• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma

    2022-06-29 08:55:40QianZhang張茜YongliPing平永利WeimingAn安維明WeiSun孫偉andJiayongZhong仲佳勇
    Chinese Physics B 2022年6期
    關(guān)鍵詞:張茜孫偉永利

    Qian Zhang(張茜) Yongli Ping(平永利) Weiming An(安維明) Wei Sun(孫偉) and Jiayong Zhong(仲佳勇)

    1Department of Astronomy,Beijing Normal University,Beijing 100875,China

    2CAS Key Laboratory of Geospace Environment,University of Science&Technology of China,Hefei 230026,China

    Keywords: collisionless shocks,magnetic reconnection,magnetization parameter,electron acceleration

    1. Introduction

    There are a number of particle acceleration processes involved in astrophysical phenomena such as gamma ray bursts,jets from active galactic nuclei, and cosmic rays from the super-nova remnants.[1–5]Two of these processes are magnetic reconnection (MR) and collisionless shocks (CSs). Both of these processes lead to the acceleration of charged particles and will be discussed in this work. MR, for example, leads to the conversion of magnetic energy to kinetic energy. In the heliosphere, the current sheet formed by the interaction between the solar wind and the geomagnetic field is also considered as a region where magnetic fields reconnect,and thus energy conversion and dissipation occur.[6]Energetic particles accelerated by MR and/or CS have also been observed in the laboratory.

    In the laboratory,the use of nanosecond lasers focused on plastic or metal targets produces a warm dense plasma and a mega-Gauss(MG)magnetic field due to the Biermann battery effect, which is similar to the astrophysical environment.[7,8]Key features of MR have been found in plasmas generated by the interaction of two laser beams with a target,including the MR structure and two high-velocity collimated jets in the reconnection layer.[9,10]The MR-induced ring top x-ray source and outflow/jet in solar flares were first simulated in the laboratory using MG magnetic field generated by the interaction of a high-intensity laser with a target. In addition,the decoupling of ions and electrons at the length of the ion inertia of the diffusion region has been determined.[11]Electrons are accelerated to relativistic velocity driven by MR in the laboratory.[12–17]The pre-magnetized plasma CS front increases the reflection of particles on the shock surface before the collision of the two plasmas to form magnetic reconnection.[18]Electrons are effectively accelerated to relativistic non-thermal energy in the small-scale turbulence generated by shock by first-order Fermi acceleration.[19]In our work we will employ particle-in-cell(PIC)simulation methods;such methods have previously been used in comprehensive studies of high-energy-density plasmas and MR.[20–23]The high-energy electrons were accelerated and injected in the reconnection zone.[24]It is found that the electron “pick-up ring” and the electrons accelerated by MR have a flatter spectrum compared with single laser and target interaction.[25]

    The energy spectrum index is an important parameter of reaction electron acceleration efficiency.[26,27]In the relativistic MR regime, a large number of studies have shown that the electron energy spectrum indexpapproaches 1, where the distribution of the electron energy isN(γ) =Cγ-pandCis a constant.[28]The acceleration driven by the reconnection electric field is so intense that the power-law index of the non-thermal particle energy spectrum tail is close to 1.[29–31]For relativistic MR,the magnetization parameterσ=B2/(μ0nemec2) is usually much larger than 1,[32]whereσis the ratio of the energy density in reconnecting the magnetic field to the rest mass energy density andneis the electron density.

    In this paper, we present 3D PIC simulation results for relativistic MR driven by two ultra-intense lasers with different spot separation distance. The purpose of our simulation is to obtain the changing plasma environment(magnetization parameterσ)in the reconnection region with a variable separation of the laser spots and to study the influence of electron acceleration in different plasma environments. The simulation results show that the magnetization parameter in the reconnection region will increase when the distance between the two laser spots decreases. Because a larger magnetization parameter represents stronger magnetic energy, particles can be efficiently accelerated by MR and have a higher reconnection rate. It is found that CS plays an important role in electron acceleration in MR driven by ultra-intense lasers. Lastly, the 3D momentum configuration is presented.

    2. Simulation and setup

    We used KLAP,which is a PIC code used to study energetic particle acceleration under ultra-intense laser and plasma interactions.[33,34]In a previous simulation of MR, electrons with relativistic energies were generated in the MR process via an ultra-intense laser–plasma interaction.[25]In this paper,the relativistic MR process driven by two ultra-intense lasers with different spot separation distance is simulated. The simulation box size wasLx×Ly×Lz=30 μm×24 μm×50 μm,which was divided into 600×480×1000 cells. The number of particles per cell was 8 and there were more than 2.3 billion particles in total. Both particles and fields had periodic boundary conditions in thexandydirections, and radiating boundary conditions in thezdirection.

    Initially, two identical circularly polarized laser pulses were injected into the plasma target along thezdirection. Two laser pulses had a peak intensity of 5×1020W/cm2, with a 3 μm spot diameter size. The wavelength of the laser wasλ0=1 μm, and its period wasT0=λ/c ≈3.33 fs. The normalized laser vector potential wasa0=13.5. So,the upstream side of the MR region showed the bulk Lorentz factor ofγ0=(1+a20)1/2=13.5. The initial electron and ion temperatures were 10 keV and 0.01 keV respectively. The Debye length wasλD=(kTe/μ0nee2)1/2≈0.235 μm≈4.7L(L=0.05 μm is the cell size in the simulation box). The electron skin depth wasde=c/ωpe≈0.71 μm,whereωpe=(μ0e2n0/γ0me)1/2is the electron plasma frequency. In addition,deis close to the laser wavelengthλ0. Throughout this paper we set the laser frequency tof=c/λ, and we use the normal value of the mass ratio of a proton to an electron:mp/me=1836. In this paper, we normalize the magnetic field, the electric field and the electron density toB0=(I/εc)1/2/c=1.45×105T,E0=4.34×1013V/m,n0=nc=meω20/μ0e2=1.15×1021cm-3,respectively,wherencis the critical plasma density.

    The initial plasma density in the simulation box had a varying profile along thezdirection

    wherez0=5 μm,z1=15 μm,andL0=20 μm.

    Figure 1 shows the evolution of the reconnection rateEz/VAeBAversus time, whereEzare the electric fields in the reconnection points(X-point)versus time.VAeis the velocity of Alfv′en andBAis the asymptotic magnetic field strength at the time of the maximum reconnection field. With the laser separation distance ofdsof 8 μm(black solid line)in case A,the reconnection rate is almost zero between 20T0and 35T0,and MR does not occur. The reconnection rate increases from 40T0and reaches its maximum 0.28 att=50T0; then the reconnection rate starts to go down. For the cases with a laser separation distance of 9 μm (red dashed line) in case B and 10 μm (blue dotted line) in case C, the reconnecting rates reach their maximum,0.37 and 0.49,att=55T0,respectively.The reconnection rate increases with increasing spots separation distance,which means that the magnetic energy dissipates faster in the corresponding reconnection region.The evolution trend of the reconnection rate with the separation distance is consistent with the formula[35]

    wheredrdescribes the distance of the laser spot to the reconnection point andI0is the laser peak intensity. Att=75T0,there is a second bump in the reconnecting rate.

    Fig. 1. The reconnection rates for the lasers’ separation with 8 μm (black solid line)in case A,9 μm(red dashed line)in case B and 10 μm(blue dotted line)in case C are 50T0, 55T0 and 55T0, respectively, where the electric field is normalized by Ez/VAeBA.

    3. Electron acceleration in magnetic reconnection with different separation distances

    When two laser beams are injected into a plasma target with near-critical density,the laser will push the electrons forward and generate a co-directional current and a quasi-static in-plane magnetic field. The anti-parallel magnetic fields encounter each other and MR occurs in the middle of the two lasers, as shown enclosed by the white dotted rectangle in Figs. 2(a) and (b). Relativistic energetic electrons are generated through the interaction between the high-power ultrashort femetosecond laser pulses and the target.According to a previous study,the current layer of the MR driven by ultra-intense lasers is smaller than the ion scale (ion skin depth).[35]This means that the electrons are frozen with the magnetic field line and move towards one another. Therefore, this MR process happens in the electron diffusion region(EDR).

    Fig.2. The in-plane magnetic field|B⊥|for case A is on the x–y plane with z=20 μm at t =50T0 (a) and 55T0 (b), where the magnetic fields are normalized by the initial laser B0 =1.45×105 T. The electron energy density distributions(electron energy in the range of 3 <γe <20)for case A[(c),(d)],case B [(e),(f)], and case C [(g),(h)] are at t =50T0 (left column) and 55T0(right column),respectively.

    Figures 2(c)–2(h) show the electron energy density distribution electron energy in the range of (3<γe<20) along thezdirection att= 50T0and 55T0. It clearly shows that there are high-density electrons in the reconnection region and outflow region, where the black arrow points the outflow direction. In case A, a large number of the energetic particles are accelerated by the reconnection field of MR in the central X-line,where the dissipated magnetic energy is converted into electron kinetic energy. The larger the separation of the two laser spots, the fewer the high-energy particles accelerated at the magnetic energy dissipation area. However, we find that a large number of electrons have been accelerated to the high-energy state when two magnetic tubes compress each other before MR occurs, possibly due to magnetic pressure or/and CS(Fermi-like acceleration)as Luet al.presented.[21]As shown in Fig.2(g),more energetic electrons pile up to create a double-layer structure at the compressing magnetic rings,near the X-line region in the bottom of Fig. 2(g), shown in black dotted rectangle. Att=55T0, this double-layer structure still exists,as seen in Fig.2(h).

    Fig.3. Electron distribution in the phase space of(pz, py). From top to bottom,the rows correspond to case A,B,and C.From left to right,the columns correspond to 45T0,50T0,and 55T0,in chronological order.

    In order to study electron acceleration by MR, we select the electrons in the volume of 14 μm<x <16 μm,7 μm<y <17 μm, and 10 μm<z <25 μm fromt=45T0to 55T0, where the current sheet is located. In the previous work, we found there is a bubble (which is in the black rectangle)in the electron momentum distribution ofpz–py,which is called the pick-up ring.[25]As shown in Figs.3(c)–3(i),the smaller the lasers’separation distance is,the larger the“pickup ring”. The reconnection electric field isEz=0.037,0.032,and 0.028 in case A, B, and C, respectively. When the separation distance between the two lasers becomes smaller, the reconnection electric field becomes stronger and more electrons will be accelerated to higher energy along thezdirection in our simulation and induce a larger pick-up ring.

    Figure 4 shows the electron energy spectra in the reconnection region of case A, case B, and case C driven by two lasers with MR (shown as the black line) corresponding to a single laser case without MR(shown as the blue line). In the range ofγ0<γe<50,the electron energy spectrum is fit as a power-law distribution and its spectrum indexes arep2=2.5,3.0, and 3.2 in case A, B, C respectively as the pink dotted lines shown in Figs. 4(a)–4(c), which are as the same as the spectrum indexes obtained by single laser driving. Compared with the energy spectrum generated by the interaction of the single-sided laser and target,the range of the power-law spectrum with the same index is wider than that generated by the interaction of two lasers and plasma. With the increase of the laser separation distance,fewer electrons are accelerated in reconnection region that we selected,which makes the index of the power-law spectrum increase.

    In the range of 1<γe<γ0,the power-law indexes of the electron spectrum driven by two lasers with MR(shown as the green dotted lines)arep1=1.4,1.8,and 1.9 in case A,B,and C,respectively shown in Figs.4(a)–4(c). Compared with single laser driving case without MR, we find that MR amends the shape of the electron spectrum and makes the spectrum indexp1less than 2 because more low-energy electrons are accelerated to higher energy in the MR process driven by two lasers. Moreover, with a decrease of the laser separation distance, the power-law spectrum is flattened. This is because the electron energy spectrum accelerated by lasers is flatter in the reconnection region when laser the separation distance increases. Meanwhile, the magnetic parameterσof the background plasma before the MR is driven by lasers increases when the laser separation distance decreases(as shown in Table 1). Our simulation results agree with those of previous relativistic astrophysics research[32]in that the magnetic parameter affects electron acceleration in relativistic MR.

    Table 1. Important parameters of the plasma environment.

    Fig.4. The electron energy spectra for case A(a),B(b),and C(c)at the moment the maximum reconnection electric field is reached(t =50T0,55T0,and 55T0, respectively). The vertical axis is the electron count, and the horizontal axis is the relativistic factor of electron. The solid line is for the two-laser case,and the dashed line is for the single laser. The electron distribution is fitted with the power-law spectrum N(γ)=γ-p. The dotted line is the power-law spectrum line with different powers.The green dotted line is fitted with the low-energy region,and the pink dotted line is fitted with the middle-energy region.

    4. Collisionless shock acceleration and magnetic reconnection acceleration

    Figures 3(a)–3(c) not only present the electron pick-up ring but also two electron jets along thepydirection. In particular,in Figs.3(b)and 3(e),the pick-up ring is not obvious,while the electron jets along thepydirection are enhanced.On the whole, the electron jets along thepydirection are obviously present in case C.

    Next,the formation mechanism of the electron jets along thepydirection will be analyzed. Figure 5(a) shows the typical structures of CS, the electron density and electromagnetic fields around the shock front when the shock is fully formed[36]t=50T0in case C (aty=12 μm,z=20 μm).It is found that there are two regions of electron density accu-

    Fig.5. Internal structure of a pair of CS at t =50T0 in case C.(a)Line out of the electron density (ne; solid black line) and electromagnetic fields (Bz indicated by the blue dash-dotted line;Ey,red dashed line;Ex,purple dotted line), at y=12 μm and z=20 μm, region I from x=14 μm to 14.5 μm and region II from x=14.5 μm to 15 μm. The electron energy spectra for different acceleration mechanisms by CS(the blue dashed line)and MR(the red solid line)are in case A at t=50T0(b),case B at t=55T0(c)and case C at t=55T0 (d).

    Fig. 6. Evolution of electron kinetic energy over time. The work done by each electric field component(Wx,Wy,Wz)is plotted for case A,B,and C in panels(a),(b),and(c).

    Figure 6 shows that the electric fieldsExandEzall play important roles in electron acceleration for case A,case B,and case C.In Fig.6(a),for case A,the electron kinetic energyEkmainly comes fromWxandWz. The reconnection contribution is more than others. Figure 6(c)shows that some particles gained energy byWx, and reconnection has less influence in case C. Therefore, figure 6 implies the results of Figs. 5(b)–5(d), where more electrons are accelerated by collisionless shock when two magnetic tubes compress each other.

    5. The 3D effects

    In order to analyze some quantities,the 2D figures in the reconnection plane are presented, which are averaged along thezdirection. This method may lead to the absence of some three-dimensional information. In Figs.7(a)–7(c),the 3D isosurface distribution of the electron momentumpyis presented for case A att=50T0,and case B and case C att=55T0,respectively.High-energy electrons are distributed at the front of the laser transmission channel.In contrast,in case A,electrons are concentrated in the reconnected region with a very narrowxscope,while in case B and case C,more energetic electrons along theydirection are located over the whole interaction region of the plasma generated by the two lasers, which means that more energetic electrons are located over a wider range ofx. These features also imply that the acceleration mechanism is different.

    According to the location of the outflow in the 3D scenario of Figs.7(a)–7(c),the electron energy spectra are given in Figs. 7(d)–7(f) where the selected region is 13 μm<x <17 μm,5 μm<y <19 μm,and 25 μm<z <40 μm where the outflows are located. We find that one part of the energy spectrum for the two lasers with MR is the same as the case of the single laser without MR;the other part of the electron energy spectrum is modified by MR,which can be fit as a power-law distribution and its index is close to 1.Re-calculating the magnetization parameterσ, they are 70.2, 38.8, and 37.7 in case A,case B,and case C,respectively. This plasma environment is ultra-relativistic,which results in a very flat electron energy spectrum.

    Fig. 7. (a)–(c) Three-dimensional isosurface distributions of the electron momentum py for case A, B, and C are at t =50T0 (a), 55T0 (b), and 55T0 (c),respectively. Here,purple shows along positive py and blue shows along negative py. (d)–(f)The corresponding two-laser case spectra(black lines)and the single-laser case spectra(blue lines)in the contrast diagram are also drawn for the electrons in the reconnection area(x=13 μm–17 μm,y=5 μm–19 μm,z=25 μm–40 μm). The red lines indicate the power law of the spectrum 1 <γe <γ0.

    6. Discussion and conclusions

    Table 1 presents some parameters of the plasma environment driven by two ultra-intense femtosecond lasers and in a gamma ray burst environment. Theσis also much greater than unityσ ≥1, and the energy density of the reconnection magnetic field is larger than the rest mass energy density of the electrons. Therefore,the MR driven by ultra-intense lasers is ultra-relativistic.

    The plasma betaβ=2μ0nekBT/B2(βis the ratio of the thermal pressure to the magnetic pressure) is much smaller than 1. We find that the electron Alfv′en speed is close to the speed of lightνAe~c. These parameters match the environment of high-energy astronomical phenomena. Even though our simulation parameters do not exactly match high-energy astronomical ones,such as particle density,magnetic field energy, spatial and temporal scale, to some extent, our simulations reflect the mechanism and process of electron acceleration, corresponding to many high-energy emission of the astronomical observations.[40–42]

    In this paper, from the momentum diagram, the “pickup ring” shrinks as the laser separation distance increases.Fewer reconnection electric fields accelerate fewer electrons to higher energies. At the same time, two momentum jets alongpyare presented, and they are more obvious with an increase of the separation distance. This may be related with the different acceleration mechanisms in the case with a different separation distance. With the increase of the laser separation distance,the binding of electrons in the magnetic field becomes weaker,the duration of CS becomes longer,and the acceleration space becomes larger. So,more electrons can be accelerated by CS. Therefore, in thepydirection of the electron momentum phase space,jets appear and become larger as the laser separation distance increases. Then,through the energy spectrum analysis of different regions,we find that,with separation distance increasing, the electron energy spectrum of energetic electrons from collisionless shock approaches that from MR.As the separation distance decreases,the magnetization parameterσincreases,and the electron energy spectrum becomes flatter and less than 1. From the 3D momentum configuration, the outflow is presented between two lasers. According to the position of the outflow,the electron energy spectrum and the magnetization parameter are re-examined. The magnetization parameter is higher, and the index of the energetic electron spectrum is close to 1.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos. U1930108,12175018,12135001, 12075030, and 11903006) and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDA25030700). Yongli Ping acknowledges the support of the Open Research Program from Key Laboratory of Geospace Environment CAS.

    猜你喜歡
    張茜孫偉永利
    孫偉美術(shù)作品
    科技興邦 創(chuàng)新強(qiáng)國(guó)
    一種水陸兩棲飛機(jī)普通框結(jié)構(gòu)設(shè)計(jì)
    深圳市永利種業(yè)有限公司
    辣椒雜志(2021年4期)2021-04-14 08:28:14
    Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading*
    畢永利教授簡(jiǎn)介
    法眼看平等教學(xué)設(shè)計(jì)
    Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock?
    藝術(shù)百家
    氣球
    老司机午夜十八禁免费视频| 精华霜和精华液先用哪个| 九九在线视频观看精品| 好男人电影高清在线观看| 日韩成人在线观看一区二区三区| 久久热精品热| 成人国产一区最新在线观看| avwww免费| 两个人的视频大全免费| 精品一区二区三区人妻视频| 成人国产一区最新在线观看| 老熟妇仑乱视频hdxx| 白带黄色成豆腐渣| 精品福利观看| 欧美绝顶高潮抽搐喷水| 9191精品国产免费久久| 中文在线观看免费www的网站| 国产在线精品亚洲第一网站| 亚洲中文日韩欧美视频| 国产白丝娇喘喷水9色精品| 熟女电影av网| 精品一区二区三区视频在线观看免费| 国产免费男女视频| 熟妇人妻久久中文字幕3abv| 黄色配什么色好看| 日韩国内少妇激情av| 欧美极品一区二区三区四区| 欧美成人免费av一区二区三区| 亚洲欧美激情综合另类| 美女cb高潮喷水在线观看| 男女之事视频高清在线观看| 听说在线观看完整版免费高清| 51午夜福利影视在线观看| 欧美成人一区二区免费高清观看| 亚洲成av人片免费观看| 99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人精品一区久久| 国产亚洲精品综合一区在线观看| 一个人看的www免费观看视频| 身体一侧抽搐| 亚洲自拍偷在线| 黄片小视频在线播放| 免费大片18禁| 又爽又黄无遮挡网站| 91九色精品人成在线观看| 亚洲精品在线观看二区| 最近中文字幕高清免费大全6 | 久久久久久久精品吃奶| 丰满人妻熟妇乱又伦精品不卡| 亚洲色图av天堂| 午夜a级毛片| 69人妻影院| 桃色一区二区三区在线观看| 成年版毛片免费区| 黄片小视频在线播放| 国产精华一区二区三区| 赤兔流量卡办理| 日本免费一区二区三区高清不卡| 偷拍熟女少妇极品色| 国产亚洲欧美98| 欧美日韩国产亚洲二区| 精品久久久久久久久亚洲 | 成年女人毛片免费观看观看9| 午夜视频国产福利| 日韩欧美精品v在线| 免费大片18禁| 亚洲第一电影网av| 成人毛片a级毛片在线播放| 国产精品一区二区三区四区久久| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 1000部很黄的大片| 国产精品自产拍在线观看55亚洲| 婷婷丁香在线五月| 女同久久另类99精品国产91| 天堂√8在线中文| 久久久国产成人免费| 日日夜夜操网爽| 亚洲专区中文字幕在线| 综合色av麻豆| 国产v大片淫在线免费观看| 欧美日韩瑟瑟在线播放| 亚洲激情在线av| 亚洲五月婷婷丁香| 99热这里只有是精品50| 日韩欧美国产一区二区入口| 岛国在线免费视频观看| 欧美中文日本在线观看视频| 欧美潮喷喷水| 757午夜福利合集在线观看| 欧美区成人在线视频| av中文乱码字幕在线| 桃红色精品国产亚洲av| 亚洲熟妇熟女久久| 色哟哟·www| 亚洲精品影视一区二区三区av| 亚洲成人久久爱视频| 日本三级黄在线观看| 亚洲久久久久久中文字幕| 99热精品在线国产| 日韩精品中文字幕看吧| 国产精品1区2区在线观看.| av在线蜜桃| 五月伊人婷婷丁香| 一级a爱片免费观看的视频| 国产成人福利小说| 性插视频无遮挡在线免费观看| 亚洲人成伊人成综合网2020| 丰满人妻熟妇乱又伦精品不卡| 成人永久免费在线观看视频| 两个人的视频大全免费| 国产高清激情床上av| 亚洲性夜色夜夜综合| 成年人黄色毛片网站| 亚洲av不卡在线观看| 在线观看舔阴道视频| 免费在线观看影片大全网站| 极品教师在线免费播放| 久久伊人香网站| 亚洲国产高清在线一区二区三| 国产国拍精品亚洲av在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲美女久久久| 少妇被粗大猛烈的视频| 欧美成人一区二区免费高清观看| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区 | 成人av在线播放网站| 免费av观看视频| 精品人妻视频免费看| 一个人观看的视频www高清免费观看| 黄色丝袜av网址大全| 精品一区二区三区人妻视频| or卡值多少钱| 久久精品国产亚洲av天美| 中文亚洲av片在线观看爽| 亚洲激情在线av| 亚洲av第一区精品v没综合| 狠狠狠狠99中文字幕| 两个人视频免费观看高清| 在现免费观看毛片| 亚洲精品乱码久久久v下载方式| 国产亚洲精品综合一区在线观看| 成人特级黄色片久久久久久久| 午夜福利欧美成人| 偷拍熟女少妇极品色| 一级黄片播放器| 夜夜躁狠狠躁天天躁| h日本视频在线播放| 国产野战对白在线观看| 九色成人免费人妻av| 在线观看午夜福利视频| 日本三级黄在线观看| 特级一级黄色大片| av天堂中文字幕网| 国产极品精品免费视频能看的| 精华霜和精华液先用哪个| or卡值多少钱| 日韩 亚洲 欧美在线| 夜夜躁狠狠躁天天躁| 国产视频一区二区在线看| 在线观看一区二区三区| 露出奶头的视频| 嫁个100分男人电影在线观看| 亚洲成av人片免费观看| 国产精品一区二区免费欧美| 内射极品少妇av片p| 人妻夜夜爽99麻豆av| 国产高清激情床上av| 69av精品久久久久久| 精品一区二区三区视频在线| 男女那种视频在线观看| 国产白丝娇喘喷水9色精品| 久久精品人妻少妇| 高清日韩中文字幕在线| 亚洲五月天丁香| 国产精品久久电影中文字幕| 熟妇人妻久久中文字幕3abv| av天堂在线播放| 极品教师在线免费播放| 好男人在线观看高清免费视频| 久久人妻av系列| 欧美日韩综合久久久久久 | 亚洲欧美清纯卡通| 久久性视频一级片| 黄色丝袜av网址大全| 婷婷精品国产亚洲av| 久久国产乱子免费精品| 一个人免费在线观看的高清视频| 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 午夜福利高清视频| 黄片小视频在线播放| 美女cb高潮喷水在线观看| 直男gayav资源| 一个人看视频在线观看www免费| 此物有八面人人有两片| 国产欧美日韩精品亚洲av| 天天躁日日操中文字幕| 成人av在线播放网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品不卡国产一区二区三区| 丰满的人妻完整版| 禁无遮挡网站| 国产综合懂色| 黄色一级大片看看| 村上凉子中文字幕在线| 淫秽高清视频在线观看| 欧美乱妇无乱码| 午夜久久久久精精品| 欧美不卡视频在线免费观看| 午夜福利18| aaaaa片日本免费| 成人精品一区二区免费| 久久香蕉精品热| 久久精品国产自在天天线| 制服丝袜大香蕉在线| 国产精品伦人一区二区| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 嫩草影院新地址| 久久草成人影院| 久久久久国产精品人妻aⅴ院| 国产av在哪里看| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品在线观看 | 1000部很黄的大片| 男女做爰动态图高潮gif福利片| 搡老妇女老女人老熟妇| 两人在一起打扑克的视频| 国产午夜精品论理片| 丁香欧美五月| 欧美成人a在线观看| 直男gayav资源| 国产精品99久久久久久久久| 国产高清视频在线播放一区| 丰满人妻一区二区三区视频av| 中亚洲国语对白在线视频| 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女| 午夜a级毛片| 欧美一区二区国产精品久久精品| 午夜精品在线福利| 天堂影院成人在线观看| 国产精品98久久久久久宅男小说| 香蕉av资源在线| 亚洲精品影视一区二区三区av| 国产精品伦人一区二区| 中文资源天堂在线| 精品人妻视频免费看| 岛国在线免费视频观看| 日韩欧美在线二视频| 国产老妇女一区| 丰满人妻一区二区三区视频av| 桃红色精品国产亚洲av| 夜夜躁狠狠躁天天躁| 亚洲专区中文字幕在线| 欧美性感艳星| 色av中文字幕| h日本视频在线播放| 国产欧美日韩一区二区三| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| 在线a可以看的网站| 五月伊人婷婷丁香| 国产精品自产拍在线观看55亚洲| 精品熟女少妇八av免费久了| 一本精品99久久精品77| 又黄又爽又免费观看的视频| 中文字幕av成人在线电影| 精品久久久久久久久av| 免费在线观看成人毛片| 91狼人影院| 搡老岳熟女国产| 色精品久久人妻99蜜桃| 国产 一区 欧美 日韩| 亚洲中文字幕一区二区三区有码在线看| 国产国拍精品亚洲av在线观看| 简卡轻食公司| 欧美乱色亚洲激情| www日本黄色视频网| 亚洲国产精品成人综合色| 老女人水多毛片| 国产免费一级a男人的天堂| 美女高潮喷水抽搐中文字幕| 国产亚洲精品久久久com| 亚洲avbb在线观看| 中文字幕高清在线视频| 波多野结衣高清无吗| 亚洲av第一区精品v没综合| 日本三级黄在线观看| av在线蜜桃| 观看美女的网站| 在线播放国产精品三级| 两个人的视频大全免费| 欧美性感艳星| 亚洲不卡免费看| 日本黄色视频三级网站网址| 国产一区二区亚洲精品在线观看| 免费在线观看亚洲国产| 国产乱人伦免费视频| 久久精品国产清高在天天线| 麻豆国产av国片精品| 观看免费一级毛片| 九九在线视频观看精品| 黄片小视频在线播放| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 高清日韩中文字幕在线| 熟女人妻精品中文字幕| 伊人久久精品亚洲午夜| www.色视频.com| 日韩有码中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 久久久成人免费电影| 熟女人妻精品中文字幕| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av| 国产中年淑女户外野战色| 日本熟妇午夜| 亚洲欧美日韩无卡精品| av视频在线观看入口| 91麻豆av在线| 久久精品国产亚洲av涩爱 | 亚洲熟妇熟女久久| 蜜桃亚洲精品一区二区三区| 精品不卡国产一区二区三区| 欧美一区二区国产精品久久精品| 国产v大片淫在线免费观看| 日本黄色视频三级网站网址| 嫩草影院精品99| 高清在线国产一区| 嫩草影视91久久| 91久久精品国产一区二区成人| 亚洲三级黄色毛片| 男女下面进入的视频免费午夜| 一级av片app| 亚洲精品在线观看二区| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 日韩有码中文字幕| 日韩精品青青久久久久久| 日韩有码中文字幕| 男人舔奶头视频| 成人av在线播放网站| 两个人的视频大全免费| 国产成人aa在线观看| 悠悠久久av| 欧美色视频一区免费| 亚洲 欧美 日韩 在线 免费| 亚洲熟妇熟女久久| 国产高清三级在线| 亚洲18禁久久av| 精品久久久久久久久久免费视频| 亚洲自偷自拍三级| 日日夜夜操网爽| 99在线人妻在线中文字幕| 国产色婷婷99| 亚州av有码| 亚洲在线自拍视频| 长腿黑丝高跟| 少妇的逼水好多| 九九热线精品视视频播放| 窝窝影院91人妻| 欧美精品国产亚洲| 中文字幕久久专区| 欧美性猛交黑人性爽| 色综合婷婷激情| or卡值多少钱| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 亚洲三级黄色毛片| a级毛片免费高清观看在线播放| 免费在线观看日本一区| 成人特级av手机在线观看| 中文字幕高清在线视频| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 岛国在线免费视频观看| 免费av不卡在线播放| 欧美成人一区二区免费高清观看| 精品国产亚洲在线| 简卡轻食公司| 午夜免费成人在线视频| 99久国产av精品| 色噜噜av男人的天堂激情| 精品99又大又爽又粗少妇毛片 | 在线观看美女被高潮喷水网站 | 丰满乱子伦码专区| 欧美日韩国产亚洲二区| 丝袜美腿在线中文| 亚洲人成网站在线播放欧美日韩| 国产精品嫩草影院av在线观看 | 亚洲乱码一区二区免费版| 成人鲁丝片一二三区免费| 丁香欧美五月| 日本三级黄在线观看| 国产欧美日韩一区二区三| 国产色爽女视频免费观看| 波多野结衣高清作品| 免费人成在线观看视频色| 国产亚洲欧美在线一区二区| 国产午夜精品论理片| 日本免费a在线| 黄色配什么色好看| 午夜老司机福利剧场| 成人特级黄色片久久久久久久| 一本一本综合久久| 97碰自拍视频| 国产v大片淫在线免费观看| avwww免费| av黄色大香蕉| 床上黄色一级片| 亚洲av中文字字幕乱码综合| 亚洲av一区综合| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 国内精品美女久久久久久| 国产成人aa在线观看| av在线观看视频网站免费| 亚洲第一欧美日韩一区二区三区| 国产蜜桃级精品一区二区三区| 久久国产精品人妻蜜桃| 国产亚洲欧美在线一区二区| 国产免费男女视频| 午夜福利在线观看吧| 亚洲国产高清在线一区二区三| 久9热在线精品视频| 亚洲av成人不卡在线观看播放网| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 在线播放国产精品三级| 亚洲熟妇熟女久久| 亚洲一区二区三区不卡视频| 亚洲国产精品成人综合色| 欧美区成人在线视频| 好男人在线观看高清免费视频| 久久精品人妻少妇| 亚洲欧美精品综合久久99| 久久亚洲精品不卡| 中文在线观看免费www的网站| 免费高清视频大片| 色5月婷婷丁香| 69av精品久久久久久| 亚洲人成网站在线播放欧美日韩| 国产精品美女特级片免费视频播放器| 欧美日本亚洲视频在线播放| 日本三级黄在线观看| 男女床上黄色一级片免费看| 赤兔流量卡办理| 欧美日韩乱码在线| 国产精品亚洲一级av第二区| 日韩 亚洲 欧美在线| 日韩成人在线观看一区二区三区| 久久久久精品国产欧美久久久| 欧美精品国产亚洲| 国产精品亚洲美女久久久| 色播亚洲综合网| 亚洲精品在线美女| 亚洲成a人片在线一区二区| 在线观看一区二区三区| 久久久精品大字幕| 欧美性猛交╳xxx乱大交人| 免费无遮挡裸体视频| 毛片一级片免费看久久久久 | 午夜福利在线在线| 99热这里只有精品一区| 国产精品一区二区三区四区久久| 韩国av一区二区三区四区| 久久久久久久精品吃奶| 国产精品一区二区性色av| 99久久精品国产亚洲精品| av欧美777| 天堂网av新在线| 久久久精品欧美日韩精品| 婷婷亚洲欧美| 久久午夜亚洲精品久久| 亚洲美女黄片视频| 国产在视频线在精品| АⅤ资源中文在线天堂| 一本综合久久免费| 99riav亚洲国产免费| 老熟妇仑乱视频hdxx| 国产单亲对白刺激| 亚洲av.av天堂| 真人做人爱边吃奶动态| 亚洲av一区综合| 精品不卡国产一区二区三区| 国产成人av教育| 97人妻精品一区二区三区麻豆| 在线播放国产精品三级| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 欧美色视频一区免费| 无遮挡黄片免费观看| 又爽又黄a免费视频| 国产精品日韩av在线免费观看| 久久精品国产亚洲av涩爱 | 亚洲精品亚洲一区二区| 成人亚洲精品av一区二区| 亚洲18禁久久av| 中文资源天堂在线| 日韩高清综合在线| 日本五十路高清| www.熟女人妻精品国产| 九九热线精品视视频播放| 欧美不卡视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品999在线| 久久人妻av系列| 亚洲性夜色夜夜综合| 在线a可以看的网站| 无人区码免费观看不卡| 国产精品av视频在线免费观看| 国产精品电影一区二区三区| 欧美激情在线99| 1000部很黄的大片| 欧美成人免费av一区二区三区| 国产高清视频在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 久久九九热精品免费| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 国内揄拍国产精品人妻在线| 久久伊人香网站| 精品一区二区免费观看| 高清在线国产一区| 99久久精品热视频| 别揉我奶头 嗯啊视频| 久久亚洲精品不卡| 亚洲久久久久久中文字幕| 久久亚洲精品不卡| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av香蕉五月| 高清在线国产一区| 亚洲,欧美精品.| 国内精品久久久久精免费| www.999成人在线观看| 国产精品电影一区二区三区| 欧美一区二区国产精品久久精品| 国产亚洲精品综合一区在线观看| 国产精品女同一区二区软件 | 亚洲专区国产一区二区| 日韩欧美精品免费久久 | 如何舔出高潮| 国产精品日韩av在线免费观看| 国产乱人伦免费视频| 无人区码免费观看不卡| 亚洲综合色惰| 亚洲无线观看免费| 欧美成狂野欧美在线观看| 久久国产乱子伦精品免费另类| 亚洲在线自拍视频| 岛国在线免费视频观看| 欧美一区二区精品小视频在线| 老司机福利观看| 九色成人免费人妻av| 亚洲色图av天堂| 51国产日韩欧美| 国产精品久久久久久精品电影| 国产亚洲精品综合一区在线观看| 久久久久九九精品影院| 午夜影院日韩av| 天堂网av新在线| 成人午夜高清在线视频| 91字幕亚洲| 日本在线视频免费播放| 最近视频中文字幕2019在线8| 全区人妻精品视频| 美女高潮的动态| 99热只有精品国产| 欧美精品啪啪一区二区三区| 熟女人妻精品中文字幕| 他把我摸到了高潮在线观看| 国产精品不卡视频一区二区 | 亚洲av成人不卡在线观看播放网| 亚洲天堂国产精品一区在线| 日韩欧美免费精品| 12—13女人毛片做爰片一| 国产成人啪精品午夜网站| 久久久精品欧美日韩精品| 久久精品91蜜桃| 亚洲精品456在线播放app | 精品人妻熟女av久视频| 亚洲综合色惰| 特级一级黄色大片| 欧美日韩福利视频一区二区| 国产精品久久久久久精品电影| 91狼人影院| 久久久国产成人免费| 婷婷六月久久综合丁香| 亚洲无线观看免费| 最近在线观看免费完整版| 搡女人真爽免费视频火全软件 | 国内精品久久久久久久电影| 99热只有精品国产| 成人国产综合亚洲| aaaaa片日本免费| 日本精品一区二区三区蜜桃| 老熟妇乱子伦视频在线观看| aaaaa片日本免费| www.999成人在线观看| h日本视频在线播放| 日本黄色片子视频| 亚洲内射少妇av| .国产精品久久| 桃色一区二区三区在线观看| 免费高清视频大片| .国产精品久久| 国产精品伦人一区二区| 久久久久久国产a免费观看| 中文亚洲av片在线观看爽| 亚洲av不卡在线观看| 嫩草影院精品99|