• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of gas flow on the nanoparticles transport in dusty acetylene plasmas

    2023-11-16 05:38:00XiangmeiLIU劉相梅WenjingLIU劉文靜XiZHANG張茜XiaotianDONG董曉天andShuxiaZHAO趙書霞
    Plasma Science and Technology 2023年10期
    關(guān)鍵詞:張茜隱性分層

    Xiangmei LIU (劉相梅), Wenjing LIU (劉文靜), Xi ZHANG (張茜),Xiaotian DONG (董曉天) and Shuxia ZHAO (趙書霞)

    1 School of Science, Qiqihar University, Qiqihar 161006, People’s Republic of China

    2 School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract

    Keywords: gas flow, dusty acetylene plasmas, nanoparticles transport

    1.Introduction

    In recent years,researchers have shown that gas flow has an essential influence on plasma properties, nanoparticle formation,and nanoparticle transport[17-23].Cole et al[17]studied nanoparticle formation using a dielectric barrier discharge plasma system.Their experimental results showed that the flow rate significantly impacts the nanoparticle density and production rate.De Bleecker et al[18]studied the role of gas temperature differences on nanoparticle transport and found that thermophoresis can significantly influence nanoparticle spatial distribution.Hasan et al [19] investigated the impact of gas flow rate effect on the transport of chemical species in an atmospheric-pressure plasma discharge.They observed that a reasonable flow rate could enhance mass transport and manipulate the plasma density.However, the complexity of the neutral gas system has caused most researchers to consider the density, velocity, and gas temperature distribution of the neutral gas as input data [18, 24],and did not fully self-consistently study the flow and heat transfer process of neutral gases.Therefore, it is necessary to carefully study the neutral gas flow effect on nanoparticle growth and transport in acetylene microdischarge.

    In this work, a two-dimensional multi-fluid model is developed to investigate the gas flow effect on nanoparticle transport in dusty acetylene plasmas.The neutral gas density,momentum,and energy balance equations are introduced and studied using the fluid model in section 2, and the transport and nanoparticle growth are described.The simulation results are presented in section 3, and the gas flow effects on the C2H2microplasmas properties and nanoparticle behaviors are carefully discussed.Finally, the conclusions are summarized in section 4.

    2.Model description

    2.1.Fluid module

    In the 2D fluid model, 48 different particles are introduced,which can be seen in table 1,and the corresponding chemical reaction coefficients are obtained from [7, 25].The background gas densitynnand velocityunare calculated using the continuity and momentum balance equations

    where Rnand Mnrepresent the transfer of mass and momentum to background gas from collisions with other particles, mnis the neutral gas mass andpnis the pressure.The neutral viscous stress tensoris assumed to be a Newtonian formwhereη=1.0× 105Pa sis the viscosity coefficient of acetylene gas.

    Assuming that the plasma is in local thermal equilibrium,thus the neutral gas temperature Tnis characterized by a single energy balance equation

    where n is the total neutral gas density andCvis the heat capacity when the volume is constant.The term ? ·qnis the energy transfer due to thermal conduction, whererepresents the heat flux,andk= 0.0233 Wis the thermal conductivity.The termsand Enare the energy transfer due to pressure volume work and collisions,respectively.

    聽說(shuō)課隱性分層教學(xué)設(shè)計(jì),關(guān)注學(xué)生差異,通過(guò)對(duì)教學(xué)目標(biāo)、教學(xué)對(duì)象、教學(xué)內(nèi)容、教學(xué)策略等進(jìn)行合理分層,滿足學(xué)生的個(gè)體化發(fā)展需求,促進(jìn)了各層次學(xué)生聽說(shuō)能力的提高,激發(fā)了學(xué)生積極的情感因素。因此,聽說(shuō)課隱性分層教學(xué)得到越來(lái)越多的認(rèn)可。本研究進(jìn)一步證實(shí)了隱性分層教學(xué)的有效性,但在時(shí)間和范圍上還存在局限性,今后教學(xué)中還應(yīng)進(jìn)行更長(zhǎng)時(shí)間和更大范圍的實(shí)踐。

    Table 1.The particles calculated in the model.

    The densitynjfor each species (electrons, ions,nanoparticles, radicals and molecules) and flux Gjof small species (electrons, ions, radicals and molecules) are described by the continuity and momentum equations, and the momentum equation is estimated by the drift-diffusion approximation

    whereμjandDjare the mobility and diffusion coefficients,andRjrepresents the particle’s formation and loss terms.For ions, the electric fieldE is replaced by an effective electric fieldwhich accounts for the inertia effects.

    The electron temperatureTeis solved by the electron energy balance equation

    where Gwis the electron energy density flux andRwis the loss of electron energy due to electron impact collisions.

    Poisson’s equation makes the model fully self-consistent

    Here,φis the potential,ε0is the vacuum permittivity, andne,ndare the electron,ion and nanoparticle densities.Qdis the nanoparticle charge.

    The dust particle formation (nucleation) can occur through successive reactions between acetylene molecules and anions,with the primary anions being H2CC?and C2H?

    The largest anion stops at C12H?, which is taken as the production term for the smallest nanoparticle volume section in the coagulation stage.

    2.2.Nanoparticle module

    Nanoparticle charge is directly proportional to the floating potentialwhere the floating potentialVflis described by equalizingIi=Ie.The ion currentIiand the electron currentIeare calculated from the orbital motion limited theory [26]

    wherekBis the Boltzmann constant,m i,meare the ion and electron masses andare their temperatures, respectively.It should be noted that ion-neutral collisions significantly affect particle charging [27, 28], thuskBTiin equation (8) is replaced by the mean energywhich accounts for the drift velocity of ionsυ.iThe effect of ion-neutral collisions on the ion drift velocity is included through the momentum equation of ions(a re-written equivalent form of equation(4)),whereνiis the momentum transfer frequency of the ion i.It is noted that the drift and diffusion approximation is applied onto the momentum equation.When the diffusion term is further omitted or excluded, we havewhich will then be very similar to the analytical approximation model used in[28].To better understand the particle charging,a molecular dynamics simulation is better to be used as in the[28].Nevertheless, we believe that it will not significantly influence the change trend of particle charge, as estimated.

    Nanoparticles are subject to ion drag, thermophoresis,and neutral drag forces besides the electrostatic force[25,26].Thus, the nanoparticle flux Gdis given by

    whereμd,are the mobility and diffusion coefficients of nanoparticles,Eeffis the effective electric field.mdare the ion and nanoparticle masses, rdis the radius of nanoparticles andνmdis the momentum loss frequency.Giis the ion flux,υsis the mean speed andυthis the background gas’s thermal velocity.bcis the collection parameter, Γ is the Coulomb logarithm, andπb/2is the impact parameter for the deflection angle of π/2.Note that,different from our previous studies, the thermophoretic force acting on the nanoparticles could significantly affect the profile of nanoparticle density.

    In the coagulation phase, the nanoparticles will quickly grow from several to tens of nanometers.To more effectively study the nanoparticle growth mechanism, an aerosol dynamics equation [29] is introduced and the nanoparticle densityn(v) is described in the volume range ofv~v+dvas

    Figure 1.Schematic diagram of the reactor.

    where the first item on the right of equation(10)describes the formation of nanoparticles in the volume range ofdv, and the second item represents the loss of particles.is the coagulation frequency between the interacting nanoparticles with the volumeuandv-u,J0(v) is the new particle formation rate by nucleation, andis noted that the collisions are calculated twice in the integral, which is why 1/2 is introduced.

    2.3.Numeical approach

    Plasma and nanoparticle modules with two separate computation cycles are used to describe the dusty C2H2discharges.In the first computation cycle,a time step of 3.7×10?12s is used to describe the plasma module, which includes the computation of particle balance equations, electron energy equations, and Poisson’s equation.It can be noticed that the nanoparticle generation (nucleation) is implemented in the plasma module.In the second computation cycle, a larger time step of 3.7×10?8s is used to describe the nanoparticle module, which includes the computation of nanoparticle charging, transport and growth.

    Two computing cycles are coupled together by an iterative process.First the fluid module is calculated for several radio-frequency (RF) cycles while the nanoparticles are assumed to be immobile.In the second computation cycle,the nanoparticle module begins with the time-averaged electron flux,positive ion flux,and electric field,which are calculated from the fluid module.The resulting nanoparticle density and charge are coupled to Poisson’s equation.

    3.Results and discussion

    The reactor configuration is illustrated in figure 1, where the RF (13.56 MHz) source is applied to the top electrode with a voltage ofand the bottom electrode is grounded.In figure 1, the acetylene gas flows in from the top showerhead electrode and flows out from the sidewall.For neutral gas,the inlet condition is set as the velocity-inlet while the outlet condition is the pressure-outlet.The input voltagethe ion temperature of 300 K and the pressure of 500 Torr are fixed.

    Figure 2.Calculated pressure force (a) and viscous force (b) acting on background gas.

    Figure 3.The spatial distributions of neutral gas velocity.

    In the capacitively-coupled RF atmospheric-pressure electronegative gas(C2H2)discharges,the drift and ambipolar fields play a dominant role in sustaining the discharges, and the electronegativity increases with pressure.Thus,the results are restricted to the drift-ambipolar regime [30-32].The gas flow effect on the plasma properties and nanoparticle behavior is a critical problem, thus the neutral gas inlet velocity varies from 0 to 4.0 m s?1.

    The spatial distribution of pressure and viscous forces is shown in figure 2, with an inlet velocity of 4.0 m s?1.The arrows in the figure indicate the direction of the force,and the colors represent the magnitude of the force, since the force varies by several orders of magnitude.It can be seen from figure 2(a) that the pressure and viscous forces are in the vertical direction,which will prevent the background gas flow out from the wall.Furthermore, the pressure force is much stronger than the viscous force, about two orders of magnitude larger.This means that pressure plays a dominant role in the transport of neutral gas.It can be noticed that the viscous force at the inlet is much larger(about 1.0×106Pa cm?1)but decreases sharply in the bulk plasma (about 2.0 ×102Pa cm?1).The collision drag term is of no influence as indicated in the simulation(due to the tiny sheath)and hence is not drawn herein.

    Figure 3 shows the spatial distributions of background gas velocity at different inlet velocities.Herein, the arrows show both the velocity direction and magnitude(indicated by the arrow length).The velocity direction of background gas is vertically downward except for certain local regions,which is opposite to the direction of forces.Upon increasing the gas inlet velocity, from 0.5 to 4.0 m s?1, the gas velocity in the discharge chamber is increased.Meanwhile, the velocity profile is more squeezed up to the shower head at increasing the inlet velocity and so the gas velocity decreases faster when traveling from the shower head to the chamber bottom.As seen from equation (2)and figure 2, the pressure gradient force is several orders higher than the viscous term, but the background gas velocity in the discharge region is decreased herein in figure 3.It implies the pressure gradient force hinders the transport of neutrals, rather than accelerating them.The reason is given below when explaining the data in figure 5.The peak of velocity at the shower head forms at the trigger of strong inlet velocity in the neutral transport, i.e.determined by the boundary condition of the momentum equation and the significant pressure gradient at the inlet shown in figure 2(a).This process we analyzed can be recognized when carefully observing the green part of the color legend, since it represents both the inlet boundary velocity and the bulk velocity near the shower head.

    Figure 4.The spatial distributions of neutral gas temperature Tn (a) and density nn (b) for different inlet velocities.

    Figure 5.The spatial distributions of heat conduction (a) and pressure volume work (b).

    Figure 4 presents the spatial distributions of neutral gas temperature and background density at different inlet velocities.In figure 4(a), the gas temperature in the bulk plasma increases with the inlet velocity at the influence of gas advection.Furthermore, the gas temperature drops sharply very close to the shower head, e.g.from 380 to 120 K at the inlet velocity of 4.0 m s?1.In the other region, the gas temperature is quite uniform.Correspondingly, the neutral density in figure 4(b) is peaked at the shower head once the gas transport is added,and the peak density is higher at larger inlet velocity.This is because the gas transport is in a whole incompressible at such low subsonic velocities and so the total pressure is conserved, withThe spatial variation of gas temperature caused by the gas advection is explained next in figure 5.As seen further, this very local change of gas temperature profile at the inlet will lead to a strong global change in both the profiles of nanoparticles and plasma parameters.

    To better understand gas temperature, the heat conduction and pressure work terms are shown in figure 5, with the inlet velocity of 4.0 m s?1.The thermal conduction and pressure volume work terms play an important role in the neutral gas energy balance equation, since they are much larger than the other terms.By referring to equation (3), the heat conduction term in figure 5(a) is determined by the gas temperature gradient shown in figure 4(a).The value of this term is negative and only spatially varied at the inlet due to the strong gas temperature gradient therein, which is an equivalent energy loss term to the temperature variable.The thermal conduction almost does not influence on the rest of the discharge region since the gas temperature is smooth when it is plotted at the present legend scale and resolution.The pressure work term in figure 5(b), represented by the second term at the right side of equation (3), is also negative at the inlet because,as mentioned before,the gas advection is triggered by the inlet velocity boundary condition in figure 3 and so the thermal energy of gas medium is transferred into kinetic energy.This energy transfer process is the major loss term of gas internal energy at the inlet and that is why gas temperature sinks at that location.It is interesting to note that except for the inlet position,the pressure work is changed into a positive value in the rest region.This is again related to figure 3, where the gas velocity is reduced with the distance from the inlet to the chamber bottom.Obviously, here in the major discharge area, the reverse energy transfer process occurs, i.e.the kinetic energy is transferred into thermal energy.This explains well the gas temperature increase in the bulk discharge area with inlet velocity value in figure 4(a).In our opinion,this is one equivalent isovolumetric compression process as we learned in the curriculum of thermodynamics.

    Figure 6.The spatial distributions of electron temperature and density for different inlet velocities.

    Figure 7.The spatial distributions of nanoparticle density for different inlet velocities,with the nanoparticle diameters of 1 nm(a)and 10 nm(b).

    Figure 6 presents the spatial distributions of electron temperature and density with various inlet velocities.As shown in figure 6(a), the electron temperature exhibits a much lower value in the bulk plasma but begins to rise quickly in the sheath regions.Note that the electron density and temperature are very sensitive to the inlet velocity.As the inlet velocity increases from 0 to 4.0 m s?1,the electron temperature at the inlet moves to the lower electrodes, thus the electron temperature at the bottom electrode increases quickly from 1.69 to 1.94 eV,while the electron temperature at the inlet decreases from 1.69 to 1.27 eV.This is because, as inlet velocity increases, more collisions between the neutral gases and electrons occur,resulting in more electron energy loss at the inlet and less energy loss at the lower electrode (refer to figure 4(b)).The electron density in figure 6(b) presents two dominant peaks near the presheaths due to the strong ambipolar electric field and high electron energy,while a much lower value is found in the bulk plasma due to the strong drift electric field.Like the relation of gas temperature and density shown in figure 4, the electron temperature and density are found to vary in inverse proportion as well.It is found when the inlet velocity increases from 0 to 4.0 m s?1, the electron density at the inlet increases from4.7× 1011to5.4× 1011cm?3, because more electrons are produced at more frequent inelastic collisions between background gases and electrons when the inlet velocity increases.As seen, the plasma parameters and the gas advection in the present chamber configuration are tightly coupled.In another work of ours, it is observed that the two processes will be loosely coupled when the gas is set to flow through the sidewall tunnel of the chamber.

    Figure 7 illustrates the spatial distributions of nanoparticle density for different inlet velocities, with the nanoparticle diameters of 1 nm (a) and 10 nm (b).It can be observed from figure 7 that, nanoparticles are mainly accumulated at presheaths due to the action of ion drag force when the gas flow is not considered.Once the gas flow is considered, a gas temperature gradient is presented at the inlet (see figure 4(a)),and thus nanoparticle begins to experience the action of thermophoresis force,represented by the last term on the right side of equation(9).It can be observed from figure 7(a)that,as the inlet velocity increases, the density of nanoparticles that are accumulated near the upper electrode is decreased significantly.This is because the thermophoretic force pushes nanoparticles to the upper electrode and then particles attach to the electrode surface and disappear.This process simulated by our simulation shows the same tendencies with the experimental observations[33].The experiment[33]observed that a large fraction of the particles was forced out of the interelectrode gap and trapped near the base of the cooled electrode(where the temperature difference is small) when applying a temperature difference of 38 K to one of the two electrodes.We predict that the thermophoretic force pushes nanoparticles to the electrodes and particles are trapped near the electrode where the temperature difference is small.Furthermore, the thermophoretic force is proportional to the gradient of the gas temperature,which increases with the inlet velocity(as shown in figure 4(a)) and so the density peak shift is more obvious with inlet velocity.Besides, this phenomenon is also more apparent when the nanoparticle size is increased,i.e.to 10 nm,as shown in figure 7(b).It is observed that the thermophoretic force drives nearly all particles to the upper electrode when the gas velocity is 4.0 m s?1, and a single-peak distribution is produced near the lower electrode.This is because the thermophoresis force is proportional to the square of the particle size, as shown in equation (9).

    4.Conclusions

    In summary, the effect of gas flow on plasma properties and nanoparticle behaviors is investigated by combining the selfconsistent 2D hydrodynamic model with the aerosol dynamics model.The neutral gas transport is mainly determined by the combined action of pressure and viscous forces, and the pressure force is much larger than the viscous force.The direction of pressure is opposite to the direction of velocity except at the inlet, hindering the propagation of gas.The pressure volume work and heat conduction significantly influence the neutral gas temperature.It is found that, the neutral gas temperature decreases and background gas density increases at the inlet, since the gas flow is approximately incompressible and the transfer process of thermal energy to kinetic energy occurs therein.On the other hand, the gas temperature in the main bulk discharge area is increased because an inverse energy transfer process has happened,which can be represented by the isovolumetric compression.

    Under the influence of neutral gas density, the electron temperature at the inlet decreases and the electron density increases with increasing inlet velocity, since more collisions between electron and background gas take place.This leads to the peak of electron temperature near the upper electrode moving to the lower electrode and the peak of electron density near the lower electrode moving to the upper electrode(reversely).On the other hand, when a gas temperature gradient occurs, nanoparticle transport is dominated by thermophoretic force, which pushes nanoparticles toward the electrodes and particles are trapped near the electrode where the temperature difference is small.As nanoparticles grow to 10 nm, the action of thermophoretic force becomes more obvious than the other forces,which drives nearly all particles to the upper electrode and causes the nanoparticle density to change from a double-peak structure to a single-peak one.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11805107 and 12275039), the Fundamental Research Funds in Heilongjiang Provincial Universities of China (No.135509124), and the Graduate Innovation Foundation of Qiqihar University (No.YJSCX2022014).

    猜你喜歡
    張茜隱性分層
    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
    一種水陸兩棲飛機(jī)普通框結(jié)構(gòu)設(shè)計(jì)
    Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading*
    隱性就業(yè)歧視的司法認(rèn)定
    一種沉降環(huán)可準(zhǔn)確就位的分層沉降儀
    Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock?
    雨林的分層
    有趣的分層
    芻議隱性采訪
    新聞傳播(2015年14期)2015-07-18 11:14:05
    新聞報(bào)道隱性失實(shí)的四種表現(xiàn)
    新聞傳播(2015年8期)2015-07-18 11:08:25
    欧美 日韩 精品 国产| 伊人久久国产一区二区| 尤物成人国产欧美一区二区三区| 日本-黄色视频高清免费观看| 在线免费十八禁| 精品国产乱码久久久久久小说| 久久久精品免费免费高清| 天美传媒精品一区二区| 亚洲电影在线观看av| 美女高潮的动态| 99九九线精品视频在线观看视频| 久久国产精品大桥未久av | av在线播放精品| 国产精品99久久久久久久久| 国产高清有码在线观看视频| 日韩,欧美,国产一区二区三区| 校园人妻丝袜中文字幕| 欧美激情极品国产一区二区三区 | 联通29元200g的流量卡| 久久人人爽av亚洲精品天堂 | 国产淫语在线视频| 美女午夜性视频免费| 亚洲伊人久久精品综合| 又粗又硬又长又爽又黄的视频| 丝袜美足系列| 亚洲一区中文字幕在线| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 欧美日韩国产mv在线观看视频| 在线观看www视频免费| 一本一本久久a久久精品综合妖精| 一本综合久久免费| 国产一卡二卡三卡精品| 国产黄频视频在线观看| 高潮久久久久久久久久久不卡| 嫩草影视91久久| 亚洲欧洲精品一区二区精品久久久| 国产1区2区3区精品| 一区二区三区激情视频| 成人午夜精彩视频在线观看| 亚洲av欧美aⅴ国产| 国产精品 国内视频| 欧美中文综合在线视频| 欧美 亚洲 国产 日韩一| 久久久久国产精品人妻一区二区| 人人妻人人爽人人添夜夜欢视频| 一本色道久久久久久精品综合| 亚洲 欧美一区二区三区| 精品人妻一区二区三区麻豆| 高清视频免费观看一区二区| 视频区图区小说| 久久久久久久大尺度免费视频| 香蕉国产在线看| 自线自在国产av| 99热网站在线观看| 亚洲国产成人一精品久久久| 叶爱在线成人免费视频播放| 亚洲精品国产av成人精品| 久久人妻福利社区极品人妻图片 | 国产一级毛片在线| 欧美变态另类bdsm刘玥| 日韩av不卡免费在线播放| 欧美黄色淫秽网站| 丰满迷人的少妇在线观看| 免费看av在线观看网站| 国产欧美日韩精品亚洲av| 日本av免费视频播放| 好男人视频免费观看在线| 午夜免费成人在线视频| 美女午夜性视频免费| 午夜日韩欧美国产| 美女国产高潮福利片在线看| 亚洲人成网站在线观看播放| 欧美日韩成人在线一区二区| 日韩免费高清中文字幕av| 99re6热这里在线精品视频| 少妇人妻 视频| 一边摸一边抽搐一进一出视频| 国产午夜精品一二区理论片| 亚洲美女黄色视频免费看| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的| 久久鲁丝午夜福利片| 日本vs欧美在线观看视频| 日韩一区二区三区影片| 狠狠婷婷综合久久久久久88av| 两个人看的免费小视频| 国产精品三级大全| 亚洲精品久久午夜乱码| 免费在线观看视频国产中文字幕亚洲 | 国产熟女午夜一区二区三区| 97在线人人人人妻| 久久狼人影院| 国产免费又黄又爽又色| 亚洲久久久国产精品| 欧美人与善性xxx| 一区福利在线观看| 亚洲成人国产一区在线观看 | 久久久精品国产亚洲av高清涩受| 大陆偷拍与自拍| 久久人人97超碰香蕉20202| 成人三级做爰电影| 少妇裸体淫交视频免费看高清 | 一区在线观看完整版| 久久亚洲国产成人精品v| 高清不卡的av网站| 日韩一卡2卡3卡4卡2021年| 久久久久国产精品人妻一区二区| av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 伊人亚洲综合成人网| 天堂8中文在线网| 色94色欧美一区二区| 91精品伊人久久大香线蕉| 色婷婷av一区二区三区视频| 成人亚洲精品一区在线观看| 亚洲精品在线美女| 久久99精品国语久久久| 国产午夜精品一二区理论片| 狂野欧美激情性bbbbbb| 自拍欧美九色日韩亚洲蝌蚪91| 国产有黄有色有爽视频| 亚洲国产毛片av蜜桃av| 国语对白做爰xxxⅹ性视频网站| 色综合欧美亚洲国产小说| 婷婷色麻豆天堂久久| 久久久久精品人妻al黑| 成年动漫av网址| 亚洲三区欧美一区| 亚洲av片天天在线观看| av一本久久久久| 日本vs欧美在线观看视频| 一级毛片黄色毛片免费观看视频| 青春草视频在线免费观看| 久久久久久人人人人人| 亚洲 欧美一区二区三区| 国产日韩一区二区三区精品不卡| 国产一区二区激情短视频 | 欧美中文综合在线视频| 国产精品国产三级专区第一集| 久久久久久免费高清国产稀缺| 真人做人爱边吃奶动态| 午夜免费鲁丝| 国产视频首页在线观看| 亚洲国产av新网站| 成人黄色视频免费在线看| a级毛片在线看网站| 大香蕉久久网| 亚洲av美国av| 久久国产精品男人的天堂亚洲| 激情视频va一区二区三区| 亚洲欧美精品综合一区二区三区| 最近手机中文字幕大全| 国产免费视频播放在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产麻豆69| 日韩 亚洲 欧美在线| 无遮挡黄片免费观看| 午夜激情av网站| 精品一区在线观看国产| 18禁黄网站禁片午夜丰满| 亚洲av国产av综合av卡| 久久人妻福利社区极品人妻图片 | 日本vs欧美在线观看视频| 成人18禁高潮啪啪吃奶动态图| 搡老乐熟女国产| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av成人精品| 亚洲欧美日韩另类电影网站| 国产一区有黄有色的免费视频| 欧美变态另类bdsm刘玥| 国产欧美亚洲国产| 中文字幕人妻丝袜制服| 超色免费av| 日韩大片免费观看网站| 国产高清国产精品国产三级| 日日夜夜操网爽| 9热在线视频观看99| 婷婷成人精品国产| 国产精品久久久久成人av| 一级黄色大片毛片| 91字幕亚洲| 欧美黑人精品巨大| www.999成人在线观看| 午夜福利免费观看在线| 欧美xxⅹ黑人| 在线观看免费日韩欧美大片| 国产成人一区二区三区免费视频网站 | 精品人妻在线不人妻| 十八禁网站网址无遮挡| 黄频高清免费视频| 欧美成狂野欧美在线观看| 久久精品亚洲av国产电影网| 大码成人一级视频| 校园人妻丝袜中文字幕| 一本综合久久免费| a 毛片基地| 免费在线观看影片大全网站 | 啦啦啦 在线观看视频| 久久中文字幕一级| 亚洲激情五月婷婷啪啪| 亚洲人成电影免费在线| 亚洲国产欧美在线一区| 黄色怎么调成土黄色| 2021少妇久久久久久久久久久| 亚洲精品国产区一区二| tube8黄色片| 成年人免费黄色播放视频| 国产成人精品久久二区二区91| 女警被强在线播放| 久久午夜综合久久蜜桃| 亚洲国产最新在线播放| 婷婷成人精品国产| 在线观看免费视频网站a站| 十八禁网站网址无遮挡| 最近最新中文字幕大全免费视频 | 国产黄色视频一区二区在线观看| 国产深夜福利视频在线观看| kizo精华| 久久人妻熟女aⅴ| 日本色播在线视频| 免费av中文字幕在线| 99九九在线精品视频| 亚洲三区欧美一区| 国产爽快片一区二区三区| 日本欧美视频一区| 免费在线观看完整版高清| 国产精品久久久久久人妻精品电影 | 爱豆传媒免费全集在线观看| 免费在线观看日本一区| 老司机在亚洲福利影院| 国产欧美日韩一区二区三区在线| 欧美97在线视频| 尾随美女入室| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩一级在线毛片| 亚洲国产中文字幕在线视频| 女人爽到高潮嗷嗷叫在线视频| www.自偷自拍.com| 午夜免费男女啪啪视频观看| 欧美激情高清一区二区三区| 在线观看免费午夜福利视频| 亚洲精品国产色婷婷电影| 女人爽到高潮嗷嗷叫在线视频| 女人被躁到高潮嗷嗷叫费观| 久久久精品免费免费高清| 大型av网站在线播放| 爱豆传媒免费全集在线观看| 国产成人免费无遮挡视频| 黄色视频在线播放观看不卡| 亚洲av成人不卡在线观看播放网 | 日韩 欧美 亚洲 中文字幕| 国产三级黄色录像| 亚洲熟女精品中文字幕| 久久ye,这里只有精品| av不卡在线播放| 好男人电影高清在线观看| 人人妻人人爽人人添夜夜欢视频| 纵有疾风起免费观看全集完整版| 亚洲av成人精品一二三区| 搡老乐熟女国产| 水蜜桃什么品种好| 男女无遮挡免费网站观看| 成人亚洲精品一区在线观看| 婷婷色综合大香蕉| 丰满人妻熟妇乱又伦精品不卡| 精品久久久精品久久久| 每晚都被弄得嗷嗷叫到高潮| 捣出白浆h1v1| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多 | cao死你这个sao货| 婷婷丁香在线五月| 成年人午夜在线观看视频| 国产免费又黄又爽又色| 永久免费av网站大全| 国产成人啪精品午夜网站| 国产黄色视频一区二区在线观看| 另类亚洲欧美激情| 色精品久久人妻99蜜桃| 天堂8中文在线网| 韩国精品一区二区三区| 人体艺术视频欧美日本| 各种免费的搞黄视频| 在线 av 中文字幕| 日韩欧美一区视频在线观看| 人成视频在线观看免费观看| 国产激情久久老熟女| 亚洲三区欧美一区| 久久精品国产亚洲av涩爱| 99香蕉大伊视频| 99久久综合免费| 亚洲欧美色中文字幕在线| 亚洲一区二区三区欧美精品| 一级毛片电影观看| 欧美日韩黄片免| 欧美日韩综合久久久久久| 中文字幕色久视频| 欧美精品啪啪一区二区三区 | 一二三四在线观看免费中文在| 人妻 亚洲 视频| 这个男人来自地球电影免费观看| 青春草亚洲视频在线观看| 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀 | 美女视频免费永久观看网站| 中文字幕人妻丝袜一区二区| 日本色播在线视频| 国产成人免费无遮挡视频| 97在线人人人人妻| 香蕉丝袜av| av又黄又爽大尺度在线免费看| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 母亲3免费完整高清在线观看| 亚洲精品国产色婷婷电影| 美女视频免费永久观看网站| 国产一区二区激情短视频 | 大码成人一级视频| 97人妻天天添夜夜摸| 免费在线观看完整版高清| 国产熟女午夜一区二区三区| 脱女人内裤的视频| 狠狠精品人妻久久久久久综合| 亚洲欧美精品自产自拍| 国产成人啪精品午夜网站| 99热全是精品| 成年人免费黄色播放视频| 国产成人免费观看mmmm| 国产片特级美女逼逼视频| 蜜桃在线观看..| 观看av在线不卡| 亚洲av片天天在线观看| 日韩欧美一区视频在线观看| 久久精品亚洲av国产电影网| 亚洲国产欧美网| 亚洲av美国av| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 激情视频va一区二区三区| 99精国产麻豆久久婷婷| 久久影院123| 午夜两性在线视频| 亚洲国产精品999| 亚洲伊人色综图| 叶爱在线成人免费视频播放| 久久久久国产一级毛片高清牌| 另类精品久久| 免费观看人在逋| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 国产伦人伦偷精品视频| 丰满人妻熟妇乱又伦精品不卡| 在线亚洲精品国产二区图片欧美| 国产av精品麻豆| 欧美另类一区| 超碰97精品在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产一区二区精华液| 午夜两性在线视频| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 汤姆久久久久久久影院中文字幕| 精品一区在线观看国产| 精品人妻一区二区三区麻豆| 男女边摸边吃奶| 91精品伊人久久大香线蕉| 欧美在线黄色| 国产精品国产三级专区第一集| 99久久99久久久精品蜜桃| 精品一品国产午夜福利视频| 国产精品国产三级专区第一集| av不卡在线播放| 国产男女超爽视频在线观看| 国产亚洲午夜精品一区二区久久| 超碰97精品在线观看| 黄频高清免费视频| 黄色a级毛片大全视频| 一个人免费看片子| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 欧美97在线视频| 如日韩欧美国产精品一区二区三区| 亚洲中文日韩欧美视频| 久久久欧美国产精品| 婷婷色综合大香蕉| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| xxx大片免费视频| 性色av一级| 美女脱内裤让男人舔精品视频| 国产97色在线日韩免费| 国产精品免费视频内射| 色94色欧美一区二区| 在线av久久热| 激情视频va一区二区三区| 亚洲av日韩在线播放| 精品少妇久久久久久888优播| 国产一区有黄有色的免费视频| 十八禁人妻一区二区| www.熟女人妻精品国产| 麻豆乱淫一区二区| 女性生殖器流出的白浆| 夫妻午夜视频| 日本五十路高清| 精品少妇黑人巨大在线播放| 精品熟女少妇八av免费久了| a 毛片基地| 少妇精品久久久久久久| 美女大奶头黄色视频| 久久精品国产综合久久久| 亚洲男人天堂网一区| 高清av免费在线| 999精品在线视频| 亚洲国产精品一区二区三区在线| 久久午夜综合久久蜜桃| 日本欧美视频一区| 麻豆国产av国片精品| 我要看黄色一级片免费的| 亚洲,欧美精品.| 女人精品久久久久毛片| 韩国高清视频一区二区三区| 亚洲成色77777| 两个人看的免费小视频| 欧美精品高潮呻吟av久久| 成年人黄色毛片网站| 国产在视频线精品| 日本猛色少妇xxxxx猛交久久| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 91九色精品人成在线观看| 搡老岳熟女国产| 国产有黄有色有爽视频| 黄色片一级片一级黄色片| 18禁裸乳无遮挡动漫免费视频| 国产精品亚洲av一区麻豆| 桃花免费在线播放| 首页视频小说图片口味搜索 | 亚洲av电影在线观看一区二区三区| 一区二区三区激情视频| 看免费成人av毛片| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 欧美激情高清一区二区三区| 中文字幕av电影在线播放| 视频区欧美日本亚洲| 2018国产大陆天天弄谢| 亚洲av成人不卡在线观看播放网 | 电影成人av| 王馨瑶露胸无遮挡在线观看| 久久亚洲国产成人精品v| xxx大片免费视频| 91字幕亚洲| 日韩av不卡免费在线播放| 91九色精品人成在线观看| 一本一本久久a久久精品综合妖精| 午夜久久久在线观看| 老司机靠b影院| 国产精品国产三级专区第一集| 女人爽到高潮嗷嗷叫在线视频| 80岁老熟妇乱子伦牲交| 中文字幕色久视频| 韩国精品一区二区三区| 大香蕉久久成人网| av不卡在线播放| 性高湖久久久久久久久免费观看| 国产片内射在线| 国产xxxxx性猛交| 国产成人av教育| 日韩精品免费视频一区二区三区| 久久热在线av| 国产精品久久久av美女十八| 欧美日韩福利视频一区二区| 国产精品熟女久久久久浪| 看免费成人av毛片| 久久久久久久精品精品| 日韩视频在线欧美| 日本wwww免费看| 纯流量卡能插随身wifi吗| 国产精品一国产av| 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 国产精品久久久久成人av| 99国产综合亚洲精品| 一级毛片女人18水好多 | 日本色播在线视频| 亚洲av综合色区一区| 美女大奶头黄色视频| 不卡av一区二区三区| 亚洲成色77777| 久久国产亚洲av麻豆专区| 亚洲,欧美,日韩| 一级毛片电影观看| 亚洲国产看品久久| 成人国语在线视频| 亚洲少妇的诱惑av| 精品国产一区二区久久| 久久久久久久国产电影| 成人黄色视频免费在线看| 精品少妇一区二区三区视频日本电影| 满18在线观看网站| 丰满少妇做爰视频| av有码第一页| 看免费av毛片| 亚洲男人天堂网一区| 男女国产视频网站| 日本欧美视频一区| 99热网站在线观看| 免费看av在线观看网站| 这个男人来自地球电影免费观看| 一级黄色大片毛片| 亚洲精品久久久久久婷婷小说| 亚洲成人免费电影在线观看 | 老司机深夜福利视频在线观看 | 久久99一区二区三区| 超碰成人久久| 久久av网站| av在线播放精品| 九草在线视频观看| 国精品久久久久久国模美| 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 宅男免费午夜| 国产激情久久老熟女| 青春草视频在线免费观看| 99热网站在线观看| 韩国精品一区二区三区| 日本wwww免费看| 嫩草影视91久久| 99精品久久久久人妻精品| 天堂俺去俺来也www色官网| 免费高清在线观看视频在线观看| 又紧又爽又黄一区二区| 亚洲av欧美aⅴ国产| 欧美人与性动交α欧美软件| 国产伦人伦偷精品视频| 我要看黄色一级片免费的| 亚洲欧美一区二区三区黑人| 咕卡用的链子| 久久人妻熟女aⅴ| 欧美性长视频在线观看| 国产伦人伦偷精品视频| 高清欧美精品videossex| 国产成人精品无人区| 不卡av一区二区三区| 日本a在线网址| 亚洲av片天天在线观看| videosex国产| 91精品国产国语对白视频| 尾随美女入室| 黄色怎么调成土黄色| 国产一区二区激情短视频 | 99国产精品99久久久久| 视频区欧美日本亚洲| av国产久精品久网站免费入址| 国产高清不卡午夜福利| 99久久综合免费| 波野结衣二区三区在线| 国产1区2区3区精品| 色网站视频免费| 夜夜骑夜夜射夜夜干| 国产男女超爽视频在线观看| 9191精品国产免费久久| 午夜福利在线免费观看网站| 9191精品国产免费久久| 国产一区二区激情短视频 | 天堂8中文在线网| 欧美激情 高清一区二区三区| 久久国产精品人妻蜜桃| 亚洲成人国产一区在线观看 | 少妇被粗大的猛进出69影院| 男女边吃奶边做爰视频| 国产又色又爽无遮挡免| 成人18禁高潮啪啪吃奶动态图| 1024香蕉在线观看| 亚洲精品国产色婷婷电影| 久久精品aⅴ一区二区三区四区| 男女高潮啪啪啪动态图| 一区福利在线观看| xxx大片免费视频| 久久精品aⅴ一区二区三区四区| 欧美国产精品一级二级三级| 久热这里只有精品99| 欧美大码av| 九草在线视频观看| 99国产精品99久久久久| 成在线人永久免费视频| 91九色精品人成在线观看| 成在线人永久免费视频| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 激情视频va一区二区三区| 女警被强在线播放| 日本91视频免费播放| 两人在一起打扑克的视频| 精品国产超薄肉色丝袜足j| av网站免费在线观看视频| 欧美日韩av久久| 在线观看免费日韩欧美大片| 男人舔女人的私密视频| 99热网站在线观看| 日韩精品免费视频一区二区三区| av天堂久久9| 欧美日本中文国产一区发布| 美国免费a级毛片| av网站免费在线观看视频| 国产精品国产三级国产专区5o| 美女主播在线视频| 男女午夜视频在线观看| 18禁裸乳无遮挡动漫免费视频| 蜜桃在线观看..|