1)-(a3)Raman intensity maps a function of Raman shift(horizontal axis)and temperature(vertical axis)for TiTe2,TiSe2,and TiS2,respectively.(b1)-(b3)Corresponding Raman spectra of panels(a1)-(a3)at selected temperatures. The temperature intervals are 40,30,and 30 K,respectively. (c1)-(c3)Temperature-dependence of Raman shift of phonon modes of TiTe2, TiSe2, and TiS2, respectively. The black-dashed lines represents the result of linear fitting.

    For TiSe2, two strong and sharp Raman peaks at~137 cm-1(80 K) and~204 cm-1(80 K) are observed[Figs. 3(a2) and 3(b2)], which can be attributed toEgandA1gmodes, respectively.[36,40,43]Other prominent features in the spectrum include broadbands at 70 cm-1-115 cm-1and 280 cm-1-320 cm-1. For the latter, the second-derivation method was used to extract the position of the phonon modes.Two modes were obtained at~285 cm-1(80 K) and~315 cm-1(80 K), respectively. The mode at~285 cm-1was identified as due toA2u.[44]The mode at~315 cm-1was assigned toEgphonons, which was due to two-phonon processes.[40,43]However, it is not easy to distinguish the phonon mode in the broad band at 70 cm-1-115 cm-1.We track the change of integrated intensity with temperature in this range, showing by the red dotted line in the inset of Fig. 3(a2). It can be seen that the intensity decreases with increasing temperature, and it decreases faster around 210 K.This behavior may be related to the CDW phase transition,and similar phenomena have been reported in previous studies.[45,46]At present,there is no good explanation for the sudden change of intensity at~100 K, which needs further study.

    As shown in Figs. 3(a3) and 3(b3), two sharp Raman peaks at~242 cm-1(80 K) and~340 cm-1(80 K) are observed in TiS2, which are assigned toEgandA1gmodes,respectively.[36,47,48]In addition,two significant structure features were observed, a broad peak appears at~185 cm-1(80 K)on the low energy side ofEgpeak,and a shoulder appears at~382 cm-1(80 K)on the high energy side of theA1gpeak. The former mode is possibly due to theEumode.[36]While the latter mode has been reported,[47-51]its origin is still much debated. Researchers have proposed various possible origins, including overtone and/or summation processes,[47]excess interlayer Ti atoms,[49,52]A2usymmetry,[36,51]and so on. In this work,it was noted as“A2u/Sh”.

    We quantitatively analyze the phonons’ evolution with temperatures. For phonons with distinct peaks,their positions are obtained by curve fitting. While for phonons with only the broad bands, their positions are obtained by the secondderivation. Figures 3(c1)-3(c3) show the detailed temperature dependence of positions for phonons of TiTe2, TiSe2,and TiS2, respectively. The evolution of the Raman modes wavenumbersωwas fitted with a linear function

    whereω0is the phonon wavenumber for temperature extrapolated to 0 K,κis the temperature coefficient, andTis the temperature. The fitting parameters are listed in Table 2.

    Table 2. Frequency ω0 (in unit cm-1) and temperature coefficients κ (in unit cm-1/K)of Raman modes of 1T-TiX2.

    Because of the anharmonic effects, phonons usually harden as the temperature decreases,meaning thatκis a negative number.EgandA1gmodes were found to harden with decreasing temperature. Because it is difficult to obtain the exact location ofEgmode of TiTe2, it is not fitted here. We note that the effect of temperature onA1gmode increases significantly from TiTe2to TiSe2and then TiS2. This may be becauseA1gmode vibrates parallel to thecaxis,that the effect of temperature is opposite to the change of thec-axis lattice constant. For TiSe2, theκvalue forEgmode is significantly lower than that ofA1gmode, which may be due to the different bonds in in-and out-of-planes. In contrast,theκvalue forEgandA1gmodes are identical for TiS2,which is inconsistent with the results obtained in the flake samples.[48]

    We also notice some abnormal features that several phonons soften with the decrease of temperature, such asKmode of TiTe2,A2u/Sh andEumodes of TiS2. Theκvalue(0.0095 cm-1)for theA2u/Sh mode of TiS2is more than one order of magnitude lower than the results obtained in the flake samples(0.0592 cm-1).[48]While theEumode of TiS2has a huge redshift (κ=0.1275 cm-1) with the decrease of temperature. Since the properties of some phonons, such as theA2u/Sh mode,are not fully understood,further theoretical and experimental studies are needed.

    Finally,we focus on the line shape of Raman spectra.Figures 4(a)-4(c) display the lowest temperature Raman spectra of TiTe2,TiSe2,and TiS2,respectively.As shown in Figs.4(b)and 4(c),the sharp Raman peaks of TiSe2and TiS2show good symmetry, which can be well fitted with the Lorentzian line shape. For TiTe2, a striking feature is an asymmetric line shape,indicating electron-phonon(e-ph)coupling in the system. The asymmetric line shape caused by e-ph coupling can be better fitted by Fano resonance line shape[53,54]

    whereA,ω0,q,andΓare the intensity,renormalized phonon frequency in the presence of e-ph coupling, asymmetry parameter,and linewidth,respectively.Generally,1/qreflects the strength of e-ph coupling. When the coupling is very weak,that is,|1/q|→0, the equation (3) reduces to the Lorentzian line shape. In Fig. 4, the solid curves are the fitted results with Eq.(3). For TiTe2,theqvalues ofK,M,andA1gmodes are about 4.1,2.9,and 3.8,respectively,which means a strong e-ph coupling. For TiSe2and TiS2, all modes haveqvalues greater than 8, indicating weak e-ph coupling. This conclusion can also be drawn from the fact that curves can be fitted well with the Lorentzian line shape(green dashed lines). Because the laser excitation wavelengths of the three samples are different,there is no quantitative comparison of the e-ph coupling strengthλ.

    In conclusion, high-quality and large TiTe2, TiSe2, and TiS2single crystals have been successfully prepared by the chemical vapor transport method. XRD,SEM,and EDS characterizations demonstrate the high crystalline quality of our sample. TiTe2phonon properties in the temperature range of 10 K to 270 K and TiSe2and TiS2phonon properties in the temperature range of 80 K to 300 K were measured by Raman spectroscopy. Multiple phonons were observed in all materials. In addition to the widely reported Raman modes such asEgandA1g, we also observed unreported Raman modes such asK(~84.5 cm-1)andEu(~182.5 cm-1)modes for TiTe2,A2umode for TiSe2,andEumode for TiS2.These phonons exhibit different temperature-dependent behaviors. TheKmode of TiTe2and theEuandA2u/Sh modes of TiS2soften with temperature decreasing, while the other phonons harden with temperature decreasing. Our findings add to the understanding of TiX2.

    Fig.4. (a)-(c)Low temperature Raman spectra of the TiTe2,TiSe2 and TiS2,respectively.The black solid lines and green dashed lines represent the fitting results of Eq.(3)and Lorentzian line shape,respectively.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and U1930116) and the Innovation-driven Plan in Central South University(Grant No.2016CXS032).

    猜你喜歡
    徐文
    顧鼎臣三對(duì)對(duì)子
    Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating?
    In vitro study of nonthermal atmospheric pressure plasma in improving the durability of the dentin-adhesive interface with an etch-and-rinse system
    不肯妥協(xié)
    永遠(yuǎn)解不開(kāi)的梁子
    少年時(shí)光不言敗
    我到底在和誰(shuí)比賽
    礙于面子擔(dān)保一個(gè)簽名賠萬(wàn)元
    少年時(shí)光不言敗
    徐文的劍與夢(mèng)
    詩(shī)潮(2014年9期)2014-11-15 05:32:12
    久久久久久久国产电影| 天天添夜夜摸| 久久性视频一级片| 夫妻午夜视频| 成年版毛片免费区| 大型黄色视频在线免费观看| 久久av网站| 狠狠婷婷综合久久久久久88av| 制服诱惑二区| 高潮久久久久久久久久久不卡| 一级a爱视频在线免费观看| 黑丝袜美女国产一区| 日韩人妻精品一区2区三区| av片东京热男人的天堂| 热re99久久国产66热| 久久久精品区二区三区| 精品少妇黑人巨大在线播放| 亚洲熟女精品中文字幕| 欧美久久黑人一区二区| 妹子高潮喷水视频| 捣出白浆h1v1| 久久精品亚洲av国产电影网| www.熟女人妻精品国产| 午夜两性在线视频| 久久久精品免费免费高清| 狠狠婷婷综合久久久久久88av| 亚洲国产av影院在线观看| 国产精品电影一区二区三区 | 在线观看人妻少妇| 国产精品av久久久久免费| 99精品久久久久人妻精品| 高清在线国产一区| 国产精品亚洲一级av第二区| 国产一区有黄有色的免费视频| 国产在线观看jvid| 国产免费av片在线观看野外av| 欧美激情久久久久久爽电影 | 涩涩av久久男人的天堂| 两个人免费观看高清视频| 久久久精品免费免费高清| 亚洲成人国产一区在线观看| 精品少妇黑人巨大在线播放| 黄频高清免费视频| 亚洲av国产av综合av卡| 日本wwww免费看| 最新在线观看一区二区三区| 国产精品欧美亚洲77777| 久久影院123| 午夜91福利影院| 乱人伦中国视频| 美女高潮到喷水免费观看| 国产成人影院久久av| 久久久精品94久久精品| 亚洲欧美激情在线| 捣出白浆h1v1| 无人区码免费观看不卡 | 狠狠狠狠99中文字幕| 一本—道久久a久久精品蜜桃钙片| 亚洲午夜理论影院| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| av一本久久久久| 水蜜桃什么品种好| 日本精品一区二区三区蜜桃| 无人区码免费观看不卡 | 日韩人妻精品一区2区三区| 国产成人啪精品午夜网站| 曰老女人黄片| 高清视频免费观看一区二区| 在线观看免费午夜福利视频| 在线观看舔阴道视频| 亚洲精品在线观看二区| 亚洲精品中文字幕一二三四区 | 亚洲男人天堂网一区| 高清毛片免费观看视频网站 | 久久久久精品国产欧美久久久| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 国产黄色免费在线视频| 日日夜夜操网爽| 成人av一区二区三区在线看| 99精国产麻豆久久婷婷| 国产精品免费大片| 热re99久久精品国产66热6| av视频免费观看在线观看| 99精国产麻豆久久婷婷| 一进一出好大好爽视频| 亚洲国产欧美网| 亚洲 欧美一区二区三区| 色综合婷婷激情| 在线观看免费高清a一片| 亚洲中文日韩欧美视频| 女性被躁到高潮视频| 亚洲欧美精品综合一区二区三区| 欧美日韩av久久| 久热爱精品视频在线9| 午夜免费成人在线视频| 国产免费av片在线观看野外av| 免费高清在线观看日韩| 亚洲av欧美aⅴ国产| 69精品国产乱码久久久| 亚洲国产欧美在线一区| 91大片在线观看| 国产免费视频播放在线视频| 精品福利观看| 亚洲全国av大片| 露出奶头的视频| 亚洲免费av在线视频| 不卡av一区二区三区| 精品国产一区二区三区四区第35| 免费人妻精品一区二区三区视频| 怎么达到女性高潮| 色在线成人网| 一边摸一边抽搐一进一小说 | 天天躁日日躁夜夜躁夜夜| 91成人精品电影| 狠狠婷婷综合久久久久久88av| 欧美另类亚洲清纯唯美| 悠悠久久av| 亚洲av日韩精品久久久久久密| 日本vs欧美在线观看视频| av电影中文网址| 欧美在线黄色| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看| 久久 成人 亚洲| 久久久国产欧美日韩av| 在线观看免费日韩欧美大片| 中文字幕精品免费在线观看视频| 久久av网站| 黄色片一级片一级黄色片| 精品久久久精品久久久| 日韩欧美一区二区三区在线观看 | 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 国产精品一区二区精品视频观看| 午夜免费成人在线视频| 中文字幕人妻丝袜制服| 国产精品久久电影中文字幕 | av线在线观看网站| 色精品久久人妻99蜜桃| 一区二区三区国产精品乱码| 国产极品粉嫩免费观看在线| 女警被强在线播放| 午夜老司机福利片| 成年女人毛片免费观看观看9 | 大陆偷拍与自拍| 电影成人av| 日本vs欧美在线观看视频| 午夜日韩欧美国产| 又黄又粗又硬又大视频| 大型黄色视频在线免费观看| 他把我摸到了高潮在线观看 | 老司机亚洲免费影院| 韩国精品一区二区三区| 91麻豆精品激情在线观看国产 | 亚洲人成77777在线视频| 可以免费在线观看a视频的电影网站| 天天躁日日躁夜夜躁夜夜| 欧美黑人精品巨大| 精品国产一区二区久久| 欧美国产精品va在线观看不卡| 欧美变态另类bdsm刘玥| 亚洲人成电影免费在线| 水蜜桃什么品种好| 亚洲性夜色夜夜综合| 高清av免费在线| 亚洲精品在线美女| 狠狠狠狠99中文字幕| 黑人欧美特级aaaaaa片| 久久精品国产a三级三级三级| 69av精品久久久久久 | 亚洲九九香蕉| 国产精品一区二区免费欧美| 欧美av亚洲av综合av国产av| 亚洲人成电影免费在线| 女同久久另类99精品国产91| 国产有黄有色有爽视频| 我的亚洲天堂| 在线观看免费视频网站a站| 国产色视频综合| 欧美日韩国产mv在线观看视频| 日韩精品免费视频一区二区三区| bbb黄色大片| 免费日韩欧美在线观看| 国产三级黄色录像| 正在播放国产对白刺激| 丁香欧美五月| 亚洲人成电影免费在线| 国产亚洲av高清不卡| 成人亚洲精品一区在线观看| 9色porny在线观看| 亚洲国产看品久久| 99热网站在线观看| 日韩中文字幕欧美一区二区| 色94色欧美一区二区| √禁漫天堂资源中文www| 纯流量卡能插随身wifi吗| 国产免费福利视频在线观看| 婷婷丁香在线五月| 亚洲成人手机| 亚洲少妇的诱惑av| 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 热99国产精品久久久久久7| 三上悠亚av全集在线观看| 国产欧美日韩一区二区三| 精品免费久久久久久久清纯 | 日韩中文字幕视频在线看片| 午夜免费鲁丝| 黄色成人免费大全| 啦啦啦免费观看视频1| 成人亚洲精品一区在线观看| 一区在线观看完整版| 久久人妻av系列| 男男h啪啪无遮挡| 国产精品久久久久久精品古装| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 欧美大码av| 中文亚洲av片在线观看爽 | 国产精品免费一区二区三区在线 | 国产精品自产拍在线观看55亚洲 | 午夜老司机福利片| 精品国内亚洲2022精品成人 | 色综合婷婷激情| 亚洲 国产 在线| 亚洲精品中文字幕一二三四区 | 久久久欧美国产精品| 麻豆av在线久日| 男女高潮啪啪啪动态图| 激情在线观看视频在线高清 | 成年女人毛片免费观看观看9 | 两性午夜刺激爽爽歪歪视频在线观看 | 成人国产一区最新在线观看| 午夜福利,免费看| 午夜福利在线免费观看网站| av片东京热男人的天堂| 咕卡用的链子| 亚洲国产看品久久| 无人区码免费观看不卡 | 丝瓜视频免费看黄片| 十八禁网站免费在线| 男女边摸边吃奶| 美女扒开内裤让男人捅视频| 色婷婷久久久亚洲欧美| 国产淫语在线视频| 久久精品91无色码中文字幕| 两个人看的免费小视频| 亚洲专区国产一区二区| 99re6热这里在线精品视频| 视频在线观看一区二区三区| 多毛熟女@视频| 老熟妇乱子伦视频在线观看| 国产高清激情床上av| 高清黄色对白视频在线免费看| 日本vs欧美在线观看视频| 亚洲成人手机| 99re6热这里在线精品视频| 老司机福利观看| 女人被躁到高潮嗷嗷叫费观| 久久天躁狠狠躁夜夜2o2o| 成人精品一区二区免费| 两个人免费观看高清视频| 国产成人av教育| 美国免费a级毛片| www.999成人在线观看| 日韩中文字幕视频在线看片| 午夜免费成人在线视频| 欧美日韩视频精品一区| 黄网站色视频无遮挡免费观看| 欧美日韩亚洲综合一区二区三区_| 我的亚洲天堂| 亚洲精品一二三| 久久精品国产99精品国产亚洲性色 | 国产高清视频在线播放一区| 视频在线观看一区二区三区| 欧美日韩av久久| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 午夜福利,免费看| 大片电影免费在线观看免费| 91成人精品电影| 午夜精品久久久久久毛片777| 一二三四在线观看免费中文在| 亚洲性夜色夜夜综合| 人人妻人人添人人爽欧美一区卜| 国产一卡二卡三卡精品| 国产亚洲午夜精品一区二区久久| 啦啦啦免费观看视频1| 99久久国产精品久久久| 黄色 视频免费看| 国产精品久久久久久人妻精品电影 | 亚洲 国产 在线| 桃红色精品国产亚洲av| 午夜激情av网站| 久久精品国产亚洲av香蕉五月 | 美女福利国产在线| 国产欧美日韩精品亚洲av| 夫妻午夜视频| 国产真人三级小视频在线观看| 99热国产这里只有精品6| 中文亚洲av片在线观看爽 | 国产97色在线日韩免费| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 另类精品久久| 国产成人影院久久av| 美女国产高潮福利片在线看| 亚洲av第一区精品v没综合| 天堂8中文在线网| 80岁老熟妇乱子伦牲交| 国产激情久久老熟女| 免费在线观看影片大全网站| 天堂中文最新版在线下载| 欧美另类亚洲清纯唯美| 悠悠久久av| 成在线人永久免费视频| 正在播放国产对白刺激| 国产在线一区二区三区精| 亚洲精品中文字幕一二三四区 | 久久精品国产亚洲av香蕉五月 | 国产一区二区在线观看av| 不卡av一区二区三区| 少妇被粗大的猛进出69影院| 99久久国产精品久久久| 国产精品一区二区精品视频观看| 国产一区二区激情短视频| 国产97色在线日韩免费| 天堂俺去俺来也www色官网| 国产三级黄色录像| 2018国产大陆天天弄谢| 飞空精品影院首页| 51午夜福利影视在线观看| 高清在线国产一区| 国产日韩欧美亚洲二区| 超色免费av| 美女福利国产在线| kizo精华| 老司机午夜福利在线观看视频 | 捣出白浆h1v1| 窝窝影院91人妻| 日本精品一区二区三区蜜桃| 久久久久久久久免费视频了| 一二三四社区在线视频社区8| 正在播放国产对白刺激| 国产伦理片在线播放av一区| 淫妇啪啪啪对白视频| 亚洲成人国产一区在线观看| 人人澡人人妻人| 国产欧美日韩一区二区三| 男女高潮啪啪啪动态图| 国产精品免费一区二区三区在线 | 久久国产亚洲av麻豆专区| 日本黄色日本黄色录像| 精品一区二区三区av网在线观看 | av网站在线播放免费| 欧美av亚洲av综合av国产av| 老司机福利观看| 国产xxxxx性猛交| 精品欧美一区二区三区在线| h视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久av美女十八| 777米奇影视久久| 国产成人系列免费观看| 777米奇影视久久| 巨乳人妻的诱惑在线观看| 成人国产av品久久久| 久久精品国产亚洲av高清一级| 精品久久久精品久久久| 亚洲七黄色美女视频| 国产精品久久久久成人av| 国产一区二区三区在线臀色熟女 | 国产精品一区二区在线不卡| 国产伦理片在线播放av一区| 精品国内亚洲2022精品成人 | 日本a在线网址| 无限看片的www在线观看| 99国产综合亚洲精品| 91九色精品人成在线观看| 国产男女超爽视频在线观看| 国产在视频线精品| 精品免费久久久久久久清纯 | 国产淫语在线视频| 亚洲精品国产色婷婷电影| a级片在线免费高清观看视频| av天堂久久9| 国产欧美日韩一区二区三| av天堂久久9| 亚洲av美国av| 国产1区2区3区精品| av有码第一页| 一本久久精品| 纵有疾风起免费观看全集完整版| 黄色成人免费大全| 香蕉国产在线看| 欧美亚洲日本最大视频资源| 国产成人一区二区三区免费视频网站| 国产野战对白在线观看| av又黄又爽大尺度在线免费看| 日韩视频在线欧美| 色尼玛亚洲综合影院| 国产精品久久久人人做人人爽| 成人18禁在线播放| 亚洲av美国av| 真人做人爱边吃奶动态| 欧美激情高清一区二区三区| 欧美激情久久久久久爽电影 | 中文字幕制服av| 一区二区av电影网| 丁香欧美五月| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 国产成人免费无遮挡视频| 久久久国产精品麻豆| 香蕉久久夜色| 国产成人精品久久二区二区91| 水蜜桃什么品种好| 香蕉国产在线看| 午夜精品国产一区二区电影| 免费不卡黄色视频| 国产精品香港三级国产av潘金莲| 久久久久精品国产欧美久久久| 久久av网站| 亚洲精品av麻豆狂野| 日韩视频一区二区在线观看| 欧美国产精品va在线观看不卡| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 嫁个100分男人电影在线观看| 亚洲精品在线美女| 国产精品秋霞免费鲁丝片| 色在线成人网| 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 免费一级毛片在线播放高清视频 | 国产精品1区2区在线观看. | 日日夜夜操网爽| 成人免费观看视频高清| 亚洲va日本ⅴa欧美va伊人久久| 老鸭窝网址在线观看| 一区二区三区激情视频| 波多野结衣一区麻豆| 三上悠亚av全集在线观看| 国产成人免费观看mmmm| 久久精品国产亚洲av香蕉五月 | 美女视频免费永久观看网站| 日韩一卡2卡3卡4卡2021年| 欧美av亚洲av综合av国产av| 亚洲欧洲精品一区二区精品久久久| 国产无遮挡羞羞视频在线观看| 18禁黄网站禁片午夜丰满| 极品少妇高潮喷水抽搐| 亚洲avbb在线观看| 91精品三级在线观看| 热re99久久国产66热| 中文字幕人妻丝袜制服| 在线观看免费视频日本深夜| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 桃花免费在线播放| 久热这里只有精品99| 高清在线国产一区| 久久精品aⅴ一区二区三区四区| 大码成人一级视频| 人妻 亚洲 视频| 亚洲精品久久午夜乱码| 精品国产一区二区三区久久久樱花| 五月天丁香电影| 嫁个100分男人电影在线观看| 久久久久久久国产电影| 亚洲综合色网址| 免费在线观看完整版高清| 精品少妇内射三级| 国产成人精品无人区| 在线观看66精品国产| 后天国语完整版免费观看| 12—13女人毛片做爰片一| 在线av久久热| 黄片小视频在线播放| 亚洲中文日韩欧美视频| av网站免费在线观看视频| 黑人巨大精品欧美一区二区mp4| 在线观看免费午夜福利视频| 巨乳人妻的诱惑在线观看| 丰满迷人的少妇在线观看| 国产成人精品在线电影| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 一个人免费看片子| 精品第一国产精品| 久久中文字幕人妻熟女| 一级黄色大片毛片| 国产麻豆69| 国产高清激情床上av| av国产精品久久久久影院| 男女之事视频高清在线观看| 亚洲精品在线美女| 一本色道久久久久久精品综合| 国产一卡二卡三卡精品| 亚洲av成人一区二区三| 麻豆av在线久日| 亚洲 国产 在线| 亚洲avbb在线观看| 亚洲精品国产精品久久久不卡| 免费日韩欧美在线观看| 中文欧美无线码| 国产精品影院久久| 免费av中文字幕在线| 亚洲熟妇熟女久久| 亚洲一区中文字幕在线| 香蕉国产在线看| 无遮挡黄片免费观看| 成人18禁在线播放| 亚洲av电影在线进入| 久久精品亚洲熟妇少妇任你| 国产黄色免费在线视频| 成人av一区二区三区在线看| av又黄又爽大尺度在线免费看| 一本一本久久a久久精品综合妖精| 搡老熟女国产l中国老女人| 中亚洲国语对白在线视频| 自线自在国产av| 欧美国产精品一级二级三级| av有码第一页| 国产精品98久久久久久宅男小说| 热99re8久久精品国产| 80岁老熟妇乱子伦牲交| 精品卡一卡二卡四卡免费| 1024视频免费在线观看| 国产精品影院久久| av天堂久久9| 黄色视频,在线免费观看| 欧美成人午夜精品| 操美女的视频在线观看| 国产不卡av网站在线观看| 精品卡一卡二卡四卡免费| 中国美女看黄片| 日本五十路高清| 91大片在线观看| 久久人妻福利社区极品人妻图片| 亚洲精品在线美女| 亚洲国产欧美在线一区| 19禁男女啪啪无遮挡网站| 成年版毛片免费区| 一进一出抽搐动态| 日韩欧美一区视频在线观看| 色综合婷婷激情| 又大又爽又粗| 亚洲少妇的诱惑av| 黄片播放在线免费| 精品免费久久久久久久清纯 | 啦啦啦 在线观看视频| 激情在线观看视频在线高清 | 午夜91福利影院| av超薄肉色丝袜交足视频| 中文亚洲av片在线观看爽 | 老熟女久久久| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| 成人黄色视频免费在线看| 12—13女人毛片做爰片一| 免费在线观看黄色视频的| 国产精品影院久久| 亚洲精品乱久久久久久| 两个人免费观看高清视频| 精品国产国语对白av| 青草久久国产| 国产日韩欧美在线精品| 日日爽夜夜爽网站| 亚洲国产欧美一区二区综合| 亚洲av成人不卡在线观看播放网| 国产日韩一区二区三区精品不卡| 日本a在线网址| 三上悠亚av全集在线观看| 黑人猛操日本美女一级片| 午夜福利在线免费观看网站| 激情视频va一区二区三区| 人妻久久中文字幕网| 亚洲中文av在线| 国产日韩欧美视频二区| 久久久久国产一级毛片高清牌| 岛国毛片在线播放| 侵犯人妻中文字幕一二三四区| 欧美黄色淫秽网站| 十八禁网站免费在线| 国产精品98久久久久久宅男小说| 99久久精品国产亚洲精品| 精品少妇黑人巨大在线播放| 精品福利观看| 久久久久久亚洲精品国产蜜桃av| 99国产精品免费福利视频| 一边摸一边抽搐一进一出视频| 亚洲国产av影院在线观看| 亚洲男人天堂网一区| 下体分泌物呈黄色| 桃花免费在线播放| 国产欧美亚洲国产| 一级a爱视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| 成年人免费黄色播放视频| 精品少妇一区二区三区视频日本电影| 中文字幕色久视频| 久久精品人人爽人人爽视色| 国产日韩欧美视频二区| 成人三级做爰电影| 黄色视频,在线免费观看| 飞空精品影院首页| 亚洲欧洲精品一区二区精品久久久| 一夜夜www| av线在线观看网站| 一级毛片女人18水好多|