• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography

    2023-11-16 05:37:42XiaoCHEN陳笑YaoLI黎遙JianboHOU侯鑒波ZheZHANG張哲XianyangLU陸顯揚(yáng)YuYAN嚴(yán)羽LiangHE何亮andYongbingXU徐永兵
    Plasma Science and Technology 2023年10期
    關(guān)鍵詞:張哲嚴(yán)羽

    Xiao CHEN (陳笑), Yao LI (黎遙), Jianbo HOU (侯鑒波), Zhe ZHANG (張哲),Xianyang LU (陸顯揚(yáng)), Yu YAN (嚴(yán)羽), Liang HE (何亮) and Yongbing XU (徐永兵)

    Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology,School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China

    Abstract

    Keywords: extreme ultraviolet light source, laser-produced plasma, gadolinium

    1.Introduction

    Extreme ultraviolet (EUV) lithography has been a key technology for the semiconductor industry, which enables the volume manufacture of large-scale integrated circuits with feature sizes below 14 nm.According to the Rayleigh formula(CD=k×λ/NA),it is possible to employ short-wavelength light sources to reduce the critical distance (CD) of the chip,in addition to raising the numerical aperture (NA) of the optical system.The development of high-efficiency and lowdebris EUV light sources is one of the critical requirements for the EUV lithography system.At present, the laserproduced plasma (LPP) of tin (Sn) targets has been successfully applied as the EUV light source in current lithography systems [1].When the Sn target is heated to 30-50 eV by a high-power laser, the plasma can produce strong emissions with a peak wavelength at 13.5 nm [2], which matches with the reflective band of available Mo/Si multilayer mirrors[3].The emission features make Sn plasma the advisable solution for high-power EUV light sources.To further advance the semiconductor process to smaller nodes, the next-generation light source beyond the EUV(<10 nm)has been added to the research agenda.With the development of La/B4C multilayer mirrors, a high reflectivity of 20%-40%has been obtained at 6.5-6.7 nm, and achievement of a theoretically higher reflectivity of 80% is possible.Therefore, the relative wavelength band coupled with these mirrors is deemed the suitable wavelength for the next stage of the beyond EUV(BEUV) light source [4, 5].Gadolinium (Gd) plasma heated to over 100 eV can generate thousands of emission lines centered at 6.7 nm [6], which makes it one of the most appropriate candidates for BEUV lithography.

    At present,there are some works that have been reported to obtain a BEUV light source at 6.7 nm based on the LPP of Gd targets [7-10].Similar to the pioneering efforts of Sn plasmas,the goals of these efforts are either to improve the conversion efficiency (CE) of the Gd plasma or to reduce the debris produced during the excitation process.To pursue the two goals for practical applications,two main approaches have been proposed:optimization of the laser parameters [10-14], and choosing the appropriate form of the targets[10,15,16].With respect to the second approach,a mass-limited target is preferred as it can not only produce sufficient EUV emission but also reduce the neutral atoms and low-ionized ions that come from the deep layer of the target[17].There are several forms of mass-limited targets, such as sphere targets made by depositing materials on balls[18-21]or bubbles[22],thin-film targets coated on planar Si wafers or glass[23,24]and uniform liquid droplets[25,26].Comparably,the thin-film target approach is simpler,and it can be easily applied to the study of the properties of mass-limited targets made of new materials in the laboratory.By using masslimited thin-film targets, it is found that Sn targets that are several tens of nanometers thick, which are also named minimum-mass thin-film targets,are able to generate EUV radiation as efficiently as the planar bulk targets[18,27].However,until now,there have been few reports about the LPP of mass-limited thin-film Gd targets for the BEUV light source.

    In this work, we have studied the LPP spectra of BEUV sources based on mass-limited thin-film Gd targets, which were prepared using the magnetron sputtering method.LPPs of the thin-film targets were excited by a high-energy neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm.The influences of the laser intensity on the BEUV emission from thin-film targets were first investigated.When the laser intensity was changed from 6 × 1010to 3.37 ×1011W cm?2, it was found that the CE of the LPP peaks at about 2 × 1011W cm?2for the thin-film target.Then, the emission spectra of the LPPs were compared with Gd targets with different thicknesses.A minimum-mass target with a thickness of 400 nm was deduced by evaluating the CEs of LPPs, which further proved that this thickness may be the ablation depth for this kind of mass-limited target.These findings in this work may give us guidance on how to develop high-efficiency and low-debris BEUV light sources in the future.

    2.Experimental setup

    Figure 1.A schematic setup of the LPP based on thin-film Gd targets.

    A schematic setup of the experiment is shown in figure 1.The target was irradiated by a high-energy Q-switched Nd:YAG laser operating in single-shot mode.The laser has a center wavelength of 1064 nm, a maximum pulse energy of 900 mJ and a pulse width of 7 ns.The laser beam was perpendicularly focused on the Gd targets by an anti-reflection (AR@1064 nm) plano-convex BK7 lens with a focal length of 15 cm.The focused laser diameter was determined by the ablative aperture of the target at a low incident energy of 1 mJ.In our experiment, the focused laser diameter at the target position was measured to be 165 μm by an optical microscope.To investigate the properties of the BEUV spectra under different laser intensities, the energy of the incident Nd:YAG laser was adjusted by rotating the halfwaveplate in front of the polarizer.

    The thin-film targets used in this work were prepared using the magnetron sputtering method to deposit layers of Gd onto Si wafers.The steps to prepare the targets are as follows: first,3 cm×4 cm size Si wafers were used as the target substrate.All the substrates were cleaned with acetone, ethanol and deionized water before material deposition.Then, the Si substrates were deposited with thin layers of Gd via the magnetron sputtering equipment with an argon(Ar)pressure of 4.3×10?3mbar and an Ar flow rate of 20 sccm.A direct-current power of 60 W was applied to control the deposition speed of 0.25 nm s?1.The purity of the Gd source in the sputtering procedure was 99.99%.The thicknesses of the deposited Gd thin films were monitored by a quartz crystal with a precision of 0.1 nm.Finally,the Gd targets were fixed on an aluminum holder in the target chamber,and its position could be translated by X-Y linear stages to provide a fresh surface for each laser shot.

    The vacuum of the target chamber was maintained by a molecular turbo pump (2200 l s?1, Leybold) connected to a forestage scroll pump (15 m3h?1, Edwards) to avoid the absorption of the generated BEUV radiation.The pressure of the target chamber was maintained in the range of 10?7mbar during the experiment.The BEUV spectra from the Gd plasmas were recorded by a flat-field spectrometer (FFS)positioned at 45 degrees with respect to the incident laser.The FFS consisted of a spherical collecting mirror, a variable spaced reflective grating (1200 l mm?1), a slit and a backilluminated x-ray charge coupled device (CCD) camera(Andor 940P).The CCD camera was thermoelectrically cooled down to ?15°C to reduce the background noise.The typical spectral resolution of the FFS is ~0.02 nm within the spectral range from 4 to 20 nm.

    Figure 2.The BEUV spectra of the 300 nm thin-film Gd target.

    3.Results and discussion

    Typically,Gd plasma produces BEUV emission at 6.7 nm when its electron temperature is heated to over 100 eV, which can be controlled by the laser and target properties.Therefore,to obtain the best CE for the mass-limited targets,it is necessary to find the optimal experimental conditions,which are the laser intensity and the target’s thickness.First,we fixed the thickness of the target at 300 nm and measured the corresponding BEUV spectra from the LPP under different incident laser intensities.The spectra of the LPP, when the incident laser intensity is changed from 6.7 ×1010to 3.37 × 1011W cm?2, are shown in figure 2.It can be seen that the peaks of the emission spectra are around 6.7 nm,which is mainly attributed to the 4d-4p and 4d-4f transitions in ions from Gd12+to Gd25+.It is also observed that the Gd spectra contain satellite emission lines at the wavelength of 7.17 nm when the incident laser intensity is increased.These emissions come from the n=4?n=5(Δn=1)transitions in ions from Gd19+to Gd27+[7,13],because the mean ionic charge state has been increased during the procedure.Moreover, when the laser intensity was increased over 2 × 1011W cm?2, specific radiations in the 8-9 nm region were observed.This is because the Si substrate will absorb the residual incident laser and produce emissions due to the charged states from Si3+to Si8+.On the other side, a superposition of lines, including the Gd line at 5.9 nm and the Si lines at 4.55 nm, 4.8 nm and 5.2 nm [28],dominates the spectra in the range of 4.5-6 nm.

    Based on the spectra,figure 3 illustrates the dependence of the CEs on the laser intensity within the 0.6% bandwidth at 6.7 nm [29].In this experiment, we used a spectrometer and calculated the relative CEs of the light source.First, we evaluated the intensity of the BEUV light of bulk targets under the same conditions as the experiment in[13],and considered the CE to be the same with a value of 0.4%.Then,the relative CEs in this work were obtained by comparing the BEUV radiant spectra from thin-film targets with those of the bulk targets.Although an accurate CE is preferred, it is found that the relative CEs are sufficient to obtain the laws of impacts by changing the laser’s and targets’ parameters.As seen in figure 3,the CEs of the thin-film targets increase with the laser intensity in the beginning and then saturate when the laser intensity reaches 2 × 1011W cm?2.In these conditions, the optimal CE of the 300 nm thick Gd target is 0.54%.The results indicate that this threshold point should be the optimal laser intensity.This CE tendency is similar to that of Sn plasma,which also saturates at a dedicated incident laser intensity.The saturation of the CE is attributed to the self-absorption effect when the produced plasma is overheated.In this case,the plasma around the BEUV emission zone gets denser.Thus,the denser plasma will absorb the BEUV light and prevent the light from passing through the plasma.It should also be noted that the CE will gradually decrease when the laser intensity is further higher than the optimum conditions.

    Figure 3.The CEs of the 300 nm thick Gd target under different laser intensities.

    Figure 4.The BEUV spectra of the LPP from Gd targets with different thicknesses.

    When the optimal laser intensity was preliminarily determined, the BEUV spectra of the mass-limited thin-film Gd targets with various thicknesses were recorded, as shown in figure 4.It is observed that there is a dip structure at 6.82 nm together with two peaks at 6.676 nm and 6.955 nm for targets with a thickness less than 200 nm.The dips gradually disappear as the thin-film Gd targets become thicker.This dip structure in the spectra is attributed to the re-absorption of BEUV light by the surrounding low-temperature plasma, which is formed by the atoms in the thin film below 200 nm.It can also be seen that the intensity of BEUV emission increases when the thickness of the target increases from 50 to 400 nm, and declines slightly from 400 to 500 nm.

    Figure 5.(a) The CEs of the Gd targets with different thicknesses,and (b) the intensity of the Si emission line at 11.786 nm.

    Identically, the evolutions of the CEs of the thin-film targets with different thicknesses are illustrated in figure 5(a).It can be seen that the CE increases with the thickness in the beginning and reaches its peak of 0.6% at a thickness of 400 nm.There are some differences in the error bars for the data at different target thicknesses.This is because unavoidable errors in the installation position and angle are introduced when we change the target with different thicknesses.The spectrometer is comparably sensitive to the radiation position.Thus, when the target is moved for new data, there will be a slight fluctuation in the measured spectra.The CE of the Gd plasma from the bulk target is also shown in the figure as the dashed line (black).The CEs of the 400 nm target and the bulk target are comparable, which indicates that the 400 nm target is the minimum mass for the LPP emission under the current incident laser intensity of 2×1011W cm?2.

    This minimum-mass target’s thickness is, to a certain extent, connected to the ablation depth of the incident laser.The ablation depth can also be evaluated via the intensities of the Si emission lines in the spectra.When the thin-film target is thinner than the ablation depth, there will be observable emissions from the Si substrate.Thus,the emission lines from the 2p-3s transition of Si4+at 11.786 nm were extracted, as shown in figure 5(b) [28].It is observed that the intensity of this Si line dominates for Gd targets below 400 nm, which matches with the CE results in figure 5(a).

    Figure 6.(a)A microscope photograph of the laser spot profile, and(b) a microscope photograph of the 400 nm Gd target irradiated under a laser intensity of 2 × 1011 W cm?2.

    The theoretical ablation depth for a thin-film target according to [18] is calculated as:

    where Ia, λL, and τLare the intensity, wavelength and pulse width of the incident Nd:YAG laser, respectively, and ρ0is the initial density of the target.Under the present experimental conditions(Ia=2×1011W cm?2,λL=1064 nm,τL=7 ns,ρ0=7.901 g cm?2),the theoretical ablation depth dais calculated to be 36 nm.It is found that the experimental ablation depth is greater than the calculation result,which we think is due to the small laser spot used in this experiment.The smaller laser spot, compared to [18] (165 μm versus 500 μm,assuming the same laser intensity),leads to greater expansion of plasma in the focal plane and deeper ablation on the target surface.As shown in figure 6(a),the incident laser has a focused diameter of 165 μm, measured by the ablative aperture of the bulk target at a low incident energy.Figure 6(b) displays the spatial profile of the ablated 400 nm target under an irradiated laser intensity of 2×1011W cm?2.The ablated area of the thinfilm target has a larger diameter compared to the laser diameter,which is due to the expansion of the plasma in the focal plane.Thus,the plasma exhibits a two-dimensional expansion,leading to a much deeper ablation depth[14].In contrast,if a larger laser spot is assumed, the plasma will exhibit a one-dimensional expansion and a lower ablation depth can be expected.

    Figure 7.The CEs of thin-film Gd targets with different thicknesses under different laser intensities.

    Finally, to consider the impact of laser spot size on the thickness of the minimum-mass target, we have analyzed the CEs for targets with different thicknesses while simultaneously varying the incident laser intensity,which is shown in figure 7.In general, the CEs of the targets increase with the incident laser intensity and then decrease gradually once the intensity goes beyond the optimal conditions.The exception of an increase near the highest intensities (>25 × 1010W cm?2) for the 300 nm target may be attributable to small measurement uncertainty,which is just a CE change of less than 0.03%in the experiment.From the figure, we can see that a higher laser intensity is needed to achieve the optimal CE for a thicker target.The maximum CE value of 0.6% was achieved for a 400 nm thin-film target under an incident laser intensity of 2×1011W cm?2, which indicates that this should be the optimal experimental parameters for such thin-film Gd targets.

    4.Conclusions

    In conclusion,we have presented a BEUV light source based on LPP of mass-limited thin-film Gd targets,which were prepared by sputtering Gd on Si wafers.The influences of the laser intensity and the target thickness on the CEs of the thin-film targets were carefully investigated.It is found that a maximum CE value of 0.6%was achieved with a 400 nm thick target at an optimal incident laser intensity of 2×1011W cm?2.It has been proven that the optimum mass-limited target is connected to the ablation depth of the LPP.It should also be expected that a thinner target will be possible in the future by optimizing the laser diameter.The advantage of using a thin-film Gd target is that it can generate sufficient BEUV emission that is comparable to the bulk target but potentially produces less debris.Therefore,the mass-limited Gd target is an important strategy to implement for the next-generation BEUV light source at 6.7 nm.

    It is known that mass-limited tin-droplet targets are employed as LPP targets in current industrial EUV light sources.However, due to the substantially higher melting point of Gd (1312°C), the design and manufacture of a Gddroplet generator is more challenging.Therefore, thin-film targets can be proposed as an alternative solution, which can also be made into tapes with a soft substrate to meet the temporary requirement for repetitive targets for long-time operation.It should be noted that this work is a preliminary result.The CE should be a complex function of the laser parameters and target forms.It is necessary to optimize the parameters of the plasma source for further improvement of BEUV CEs,and a more accurate CE should be obtained using a calibrated calorimeter, which will be our next work.Moreover, it is also very interesting to investigate plasma evolution to better understand BEUV radiation in the future.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(Nos.61427812,61805118,12104216 and 12241403),and the Natural Science Foundation of Jiangsu Province of China (Nos.BK20192006, BK20180056 and BK20200307).

    猜你喜歡
    張哲嚴(yán)羽
    Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
    山區(qū)公路路線設(shè)計(jì)的基本特點(diǎn)與思路
    淺析《滄浪詩話》中嚴(yán)羽對《詩經(jīng)》的“隱蔽”
    High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
    一個(gè)叫“撲拉提”的漢族小伙
    吐魯番(2016年3期)2016-11-26 00:33:51
    鮐巴魚奇事
    論嚴(yán)羽的詩歌創(chuàng)作特色——試析嚴(yán)羽所自為詩反映的思想風(fēng)貌
    人間(2015年20期)2016-01-04 12:47:06
    Modelling of 2-D extended Boussinesq equations using a hybrid numerical scheme*
    用心靈呵護(hù)心靈
    紫光閣(2014年3期)2014-03-07 22:49:24
    用心靈呵護(hù)心靈
    紫光閣(2014年3期)2014-03-07 05:02:22
    成年女人毛片免费观看观看9| 久久国产精品影院| 欧美国产日韩亚洲一区| 最后的刺客免费高清国语| 国产高清视频在线观看网站| 97碰自拍视频| 又黄又爽又免费观看的视频| 亚洲av电影不卡..在线观看| 性色avwww在线观看| 在线观看美女被高潮喷水网站 | 午夜精品一区二区三区免费看| 国产淫片久久久久久久久 | 亚洲精品日韩av片在线观看 | 国产视频一区二区在线看| 精品国内亚洲2022精品成人| 亚洲国产中文字幕在线视频| x7x7x7水蜜桃| 中亚洲国语对白在线视频| 久久久精品欧美日韩精品| 午夜福利18| 久久久久国产精品人妻aⅴ院| 天堂av国产一区二区熟女人妻| 日本撒尿小便嘘嘘汇集6| 免费搜索国产男女视频| 丰满的人妻完整版| 亚洲国产精品999在线| 在线观看免费视频日本深夜| 久久久久免费精品人妻一区二区| 亚洲精品乱码久久久v下载方式 | 欧美精品啪啪一区二区三区| 色综合欧美亚洲国产小说| 好男人在线观看高清免费视频| 欧美性感艳星| 日本与韩国留学比较| 网址你懂的国产日韩在线| a级一级毛片免费在线观看| 婷婷丁香在线五月| 欧美成人性av电影在线观看| 国产午夜精品久久久久久一区二区三区 | 国产精品电影一区二区三区| 丰满人妻熟妇乱又伦精品不卡| tocl精华| or卡值多少钱| 一区福利在线观看| 亚洲中文字幕日韩| 伊人久久精品亚洲午夜| 精品久久久久久久久久免费视频| 国产v大片淫在线免费观看| 欧美成人一区二区免费高清观看| 欧美性猛交黑人性爽| 亚洲精品成人久久久久久| 国产成人系列免费观看| 国产精品亚洲一级av第二区| 国产欧美日韩精品一区二区| 国产成人欧美在线观看| 在线观看午夜福利视频| 18禁在线播放成人免费| 国产主播在线观看一区二区| 成年女人看的毛片在线观看| 熟妇人妻久久中文字幕3abv| 熟女少妇亚洲综合色aaa.| 一级作爱视频免费观看| 色播亚洲综合网| 亚洲av电影在线进入| 在线观看一区二区三区| 一进一出抽搐gif免费好疼| 全区人妻精品视频| 手机成人av网站| 韩国av一区二区三区四区| av天堂中文字幕网| 日本熟妇午夜| 免费高清视频大片| 亚洲av成人不卡在线观看播放网| 全区人妻精品视频| 婷婷精品国产亚洲av| 久久久久免费精品人妻一区二区| 夜夜躁狠狠躁天天躁| 精品99又大又爽又粗少妇毛片 | 狂野欧美激情性xxxx| 一二三四社区在线视频社区8| 国产91精品成人一区二区三区| 国产乱人视频| 亚洲精品一卡2卡三卡4卡5卡| 韩国av一区二区三区四区| 国产探花极品一区二区| 老司机在亚洲福利影院| 一级毛片高清免费大全| 真实男女啪啪啪动态图| 国产久久久一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 精品99又大又爽又粗少妇毛片 | 好看av亚洲va欧美ⅴa在| 国产 一区 欧美 日韩| www国产在线视频色| 日本撒尿小便嘘嘘汇集6| 三级毛片av免费| 亚洲成av人片免费观看| 色精品久久人妻99蜜桃| 在线观看美女被高潮喷水网站 | 老司机在亚洲福利影院| 一个人看视频在线观看www免费 | 亚洲片人在线观看| 婷婷精品国产亚洲av在线| 此物有八面人人有两片| 亚洲电影在线观看av| 波野结衣二区三区在线 | 国产极品精品免费视频能看的| 婷婷亚洲欧美| 中文资源天堂在线| 18+在线观看网站| 日韩精品中文字幕看吧| 一本综合久久免费| 亚洲无线观看免费| netflix在线观看网站| 国产熟女xx| 日日夜夜操网爽| 在线国产一区二区在线| 少妇的逼水好多| 国产在线精品亚洲第一网站| 久久精品亚洲精品国产色婷小说| 亚洲av中文字字幕乱码综合| 久久久久精品国产欧美久久久| 久久久国产成人精品二区| 亚洲人与动物交配视频| tocl精华| 国产美女午夜福利| 国产麻豆成人av免费视频| 欧美日韩福利视频一区二区| 一本久久中文字幕| 亚洲欧美日韩卡通动漫| 亚洲性夜色夜夜综合| 亚洲精品影视一区二区三区av| 国产精品自产拍在线观看55亚洲| 国产亚洲欧美在线一区二区| 90打野战视频偷拍视频| 亚洲国产欧美人成| av视频在线观看入口| 少妇裸体淫交视频免费看高清| 国产精品自产拍在线观看55亚洲| or卡值多少钱| 欧美性猛交╳xxx乱大交人| 嫩草影院精品99| 中文字幕熟女人妻在线| 天堂√8在线中文| 哪里可以看免费的av片| 欧美成人性av电影在线观看| 日本a在线网址| 亚洲性夜色夜夜综合| 国产精品精品国产色婷婷| 嫁个100分男人电影在线观看| 亚洲av不卡在线观看| 99久久综合精品五月天人人| 精品午夜福利视频在线观看一区| 欧美3d第一页| 午夜精品一区二区三区免费看| 最近最新中文字幕大全电影3| 真实男女啪啪啪动态图| 日本一本二区三区精品| av专区在线播放| 最新美女视频免费是黄的| 国产色爽女视频免费观看| 99热这里只有是精品50| 久久香蕉精品热| av天堂中文字幕网| 精品人妻1区二区| 99国产极品粉嫩在线观看| 午夜福利在线在线| www日本黄色视频网| 午夜a级毛片| 免费av毛片视频| 岛国视频午夜一区免费看| 国产亚洲欧美在线一区二区| 丰满乱子伦码专区| 我要搜黄色片| 色播亚洲综合网| 中文字幕精品亚洲无线码一区| bbb黄色大片| e午夜精品久久久久久久| 亚洲中文日韩欧美视频| 国产成人av激情在线播放| 激情在线观看视频在线高清| 国产老妇女一区| 国产免费一级a男人的天堂| 国产免费一级a男人的天堂| 久久人人精品亚洲av| 国产成人系列免费观看| 免费电影在线观看免费观看| 99国产精品一区二区蜜桃av| www.www免费av| 亚洲国产色片| 国产视频内射| 波多野结衣巨乳人妻| 内射极品少妇av片p| 亚洲国产精品合色在线| 在线观看66精品国产| 午夜福利在线观看免费完整高清在 | 午夜日韩欧美国产| 国产亚洲精品av在线| 国内精品一区二区在线观看| 欧美区成人在线视频| 嫩草影视91久久| 搡老岳熟女国产| 国产精品久久久人人做人人爽| 18禁国产床啪视频网站| 亚洲av日韩精品久久久久久密| 制服丝袜大香蕉在线| 欧美成人a在线观看| 成年免费大片在线观看| 亚洲不卡免费看| 日日夜夜操网爽| 国产伦一二天堂av在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一区二区三区色噜噜| 动漫黄色视频在线观看| 亚洲乱码一区二区免费版| 日韩欧美精品v在线| 男女下面进入的视频免费午夜| 亚洲国产欧美人成| 免费看十八禁软件| 久99久视频精品免费| 无人区码免费观看不卡| 精品久久久久久成人av| 国产色爽女视频免费观看| 国产精品亚洲美女久久久| 在线十欧美十亚洲十日本专区| 99久久九九国产精品国产免费| 每晚都被弄得嗷嗷叫到高潮| 女人高潮潮喷娇喘18禁视频| 中文字幕人成人乱码亚洲影| 天堂√8在线中文| 免费观看人在逋| 国产亚洲av嫩草精品影院| 欧美日韩亚洲国产一区二区在线观看| 国产 一区 欧美 日韩| 欧美高清成人免费视频www| 国内精品一区二区在线观看| 精品久久久久久,| 免费av毛片视频| 欧美zozozo另类| 日韩欧美在线二视频| 成年女人看的毛片在线观看| 欧美黄色片欧美黄色片| 乱人视频在线观看| 女人十人毛片免费观看3o分钟| 十八禁人妻一区二区| 免费观看的影片在线观看| 非洲黑人性xxxx精品又粗又长| 老司机午夜福利在线观看视频| svipshipincom国产片| 午夜视频国产福利| 亚洲一区二区三区色噜噜| 身体一侧抽搐| 日韩欧美精品v在线| 久久婷婷人人爽人人干人人爱| 国产精品一区二区三区四区久久| 免费看美女性在线毛片视频| 99国产精品一区二区蜜桃av| 嫁个100分男人电影在线观看| 黄色片一级片一级黄色片| 亚洲国产中文字幕在线视频| 99热精品在线国产| 免费无遮挡裸体视频| 久久久久亚洲av毛片大全| 他把我摸到了高潮在线观看| 床上黄色一级片| 亚洲黑人精品在线| 18禁黄网站禁片午夜丰满| 99久国产av精品| 天美传媒精品一区二区| 精品乱码久久久久久99久播| 在线观看美女被高潮喷水网站 | 91字幕亚洲| 国产精品av视频在线免费观看| 88av欧美| 51午夜福利影视在线观看| 午夜精品在线福利| 精品99又大又爽又粗少妇毛片 | 国产欧美日韩精品亚洲av| av视频在线观看入口| 51国产日韩欧美| 亚洲精品456在线播放app | 午夜福利18| 长腿黑丝高跟| 嫩草影院入口| 免费看日本二区| 久久精品国产综合久久久| 动漫黄色视频在线观看| 色噜噜av男人的天堂激情| 色综合站精品国产| 日韩亚洲欧美综合| 国产成人av激情在线播放| 亚洲专区中文字幕在线| www.色视频.com| 最后的刺客免费高清国语| 最新在线观看一区二区三区| 看免费av毛片| av福利片在线观看| 日韩欧美精品v在线| 黄色视频,在线免费观看| 日韩亚洲欧美综合| 日本一本二区三区精品| 国产精品一区二区三区四区免费观看 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文日韩欧美视频| 亚洲 欧美 日韩 在线 免费| 中文字幕人妻丝袜一区二区| 在线观看午夜福利视频| 一卡2卡三卡四卡精品乱码亚洲| 18+在线观看网站| 悠悠久久av| 亚洲av成人av| 日韩高清综合在线| 在线播放国产精品三级| 国内精品一区二区在线观看| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看| 日韩高清综合在线| 亚洲国产精品久久男人天堂| 国产精品乱码一区二三区的特点| 国产三级中文精品| 国产av不卡久久| 亚洲最大成人手机在线| 色av中文字幕| 成人永久免费在线观看视频| 国产爱豆传媒在线观看| 亚洲av美国av| tocl精华| 免费一级毛片在线播放高清视频| 在线观看66精品国产| 最近视频中文字幕2019在线8| 亚洲人成网站在线播| 特级一级黄色大片| 国产精品久久久久久亚洲av鲁大| 亚洲内射少妇av| 日韩亚洲欧美综合| 九色国产91popny在线| 欧美不卡视频在线免费观看| 精华霜和精华液先用哪个| 偷拍熟女少妇极品色| av女优亚洲男人天堂| 啦啦啦观看免费观看视频高清| 熟女电影av网| 精华霜和精华液先用哪个| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 色老头精品视频在线观看| 国产午夜精品久久久久久一区二区三区 | 狂野欧美激情性xxxx| 熟妇人妻久久中文字幕3abv| 欧美又色又爽又黄视频| 女生性感内裤真人,穿戴方法视频| 一本一本综合久久| 欧美大码av| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三| 18美女黄网站色大片免费观看| 黄色丝袜av网址大全| 在线观看免费视频日本深夜| 国产精品久久久久久精品电影| 久久6这里有精品| 欧美极品一区二区三区四区| 日本成人三级电影网站| www.999成人在线观看| 午夜精品在线福利| 脱女人内裤的视频| 久久久久久九九精品二区国产| 免费高清视频大片| aaaaa片日本免费| 色综合婷婷激情| 国产三级中文精品| 欧美日韩乱码在线| 欧美日韩亚洲国产一区二区在线观看| 又黄又粗又硬又大视频| 在线观看一区二区三区| 午夜福利在线观看吧| 成熟少妇高潮喷水视频| 老熟妇乱子伦视频在线观看| 国产精品av视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 中文字幕人妻熟人妻熟丝袜美 | 有码 亚洲区| 51国产日韩欧美| 在线国产一区二区在线| 美女大奶头视频| 69人妻影院| 亚洲人成网站在线播| h日本视频在线播放| 国产伦精品一区二区三区视频9 | 国产真实乱freesex| 看黄色毛片网站| 亚洲自拍偷在线| 18禁美女被吸乳视频| 91麻豆av在线| 91久久精品电影网| 亚洲av日韩精品久久久久久密| 一级黄片播放器| 亚洲一区二区三区不卡视频| 在线视频色国产色| 母亲3免费完整高清在线观看| 99久国产av精品| 成年版毛片免费区| 香蕉av资源在线| 精品欧美国产一区二区三| 久久久精品大字幕| 国产av在哪里看| 观看美女的网站| 亚洲avbb在线观看| 全区人妻精品视频| www.999成人在线观看| av女优亚洲男人天堂| 亚洲午夜理论影院| 亚洲成人中文字幕在线播放| 免费人成视频x8x8入口观看| 99热这里只有精品一区| 国产爱豆传媒在线观看| 高清毛片免费观看视频网站| 成人永久免费在线观看视频| 亚洲自拍偷在线| 99久久无色码亚洲精品果冻| 亚洲av成人精品一区久久| 国产99白浆流出| 淫秽高清视频在线观看| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| a级毛片a级免费在线| xxxwww97欧美| 又黄又粗又硬又大视频| 日韩欧美一区二区三区在线观看| 欧美在线一区亚洲| 国产色爽女视频免费观看| 此物有八面人人有两片| 国产高清有码在线观看视频| 一级作爱视频免费观看| 在线播放无遮挡| 久久这里只有精品中国| 午夜精品在线福利| 好看av亚洲va欧美ⅴa在| 3wmmmm亚洲av在线观看| 啪啪无遮挡十八禁网站| 级片在线观看| 欧美日韩黄片免| 亚洲av一区综合| 久久国产精品影院| 成年版毛片免费区| 搡老岳熟女国产| 男人的好看免费观看在线视频| 亚洲国产日韩欧美精品在线观看 | 99riav亚洲国产免费| 看片在线看免费视频| 精华霜和精华液先用哪个| 桃红色精品国产亚洲av| 日韩欧美在线乱码| 久久精品国产清高在天天线| 日韩有码中文字幕| 欧美激情久久久久久爽电影| 99热只有精品国产| 老司机午夜十八禁免费视频| 日本黄色视频三级网站网址| or卡值多少钱| 精品久久久久久久久久久久久| 日韩人妻高清精品专区| 天美传媒精品一区二区| 久久人妻av系列| 免费看a级黄色片| 日韩亚洲欧美综合| 国产熟女xx| 国产精品一及| 免费在线观看成人毛片| 在线十欧美十亚洲十日本专区| 深夜精品福利| 亚洲欧美精品综合久久99| 三级男女做爰猛烈吃奶摸视频| a级毛片a级免费在线| 亚洲不卡免费看| 三级国产精品欧美在线观看| 51午夜福利影视在线观看| 国产综合懂色| 日本成人三级电影网站| 国产精品自产拍在线观看55亚洲| 操出白浆在线播放| xxx96com| 午夜福利欧美成人| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 床上黄色一级片| 国产高清三级在线| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看 | 99视频精品全部免费 在线| a级毛片a级免费在线| 精品人妻一区二区三区麻豆 | 亚洲午夜理论影院| 丰满的人妻完整版| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| 国产一区二区激情短视频| 国产在线精品亚洲第一网站| 成人三级黄色视频| 99在线视频只有这里精品首页| 久久久久国产精品人妻aⅴ院| 19禁男女啪啪无遮挡网站| 欧美国产日韩亚洲一区| 国产男靠女视频免费网站| 成人无遮挡网站| 好看av亚洲va欧美ⅴa在| 99在线人妻在线中文字幕| 精品久久久久久成人av| 久久久久亚洲av毛片大全| www.www免费av| 国产精品乱码一区二三区的特点| 久久久久久久午夜电影| av黄色大香蕉| 天堂av国产一区二区熟女人妻| 搡老岳熟女国产| 51国产日韩欧美| 国产高清视频在线播放一区| 亚洲精华国产精华精| 欧美+日韩+精品| 国产精品日韩av在线免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲欧美精品综合久久99| 中文字幕av成人在线电影| 男插女下体视频免费在线播放| 国产午夜精品论理片| 午夜福利免费观看在线| 国产成人a区在线观看| 一进一出好大好爽视频| 首页视频小说图片口味搜索| 国产精品综合久久久久久久免费| 免费看十八禁软件| 色老头精品视频在线观看| 亚洲av电影在线进入| 国产亚洲精品一区二区www| 女生性感内裤真人,穿戴方法视频| 成人18禁在线播放| 色噜噜av男人的天堂激情| 两人在一起打扑克的视频| 我的老师免费观看完整版| 性色avwww在线观看| 国产精品国产高清国产av| 亚洲av熟女| 亚洲国产欧美网| 女生性感内裤真人,穿戴方法视频| 久久国产精品人妻蜜桃| 男女下面进入的视频免费午夜| 国产精品亚洲av一区麻豆| 国产精品久久久久久亚洲av鲁大| 国产日本99.免费观看| 身体一侧抽搐| 在线免费观看不下载黄p国产 | 免费大片18禁| 99热精品在线国产| 黄片小视频在线播放| 中文在线观看免费www的网站| 日韩 欧美 亚洲 中文字幕| 美女高潮的动态| 免费看a级黄色片| 国产97色在线日韩免费| 欧美+亚洲+日韩+国产| 精品熟女少妇八av免费久了| 精品一区二区三区人妻视频| 黄片大片在线免费观看| 757午夜福利合集在线观看| 亚洲av一区综合| 天天一区二区日本电影三级| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区色噜噜| 国产精品嫩草影院av在线观看 | 精品福利观看| 亚洲欧美一区二区三区黑人| 国产午夜精品论理片| 叶爱在线成人免费视频播放| 午夜视频国产福利| 中文字幕人妻丝袜一区二区| 国产成人a区在线观看| 97超视频在线观看视频| 一本精品99久久精品77| 一进一出好大好爽视频| 高清在线国产一区| 宅男免费午夜| 中文在线观看免费www的网站| www.色视频.com| 99久久成人亚洲精品观看| 婷婷六月久久综合丁香| 内地一区二区视频在线| 男女下面进入的视频免费午夜| 精品午夜福利视频在线观看一区| 美女免费视频网站| 成人亚洲精品av一区二区| 色噜噜av男人的天堂激情| 久久午夜亚洲精品久久| 国产一区二区三区视频了| 男人和女人高潮做爰伦理| 三级国产精品欧美在线观看| 欧美乱妇无乱码| 在线观看av片永久免费下载| 操出白浆在线播放| 欧美+亚洲+日韩+国产| 免费在线观看亚洲国产| 国产成人系列免费观看| 特大巨黑吊av在线直播| 国产真人三级小视频在线观看| 精品日产1卡2卡| av欧美777| av黄色大香蕉| 五月玫瑰六月丁香| 日日夜夜操网爽| 久久久久久大精品| 久久精品国产综合久久久| 欧美性猛交╳xxx乱大交人| 国产成+人综合+亚洲专区| 一个人免费在线观看电影| 老司机在亚洲福利影院| 老鸭窝网址在线观看| 国产精品亚洲一级av第二区|