• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol

    2022-03-12 07:49:02ZheZhang張哲YanNaChen陳艷娜JiQi齊跡ZhaoZhang張召KojiOharaOsamiSakataZhiDongZhang張志東andBingLi李昺
    Chinese Physics B 2022年3期
    關(guān)鍵詞:張哲

    Zhe Zhang(張哲) Yan-Na Chen(陳艷娜) Ji Qi(齊跡) Zhao Zhang(張召)Koji Ohara Osami Sakata Zhi-Dong Zhang(張志東) and Bing Li(李昺)

    1Shenyang National Laboratory(SYNL)for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    2School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China

    3Synchrotron X-ray Group,Research Center for Advanced Measurement and Characterization,National Institute for Materials Science(NIMS),Sayo,Japan

    4SPring-8,Diffraction and Scattering Division,Center for Synchrotron Radiation Research Institute,Japan Synchrotron Radiation Research Institute,Sayo,Japan

    Keywords: colossal barocaloric effect,plastic crystals,phase transition asymmetry

    1. Introduction

    Caloric materials are the systems that exhibit significant thermal effects at phase transitions induced by external fields like pressure, stress, magnetic fields,etc. They can be used as solid-state refrigeration through a designated cooling cycle. Current caloric effects refer to magnetocaloric effects in magnetic materials, electrocaloric effects in ferroelectric materials, elastocaloric materials in ferroelastic materials, and barocaloric effects (BCEs).[1-6]We emphasize that the barocaloric effects are not system-selective. In principle, one can observe BCEs in any atomic system given that pressure is always factored in the free energy of a system. For instance, BCEs have been reported in superionic AgI,[7]inorganic-organic hybrid[TPrA][Mn(dca)3],[8]natural rubber,[9,10]spin-crossover compounds,[11]antiferromagnetic Mn3GaN,[12]Ni1-xFexS,[13]and nonmagnetic NiMnTi,[14,15]

    where the latter three compounds are not magnetocaloric. Recently,we have found the colossal BCEs in a series of plastic crystals, whose entropy changes are not only one magnitude of order larger than currently existing barocaloric materials,[4]but also the largest in all known caloric materials. In the prototype neopentylglycol (NPG) with the chemical formula C5H12O2, the entropy change is about 389 J·kg-1·K-1under a pressure change of 100 MPa.

    The underlying phase transition is the crystal structural transition from the high-temperature face-centered-cubic(FCC) phase to the low-temperature monoclinic phase.[4,16]The neopentylglycol molecules are characteristic of a tetrahedral configuration where carbon atoms are located at the body center and corners. Hydrogen and oxygen atoms are attached to these carbon atoms. The intermolecular interactions are mainly hydrogen bonding[17]and in fact,phase transition enthalpies are found to follow a linear relation with the square of the number of hydroxyl groups per molecule in (CH3)4-xC(CH2OH)x(x= 0-4) family.[18]The molecular structure and crystal structure of the monoclinic phase are shown in Fig. 1(a).[17]A quasi-elastic neutron scattering study has revealed that the neopentylglycol molecules are subjected to isotropic rotations in the FCC phase while they are restrained after the phase transition.[4]The reorientation dynamics have also been supported by molecular dynamics simulations andab initiocalculations.[16]Here, we present a comprehensive high-energy x-ray diffraction(HEXRD)study including pair distribution function (PDF) analysis of local structures and time-resolved diffraction for the phase transition kinetics.

    2. Experimental details

    Polycrystalline NPG samples were used for thermal and x-ray diffraction measurements. Heat flows were recorded by using Seteram μDSC7 under applied pressures generated through compressed nitrogen gas, and the details were described elsewhere.[4]The HEXRD measurements were performed at the beamline BL04B2 of SPring-8,Japan.[19,20]The x-ray energy was fixed at 61.4 keV(wavelengthλ=0.202 °A)with an Si (220) crystal monochromator. In the experiments,the NPG powder samples were sealed in quartz capillaries with a diameter of 2 mm. At first, we collected the total scattering structure factors on NPG samples for PDF analysis by using six point-detectors arranged horizontally to obtain a 2θvalue ranging from 0.3°to 48.4°at a series of constant temperatures.[21]A furnace with a vacuum chamber was heated from 293 K to 338 K and then cooled down to 298 K.The heating/cooling rate between two constant temperatures was 1 K/min. After reaching a target temperature, the samples were kept for 10 mins at this temperature prior to acquiring data. The total structure factorSX(Q) was measured at aQrange up to 20 °A-1at a constant temperature for approximately 40 min. An empty quartz capillary was also measured for subtracting the background from the data to be analyzed.After background correction,absorption correction,and polarization correction,the resultingSX(Q)was normalized to 1 in aQrange of 15 °A-1-20 °A-1. The reduced PDF,GX(r), was calculated by the Fourier transform ofSX(Q). The total and partialGX(r)were simulated based on the average monoclinic structure by using PDFgui.[22]

    Then,time-resolved HEXRD data were recorded by employing a 16-inch (1 inch=2.54 cm) digital x-ray detector (XRD 1621 CN3, PerkinElmer).[23]The detector offered an image size of 2048×2048 pixels with a pixel size of 200 μm.[23]The image integration time was at least 66.5 ms.The sample was heated and cooled in a designed furnace with a chiller. The temperature ramping rates were set to be 0.1 K/min and 1 K/min. In the present study,we used an image acquiring time of 1 s to obtain the images continuously in heating and cooling processes. Comparing with the temperature ramping rate,the image acquiring time is quite short,

    where the sample is expected to be at a constant temperature.The obtained time-resolved data were reduced and visualized in Orochi Project.[24]

    3. Results and discussion

    3.1. Heat flow data

    Heat flow data recorded at a ramping rate of 1 K/min are displayed in Fig.1(b)under constant applied pressures up to 100 MPa in steps of 5 MPa. It can be seen that there is obvious thermal hysteresis, as a practical identification of a first-order phase transition.[25-27]The phase transition interval(i.e.two-phase coexistence region)is much smaller at cooling than at heating,which is known as phase transition asymmetry.This is also a feature of a first-order phase transition and has been observed in confined FeRh,[28]VO2,[29]and V2O3.[30]The phase transition temperature defined as the peak position of heat flows is noticeably shifted toward higher temperatures,whose pressure dependence is plotted in Fig.1(c)for heating process and cooling process. The thermal hysteresis is about 17 K and is almost independent of pressure.This value is a few K larger than that observed at a ramping rate of 0.1 K/min.[4]The ramping rate dependence of thermal hysteresis is also an indication of a first-order phase transition.[26,31]

    The temperature dependence of phase-transition entropy changes can be determined by integrating the heat flow data as done before.[4]Based on thein-situheat flow data with the fine pressure step,we convert the temperature dependence at constant pressure into the pressure dependence at constant temperature just above the phase transition temperature. By doing so, it is allowed to evaluate the critical pressure and saturation pressure of the phase transition. Shown in Fig.1(d)is the pressure dependence of isothermal entropy changes at 322.5,323.5,and 325 K,respectively.Taking the isotherm at 322.5 K for example,the critical pressure is found to be about 45 MPa,which is defined as the maximum value of the derivative of entropy change with respect to pressure. The saturation pressure is about 80 MPa.

    3.2. HEXRD data

    Shown in Fig. 2(a) is the normalizedSX(Q) at 293 K in aQrange from 0.2 °A-1to 20 °A-1, whose intensity oscillates around 1 at highQvalues. TheSX(Q) in the cooling process and heating process are plotted in Figs. 2(b) and 2(c). Since there are only two Bragg peaks visible in the hightemperature FCC phase, the phase transition is clearly distinguished by directly comparing the diffraction patterns. It can be seen that the phase transition takes place in a range of about 318 K-328 K at heating while in a range of 313 K-308 K at cooling. The phase coexistence is observed in both cases,but the interval at heating is much broader. As for the hightemperature FCC phase,there exists well-defined diffuse scattering in which the intensity oscillates around the background level as shown in the insets of Figs.2(b)and 2(c). The intensities most likely originate from the inter-molecular disorder.

    The derivedGX(r) is plotted in Fig. 3(a). In a range of 1 °A-4 °A, there are three major peaks with few small shoulders resided. To distinguish the pairs, the values of partialGX(r) of major pairs are obtained by simulation through using theP21/nmodel,and the simulation results are shown in Fig.3(b). The first peak of C-C pair, located at about 1.5 °A,is associated with the distance between the corner and bodycenter of a tetrahedron, while the second one at 2.45 °A is related to the distance of the edge of the tetrahedron. As for the O-O pair, its first peak (~2.7 °A) is attributed to the intermolecular correlation whereas the second one (~3.4 °A) is the distance between two oxygen atoms within a molecule.The first three peaks of C-O pairs are all related to the intramolecular correlations. In contrast,the peak at 3.8 °A is mostly contributed by inter-molecular correlations. With the guide of partialGX(r), it is clear that the intensities ofGX(r) of intra-molecular pairs are much more susceptible to temperature change. It can be seen that the intensities ofGX(r) at about 2.7 °A and 3.8 °A are significantly reduced in the hightemperature FCC phase,which is attributed to the intermolecular disorder that leads the molecules to lose their mutual correlations.

    Fig.2. (a)The SX(Q)at 293 K versus Q ranging from 0.2 °A-1 to 20 °A-1,normalized to 1 (dash line). SX(Q) at selected temperatures in (b) heating process and(c)cooling process in a Q range from 0.2 °A-1 to 10 °A-1,with insets highlighting diffuse scattering of high-temperature FCC phase.

    Fig.3. (a)The GX(r)curves at selected temperatures. (b)Curves of partial GX(r)of O-O,C-O,and C-C pairs simulated in monoclinic phase.

    Fig. 4. (a) Time-resolved HEXRD pattern of full cooling-heating cycle at a temperature ramping rate of 0.1 K/min and in a Q range from 1 °A-1 to 5 °A-1; (b) only cooling cycle and (c) only heating cycle at a temperature ramping rate of 0.1 K/min and in a Q range from 1 °A-1 to 3 °A-1.

    Fig. 5. Time-resolved HEXRD patterns at a temperature ramping rate of 1 K/min for(a)cooling process and(b)heating processes.

    The plastic crystal phase transition of NPG is further explored by using the time-resolved HEXRD.With the fine time resolution, the transition processes can be monitored. Shown in Fig.4(a)is the contour plot of diffraction patterns during the cooling-heating cycle at a ramping rate of 0.1 K/min. In the beginning, there is a typical pattern for the high-temperature FCC phase. As cooling time reaches about 1.7×104s, the phase transition abruptly takes place,where more Bragg peaks are present at higher angles and the main peaks at the lower angles are shifted. When cycle time arrives at~3.0×104s,the phase transition at heating happens,as the intensity gradually increases the main peak is smoothly shifted toward lower angles. Surprisingly, the transition is considerably smooth.In Figs. 4(b) and 4(c), the details of the transition processes are highlighted. At cooling,the transition is completed within about 200 s, corresponding to a transition temperature interval of 0.33 K.In contrast,the transition at heating persists for about 1000 s,transformed into a temperature span of 1.67 K.The phase transition process is also recorded at a temperature ramping rate of 1 K·min-1as shown in Fig. 5. Similar features are observed,but the phase coexistence regions are larger than those at 0.1 K/min. When cooling,the transition is completed within about 40 s,corresponding to a transition interval of 0.7 K.In contrast,the transition at heating persists for about 300 s,transformed into a temperature span of 5 K.

    3.3. Phase transition asymmetry

    Both the thermal and the structural results suggest that the plastic crystal transition in NPG is quite asymmetric, that is,the transition at the cooling process is much faster than at the heating process. Moreover,the phase transition asymmetry is pressure-dependent,just as shown in Fig.6. As applied pressure increases, the phase coexistence regions are suppressed for both cooling process and heating process, whereas the interval at heating decreases faster so that the asymmetry is slightly reduced.

    Fig.6. (a)Phase-coexistence intervals versus pressure at cooling and heating and(b)pressure dependence of phase transition asymmetry.

    Phase transition asymmetry is observed in a series of dimension-confined materials including correlated electronic systems VO2[29]and V2O3[30]nanowires as well as metamagnetic FeRh ribbons.[28]In general,the origin of such an asymmetry has been discussed in terms of the difference between heterogeneous nucleation seeds of first-order phase transitions: point defectsversustwin walls.[28]The low-symmetry structure mimicking a higher-symmetry structure at its twin walls would facilitate the nucleation of the high-symmetry phase,whereas the transition back to the low-symmetry phase relies on the nucleation at point defects. In systems mentioned above,spin,charge,and lattice degrees of freedom are highly coupled and the delicate compromise among individual interactions may also lead to the asymmetry at a phase transition between electronic phases.[32]Especially,the temperature dependence of a gap and inherent thermal hysteresis may dominate a gapped system. At a phase transition between two magnetically ordered phases, the different magnetic correlations might be relevant to each other, just as observed in FeRh.[28]As for NPG, further studies are needed on the origin of the phase transition asymmetry issue. Based on the above discussion,two possible scenarios are present. One is the defect structure and the other is the temperature-dependent energy profile.

    4. Summary

    In this work, we have studied the relations of NPG to temperature,pressure,and temperature ramping rate,by usingin-situhigh-precision differential scanning calorimetry and HEXRD.The phase transition is observed inSX(Q)and also inGX(r). The phase transition asymmetry that the cooling process is much faster than the heating process is found in thermal measurement and time-resolved HEXRD measurement,which are both well consistent with each other. It is suggested that the asymmetry becomes smaller at higher pressures, but the exact origin remains unknown. Whether the asymmetry is a generic property of first-order phase transition is still an open question,which needs further studying.

    Acknowledgements

    The HEXRD experiments were performed at the BL04B2 of SPring-8 with the approval of the JASRI (Proposal No.2019A1249).

    Project supported by the Key Research Program of Frontier Sciences, the Chinese Academy of Sciences(Grant No. ZDBS-LY-JSC002), the International Partner Program of the Chinese Academy of Sciences (Grant No. 174321KYSB20200008), and the National Natural Science Foundation of China (Grant Nos. 11934007 and 11804346).

    猜你喜歡
    張哲
    Vi-PDMS/S-SiO2超疏水聚酯纖維織物的制備及性能研究
    包裝工程(2023年21期)2023-11-18 03:31:38
    A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography
    豬群體一步法基因組選擇應(yīng)用效果評估
    山區(qū)公路路線設(shè)計的基本特點與思路
    數(shù)據(jù)驅(qū)動的高職課堂精準(zhǔn)教學(xué)模式構(gòu)建研究
    一個叫“撲拉提”的漢族小伙
    吐魯番(2016年3期)2016-11-26 00:33:51
    張哲和伙伴們的“公益足跡”
    班里來了 “黑老大”
    Modelling of 2-D extended Boussinesq equations using a hybrid numerical scheme*
    用心靈呵護(hù)心靈
    紫光閣(2014年3期)2014-03-07 22:49:24
    亚洲国产欧美网| 中文字幕精品免费在线观看视频| 日本vs欧美在线观看视频| 19禁男女啪啪无遮挡网站| 国产精品香港三级国产av潘金莲| 1024香蕉在线观看| a级毛片黄视频| 日韩大片免费观看网站| 欧美在线黄色| 91老司机精品| 久久这里只有精品19| 国产成人精品在线电影| 欧美激情极品国产一区二区三区| 欧美日本中文国产一区发布| 午夜福利乱码中文字幕| 啦啦啦中文免费视频观看日本| 18在线观看网站| 久久久国产欧美日韩av| 久久 成人 亚洲| 老司机福利观看| 中文字幕色久视频| 性少妇av在线| 日韩视频一区二区在线观看| 日韩中文字幕欧美一区二区| 少妇猛男粗大的猛烈进出视频| 在线av久久热| 后天国语完整版免费观看| 日本a在线网址| 一二三四社区在线视频社区8| 国产精品二区激情视频| 国产欧美亚洲国产| 国产精品自产拍在线观看55亚洲 | 国产男人的电影天堂91| 国产亚洲欧美精品永久| 丰满人妻熟妇乱又伦精品不卡| 两个人看的免费小视频| 99久久综合免费| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品自产拍在线观看55亚洲 | 亚洲精华国产精华精| 少妇的丰满在线观看| 亚洲av片天天在线观看| 好男人电影高清在线观看| 一二三四社区在线视频社区8| 久久久久国内视频| 91大片在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产成人精品在线电影| 天堂俺去俺来也www色官网| 国产极品粉嫩免费观看在线| 深夜精品福利| 一区二区三区激情视频| 亚洲av电影在线观看一区二区三区| 青草久久国产| 午夜福利,免费看| 一区福利在线观看| 丁香六月天网| 黑人巨大精品欧美一区二区蜜桃| 亚洲少妇的诱惑av| 一边摸一边做爽爽视频免费| 日韩一区二区三区影片| 欧美日韩黄片免| 久久久久久久国产电影| 亚洲伊人色综图| avwww免费| 欧美黄色片欧美黄色片| www.av在线官网国产| 中文字幕另类日韩欧美亚洲嫩草| 中亚洲国语对白在线视频| 日本av免费视频播放| 日本vs欧美在线观看视频| 午夜成年电影在线免费观看| 久久影院123| av又黄又爽大尺度在线免费看| 亚洲国产日韩一区二区| 99国产精品一区二区三区| 国产精品久久久久久人妻精品电影 | 国产成人欧美在线观看 | 国产精品一区二区精品视频观看| 美女视频免费永久观看网站| 日韩欧美一区视频在线观看| www.av在线官网国产| 亚洲一码二码三码区别大吗| 久9热在线精品视频| 大码成人一级视频| 色视频在线一区二区三区| av电影中文网址| 国产亚洲一区二区精品| 午夜影院在线不卡| 色精品久久人妻99蜜桃| 国产99久久九九免费精品| 成年人午夜在线观看视频| 亚洲一区中文字幕在线| 欧美黄色片欧美黄色片| 又紧又爽又黄一区二区| 少妇的丰满在线观看| 国产一区二区激情短视频 | 91成年电影在线观看| 国产主播在线观看一区二区| 亚洲欧美激情在线| 国产一级毛片在线| 国产精品自产拍在线观看55亚洲 | 成年人黄色毛片网站| 黄色怎么调成土黄色| 999精品在线视频| 亚洲成av片中文字幕在线观看| 欧美人与性动交α欧美精品济南到| 啦啦啦中文免费视频观看日本| 亚洲 国产 在线| 国产男女超爽视频在线观看| 国产精品免费大片| 动漫黄色视频在线观看| 一二三四社区在线视频社区8| 日本av免费视频播放| 久久99热这里只频精品6学生| 蜜桃国产av成人99| 国产av精品麻豆| 国产精品亚洲av一区麻豆| 亚洲精品国产av成人精品| 精品一区二区三卡| 一区二区三区精品91| 久久久久久久久免费视频了| 日韩欧美国产一区二区入口| 国产成人精品久久二区二区91| 美女扒开内裤让男人捅视频| 日韩中文字幕欧美一区二区| 色94色欧美一区二区| 亚洲av男天堂| 久久久久国产精品人妻一区二区| 亚洲精品美女久久av网站| 在线观看免费午夜福利视频| netflix在线观看网站| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| svipshipincom国产片| 亚洲精品第二区| 捣出白浆h1v1| 黄色片一级片一级黄色片| 国产免费一区二区三区四区乱码| 国产亚洲精品第一综合不卡| 这个男人来自地球电影免费观看| 啦啦啦中文免费视频观看日本| 嫩草影视91久久| 免费高清在线观看日韩| 亚洲欧洲日产国产| 老司机靠b影院| 日韩熟女老妇一区二区性免费视频| 日本vs欧美在线观看视频| 老司机深夜福利视频在线观看 | 国产99久久九九免费精品| www.自偷自拍.com| 国产成人精品久久二区二区91| svipshipincom国产片| 国产精品久久久久久精品古装| 在线天堂中文资源库| 精品一区二区三区四区五区乱码| 欧美日韩精品网址| 1024香蕉在线观看| 99久久精品国产亚洲精品| 精品久久久精品久久久| kizo精华| 国产精品亚洲av一区麻豆| 欧美日韩av久久| 久久中文看片网| av福利片在线| 在线观看舔阴道视频| 久久国产精品男人的天堂亚洲| 母亲3免费完整高清在线观看| 久久影院123| 狠狠精品人妻久久久久久综合| 国产精品av久久久久免费| 亚洲avbb在线观看| 午夜视频精品福利| 美女大奶头黄色视频| 国产成人av激情在线播放| av天堂在线播放| 国产福利在线免费观看视频| 久久 成人 亚洲| 亚洲欧美色中文字幕在线| 中国美女看黄片| av在线播放精品| 亚洲第一av免费看| 中亚洲国语对白在线视频| 日日夜夜操网爽| 国产精品麻豆人妻色哟哟久久| 久久精品成人免费网站| 咕卡用的链子| 久久毛片免费看一区二区三区| 最黄视频免费看| 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产 | 国产真人三级小视频在线观看| 亚洲精品久久久久久婷婷小说| 久久国产亚洲av麻豆专区| 天天影视国产精品| 国产精品成人在线| 岛国在线观看网站| 男女床上黄色一级片免费看| 两人在一起打扑克的视频| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| av天堂久久9| 日韩欧美国产一区二区入口| 青草久久国产| 黄色视频在线播放观看不卡| 免费高清在线观看日韩| 日本av手机在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品熟女少妇八av免费久了| 亚洲精品成人av观看孕妇| 成人亚洲精品一区在线观看| 午夜久久久在线观看| 美女视频免费永久观看网站| 麻豆av在线久日| 真人做人爱边吃奶动态| 久久中文看片网| e午夜精品久久久久久久| 久热爱精品视频在线9| 性高湖久久久久久久久免费观看| 久久热在线av| 成年动漫av网址| 欧美日韩一级在线毛片| 亚洲中文字幕日韩| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 欧美老熟妇乱子伦牲交| 国产男人的电影天堂91| 久久精品国产a三级三级三级| av网站免费在线观看视频| 脱女人内裤的视频| 国产又爽黄色视频| tocl精华| 欧美人与性动交α欧美软件| 久久久精品国产亚洲av高清涩受| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免| 99国产综合亚洲精品| 欧美日韩中文字幕国产精品一区二区三区 | 精品视频人人做人人爽| 香蕉丝袜av| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 久久国产精品男人的天堂亚洲| 69av精品久久久久久 | 黄片大片在线免费观看| 国产av国产精品国产| 久久久久久久国产电影| 亚洲精品国产精品久久久不卡| 日本vs欧美在线观看视频| 国产老妇伦熟女老妇高清| 欧美黑人精品巨大| 亚洲激情五月婷婷啪啪| 欧美大码av| 国产一级毛片在线| 久久久国产精品麻豆| 极品人妻少妇av视频| 无限看片的www在线观看| 欧美97在线视频| 男女边摸边吃奶| 久久综合国产亚洲精品| 少妇粗大呻吟视频| 亚洲人成77777在线视频| 国产区一区二久久| 99国产精品一区二区三区| 成年动漫av网址| 日韩大码丰满熟妇| 91老司机精品| 成年av动漫网址| 香蕉丝袜av| 欧美中文综合在线视频| 国产精品一二三区在线看| 在线天堂中文资源库| 国产麻豆69| 岛国在线观看网站| 另类亚洲欧美激情| 黄片大片在线免费观看| 精品少妇久久久久久888优播| www.自偷自拍.com| 亚洲七黄色美女视频| 欧美另类一区| 每晚都被弄得嗷嗷叫到高潮| 大陆偷拍与自拍| 免费av中文字幕在线| 黄色 视频免费看| 狠狠狠狠99中文字幕| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品古装| 人人妻人人澡人人爽人人夜夜| 久久久久视频综合| 又紧又爽又黄一区二区| 19禁男女啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| a级毛片黄视频| 亚洲成av片中文字幕在线观看| 久久这里只有精品19| 亚洲va日本ⅴa欧美va伊人久久 | 99香蕉大伊视频| 丰满少妇做爰视频| 午夜免费观看性视频| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 成年动漫av网址| 麻豆国产av国片精品| 一本大道久久a久久精品| 欧美午夜高清在线| 操出白浆在线播放| 我要看黄色一级片免费的| 久久天堂一区二区三区四区| 一进一出抽搐动态| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 亚洲av男天堂| 亚洲欧美日韩另类电影网站| 大香蕉久久网| av网站在线播放免费| 亚洲精品国产区一区二| 久久人妻福利社区极品人妻图片| 国产高清videossex| 嫩草影视91久久| 久久99一区二区三区| av天堂久久9| 午夜两性在线视频| 极品少妇高潮喷水抽搐| 亚洲精品一二三| 亚洲五月婷婷丁香| 国产黄色免费在线视频| 丰满人妻熟妇乱又伦精品不卡| 水蜜桃什么品种好| 国产av一区二区精品久久| 国产精品久久久久久人妻精品电影 | 亚洲精品成人av观看孕妇| 亚洲,欧美精品.| 亚洲av国产av综合av卡| 欧美精品av麻豆av| 午夜激情av网站| av在线app专区| 国产成人精品久久二区二区91| 欧美日韩福利视频一区二区| 91老司机精品| 久热爱精品视频在线9| 久久精品国产亚洲av香蕉五月 | 久久人人爽av亚洲精品天堂| 嫩草影视91久久| 国产精品九九99| 国产av又大| 精品一区二区三区av网在线观看 | 91成年电影在线观看| 亚洲欧洲日产国产| 亚洲精品国产av成人精品| 欧美黑人欧美精品刺激| 国产成人欧美在线观看 | 色婷婷av一区二区三区视频| 一级a爱视频在线免费观看| 女人久久www免费人成看片| 黄片播放在线免费| 一区福利在线观看| 欧美黄色淫秽网站| 一边摸一边做爽爽视频免费| 欧美黑人欧美精品刺激| 日本vs欧美在线观看视频| 久久久久国产精品人妻一区二区| 91成年电影在线观看| www.精华液| av欧美777| av片东京热男人的天堂| 国产欧美日韩一区二区三区在线| 亚洲人成电影免费在线| 国产视频一区二区在线看| 黑丝袜美女国产一区| 欧美久久黑人一区二区| 韩国高清视频一区二区三区| 91麻豆精品激情在线观看国产 | 男人舔女人的私密视频| videosex国产| 成人国语在线视频| 免费在线观看视频国产中文字幕亚洲 | 建设人人有责人人尽责人人享有的| 日韩电影二区| 日韩人妻精品一区2区三区| 黄色怎么调成土黄色| 三上悠亚av全集在线观看| 女人久久www免费人成看片| 极品人妻少妇av视频| 无限看片的www在线观看| 国产xxxxx性猛交| 亚洲国产欧美一区二区综合| 午夜久久久在线观看| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 性少妇av在线| 亚洲欧美激情在线| 中亚洲国语对白在线视频| 侵犯人妻中文字幕一二三四区| 国产av精品麻豆| 无限看片的www在线观看| 黄色视频不卡| 精品卡一卡二卡四卡免费| 亚洲第一青青草原| 高潮久久久久久久久久久不卡| 亚洲视频免费观看视频| 精品少妇久久久久久888优播| 精品视频人人做人人爽| 制服人妻中文乱码| 在线观看一区二区三区激情| av网站在线播放免费| 久久人人97超碰香蕉20202| 精品久久久久久电影网| 午夜视频精品福利| 肉色欧美久久久久久久蜜桃| 777久久人妻少妇嫩草av网站| 成人免费观看视频高清| 无限看片的www在线观看| 国产一区二区三区综合在线观看| 亚洲av片天天在线观看| 精品免费久久久久久久清纯 | 女人精品久久久久毛片| 黄色 视频免费看| 国产成人av教育| 另类精品久久| 免费在线观看黄色视频的| 啦啦啦啦在线视频资源| 亚洲人成电影免费在线| 丝袜在线中文字幕| 免费不卡黄色视频| 午夜精品国产一区二区电影| 成人国产av品久久久| 美女中出高潮动态图| 人人妻人人澡人人看| 久久国产精品影院| 久久香蕉激情| 亚洲午夜精品一区,二区,三区| 一级片免费观看大全| 国产精品一二三区在线看| 日韩人妻精品一区2区三区| 国产亚洲一区二区精品| 亚洲黑人精品在线| 精品少妇一区二区三区视频日本电影| 欧美日韩视频精品一区| 激情视频va一区二区三区| 免费观看a级毛片全部| 精品福利观看| 国产精品久久久久久人妻精品电影 | 精品国产乱子伦一区二区三区 | 久久综合国产亚洲精品| 欧美日韩中文字幕国产精品一区二区三区 | 黄频高清免费视频| 日韩 亚洲 欧美在线| 久久久久久久久久久久大奶| 婷婷成人精品国产| 中国美女看黄片| 黄色 视频免费看| 亚洲精品日韩在线中文字幕| 国产欧美日韩一区二区三区在线| 欧美亚洲 丝袜 人妻 在线| 国产高清视频在线播放一区 | 久久久精品免费免费高清| 热99re8久久精品国产| 国产成人系列免费观看| 夜夜夜夜夜久久久久| avwww免费| 久久久国产一区二区| 极品少妇高潮喷水抽搐| 欧美另类亚洲清纯唯美| 日韩精品免费视频一区二区三区| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 日本撒尿小便嘘嘘汇集6| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 一区二区三区乱码不卡18| 黑丝袜美女国产一区| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 九色亚洲精品在线播放| 日韩有码中文字幕| 国产xxxxx性猛交| 成人三级做爰电影| 人妻一区二区av| 欧美精品av麻豆av| videosex国产| 国产免费一区二区三区四区乱码| 电影成人av| 国产一级毛片在线| 黄色片一级片一级黄色片| 日本欧美视频一区| 亚洲第一欧美日韩一区二区三区 | 欧美精品高潮呻吟av久久| 国产片内射在线| 精品一区二区三卡| 精品一区二区三区av网在线观看 | 亚洲精品久久成人aⅴ小说| 国产成人av激情在线播放| 久久天堂一区二区三区四区| 大片免费播放器 马上看| 成年人免费黄色播放视频| 老司机深夜福利视频在线观看 | 日韩 亚洲 欧美在线| 99香蕉大伊视频| 亚洲国产欧美日韩在线播放| 各种免费的搞黄视频| 搡老岳熟女国产| 人人澡人人妻人| av超薄肉色丝袜交足视频| 五月天丁香电影| 精品福利永久在线观看| 悠悠久久av| 免费看十八禁软件| 一本综合久久免费| 啪啪无遮挡十八禁网站| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲精品一区二区www | 日日摸夜夜添夜夜添小说| 肉色欧美久久久久久久蜜桃| 老司机影院成人| 视频在线观看一区二区三区| 国产日韩欧美视频二区| 亚洲久久久国产精品| 青春草亚洲视频在线观看| 嫩草影视91久久| cao死你这个sao货| 日日夜夜操网爽| 国产精品国产av在线观看| svipshipincom国产片| 亚洲精品国产av蜜桃| 欧美精品人与动牲交sv欧美| 欧美久久黑人一区二区| 涩涩av久久男人的天堂| 电影成人av| 黄色毛片三级朝国网站| 国产欧美日韩精品亚洲av| 日韩大片免费观看网站| 亚洲中文字幕日韩| 成年美女黄网站色视频大全免费| 欧美一级毛片孕妇| 国产精品影院久久| 中亚洲国语对白在线视频| 亚洲av片天天在线观看| 在线永久观看黄色视频| 精品久久久久久电影网| 超碰成人久久| 日本精品一区二区三区蜜桃| 亚洲成国产人片在线观看| 亚洲精品成人av观看孕妇| 俄罗斯特黄特色一大片| 搡老熟女国产l中国老女人| cao死你这个sao货| 亚洲欧美激情在线| 国产成人免费观看mmmm| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱子伦一区二区三区 | 中文字幕最新亚洲高清| 丝袜美腿诱惑在线| 亚洲精品国产区一区二| 午夜老司机福利片| 亚洲精品一二三| 美国免费a级毛片| 天堂中文最新版在线下载| 欧美日韩黄片免| 欧美人与性动交α欧美精品济南到| 久久狼人影院| 可以免费在线观看a视频的电影网站| 亚洲成av片中文字幕在线观看| 老司机亚洲免费影院| 午夜福利在线观看吧| 黑人巨大精品欧美一区二区蜜桃| 一本—道久久a久久精品蜜桃钙片| 久久毛片免费看一区二区三区| 搡老乐熟女国产| 亚洲男人天堂网一区| 老司机亚洲免费影院| 亚洲精品自拍成人| 日本五十路高清| 夜夜夜夜夜久久久久| 国产精品二区激情视频| 美女国产高潮福利片在线看| 1024视频免费在线观看| 精品亚洲成国产av| 中文精品一卡2卡3卡4更新| 岛国毛片在线播放| 一本久久精品| 69精品国产乱码久久久| 日韩制服丝袜自拍偷拍| 中国国产av一级| 美女高潮到喷水免费观看| 亚洲欧美日韩另类电影网站| 午夜精品久久久久久毛片777| www.自偷自拍.com| 欧美国产精品一级二级三级| 欧美激情 高清一区二区三区| 热99国产精品久久久久久7| 啪啪无遮挡十八禁网站| 亚洲少妇的诱惑av| 91麻豆av在线| 国产免费现黄频在线看| 欧美人与性动交α欧美软件| 欧美日韩一级在线毛片| 亚洲国产毛片av蜜桃av| 国精品久久久久久国模美| 肉色欧美久久久久久久蜜桃| 三上悠亚av全集在线观看| 少妇的丰满在线观看| 大香蕉久久网| 精品国产国语对白av| 成年人黄色毛片网站| 日韩欧美国产一区二区入口| 久久久久久久久免费视频了| 国产精品.久久久| av片东京热男人的天堂| 午夜福利乱码中文字幕| 一本久久精品| 亚洲精品自拍成人| 国产日韩欧美在线精品| 免费久久久久久久精品成人欧美视频| 大陆偷拍与自拍| 亚洲精品一卡2卡三卡4卡5卡 |