• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of gas flow on the nanoparticles transport in dusty acetylene plasmas

    2023-11-16 05:38:00XiangmeiLIU劉相梅WenjingLIU劉文靜XiZHANG張茜XiaotianDONG董曉天andShuxiaZHAO趙書霞
    Plasma Science and Technology 2023年10期
    關(guān)鍵詞:張茜隱性分層

    Xiangmei LIU (劉相梅), Wenjing LIU (劉文靜), Xi ZHANG (張茜),Xiaotian DONG (董曉天) and Shuxia ZHAO (趙書霞)

    1 School of Science, Qiqihar University, Qiqihar 161006, People’s Republic of China

    2 School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract

    Keywords: gas flow, dusty acetylene plasmas, nanoparticles transport

    1.Introduction

    In recent years,researchers have shown that gas flow has an essential influence on plasma properties, nanoparticle formation,and nanoparticle transport[17-23].Cole et al[17]studied nanoparticle formation using a dielectric barrier discharge plasma system.Their experimental results showed that the flow rate significantly impacts the nanoparticle density and production rate.De Bleecker et al[18]studied the role of gas temperature differences on nanoparticle transport and found that thermophoresis can significantly influence nanoparticle spatial distribution.Hasan et al [19] investigated the impact of gas flow rate effect on the transport of chemical species in an atmospheric-pressure plasma discharge.They observed that a reasonable flow rate could enhance mass transport and manipulate the plasma density.However, the complexity of the neutral gas system has caused most researchers to consider the density, velocity, and gas temperature distribution of the neutral gas as input data [18, 24],and did not fully self-consistently study the flow and heat transfer process of neutral gases.Therefore, it is necessary to carefully study the neutral gas flow effect on nanoparticle growth and transport in acetylene microdischarge.

    In this work, a two-dimensional multi-fluid model is developed to investigate the gas flow effect on nanoparticle transport in dusty acetylene plasmas.The neutral gas density,momentum,and energy balance equations are introduced and studied using the fluid model in section 2, and the transport and nanoparticle growth are described.The simulation results are presented in section 3, and the gas flow effects on the C2H2microplasmas properties and nanoparticle behaviors are carefully discussed.Finally, the conclusions are summarized in section 4.

    2.Model description

    2.1.Fluid module

    In the 2D fluid model, 48 different particles are introduced,which can be seen in table 1,and the corresponding chemical reaction coefficients are obtained from [7, 25].The background gas densitynnand velocityunare calculated using the continuity and momentum balance equations

    where Rnand Mnrepresent the transfer of mass and momentum to background gas from collisions with other particles, mnis the neutral gas mass andpnis the pressure.The neutral viscous stress tensoris assumed to be a Newtonian formwhereη=1.0× 105Pa sis the viscosity coefficient of acetylene gas.

    Assuming that the plasma is in local thermal equilibrium,thus the neutral gas temperature Tnis characterized by a single energy balance equation

    where n is the total neutral gas density andCvis the heat capacity when the volume is constant.The term ? ·qnis the energy transfer due to thermal conduction, whererepresents the heat flux,andk= 0.0233 Wis the thermal conductivity.The termsand Enare the energy transfer due to pressure volume work and collisions,respectively.

    聽說(shuō)課隱性分層教學(xué)設(shè)計(jì),關(guān)注學(xué)生差異,通過(guò)對(duì)教學(xué)目標(biāo)、教學(xué)對(duì)象、教學(xué)內(nèi)容、教學(xué)策略等進(jìn)行合理分層,滿足學(xué)生的個(gè)體化發(fā)展需求,促進(jìn)了各層次學(xué)生聽說(shuō)能力的提高,激發(fā)了學(xué)生積極的情感因素。因此,聽說(shuō)課隱性分層教學(xué)得到越來(lái)越多的認(rèn)可。本研究進(jìn)一步證實(shí)了隱性分層教學(xué)的有效性,但在時(shí)間和范圍上還存在局限性,今后教學(xué)中還應(yīng)進(jìn)行更長(zhǎng)時(shí)間和更大范圍的實(shí)踐。

    Table 1.The particles calculated in the model.

    The densitynjfor each species (electrons, ions,nanoparticles, radicals and molecules) and flux Gjof small species (electrons, ions, radicals and molecules) are described by the continuity and momentum equations, and the momentum equation is estimated by the drift-diffusion approximation

    whereμjandDjare the mobility and diffusion coefficients,andRjrepresents the particle’s formation and loss terms.For ions, the electric fieldE is replaced by an effective electric fieldwhich accounts for the inertia effects.

    The electron temperatureTeis solved by the electron energy balance equation

    where Gwis the electron energy density flux andRwis the loss of electron energy due to electron impact collisions.

    Poisson’s equation makes the model fully self-consistent

    Here,φis the potential,ε0is the vacuum permittivity, andne,ndare the electron,ion and nanoparticle densities.Qdis the nanoparticle charge.

    The dust particle formation (nucleation) can occur through successive reactions between acetylene molecules and anions,with the primary anions being H2CC?and C2H?

    The largest anion stops at C12H?, which is taken as the production term for the smallest nanoparticle volume section in the coagulation stage.

    2.2.Nanoparticle module

    Nanoparticle charge is directly proportional to the floating potentialwhere the floating potentialVflis described by equalizingIi=Ie.The ion currentIiand the electron currentIeare calculated from the orbital motion limited theory [26]

    wherekBis the Boltzmann constant,m i,meare the ion and electron masses andare their temperatures, respectively.It should be noted that ion-neutral collisions significantly affect particle charging [27, 28], thuskBTiin equation (8) is replaced by the mean energywhich accounts for the drift velocity of ionsυ.iThe effect of ion-neutral collisions on the ion drift velocity is included through the momentum equation of ions(a re-written equivalent form of equation(4)),whereνiis the momentum transfer frequency of the ion i.It is noted that the drift and diffusion approximation is applied onto the momentum equation.When the diffusion term is further omitted or excluded, we havewhich will then be very similar to the analytical approximation model used in[28].To better understand the particle charging,a molecular dynamics simulation is better to be used as in the[28].Nevertheless, we believe that it will not significantly influence the change trend of particle charge, as estimated.

    Nanoparticles are subject to ion drag, thermophoresis,and neutral drag forces besides the electrostatic force[25,26].Thus, the nanoparticle flux Gdis given by

    whereμd,are the mobility and diffusion coefficients of nanoparticles,Eeffis the effective electric field.mdare the ion and nanoparticle masses, rdis the radius of nanoparticles andνmdis the momentum loss frequency.Giis the ion flux,υsis the mean speed andυthis the background gas’s thermal velocity.bcis the collection parameter, Γ is the Coulomb logarithm, andπb/2is the impact parameter for the deflection angle of π/2.Note that,different from our previous studies, the thermophoretic force acting on the nanoparticles could significantly affect the profile of nanoparticle density.

    In the coagulation phase, the nanoparticles will quickly grow from several to tens of nanometers.To more effectively study the nanoparticle growth mechanism, an aerosol dynamics equation [29] is introduced and the nanoparticle densityn(v) is described in the volume range ofv~v+dvas

    Figure 1.Schematic diagram of the reactor.

    where the first item on the right of equation(10)describes the formation of nanoparticles in the volume range ofdv, and the second item represents the loss of particles.is the coagulation frequency between the interacting nanoparticles with the volumeuandv-u,J0(v) is the new particle formation rate by nucleation, andis noted that the collisions are calculated twice in the integral, which is why 1/2 is introduced.

    2.3.Numeical approach

    Plasma and nanoparticle modules with two separate computation cycles are used to describe the dusty C2H2discharges.In the first computation cycle,a time step of 3.7×10?12s is used to describe the plasma module, which includes the computation of particle balance equations, electron energy equations, and Poisson’s equation.It can be noticed that the nanoparticle generation (nucleation) is implemented in the plasma module.In the second computation cycle, a larger time step of 3.7×10?8s is used to describe the nanoparticle module, which includes the computation of nanoparticle charging, transport and growth.

    Two computing cycles are coupled together by an iterative process.First the fluid module is calculated for several radio-frequency (RF) cycles while the nanoparticles are assumed to be immobile.In the second computation cycle,the nanoparticle module begins with the time-averaged electron flux,positive ion flux,and electric field,which are calculated from the fluid module.The resulting nanoparticle density and charge are coupled to Poisson’s equation.

    3.Results and discussion

    The reactor configuration is illustrated in figure 1, where the RF (13.56 MHz) source is applied to the top electrode with a voltage ofand the bottom electrode is grounded.In figure 1, the acetylene gas flows in from the top showerhead electrode and flows out from the sidewall.For neutral gas,the inlet condition is set as the velocity-inlet while the outlet condition is the pressure-outlet.The input voltagethe ion temperature of 300 K and the pressure of 500 Torr are fixed.

    Figure 2.Calculated pressure force (a) and viscous force (b) acting on background gas.

    Figure 3.The spatial distributions of neutral gas velocity.

    In the capacitively-coupled RF atmospheric-pressure electronegative gas(C2H2)discharges,the drift and ambipolar fields play a dominant role in sustaining the discharges, and the electronegativity increases with pressure.Thus,the results are restricted to the drift-ambipolar regime [30-32].The gas flow effect on the plasma properties and nanoparticle behavior is a critical problem, thus the neutral gas inlet velocity varies from 0 to 4.0 m s?1.

    The spatial distribution of pressure and viscous forces is shown in figure 2, with an inlet velocity of 4.0 m s?1.The arrows in the figure indicate the direction of the force,and the colors represent the magnitude of the force, since the force varies by several orders of magnitude.It can be seen from figure 2(a) that the pressure and viscous forces are in the vertical direction,which will prevent the background gas flow out from the wall.Furthermore, the pressure force is much stronger than the viscous force, about two orders of magnitude larger.This means that pressure plays a dominant role in the transport of neutral gas.It can be noticed that the viscous force at the inlet is much larger(about 1.0×106Pa cm?1)but decreases sharply in the bulk plasma (about 2.0 ×102Pa cm?1).The collision drag term is of no influence as indicated in the simulation(due to the tiny sheath)and hence is not drawn herein.

    Figure 3 shows the spatial distributions of background gas velocity at different inlet velocities.Herein, the arrows show both the velocity direction and magnitude(indicated by the arrow length).The velocity direction of background gas is vertically downward except for certain local regions,which is opposite to the direction of forces.Upon increasing the gas inlet velocity, from 0.5 to 4.0 m s?1, the gas velocity in the discharge chamber is increased.Meanwhile, the velocity profile is more squeezed up to the shower head at increasing the inlet velocity and so the gas velocity decreases faster when traveling from the shower head to the chamber bottom.As seen from equation (2)and figure 2, the pressure gradient force is several orders higher than the viscous term, but the background gas velocity in the discharge region is decreased herein in figure 3.It implies the pressure gradient force hinders the transport of neutrals, rather than accelerating them.The reason is given below when explaining the data in figure 5.The peak of velocity at the shower head forms at the trigger of strong inlet velocity in the neutral transport, i.e.determined by the boundary condition of the momentum equation and the significant pressure gradient at the inlet shown in figure 2(a).This process we analyzed can be recognized when carefully observing the green part of the color legend, since it represents both the inlet boundary velocity and the bulk velocity near the shower head.

    Figure 4.The spatial distributions of neutral gas temperature Tn (a) and density nn (b) for different inlet velocities.

    Figure 5.The spatial distributions of heat conduction (a) and pressure volume work (b).

    Figure 4 presents the spatial distributions of neutral gas temperature and background density at different inlet velocities.In figure 4(a), the gas temperature in the bulk plasma increases with the inlet velocity at the influence of gas advection.Furthermore, the gas temperature drops sharply very close to the shower head, e.g.from 380 to 120 K at the inlet velocity of 4.0 m s?1.In the other region, the gas temperature is quite uniform.Correspondingly, the neutral density in figure 4(b) is peaked at the shower head once the gas transport is added,and the peak density is higher at larger inlet velocity.This is because the gas transport is in a whole incompressible at such low subsonic velocities and so the total pressure is conserved, withThe spatial variation of gas temperature caused by the gas advection is explained next in figure 5.As seen further, this very local change of gas temperature profile at the inlet will lead to a strong global change in both the profiles of nanoparticles and plasma parameters.

    To better understand gas temperature, the heat conduction and pressure work terms are shown in figure 5, with the inlet velocity of 4.0 m s?1.The thermal conduction and pressure volume work terms play an important role in the neutral gas energy balance equation, since they are much larger than the other terms.By referring to equation (3), the heat conduction term in figure 5(a) is determined by the gas temperature gradient shown in figure 4(a).The value of this term is negative and only spatially varied at the inlet due to the strong gas temperature gradient therein, which is an equivalent energy loss term to the temperature variable.The thermal conduction almost does not influence on the rest of the discharge region since the gas temperature is smooth when it is plotted at the present legend scale and resolution.The pressure work term in figure 5(b), represented by the second term at the right side of equation (3), is also negative at the inlet because,as mentioned before,the gas advection is triggered by the inlet velocity boundary condition in figure 3 and so the thermal energy of gas medium is transferred into kinetic energy.This energy transfer process is the major loss term of gas internal energy at the inlet and that is why gas temperature sinks at that location.It is interesting to note that except for the inlet position,the pressure work is changed into a positive value in the rest region.This is again related to figure 3, where the gas velocity is reduced with the distance from the inlet to the chamber bottom.Obviously, here in the major discharge area, the reverse energy transfer process occurs, i.e.the kinetic energy is transferred into thermal energy.This explains well the gas temperature increase in the bulk discharge area with inlet velocity value in figure 4(a).In our opinion,this is one equivalent isovolumetric compression process as we learned in the curriculum of thermodynamics.

    Figure 6.The spatial distributions of electron temperature and density for different inlet velocities.

    Figure 7.The spatial distributions of nanoparticle density for different inlet velocities,with the nanoparticle diameters of 1 nm(a)and 10 nm(b).

    Figure 6 presents the spatial distributions of electron temperature and density with various inlet velocities.As shown in figure 6(a), the electron temperature exhibits a much lower value in the bulk plasma but begins to rise quickly in the sheath regions.Note that the electron density and temperature are very sensitive to the inlet velocity.As the inlet velocity increases from 0 to 4.0 m s?1,the electron temperature at the inlet moves to the lower electrodes, thus the electron temperature at the bottom electrode increases quickly from 1.69 to 1.94 eV,while the electron temperature at the inlet decreases from 1.69 to 1.27 eV.This is because, as inlet velocity increases, more collisions between the neutral gases and electrons occur,resulting in more electron energy loss at the inlet and less energy loss at the lower electrode (refer to figure 4(b)).The electron density in figure 6(b) presents two dominant peaks near the presheaths due to the strong ambipolar electric field and high electron energy,while a much lower value is found in the bulk plasma due to the strong drift electric field.Like the relation of gas temperature and density shown in figure 4, the electron temperature and density are found to vary in inverse proportion as well.It is found when the inlet velocity increases from 0 to 4.0 m s?1, the electron density at the inlet increases from4.7× 1011to5.4× 1011cm?3, because more electrons are produced at more frequent inelastic collisions between background gases and electrons when the inlet velocity increases.As seen, the plasma parameters and the gas advection in the present chamber configuration are tightly coupled.In another work of ours, it is observed that the two processes will be loosely coupled when the gas is set to flow through the sidewall tunnel of the chamber.

    Figure 7 illustrates the spatial distributions of nanoparticle density for different inlet velocities, with the nanoparticle diameters of 1 nm (a) and 10 nm (b).It can be observed from figure 7 that, nanoparticles are mainly accumulated at presheaths due to the action of ion drag force when the gas flow is not considered.Once the gas flow is considered, a gas temperature gradient is presented at the inlet (see figure 4(a)),and thus nanoparticle begins to experience the action of thermophoresis force,represented by the last term on the right side of equation(9).It can be observed from figure 7(a)that,as the inlet velocity increases, the density of nanoparticles that are accumulated near the upper electrode is decreased significantly.This is because the thermophoretic force pushes nanoparticles to the upper electrode and then particles attach to the electrode surface and disappear.This process simulated by our simulation shows the same tendencies with the experimental observations[33].The experiment[33]observed that a large fraction of the particles was forced out of the interelectrode gap and trapped near the base of the cooled electrode(where the temperature difference is small) when applying a temperature difference of 38 K to one of the two electrodes.We predict that the thermophoretic force pushes nanoparticles to the electrodes and particles are trapped near the electrode where the temperature difference is small.Furthermore, the thermophoretic force is proportional to the gradient of the gas temperature,which increases with the inlet velocity(as shown in figure 4(a)) and so the density peak shift is more obvious with inlet velocity.Besides, this phenomenon is also more apparent when the nanoparticle size is increased,i.e.to 10 nm,as shown in figure 7(b).It is observed that the thermophoretic force drives nearly all particles to the upper electrode when the gas velocity is 4.0 m s?1, and a single-peak distribution is produced near the lower electrode.This is because the thermophoresis force is proportional to the square of the particle size, as shown in equation (9).

    4.Conclusions

    In summary, the effect of gas flow on plasma properties and nanoparticle behaviors is investigated by combining the selfconsistent 2D hydrodynamic model with the aerosol dynamics model.The neutral gas transport is mainly determined by the combined action of pressure and viscous forces, and the pressure force is much larger than the viscous force.The direction of pressure is opposite to the direction of velocity except at the inlet, hindering the propagation of gas.The pressure volume work and heat conduction significantly influence the neutral gas temperature.It is found that, the neutral gas temperature decreases and background gas density increases at the inlet, since the gas flow is approximately incompressible and the transfer process of thermal energy to kinetic energy occurs therein.On the other hand, the gas temperature in the main bulk discharge area is increased because an inverse energy transfer process has happened,which can be represented by the isovolumetric compression.

    Under the influence of neutral gas density, the electron temperature at the inlet decreases and the electron density increases with increasing inlet velocity, since more collisions between electron and background gas take place.This leads to the peak of electron temperature near the upper electrode moving to the lower electrode and the peak of electron density near the lower electrode moving to the upper electrode(reversely).On the other hand, when a gas temperature gradient occurs, nanoparticle transport is dominated by thermophoretic force, which pushes nanoparticles toward the electrodes and particles are trapped near the electrode where the temperature difference is small.As nanoparticles grow to 10 nm, the action of thermophoretic force becomes more obvious than the other forces,which drives nearly all particles to the upper electrode and causes the nanoparticle density to change from a double-peak structure to a single-peak one.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11805107 and 12275039), the Fundamental Research Funds in Heilongjiang Provincial Universities of China (No.135509124), and the Graduate Innovation Foundation of Qiqihar University (No.YJSCX2022014).

    猜你喜歡
    張茜隱性分層
    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
    一種水陸兩棲飛機(jī)普通框結(jié)構(gòu)設(shè)計(jì)
    Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading*
    隱性就業(yè)歧視的司法認(rèn)定
    一種沉降環(huán)可準(zhǔn)確就位的分層沉降儀
    Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock?
    雨林的分層
    有趣的分層
    芻議隱性采訪
    新聞傳播(2015年14期)2015-07-18 11:14:05
    新聞報(bào)道隱性失實(shí)的四種表現(xiàn)
    新聞傳播(2015年8期)2015-07-18 11:08:25
    亚洲中文字幕一区二区三区有码在线看| 色在线成人网| 真人做人爱边吃奶动态| 国产av麻豆久久久久久久| 欧美最黄视频在线播放免费| 国产av一区在线观看免费| 久久久久精品国产欧美久久久| 级片在线观看| 国产aⅴ精品一区二区三区波| 国产精品一区二区免费欧美| 亚洲不卡免费看| 91精品国产九色| 韩国av在线不卡| 国产精品美女特级片免费视频播放器| 99精品久久久久人妻精品| 毛片一级片免费看久久久久 | 色精品久久人妻99蜜桃| 69av精品久久久久久| 最近最新免费中文字幕在线| 亚洲国产欧美人成| 麻豆国产97在线/欧美| 亚洲av日韩精品久久久久久密| 亚洲狠狠婷婷综合久久图片| 男女之事视频高清在线观看| 99久久无色码亚洲精品果冻| 男女之事视频高清在线观看| 亚洲精华国产精华精| 久久久久九九精品影院| 一本一本综合久久| 国产精品一区www在线观看 | 亚洲av中文av极速乱 | 少妇人妻精品综合一区二区 | 欧美又色又爽又黄视频| 午夜影院日韩av| 3wmmmm亚洲av在线观看| 黄色女人牲交| 88av欧美| 亚洲无线在线观看| 一级毛片久久久久久久久女| 久久午夜福利片| 男女视频在线观看网站免费| 嫩草影院入口| 给我免费播放毛片高清在线观看| 久久午夜亚洲精品久久| 亚洲人与动物交配视频| 日本撒尿小便嘘嘘汇集6| 亚洲av不卡在线观看| 精品久久久久久久久久久久久| 午夜精品一区二区三区免费看| 免费人成在线观看视频色| 国产精品亚洲美女久久久| 国产精品1区2区在线观看.| 国产精品一区二区性色av| 婷婷精品国产亚洲av在线| 一级a爱片免费观看的视频| 免费av毛片视频| 变态另类丝袜制服| 露出奶头的视频| 天美传媒精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 在线观看午夜福利视频| 最近在线观看免费完整版| 两人在一起打扑克的视频| 免费黄网站久久成人精品| 精品一区二区三区av网在线观看| 人人妻人人看人人澡| 老熟妇乱子伦视频在线观看| 免费观看在线日韩| 91久久精品电影网| 无遮挡黄片免费观看| 久久精品国产亚洲av香蕉五月| 亚洲精品粉嫩美女一区| 嫩草影院新地址| 俺也久久电影网| 国产成人av教育| 特大巨黑吊av在线直播| 99热这里只有是精品50| 免费av观看视频| 亚洲经典国产精华液单| 免费在线观看影片大全网站| 色在线成人网| 美女黄网站色视频| 久久久久久久午夜电影| 国产高清有码在线观看视频| 成年人黄色毛片网站| 久久久久性生活片| 亚洲国产精品久久男人天堂| 中文在线观看免费www的网站| 午夜视频国产福利| 老熟妇乱子伦视频在线观看| 成人av一区二区三区在线看| 无遮挡黄片免费观看| 亚洲一级一片aⅴ在线观看| 91久久精品国产一区二区三区| 日韩av在线大香蕉| 久久久久国内视频| 美女 人体艺术 gogo| 亚洲美女搞黄在线观看 | 在线观看舔阴道视频| 小说图片视频综合网站| 在线观看av片永久免费下载| 美女免费视频网站| 久久精品影院6| 乱人视频在线观看| 日韩高清综合在线| 99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品一区二区三区| 白带黄色成豆腐渣| 国产一区二区三区视频了| 午夜福利18| 亚洲人与动物交配视频| 午夜福利成人在线免费观看| 国产 一区 欧美 日韩| 国产成人一区二区在线| 三级男女做爰猛烈吃奶摸视频| 又粗又爽又猛毛片免费看| 黄色女人牲交| 亚洲最大成人av| 99riav亚洲国产免费| 很黄的视频免费| 中出人妻视频一区二区| 啦啦啦韩国在线观看视频| 欧美日韩瑟瑟在线播放| 悠悠久久av| 一区福利在线观看| 色综合站精品国产| 色精品久久人妻99蜜桃| 欧美色欧美亚洲另类二区| 最近最新中文字幕大全电影3| 丝袜美腿在线中文| 国产麻豆成人av免费视频| 亚洲美女搞黄在线观看 | 国产在线精品亚洲第一网站| 成人永久免费在线观看视频| 永久网站在线| 亚洲精品成人久久久久久| 波多野结衣高清作品| 亚洲国产精品成人综合色| 一进一出抽搐动态| 一本精品99久久精品77| 成人高潮视频无遮挡免费网站| 久久精品人妻少妇| 美女黄网站色视频| 一区二区三区四区激情视频 | 国产精品久久久久久精品电影| 99九九线精品视频在线观看视频| 午夜免费激情av| 欧美极品一区二区三区四区| 看片在线看免费视频| 又紧又爽又黄一区二区| 亚洲欧美日韩无卡精品| 少妇的逼好多水| 中亚洲国语对白在线视频| 桃色一区二区三区在线观看| 亚洲在线观看片| 国产黄片美女视频| 人人妻,人人澡人人爽秒播| 亚洲一级一片aⅴ在线观看| 99国产精品一区二区蜜桃av| 国内精品久久久久久久电影| 观看免费一级毛片| 天天一区二区日本电影三级| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品电影| 天美传媒精品一区二区| 狂野欧美白嫩少妇大欣赏| 级片在线观看| 成人国产综合亚洲| 午夜影院日韩av| 久久精品综合一区二区三区| 禁无遮挡网站| 日本三级黄在线观看| 亚洲无线观看免费| 麻豆成人av在线观看| 国产一区二区三区av在线 | 国产熟女欧美一区二区| 美女免费视频网站| 欧美性猛交╳xxx乱大交人| 最近在线观看免费完整版| 久久精品国产亚洲av天美| 日本熟妇午夜| 久久欧美精品欧美久久欧美| 少妇的逼好多水| 美女cb高潮喷水在线观看| 免费黄网站久久成人精品| 国产伦在线观看视频一区| 男人舔奶头视频| 亚洲自偷自拍三级| 69av精品久久久久久| 免费看av在线观看网站| 精品久久久久久久人妻蜜臀av| 三级男女做爰猛烈吃奶摸视频| 美女大奶头视频| or卡值多少钱| 狂野欧美白嫩少妇大欣赏| 欧美最黄视频在线播放免费| av.在线天堂| 久久久久久久久大av| 女人十人毛片免费观看3o分钟| 午夜激情福利司机影院| 国产又黄又爽又无遮挡在线| h日本视频在线播放| 精品久久久久久久久亚洲 | 国产成人一区二区在线| 一进一出好大好爽视频| 69av精品久久久久久| 免费看日本二区| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 床上黄色一级片| 久久久色成人| 国产精品一区二区免费欧美| 欧美日韩综合久久久久久 | 日韩欧美精品免费久久| 成年人黄色毛片网站| 最新在线观看一区二区三区| 精品久久久久久成人av| 日韩大尺度精品在线看网址| 在线观看免费视频日本深夜| 男女做爰动态图高潮gif福利片| 制服丝袜大香蕉在线| 美女高潮的动态| 人人妻人人看人人澡| 97碰自拍视频| 露出奶头的视频| 一级黄片播放器| 国产激情偷乱视频一区二区| 三级国产精品欧美在线观看| 欧美黑人欧美精品刺激| 国产亚洲精品久久久com| 一本精品99久久精品77| 亚洲人成网站在线播放欧美日韩| 久久精品国产自在天天线| 亚洲av第一区精品v没综合| 久久精品国产亚洲网站| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 久久精品影院6| 能在线免费观看的黄片| 欧美最黄视频在线播放免费| 国产高潮美女av| 天堂√8在线中文| 久久久国产成人免费| 人妻丰满熟妇av一区二区三区| 国产精品一区二区性色av| 身体一侧抽搐| 亚洲自偷自拍三级| 久久久色成人| 国产伦精品一区二区三区四那| 我的老师免费观看完整版| 久久中文看片网| 桃红色精品国产亚洲av| 99热这里只有精品一区| 国产精品一区二区三区四区免费观看 | 女的被弄到高潮叫床怎么办 | 性插视频无遮挡在线免费观看| 日本在线视频免费播放| 小说图片视频综合网站| 美女高潮喷水抽搐中文字幕| 一本一本综合久久| 成人一区二区视频在线观看| 一区二区三区高清视频在线| 亚洲内射少妇av| 精品无人区乱码1区二区| 国产在线男女| 国产三级在线视频| 国产黄色小视频在线观看| 蜜桃亚洲精品一区二区三区| 亚洲色图av天堂| 国产蜜桃级精品一区二区三区| 男人的好看免费观看在线视频| 亚洲在线自拍视频| 国产高潮美女av| 亚洲最大成人av| 一级av片app| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆| 69人妻影院| 99久国产av精品| 久久久久国产精品人妻aⅴ院| 午夜福利欧美成人| 极品教师在线免费播放| 啦啦啦啦在线视频资源| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 性色avwww在线观看| 国产探花在线观看一区二区| 日韩精品青青久久久久久| 黄色视频,在线免费观看| 精品午夜福利视频在线观看一区| 不卡视频在线观看欧美| 婷婷六月久久综合丁香| 精品久久久久久久末码| 又黄又爽又刺激的免费视频.| 国产精品一区二区性色av| 丰满乱子伦码专区| 麻豆精品久久久久久蜜桃| 国产精品乱码一区二三区的特点| 少妇被粗大猛烈的视频| 日韩高清综合在线| 成人一区二区视频在线观看| 人人妻人人澡欧美一区二区| 久久6这里有精品| 久久国产精品人妻蜜桃| 22中文网久久字幕| 最近视频中文字幕2019在线8| xxxwww97欧美| 色综合色国产| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 亚洲性久久影院| 国产蜜桃级精品一区二区三区| 精品欧美国产一区二区三| 免费av观看视频| 欧美bdsm另类| 亚洲va在线va天堂va国产| 日日摸夜夜添夜夜添小说| 久久人人精品亚洲av| 少妇猛男粗大的猛烈进出视频 | 91av网一区二区| 一区二区三区免费毛片| 中文字幕久久专区| 人人妻,人人澡人人爽秒播| 岛国在线免费视频观看| 男女那种视频在线观看| 国产乱人视频| 久久久久久久精品吃奶| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 欧美黑人巨大hd| 欧美一级a爱片免费观看看| 日韩精品青青久久久久久| 久久久久久久精品吃奶| 亚洲av成人精品一区久久| 亚洲精品在线观看二区| 免费搜索国产男女视频| 精品国内亚洲2022精品成人| 午夜影院日韩av| 国模一区二区三区四区视频| 看片在线看免费视频| 色噜噜av男人的天堂激情| 毛片女人毛片| 色5月婷婷丁香| 日日撸夜夜添| 很黄的视频免费| 亚洲色图av天堂| 国产成人福利小说| 女人被狂操c到高潮| 熟女电影av网| 国产精品自产拍在线观看55亚洲| 日本三级黄在线观看| ponron亚洲| 美女cb高潮喷水在线观看| 中文资源天堂在线| 日韩欧美三级三区| 成人鲁丝片一二三区免费| 欧美区成人在线视频| 狂野欧美激情性xxxx在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩东京热| 国产成年人精品一区二区| 欧美3d第一页| 免费观看在线日韩| 一级毛片久久久久久久久女| 国产综合懂色| 免费看a级黄色片| 一边摸一边抽搐一进一小说| 日日夜夜操网爽| 亚洲精品成人久久久久久| 日韩亚洲欧美综合| 少妇熟女aⅴ在线视频| 久久精品影院6| 成人亚洲精品av一区二区| 国产精品综合久久久久久久免费| 成人午夜高清在线视频| 美女被艹到高潮喷水动态| 一a级毛片在线观看| 国产人妻一区二区三区在| 亚洲最大成人中文| 十八禁网站免费在线| 欧美日韩亚洲国产一区二区在线观看| 99久久久亚洲精品蜜臀av| 亚洲av熟女| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 51国产日韩欧美| 欧美最新免费一区二区三区| or卡值多少钱| 国产精品久久久久久精品电影| 热99re8久久精品国产| 一个人看的www免费观看视频| 精品久久国产蜜桃| 亚洲国产精品久久男人天堂| 男女啪啪激烈高潮av片| 中亚洲国语对白在线视频| 国产精品不卡视频一区二区| 色吧在线观看| 又爽又黄无遮挡网站| 九九在线视频观看精品| or卡值多少钱| av在线老鸭窝| 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 一个人看的www免费观看视频| 欧美性猛交黑人性爽| 久久久久精品国产欧美久久久| 亚洲精品一区av在线观看| 免费观看的影片在线观看| 天天一区二区日本电影三级| 精品久久久久久久久av| 亚洲久久久久久中文字幕| 久久久午夜欧美精品| 日韩高清综合在线| 不卡视频在线观看欧美| 久久久久久久午夜电影| 国产大屁股一区二区在线视频| 中文字幕av成人在线电影| 99riav亚洲国产免费| 国产精品乱码一区二三区的特点| 国产一区二区在线av高清观看| 尤物成人国产欧美一区二区三区| 亚洲美女黄片视频| 99在线视频只有这里精品首页| 黄色日韩在线| 美女xxoo啪啪120秒动态图| 午夜精品一区二区三区免费看| 日韩精品有码人妻一区| 日本黄色片子视频| 亚洲一区二区三区色噜噜| 国产精品久久久久久av不卡| 欧美日本视频| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 神马国产精品三级电影在线观看| 日韩高清综合在线| 国产毛片a区久久久久| 国产一区二区三区在线臀色熟女| 国产精品一区二区免费欧美| 最新中文字幕久久久久| 两人在一起打扑克的视频| 一进一出抽搐gif免费好疼| 高清毛片免费观看视频网站| 日韩精品中文字幕看吧| 国内毛片毛片毛片毛片毛片| 日韩一区二区视频免费看| 亚洲av.av天堂| 成熟少妇高潮喷水视频| 欧美+亚洲+日韩+国产| 精品欧美国产一区二区三| 又紧又爽又黄一区二区| 欧美zozozo另类| 欧美+日韩+精品| 91久久精品国产一区二区三区| 天堂网av新在线| 亚洲综合色惰| 亚洲久久久久久中文字幕| 成人三级黄色视频| 99热这里只有是精品在线观看| ponron亚洲| 国产精品嫩草影院av在线观看 | 久久久久久伊人网av| 亚洲av不卡在线观看| 无遮挡黄片免费观看| 午夜激情欧美在线| 两个人的视频大全免费| 久久久久九九精品影院| 波野结衣二区三区在线| 女人十人毛片免费观看3o分钟| 99久久中文字幕三级久久日本| 亚洲精华国产精华液的使用体验 | 亚洲无线观看免费| 免费电影在线观看免费观看| 久久草成人影院| 国产三级在线视频| 中文字幕精品亚洲无线码一区| 两个人的视频大全免费| 真实男女啪啪啪动态图| 亚洲国产精品合色在线| 我要搜黄色片| 午夜日韩欧美国产| 国产黄a三级三级三级人| 九色国产91popny在线| 国产一区二区在线观看日韩| 最新在线观看一区二区三区| 日日啪夜夜撸| 久99久视频精品免费| 悠悠久久av| 麻豆国产av国片精品| 日本黄大片高清| 亚洲最大成人手机在线| 一个人看的www免费观看视频| 嫩草影院新地址| 欧美日韩国产亚洲二区| 舔av片在线| 在线播放无遮挡| a级毛片免费高清观看在线播放| 啦啦啦韩国在线观看视频| 欧美精品国产亚洲| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 又爽又黄a免费视频| 久久精品国产自在天天线| 中出人妻视频一区二区| 少妇人妻一区二区三区视频| x7x7x7水蜜桃| 亚洲av中文av极速乱 | 1000部很黄的大片| 麻豆国产av国片精品| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频| 亚洲第一区二区三区不卡| 毛片女人毛片| 成年女人看的毛片在线观看| 春色校园在线视频观看| 夜夜看夜夜爽夜夜摸| 99久久精品国产国产毛片| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 国产午夜福利久久久久久| 高清毛片免费观看视频网站| 亚洲成人免费电影在线观看| 男插女下体视频免费在线播放| 久久精品91蜜桃| 国产亚洲精品久久久com| 身体一侧抽搐| 在线免费十八禁| 亚洲专区中文字幕在线| 国产麻豆成人av免费视频| 亚洲av中文av极速乱 | 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色| 成人三级黄色视频| 欧美日韩亚洲国产一区二区在线观看| 欧美bdsm另类| 内地一区二区视频在线| 精品一区二区免费观看| 国产aⅴ精品一区二区三区波| 国产成年人精品一区二区| 亚洲精品亚洲一区二区| 国产人妻一区二区三区在| 在线观看av片永久免费下载| 一进一出抽搐动态| 97碰自拍视频| 亚洲成a人片在线一区二区| 村上凉子中文字幕在线| 91麻豆av在线| 国产高清激情床上av| 级片在线观看| 波多野结衣高清作品| 天堂av国产一区二区熟女人妻| 久久久久久大精品| 日日摸夜夜添夜夜添av毛片 | 亚洲午夜理论影院| 18禁在线播放成人免费| 日本熟妇午夜| 天天躁日日操中文字幕| .国产精品久久| 久久国内精品自在自线图片| 三级国产精品欧美在线观看| 18禁黄网站禁片午夜丰满| 亚洲真实伦在线观看| 极品教师在线视频| 久久这里只有精品中国| 最近最新中文字幕大全电影3| 久久精品影院6| 免费av观看视频| 欧美成人性av电影在线观看| 亚洲色图av天堂| 国产精品久久视频播放| 999久久久精品免费观看国产| 成人性生交大片免费视频hd| 此物有八面人人有两片| 麻豆精品久久久久久蜜桃| 精品久久久久久,| 日韩欧美在线二视频| 色吧在线观看| 真实男女啪啪啪动态图| 亚洲国产欧洲综合997久久,| 国产在线男女| 精品免费久久久久久久清纯| 波野结衣二区三区在线| 久久午夜亚洲精品久久| 97碰自拍视频| 成人二区视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久久精品国产欧美久久久| 国产精品国产三级国产av玫瑰| 精品久久久噜噜| 亚洲18禁久久av| 国产精品野战在线观看| 日本免费a在线| 国产精品1区2区在线观看.| 亚洲av免费高清在线观看| 国产av在哪里看| 亚洲国产精品久久男人天堂| 日韩欧美三级三区| 精品久久久久久久人妻蜜臀av| 欧美一区二区亚洲| 成人国产综合亚洲| 久久九九热精品免费| 亚洲av中文av极速乱 | 亚洲国产精品sss在线观看| 日本三级黄在线观看| 国产精品一区二区三区四区久久| 午夜免费男女啪啪视频观看 | 在线观看午夜福利视频| 国产午夜福利久久久久久| 韩国av在线不卡| 国产一区二区在线观看日韩| 观看免费一级毛片| 久久精品综合一区二区三区| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区成人| 亚洲电影在线观看av|