• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol

    2022-03-12 07:49:02ZheZhang張哲YanNaChen陳艷娜JiQi齊跡ZhaoZhang張召KojiOharaOsamiSakataZhiDongZhang張志東andBingLi李昺
    Chinese Physics B 2022年3期
    關(guān)鍵詞:張哲

    Zhe Zhang(張哲) Yan-Na Chen(陳艷娜) Ji Qi(齊跡) Zhao Zhang(張召)Koji Ohara Osami Sakata Zhi-Dong Zhang(張志東) and Bing Li(李昺)

    1Shenyang National Laboratory(SYNL)for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    2School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China

    3Synchrotron X-ray Group,Research Center for Advanced Measurement and Characterization,National Institute for Materials Science(NIMS),Sayo,Japan

    4SPring-8,Diffraction and Scattering Division,Center for Synchrotron Radiation Research Institute,Japan Synchrotron Radiation Research Institute,Sayo,Japan

    Keywords: colossal barocaloric effect,plastic crystals,phase transition asymmetry

    1. Introduction

    Caloric materials are the systems that exhibit significant thermal effects at phase transitions induced by external fields like pressure, stress, magnetic fields,etc. They can be used as solid-state refrigeration through a designated cooling cycle. Current caloric effects refer to magnetocaloric effects in magnetic materials, electrocaloric effects in ferroelectric materials, elastocaloric materials in ferroelastic materials, and barocaloric effects (BCEs).[1-6]We emphasize that the barocaloric effects are not system-selective. In principle, one can observe BCEs in any atomic system given that pressure is always factored in the free energy of a system. For instance, BCEs have been reported in superionic AgI,[7]inorganic-organic hybrid[TPrA][Mn(dca)3],[8]natural rubber,[9,10]spin-crossover compounds,[11]antiferromagnetic Mn3GaN,[12]Ni1-xFexS,[13]and nonmagnetic NiMnTi,[14,15]

    where the latter three compounds are not magnetocaloric. Recently,we have found the colossal BCEs in a series of plastic crystals, whose entropy changes are not only one magnitude of order larger than currently existing barocaloric materials,[4]but also the largest in all known caloric materials. In the prototype neopentylglycol (NPG) with the chemical formula C5H12O2, the entropy change is about 389 J·kg-1·K-1under a pressure change of 100 MPa.

    The underlying phase transition is the crystal structural transition from the high-temperature face-centered-cubic(FCC) phase to the low-temperature monoclinic phase.[4,16]The neopentylglycol molecules are characteristic of a tetrahedral configuration where carbon atoms are located at the body center and corners. Hydrogen and oxygen atoms are attached to these carbon atoms. The intermolecular interactions are mainly hydrogen bonding[17]and in fact,phase transition enthalpies are found to follow a linear relation with the square of the number of hydroxyl groups per molecule in (CH3)4-xC(CH2OH)x(x= 0-4) family.[18]The molecular structure and crystal structure of the monoclinic phase are shown in Fig. 1(a).[17]A quasi-elastic neutron scattering study has revealed that the neopentylglycol molecules are subjected to isotropic rotations in the FCC phase while they are restrained after the phase transition.[4]The reorientation dynamics have also been supported by molecular dynamics simulations andab initiocalculations.[16]Here, we present a comprehensive high-energy x-ray diffraction(HEXRD)study including pair distribution function (PDF) analysis of local structures and time-resolved diffraction for the phase transition kinetics.

    2. Experimental details

    Polycrystalline NPG samples were used for thermal and x-ray diffraction measurements. Heat flows were recorded by using Seteram μDSC7 under applied pressures generated through compressed nitrogen gas, and the details were described elsewhere.[4]The HEXRD measurements were performed at the beamline BL04B2 of SPring-8,Japan.[19,20]The x-ray energy was fixed at 61.4 keV(wavelengthλ=0.202 °A)with an Si (220) crystal monochromator. In the experiments,the NPG powder samples were sealed in quartz capillaries with a diameter of 2 mm. At first, we collected the total scattering structure factors on NPG samples for PDF analysis by using six point-detectors arranged horizontally to obtain a 2θvalue ranging from 0.3°to 48.4°at a series of constant temperatures.[21]A furnace with a vacuum chamber was heated from 293 K to 338 K and then cooled down to 298 K.The heating/cooling rate between two constant temperatures was 1 K/min. After reaching a target temperature, the samples were kept for 10 mins at this temperature prior to acquiring data. The total structure factorSX(Q) was measured at aQrange up to 20 °A-1at a constant temperature for approximately 40 min. An empty quartz capillary was also measured for subtracting the background from the data to be analyzed.After background correction,absorption correction,and polarization correction,the resultingSX(Q)was normalized to 1 in aQrange of 15 °A-1-20 °A-1. The reduced PDF,GX(r), was calculated by the Fourier transform ofSX(Q). The total and partialGX(r)were simulated based on the average monoclinic structure by using PDFgui.[22]

    Then,time-resolved HEXRD data were recorded by employing a 16-inch (1 inch=2.54 cm) digital x-ray detector (XRD 1621 CN3, PerkinElmer).[23]The detector offered an image size of 2048×2048 pixels with a pixel size of 200 μm.[23]The image integration time was at least 66.5 ms.The sample was heated and cooled in a designed furnace with a chiller. The temperature ramping rates were set to be 0.1 K/min and 1 K/min. In the present study,we used an image acquiring time of 1 s to obtain the images continuously in heating and cooling processes. Comparing with the temperature ramping rate,the image acquiring time is quite short,

    where the sample is expected to be at a constant temperature.The obtained time-resolved data were reduced and visualized in Orochi Project.[24]

    3. Results and discussion

    3.1. Heat flow data

    Heat flow data recorded at a ramping rate of 1 K/min are displayed in Fig.1(b)under constant applied pressures up to 100 MPa in steps of 5 MPa. It can be seen that there is obvious thermal hysteresis, as a practical identification of a first-order phase transition.[25-27]The phase transition interval(i.e.two-phase coexistence region)is much smaller at cooling than at heating,which is known as phase transition asymmetry.This is also a feature of a first-order phase transition and has been observed in confined FeRh,[28]VO2,[29]and V2O3.[30]The phase transition temperature defined as the peak position of heat flows is noticeably shifted toward higher temperatures,whose pressure dependence is plotted in Fig.1(c)for heating process and cooling process. The thermal hysteresis is about 17 K and is almost independent of pressure.This value is a few K larger than that observed at a ramping rate of 0.1 K/min.[4]The ramping rate dependence of thermal hysteresis is also an indication of a first-order phase transition.[26,31]

    The temperature dependence of phase-transition entropy changes can be determined by integrating the heat flow data as done before.[4]Based on thein-situheat flow data with the fine pressure step,we convert the temperature dependence at constant pressure into the pressure dependence at constant temperature just above the phase transition temperature. By doing so, it is allowed to evaluate the critical pressure and saturation pressure of the phase transition. Shown in Fig.1(d)is the pressure dependence of isothermal entropy changes at 322.5,323.5,and 325 K,respectively.Taking the isotherm at 322.5 K for example,the critical pressure is found to be about 45 MPa,which is defined as the maximum value of the derivative of entropy change with respect to pressure. The saturation pressure is about 80 MPa.

    3.2. HEXRD data

    Shown in Fig. 2(a) is the normalizedSX(Q) at 293 K in aQrange from 0.2 °A-1to 20 °A-1, whose intensity oscillates around 1 at highQvalues. TheSX(Q) in the cooling process and heating process are plotted in Figs. 2(b) and 2(c). Since there are only two Bragg peaks visible in the hightemperature FCC phase, the phase transition is clearly distinguished by directly comparing the diffraction patterns. It can be seen that the phase transition takes place in a range of about 318 K-328 K at heating while in a range of 313 K-308 K at cooling. The phase coexistence is observed in both cases,but the interval at heating is much broader. As for the hightemperature FCC phase,there exists well-defined diffuse scattering in which the intensity oscillates around the background level as shown in the insets of Figs.2(b)and 2(c). The intensities most likely originate from the inter-molecular disorder.

    The derivedGX(r) is plotted in Fig. 3(a). In a range of 1 °A-4 °A, there are three major peaks with few small shoulders resided. To distinguish the pairs, the values of partialGX(r) of major pairs are obtained by simulation through using theP21/nmodel,and the simulation results are shown in Fig.3(b). The first peak of C-C pair, located at about 1.5 °A,is associated with the distance between the corner and bodycenter of a tetrahedron, while the second one at 2.45 °A is related to the distance of the edge of the tetrahedron. As for the O-O pair, its first peak (~2.7 °A) is attributed to the intermolecular correlation whereas the second one (~3.4 °A) is the distance between two oxygen atoms within a molecule.The first three peaks of C-O pairs are all related to the intramolecular correlations. In contrast,the peak at 3.8 °A is mostly contributed by inter-molecular correlations. With the guide of partialGX(r), it is clear that the intensities ofGX(r) of intra-molecular pairs are much more susceptible to temperature change. It can be seen that the intensities ofGX(r) at about 2.7 °A and 3.8 °A are significantly reduced in the hightemperature FCC phase,which is attributed to the intermolecular disorder that leads the molecules to lose their mutual correlations.

    Fig.2. (a)The SX(Q)at 293 K versus Q ranging from 0.2 °A-1 to 20 °A-1,normalized to 1 (dash line). SX(Q) at selected temperatures in (b) heating process and(c)cooling process in a Q range from 0.2 °A-1 to 10 °A-1,with insets highlighting diffuse scattering of high-temperature FCC phase.

    Fig.3. (a)The GX(r)curves at selected temperatures. (b)Curves of partial GX(r)of O-O,C-O,and C-C pairs simulated in monoclinic phase.

    Fig. 4. (a) Time-resolved HEXRD pattern of full cooling-heating cycle at a temperature ramping rate of 0.1 K/min and in a Q range from 1 °A-1 to 5 °A-1; (b) only cooling cycle and (c) only heating cycle at a temperature ramping rate of 0.1 K/min and in a Q range from 1 °A-1 to 3 °A-1.

    Fig. 5. Time-resolved HEXRD patterns at a temperature ramping rate of 1 K/min for(a)cooling process and(b)heating processes.

    The plastic crystal phase transition of NPG is further explored by using the time-resolved HEXRD.With the fine time resolution, the transition processes can be monitored. Shown in Fig.4(a)is the contour plot of diffraction patterns during the cooling-heating cycle at a ramping rate of 0.1 K/min. In the beginning, there is a typical pattern for the high-temperature FCC phase. As cooling time reaches about 1.7×104s, the phase transition abruptly takes place,where more Bragg peaks are present at higher angles and the main peaks at the lower angles are shifted. When cycle time arrives at~3.0×104s,the phase transition at heating happens,as the intensity gradually increases the main peak is smoothly shifted toward lower angles. Surprisingly, the transition is considerably smooth.In Figs. 4(b) and 4(c), the details of the transition processes are highlighted. At cooling,the transition is completed within about 200 s, corresponding to a transition temperature interval of 0.33 K.In contrast,the transition at heating persists for about 1000 s,transformed into a temperature span of 1.67 K.The phase transition process is also recorded at a temperature ramping rate of 1 K·min-1as shown in Fig. 5. Similar features are observed,but the phase coexistence regions are larger than those at 0.1 K/min. When cooling,the transition is completed within about 40 s,corresponding to a transition interval of 0.7 K.In contrast,the transition at heating persists for about 300 s,transformed into a temperature span of 5 K.

    3.3. Phase transition asymmetry

    Both the thermal and the structural results suggest that the plastic crystal transition in NPG is quite asymmetric, that is,the transition at the cooling process is much faster than at the heating process. Moreover,the phase transition asymmetry is pressure-dependent,just as shown in Fig.6. As applied pressure increases, the phase coexistence regions are suppressed for both cooling process and heating process, whereas the interval at heating decreases faster so that the asymmetry is slightly reduced.

    Fig.6. (a)Phase-coexistence intervals versus pressure at cooling and heating and(b)pressure dependence of phase transition asymmetry.

    Phase transition asymmetry is observed in a series of dimension-confined materials including correlated electronic systems VO2[29]and V2O3[30]nanowires as well as metamagnetic FeRh ribbons.[28]In general,the origin of such an asymmetry has been discussed in terms of the difference between heterogeneous nucleation seeds of first-order phase transitions: point defectsversustwin walls.[28]The low-symmetry structure mimicking a higher-symmetry structure at its twin walls would facilitate the nucleation of the high-symmetry phase,whereas the transition back to the low-symmetry phase relies on the nucleation at point defects. In systems mentioned above,spin,charge,and lattice degrees of freedom are highly coupled and the delicate compromise among individual interactions may also lead to the asymmetry at a phase transition between electronic phases.[32]Especially,the temperature dependence of a gap and inherent thermal hysteresis may dominate a gapped system. At a phase transition between two magnetically ordered phases, the different magnetic correlations might be relevant to each other, just as observed in FeRh.[28]As for NPG, further studies are needed on the origin of the phase transition asymmetry issue. Based on the above discussion,two possible scenarios are present. One is the defect structure and the other is the temperature-dependent energy profile.

    4. Summary

    In this work, we have studied the relations of NPG to temperature,pressure,and temperature ramping rate,by usingin-situhigh-precision differential scanning calorimetry and HEXRD.The phase transition is observed inSX(Q)and also inGX(r). The phase transition asymmetry that the cooling process is much faster than the heating process is found in thermal measurement and time-resolved HEXRD measurement,which are both well consistent with each other. It is suggested that the asymmetry becomes smaller at higher pressures, but the exact origin remains unknown. Whether the asymmetry is a generic property of first-order phase transition is still an open question,which needs further studying.

    Acknowledgements

    The HEXRD experiments were performed at the BL04B2 of SPring-8 with the approval of the JASRI (Proposal No.2019A1249).

    Project supported by the Key Research Program of Frontier Sciences, the Chinese Academy of Sciences(Grant No. ZDBS-LY-JSC002), the International Partner Program of the Chinese Academy of Sciences (Grant No. 174321KYSB20200008), and the National Natural Science Foundation of China (Grant Nos. 11934007 and 11804346).

    猜你喜歡
    張哲
    Vi-PDMS/S-SiO2超疏水聚酯纖維織物的制備及性能研究
    包裝工程(2023年21期)2023-11-18 03:31:38
    A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography
    豬群體一步法基因組選擇應(yīng)用效果評估
    山區(qū)公路路線設(shè)計的基本特點與思路
    數(shù)據(jù)驅(qū)動的高職課堂精準(zhǔn)教學(xué)模式構(gòu)建研究
    一個叫“撲拉提”的漢族小伙
    吐魯番(2016年3期)2016-11-26 00:33:51
    張哲和伙伴們的“公益足跡”
    班里來了 “黑老大”
    Modelling of 2-D extended Boussinesq equations using a hybrid numerical scheme*
    用心靈呵護(hù)心靈
    紫光閣(2014年3期)2014-03-07 22:49:24
    久久久精品94久久精品| 亚州av有码| 97在线人人人人妻| 亚洲av电影在线观看一区二区三区| 不卡视频在线观看欧美| 国产精品熟女久久久久浪| 亚洲精品国产色婷婷电影| 三级经典国产精品| 欧美成人精品欧美一级黄| 国模一区二区三区四区视频| 国产成人精品婷婷| 久久99精品国语久久久| 国产av码专区亚洲av| 国产亚洲av片在线观看秒播厂| 国产白丝娇喘喷水9色精品| 波野结衣二区三区在线| 久久精品国产自在天天线| 成年美女黄网站色视频大全免费 | 人人妻人人添人人爽欧美一区卜| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美一区二区三区国产| 日本vs欧美在线观看视频 | 91久久精品国产一区二区三区| 欧美最新免费一区二区三区| 妹子高潮喷水视频| 亚洲av电影在线观看一区二区三区| 亚洲av男天堂| 日韩精品有码人妻一区| 亚洲真实伦在线观看| 美女大奶头黄色视频| 午夜影院在线不卡| 亚州av有码| 国产真实伦视频高清在线观看| 黑丝袜美女国产一区| 99re6热这里在线精品视频| 亚洲丝袜综合中文字幕| 在线 av 中文字幕| 日韩强制内射视频| 午夜日本视频在线| 免费黄频网站在线观看国产| 亚洲国产欧美日韩在线播放 | 国产又色又爽无遮挡免| 国产日韩欧美在线精品| 亚洲人成网站在线播| 色视频www国产| 精品一区二区三区视频在线| 在线观看国产h片| 亚洲欧美精品自产自拍| 老熟女久久久| 亚洲欧美日韩卡通动漫| 美女主播在线视频| 性高湖久久久久久久久免费观看| 欧美丝袜亚洲另类| 97在线视频观看| 99热国产这里只有精品6| 成年女人在线观看亚洲视频| 91精品国产九色| 一级毛片我不卡| 偷拍熟女少妇极品色| 有码 亚洲区| 国产极品粉嫩免费观看在线 | 高清毛片免费看| 久久久亚洲精品成人影院| 在线观看人妻少妇| 国产深夜福利视频在线观看| 色视频www国产| 亚洲图色成人| 日本欧美视频一区| av视频免费观看在线观看| 精品久久久噜噜| 人妻一区二区av| 全区人妻精品视频| 久久女婷五月综合色啪小说| 乱码一卡2卡4卡精品| 青春草国产在线视频| 精品一区二区三区视频在线| 日韩欧美精品免费久久| 亚洲,一卡二卡三卡| a级毛片免费高清观看在线播放| av播播在线观看一区| 人妻 亚洲 视频| 成人综合一区亚洲| 免费在线观看成人毛片| 性色avwww在线观看| 国产精品三级大全| 亚洲综合色惰| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品亚洲一区二区| 亚洲国产精品一区二区三区在线| 看十八女毛片水多多多| 不卡视频在线观看欧美| 大片免费播放器 马上看| 纵有疾风起免费观看全集完整版| 黑人巨大精品欧美一区二区蜜桃 | 久久毛片免费看一区二区三区| 观看免费一级毛片| 免费黄色在线免费观看| 精品久久国产蜜桃| 国产精品国产三级国产av玫瑰| 免费观看a级毛片全部| 哪个播放器可以免费观看大片| 一区二区三区精品91| 亚洲精品久久久久久婷婷小说| 午夜福利网站1000一区二区三区| 秋霞在线观看毛片| av女优亚洲男人天堂| 国产日韩一区二区三区精品不卡 | 国产高清三级在线| 国产色婷婷99| 最近的中文字幕免费完整| 久久久久久久精品精品| 久久人人爽人人爽人人片va| 九九在线视频观看精品| 青春草视频在线免费观看| 亚洲图色成人| 国产欧美日韩一区二区三区在线 | 王馨瑶露胸无遮挡在线观看| 91精品国产国语对白视频| 国产伦精品一区二区三区视频9| 国产精品国产av在线观看| 黑人巨大精品欧美一区二区蜜桃 | 最近2019中文字幕mv第一页| av一本久久久久| 久久99蜜桃精品久久| 日本黄大片高清| 亚洲国产日韩一区二区| 在线精品无人区一区二区三| 97超碰精品成人国产| 久久av网站| 久久精品国产亚洲av涩爱| 亚洲精品一二三| av在线app专区| 国产精品一区www在线观看| 久久 成人 亚洲| 69精品国产乱码久久久| 男女边摸边吃奶| 哪个播放器可以免费观看大片| 国产熟女午夜一区二区三区 | 日韩av不卡免费在线播放| 亚洲精品亚洲一区二区| 国产在线免费精品| 97超碰精品成人国产| 欧美人与善性xxx| 精品少妇黑人巨大在线播放| 国产在线视频一区二区| 亚洲无线观看免费| 两个人免费观看高清视频 | 国产精品人妻久久久影院| 少妇的逼好多水| 丰满迷人的少妇在线观看| 嫩草影院新地址| 99九九在线精品视频 | 国产乱人偷精品视频| 91在线精品国自产拍蜜月| 精品一区二区免费观看| 三级经典国产精品| 在线免费观看不下载黄p国产| 九色成人免费人妻av| 一本—道久久a久久精品蜜桃钙片| 色网站视频免费| 十八禁网站网址无遮挡 | 男人添女人高潮全过程视频| 晚上一个人看的免费电影| 在线免费观看不下载黄p国产| 久久久久网色| 一级毛片我不卡| 久久99蜜桃精品久久| 久久国产亚洲av麻豆专区| 日韩成人伦理影院| 亚洲人与动物交配视频| 18禁动态无遮挡网站| 最近手机中文字幕大全| 嫩草影院新地址| 日韩免费高清中文字幕av| 亚洲欧美日韩另类电影网站| 日韩免费高清中文字幕av| 大片免费播放器 马上看| 精品少妇久久久久久888优播| 一级二级三级毛片免费看| 九色成人免费人妻av| 成人免费观看视频高清| 国产在线免费精品| 国产精品人妻久久久久久| 日韩视频在线欧美| 午夜影院在线不卡| 丁香六月天网| 国产成人精品一,二区| a 毛片基地| 亚洲av免费高清在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品成人av观看孕妇| 国产免费视频播放在线视频| 美女xxoo啪啪120秒动态图| 大片电影免费在线观看免费| 国产精品三级大全| 中国国产av一级| 青青草视频在线视频观看| 国产精品免费大片| 亚洲av福利一区| 欧美国产精品一级二级三级 | 亚洲欧美一区二区三区国产| 亚洲国产精品成人久久小说| 在线 av 中文字幕| 美女视频免费永久观看网站| 国产精品久久久久久精品古装| 国产精品国产三级国产专区5o| 精品国产国语对白av| 成人影院久久| 日本av免费视频播放| 日本免费在线观看一区| 久久鲁丝午夜福利片| 久久久久久人妻| 欧美一级a爱片免费观看看| 亚洲激情五月婷婷啪啪| 在线看a的网站| 久久免费观看电影| 老司机影院毛片| 亚洲精品视频女| av在线观看视频网站免费| 如日韩欧美国产精品一区二区三区 | 日本av免费视频播放| 在线亚洲精品国产二区图片欧美 | 国产av码专区亚洲av| 亚洲人成网站在线观看播放| av黄色大香蕉| 精品久久久噜噜| 国产欧美日韩精品一区二区| 99热这里只有是精品在线观看| 免费黄色在线免费观看| 一区二区av电影网| 蜜桃在线观看..| 日韩欧美一区视频在线观看 | 成年美女黄网站色视频大全免费 | 国产欧美日韩一区二区三区在线 | 国产一区二区在线观看av| 国产黄色免费在线视频| 免费观看av网站的网址| 男女免费视频国产| 免费人妻精品一区二区三区视频| 国产极品天堂在线| 街头女战士在线观看网站| 欧美精品一区二区免费开放| 色婷婷av一区二区三区视频| 在线观看三级黄色| 亚洲国产精品一区三区| 啦啦啦中文免费视频观看日本| 美女内射精品一级片tv| 最后的刺客免费高清国语| 一区在线观看完整版| 哪个播放器可以免费观看大片| 在线观看人妻少妇| 国产精品一区二区在线观看99| 99re6热这里在线精品视频| 免费看不卡的av| 成年美女黄网站色视频大全免费 | 一级黄片播放器| 女的被弄到高潮叫床怎么办| 成年人午夜在线观看视频| 亚洲婷婷狠狠爱综合网| 国产高清有码在线观看视频| 亚洲国产精品成人久久小说| 亚洲国产精品成人久久小说| 韩国av在线不卡| 免费黄网站久久成人精品| 国产免费又黄又爽又色| 色5月婷婷丁香| 看十八女毛片水多多多| 欧美精品一区二区大全| 午夜福利网站1000一区二区三区| 亚洲欧美精品专区久久| 街头女战士在线观看网站| 免费观看在线日韩| 美女脱内裤让男人舔精品视频| 天堂中文最新版在线下载| 国产黄色免费在线视频| 26uuu在线亚洲综合色| 成人黄色视频免费在线看| 成人国产av品久久久| 精品人妻熟女av久视频| 麻豆乱淫一区二区| 国产69精品久久久久777片| 色视频www国产| 久久精品国产a三级三级三级| 在线观看一区二区三区激情| 人妻一区二区av| 亚洲久久久国产精品| 亚洲中文av在线| 99精国产麻豆久久婷婷| 日韩伦理黄色片| 自拍欧美九色日韩亚洲蝌蚪91 | 男人和女人高潮做爰伦理| 最近2019中文字幕mv第一页| 97精品久久久久久久久久精品| 亚洲精品中文字幕在线视频 | 一二三四中文在线观看免费高清| 亚洲国产色片| 另类精品久久| 一个人免费看片子| 人妻 亚洲 视频| 亚洲欧美成人精品一区二区| 99精国产麻豆久久婷婷| 久久99蜜桃精品久久| 国产亚洲欧美精品永久| 久久人人爽av亚洲精品天堂| 下体分泌物呈黄色| 自线自在国产av| 久久久欧美国产精品| 你懂的网址亚洲精品在线观看| 日韩制服骚丝袜av| 高清av免费在线| 日韩三级伦理在线观看| 国产成人精品婷婷| 又粗又硬又长又爽又黄的视频| 亚洲美女视频黄频| 成人影院久久| 自拍欧美九色日韩亚洲蝌蚪91 | 精品人妻熟女av久视频| 亚洲精品日本国产第一区| 99热6这里只有精品| 亚洲精品456在线播放app| 亚洲精品国产av蜜桃| h视频一区二区三区| 国产一区二区三区综合在线观看 | 日本vs欧美在线观看视频 | 亚洲国产毛片av蜜桃av| 亚洲国产精品999| 女性生殖器流出的白浆| 成人亚洲欧美一区二区av| 日韩熟女老妇一区二区性免费视频| 日韩熟女老妇一区二区性免费视频| 2022亚洲国产成人精品| 国产在线视频一区二区| 99国产精品免费福利视频| 国产黄片美女视频| 伦精品一区二区三区| 黄色日韩在线| 精品一区二区三卡| 人妻一区二区av| 国产精品.久久久| 亚洲激情五月婷婷啪啪| 亚洲美女视频黄频| 日韩中文字幕视频在线看片| 一级二级三级毛片免费看| 麻豆成人午夜福利视频| 免费黄网站久久成人精品| 亚洲精品乱码久久久久久按摩| 国产黄频视频在线观看| 国产极品粉嫩免费观看在线 | 最近中文字幕2019免费版| 日韩,欧美,国产一区二区三区| 亚洲精品aⅴ在线观看| 国产男女内射视频| 久久久久国产精品人妻一区二区| 秋霞伦理黄片| 肉色欧美久久久久久久蜜桃| 亚洲精品乱久久久久久| 成人18禁高潮啪啪吃奶动态图 | 中文欧美无线码| 国产精品女同一区二区软件| 99久国产av精品国产电影| 亚洲国产成人一精品久久久| 国产成人freesex在线| 午夜av观看不卡| 亚洲色图综合在线观看| 18禁动态无遮挡网站| 伦理电影大哥的女人| 亚洲天堂av无毛| 91久久精品国产一区二区成人| 我要看黄色一级片免费的| 少妇精品久久久久久久| 熟女av电影| 夫妻性生交免费视频一级片| 免费大片黄手机在线观看| 九九在线视频观看精品| 日本黄大片高清| 22中文网久久字幕| 99热网站在线观看| 亚洲av福利一区| 最近手机中文字幕大全| 中文乱码字字幕精品一区二区三区| 亚洲国产成人一精品久久久| 日韩精品免费视频一区二区三区 | 乱人伦中国视频| 麻豆成人av视频| 22中文网久久字幕| 国产男人的电影天堂91| 美女cb高潮喷水在线观看| 青春草国产在线视频| 久热这里只有精品99| 国产精品一区二区性色av| 久久国产亚洲av麻豆专区| av有码第一页| 亚洲av中文av极速乱| 免费高清在线观看视频在线观看| 3wmmmm亚洲av在线观看| av天堂久久9| 色婷婷久久久亚洲欧美| 男人狂女人下面高潮的视频| 国产精品麻豆人妻色哟哟久久| av天堂中文字幕网| 哪个播放器可以免费观看大片| 有码 亚洲区| 丝袜脚勾引网站| 久久精品国产a三级三级三级| av天堂中文字幕网| 99久久精品热视频| 精品少妇久久久久久888优播| 国产成人aa在线观看| 亚洲,欧美,日韩| 久久久久久久久久久久大奶| 如日韩欧美国产精品一区二区三区 | 亚洲一区二区三区欧美精品| 久久久久久伊人网av| 天美传媒精品一区二区| 亚洲国产成人一精品久久久| 黄色一级大片看看| 少妇人妻一区二区三区视频| 天美传媒精品一区二区| 中文在线观看免费www的网站| 成年人免费黄色播放视频 | 精品一品国产午夜福利视频| 国产av码专区亚洲av| 色婷婷av一区二区三区视频| 国产精品嫩草影院av在线观看| 中文在线观看免费www的网站| av福利片在线观看| 国产精品成人在线| 日韩大片免费观看网站| 亚洲人与动物交配视频| 中文字幕免费在线视频6| 国产欧美亚洲国产| 亚洲av国产av综合av卡| 国产一区二区在线观看av| 亚洲av免费高清在线观看| 免费黄频网站在线观看国产| 亚洲精品乱码久久久久久按摩| 日韩成人av中文字幕在线观看| 欧美日韩亚洲高清精品| 麻豆乱淫一区二区| 女性生殖器流出的白浆| 亚洲激情五月婷婷啪啪| 黑人猛操日本美女一级片| 久久97久久精品| 三上悠亚av全集在线观看 | 久久久久精品久久久久真实原创| 色哟哟·www| 国产成人精品一,二区| 蜜桃在线观看..| 亚洲电影在线观看av| 色婷婷av一区二区三区视频| 国产高清有码在线观看视频| 热99国产精品久久久久久7| 久久99热这里只频精品6学生| 日日啪夜夜爽| 欧美日韩综合久久久久久| 精品久久久久久电影网| videossex国产| 人妻 亚洲 视频| 欧美老熟妇乱子伦牲交| 日韩av在线免费看完整版不卡| 国产精品三级大全| 国产美女午夜福利| 国产精品99久久久久久久久| 日本av免费视频播放| 久久午夜福利片| 午夜免费男女啪啪视频观看| 久久久亚洲精品成人影院| 我要看日韩黄色一级片| 亚洲精品日本国产第一区| 精品人妻熟女毛片av久久网站| 国产精品蜜桃在线观看| freevideosex欧美| 国产成人一区二区在线| 少妇人妻精品综合一区二区| 国产欧美日韩一区二区三区在线 | tube8黄色片| 亚洲性久久影院| 深夜a级毛片| 午夜福利影视在线免费观看| 国产乱人偷精品视频| 欧美日韩综合久久久久久| 亚洲av成人精品一二三区| 少妇的逼好多水| 天堂俺去俺来也www色官网| 国产免费又黄又爽又色| 亚洲一区二区三区欧美精品| 亚洲av福利一区| 亚洲精品国产av蜜桃| 两个人的视频大全免费| 亚州av有码| 亚洲av免费高清在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲精品一二三| 国产亚洲5aaaaa淫片| 亚洲自偷自拍三级| 一本大道久久a久久精品| 免费人成在线观看视频色| 免费观看av网站的网址| 亚洲av.av天堂| 18禁动态无遮挡网站| 午夜福利在线观看免费完整高清在| 日韩制服骚丝袜av| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲高清精品| 99久久人妻综合| 亚洲av日韩在线播放| 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 亚洲真实伦在线观看| 六月丁香七月| 亚洲欧美日韩东京热| 午夜激情久久久久久久| 丝袜在线中文字幕| 日韩伦理黄色片| 国精品久久久久久国模美| 久久精品国产a三级三级三级| 日韩不卡一区二区三区视频在线| 一本久久精品| 国产色爽女视频免费观看| 2022亚洲国产成人精品| 国产一区二区三区综合在线观看 | 国产男人的电影天堂91| 婷婷色综合www| 精品一区二区三卡| 少妇人妻一区二区三区视频| 日韩亚洲欧美综合| 欧美一级a爱片免费观看看| 亚洲精品,欧美精品| 免费av中文字幕在线| 三上悠亚av全集在线观看 | 视频区图区小说| 99热这里只有是精品在线观看| 人妻 亚洲 视频| 午夜av观看不卡| 国产成人aa在线观看| 久久鲁丝午夜福利片| 最黄视频免费看| av在线播放精品| 亚洲欧美一区二区三区国产| 国产黄片美女视频| 丰满人妻一区二区三区视频av| 亚洲国产精品一区三区| 国产色婷婷99| 亚洲精品亚洲一区二区| 人人妻人人添人人爽欧美一区卜| 青春草国产在线视频| 色网站视频免费| 国产日韩一区二区三区精品不卡 | 亚洲精品久久久久久婷婷小说| 亚洲伊人久久精品综合| 麻豆成人午夜福利视频| 中国美白少妇内射xxxbb| 女人精品久久久久毛片| 精品一区二区三区视频在线| 久久婷婷青草| 蜜臀久久99精品久久宅男| 日日爽夜夜爽网站| 久久精品国产亚洲网站| 亚洲欧美清纯卡通| 日韩精品免费视频一区二区三区 | 极品少妇高潮喷水抽搐| 边亲边吃奶的免费视频| 国产极品粉嫩免费观看在线 | 久久鲁丝午夜福利片| 五月玫瑰六月丁香| 国产精品熟女久久久久浪| 三上悠亚av全集在线观看 | 这个男人来自地球电影免费观看 | 春色校园在线视频观看| 午夜影院在线不卡| 国产极品粉嫩免费观看在线 | 免费观看在线日韩| 国产精品久久久久久av不卡| 丁香六月天网| av免费观看日本| 国产乱来视频区| 日韩欧美一区视频在线观看 | 成人18禁高潮啪啪吃奶动态图 | 夜夜看夜夜爽夜夜摸| 久久久久人妻精品一区果冻| 国产无遮挡羞羞视频在线观看| 日韩,欧美,国产一区二区三区| 亚洲av福利一区| 狠狠精品人妻久久久久久综合| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频| 欧美97在线视频| 国产一区二区在线观看日韩| 国产亚洲午夜精品一区二区久久| 久久久久久人妻| 国产精品成人在线| 超碰97精品在线观看| 国产精品一区二区性色av| 免费久久久久久久精品成人欧美视频 | kizo精华| 欧美精品一区二区免费开放| 高清欧美精品videossex| 又黄又爽又刺激的免费视频.| 免费大片黄手机在线观看| 国产高清有码在线观看视频| 在线观看免费视频网站a站| av一本久久久久| 欧美97在线视频| 国产熟女午夜一区二区三区 | 丝瓜视频免费看黄片| 免费av不卡在线播放| 最近中文字幕高清免费大全6| 丝袜喷水一区| 在线看a的网站| 一级毛片久久久久久久久女| av黄色大香蕉| 国产男人的电影天堂91| 黑人巨大精品欧美一区二区蜜桃 | 免费看不卡的av| 亚洲av中文av极速乱|