• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma

    2022-06-29 08:55:40QianZhang張茜YongliPing平永利WeimingAn安維明WeiSun孫偉andJiayongZhong仲佳勇
    Chinese Physics B 2022年6期
    關(guān)鍵詞:張茜孫偉永利

    Qian Zhang(張茜) Yongli Ping(平永利) Weiming An(安維明) Wei Sun(孫偉) and Jiayong Zhong(仲佳勇)

    1Department of Astronomy,Beijing Normal University,Beijing 100875,China

    2CAS Key Laboratory of Geospace Environment,University of Science&Technology of China,Hefei 230026,China

    Keywords: collisionless shocks,magnetic reconnection,magnetization parameter,electron acceleration

    1. Introduction

    There are a number of particle acceleration processes involved in astrophysical phenomena such as gamma ray bursts,jets from active galactic nuclei, and cosmic rays from the super-nova remnants.[1–5]Two of these processes are magnetic reconnection (MR) and collisionless shocks (CSs). Both of these processes lead to the acceleration of charged particles and will be discussed in this work. MR, for example, leads to the conversion of magnetic energy to kinetic energy. In the heliosphere, the current sheet formed by the interaction between the solar wind and the geomagnetic field is also considered as a region where magnetic fields reconnect,and thus energy conversion and dissipation occur.[6]Energetic particles accelerated by MR and/or CS have also been observed in the laboratory.

    In the laboratory,the use of nanosecond lasers focused on plastic or metal targets produces a warm dense plasma and a mega-Gauss(MG)magnetic field due to the Biermann battery effect, which is similar to the astrophysical environment.[7,8]Key features of MR have been found in plasmas generated by the interaction of two laser beams with a target,including the MR structure and two high-velocity collimated jets in the reconnection layer.[9,10]The MR-induced ring top x-ray source and outflow/jet in solar flares were first simulated in the laboratory using MG magnetic field generated by the interaction of a high-intensity laser with a target. In addition,the decoupling of ions and electrons at the length of the ion inertia of the diffusion region has been determined.[11]Electrons are accelerated to relativistic velocity driven by MR in the laboratory.[12–17]The pre-magnetized plasma CS front increases the reflection of particles on the shock surface before the collision of the two plasmas to form magnetic reconnection.[18]Electrons are effectively accelerated to relativistic non-thermal energy in the small-scale turbulence generated by shock by first-order Fermi acceleration.[19]In our work we will employ particle-in-cell(PIC)simulation methods;such methods have previously been used in comprehensive studies of high-energy-density plasmas and MR.[20–23]The high-energy electrons were accelerated and injected in the reconnection zone.[24]It is found that the electron “pick-up ring” and the electrons accelerated by MR have a flatter spectrum compared with single laser and target interaction.[25]

    The energy spectrum index is an important parameter of reaction electron acceleration efficiency.[26,27]In the relativistic MR regime, a large number of studies have shown that the electron energy spectrum indexpapproaches 1, where the distribution of the electron energy isN(γ) =Cγ-pandCis a constant.[28]The acceleration driven by the reconnection electric field is so intense that the power-law index of the non-thermal particle energy spectrum tail is close to 1.[29–31]For relativistic MR,the magnetization parameterσ=B2/(μ0nemec2) is usually much larger than 1,[32]whereσis the ratio of the energy density in reconnecting the magnetic field to the rest mass energy density andneis the electron density.

    In this paper, we present 3D PIC simulation results for relativistic MR driven by two ultra-intense lasers with different spot separation distance. The purpose of our simulation is to obtain the changing plasma environment(magnetization parameterσ)in the reconnection region with a variable separation of the laser spots and to study the influence of electron acceleration in different plasma environments. The simulation results show that the magnetization parameter in the reconnection region will increase when the distance between the two laser spots decreases. Because a larger magnetization parameter represents stronger magnetic energy, particles can be efficiently accelerated by MR and have a higher reconnection rate. It is found that CS plays an important role in electron acceleration in MR driven by ultra-intense lasers. Lastly, the 3D momentum configuration is presented.

    2. Simulation and setup

    We used KLAP,which is a PIC code used to study energetic particle acceleration under ultra-intense laser and plasma interactions.[33,34]In a previous simulation of MR, electrons with relativistic energies were generated in the MR process via an ultra-intense laser–plasma interaction.[25]In this paper,the relativistic MR process driven by two ultra-intense lasers with different spot separation distance is simulated. The simulation box size wasLx×Ly×Lz=30 μm×24 μm×50 μm,which was divided into 600×480×1000 cells. The number of particles per cell was 8 and there were more than 2.3 billion particles in total. Both particles and fields had periodic boundary conditions in thexandydirections, and radiating boundary conditions in thezdirection.

    Initially, two identical circularly polarized laser pulses were injected into the plasma target along thezdirection. Two laser pulses had a peak intensity of 5×1020W/cm2, with a 3 μm spot diameter size. The wavelength of the laser wasλ0=1 μm, and its period wasT0=λ/c ≈3.33 fs. The normalized laser vector potential wasa0=13.5. So,the upstream side of the MR region showed the bulk Lorentz factor ofγ0=(1+a20)1/2=13.5. The initial electron and ion temperatures were 10 keV and 0.01 keV respectively. The Debye length wasλD=(kTe/μ0nee2)1/2≈0.235 μm≈4.7L(L=0.05 μm is the cell size in the simulation box). The electron skin depth wasde=c/ωpe≈0.71 μm,whereωpe=(μ0e2n0/γ0me)1/2is the electron plasma frequency. In addition,deis close to the laser wavelengthλ0. Throughout this paper we set the laser frequency tof=c/λ, and we use the normal value of the mass ratio of a proton to an electron:mp/me=1836. In this paper, we normalize the magnetic field, the electric field and the electron density toB0=(I/εc)1/2/c=1.45×105T,E0=4.34×1013V/m,n0=nc=meω20/μ0e2=1.15×1021cm-3,respectively,wherencis the critical plasma density.

    The initial plasma density in the simulation box had a varying profile along thezdirection

    wherez0=5 μm,z1=15 μm,andL0=20 μm.

    Figure 1 shows the evolution of the reconnection rateEz/VAeBAversus time, whereEzare the electric fields in the reconnection points(X-point)versus time.VAeis the velocity of Alfv′en andBAis the asymptotic magnetic field strength at the time of the maximum reconnection field. With the laser separation distance ofdsof 8 μm(black solid line)in case A,the reconnection rate is almost zero between 20T0and 35T0,and MR does not occur. The reconnection rate increases from 40T0and reaches its maximum 0.28 att=50T0; then the reconnection rate starts to go down. For the cases with a laser separation distance of 9 μm (red dashed line) in case B and 10 μm (blue dotted line) in case C, the reconnecting rates reach their maximum,0.37 and 0.49,att=55T0,respectively.The reconnection rate increases with increasing spots separation distance,which means that the magnetic energy dissipates faster in the corresponding reconnection region.The evolution trend of the reconnection rate with the separation distance is consistent with the formula[35]

    wheredrdescribes the distance of the laser spot to the reconnection point andI0is the laser peak intensity. Att=75T0,there is a second bump in the reconnecting rate.

    Fig. 1. The reconnection rates for the lasers’ separation with 8 μm (black solid line)in case A,9 μm(red dashed line)in case B and 10 μm(blue dotted line)in case C are 50T0, 55T0 and 55T0, respectively, where the electric field is normalized by Ez/VAeBA.

    3. Electron acceleration in magnetic reconnection with different separation distances

    When two laser beams are injected into a plasma target with near-critical density,the laser will push the electrons forward and generate a co-directional current and a quasi-static in-plane magnetic field. The anti-parallel magnetic fields encounter each other and MR occurs in the middle of the two lasers, as shown enclosed by the white dotted rectangle in Figs. 2(a) and (b). Relativistic energetic electrons are generated through the interaction between the high-power ultrashort femetosecond laser pulses and the target.According to a previous study,the current layer of the MR driven by ultra-intense lasers is smaller than the ion scale (ion skin depth).[35]This means that the electrons are frozen with the magnetic field line and move towards one another. Therefore, this MR process happens in the electron diffusion region(EDR).

    Fig.2. The in-plane magnetic field|B⊥|for case A is on the x–y plane with z=20 μm at t =50T0 (a) and 55T0 (b), where the magnetic fields are normalized by the initial laser B0 =1.45×105 T. The electron energy density distributions(electron energy in the range of 3 <γe <20)for case A[(c),(d)],case B [(e),(f)], and case C [(g),(h)] are at t =50T0 (left column) and 55T0(right column),respectively.

    Figures 2(c)–2(h) show the electron energy density distribution electron energy in the range of (3<γe<20) along thezdirection att= 50T0and 55T0. It clearly shows that there are high-density electrons in the reconnection region and outflow region, where the black arrow points the outflow direction. In case A, a large number of the energetic particles are accelerated by the reconnection field of MR in the central X-line,where the dissipated magnetic energy is converted into electron kinetic energy. The larger the separation of the two laser spots, the fewer the high-energy particles accelerated at the magnetic energy dissipation area. However, we find that a large number of electrons have been accelerated to the high-energy state when two magnetic tubes compress each other before MR occurs, possibly due to magnetic pressure or/and CS(Fermi-like acceleration)as Luet al.presented.[21]As shown in Fig.2(g),more energetic electrons pile up to create a double-layer structure at the compressing magnetic rings,near the X-line region in the bottom of Fig. 2(g), shown in black dotted rectangle. Att=55T0, this double-layer structure still exists,as seen in Fig.2(h).

    Fig.3. Electron distribution in the phase space of(pz, py). From top to bottom,the rows correspond to case A,B,and C.From left to right,the columns correspond to 45T0,50T0,and 55T0,in chronological order.

    In order to study electron acceleration by MR, we select the electrons in the volume of 14 μm<x <16 μm,7 μm<y <17 μm, and 10 μm<z <25 μm fromt=45T0to 55T0, where the current sheet is located. In the previous work, we found there is a bubble (which is in the black rectangle)in the electron momentum distribution ofpz–py,which is called the pick-up ring.[25]As shown in Figs.3(c)–3(i),the smaller the lasers’separation distance is,the larger the“pickup ring”. The reconnection electric field isEz=0.037,0.032,and 0.028 in case A, B, and C, respectively. When the separation distance between the two lasers becomes smaller, the reconnection electric field becomes stronger and more electrons will be accelerated to higher energy along thezdirection in our simulation and induce a larger pick-up ring.

    Figure 4 shows the electron energy spectra in the reconnection region of case A, case B, and case C driven by two lasers with MR (shown as the black line) corresponding to a single laser case without MR(shown as the blue line). In the range ofγ0<γe<50,the electron energy spectrum is fit as a power-law distribution and its spectrum indexes arep2=2.5,3.0, and 3.2 in case A, B, C respectively as the pink dotted lines shown in Figs. 4(a)–4(c), which are as the same as the spectrum indexes obtained by single laser driving. Compared with the energy spectrum generated by the interaction of the single-sided laser and target,the range of the power-law spectrum with the same index is wider than that generated by the interaction of two lasers and plasma. With the increase of the laser separation distance,fewer electrons are accelerated in reconnection region that we selected,which makes the index of the power-law spectrum increase.

    In the range of 1<γe<γ0,the power-law indexes of the electron spectrum driven by two lasers with MR(shown as the green dotted lines)arep1=1.4,1.8,and 1.9 in case A,B,and C,respectively shown in Figs.4(a)–4(c). Compared with single laser driving case without MR, we find that MR amends the shape of the electron spectrum and makes the spectrum indexp1less than 2 because more low-energy electrons are accelerated to higher energy in the MR process driven by two lasers. Moreover, with a decrease of the laser separation distance, the power-law spectrum is flattened. This is because the electron energy spectrum accelerated by lasers is flatter in the reconnection region when laser the separation distance increases. Meanwhile, the magnetic parameterσof the background plasma before the MR is driven by lasers increases when the laser separation distance decreases(as shown in Table 1). Our simulation results agree with those of previous relativistic astrophysics research[32]in that the magnetic parameter affects electron acceleration in relativistic MR.

    Table 1. Important parameters of the plasma environment.

    Fig.4. The electron energy spectra for case A(a),B(b),and C(c)at the moment the maximum reconnection electric field is reached(t =50T0,55T0,and 55T0, respectively). The vertical axis is the electron count, and the horizontal axis is the relativistic factor of electron. The solid line is for the two-laser case,and the dashed line is for the single laser. The electron distribution is fitted with the power-law spectrum N(γ)=γ-p. The dotted line is the power-law spectrum line with different powers.The green dotted line is fitted with the low-energy region,and the pink dotted line is fitted with the middle-energy region.

    4. Collisionless shock acceleration and magnetic reconnection acceleration

    Figures 3(a)–3(c) not only present the electron pick-up ring but also two electron jets along thepydirection. In particular,in Figs.3(b)and 3(e),the pick-up ring is not obvious,while the electron jets along thepydirection are enhanced.On the whole, the electron jets along thepydirection are obviously present in case C.

    Next,the formation mechanism of the electron jets along thepydirection will be analyzed. Figure 5(a) shows the typical structures of CS, the electron density and electromagnetic fields around the shock front when the shock is fully formed[36]t=50T0in case C (aty=12 μm,z=20 μm).It is found that there are two regions of electron density accu-

    Fig.5. Internal structure of a pair of CS at t =50T0 in case C.(a)Line out of the electron density (ne; solid black line) and electromagnetic fields (Bz indicated by the blue dash-dotted line;Ey,red dashed line;Ex,purple dotted line), at y=12 μm and z=20 μm, region I from x=14 μm to 14.5 μm and region II from x=14.5 μm to 15 μm. The electron energy spectra for different acceleration mechanisms by CS(the blue dashed line)and MR(the red solid line)are in case A at t=50T0(b),case B at t=55T0(c)and case C at t=55T0 (d).

    Fig. 6. Evolution of electron kinetic energy over time. The work done by each electric field component(Wx,Wy,Wz)is plotted for case A,B,and C in panels(a),(b),and(c).

    Figure 6 shows that the electric fieldsExandEzall play important roles in electron acceleration for case A,case B,and case C.In Fig.6(a),for case A,the electron kinetic energyEkmainly comes fromWxandWz. The reconnection contribution is more than others. Figure 6(c)shows that some particles gained energy byWx, and reconnection has less influence in case C. Therefore, figure 6 implies the results of Figs. 5(b)–5(d), where more electrons are accelerated by collisionless shock when two magnetic tubes compress each other.

    5. The 3D effects

    In order to analyze some quantities,the 2D figures in the reconnection plane are presented, which are averaged along thezdirection. This method may lead to the absence of some three-dimensional information. In Figs.7(a)–7(c),the 3D isosurface distribution of the electron momentumpyis presented for case A att=50T0,and case B and case C att=55T0,respectively.High-energy electrons are distributed at the front of the laser transmission channel.In contrast,in case A,electrons are concentrated in the reconnected region with a very narrowxscope,while in case B and case C,more energetic electrons along theydirection are located over the whole interaction region of the plasma generated by the two lasers, which means that more energetic electrons are located over a wider range ofx. These features also imply that the acceleration mechanism is different.

    According to the location of the outflow in the 3D scenario of Figs.7(a)–7(c),the electron energy spectra are given in Figs. 7(d)–7(f) where the selected region is 13 μm<x <17 μm,5 μm<y <19 μm,and 25 μm<z <40 μm where the outflows are located. We find that one part of the energy spectrum for the two lasers with MR is the same as the case of the single laser without MR;the other part of the electron energy spectrum is modified by MR,which can be fit as a power-law distribution and its index is close to 1.Re-calculating the magnetization parameterσ, they are 70.2, 38.8, and 37.7 in case A,case B,and case C,respectively. This plasma environment is ultra-relativistic,which results in a very flat electron energy spectrum.

    Fig. 7. (a)–(c) Three-dimensional isosurface distributions of the electron momentum py for case A, B, and C are at t =50T0 (a), 55T0 (b), and 55T0 (c),respectively. Here,purple shows along positive py and blue shows along negative py. (d)–(f)The corresponding two-laser case spectra(black lines)and the single-laser case spectra(blue lines)in the contrast diagram are also drawn for the electrons in the reconnection area(x=13 μm–17 μm,y=5 μm–19 μm,z=25 μm–40 μm). The red lines indicate the power law of the spectrum 1 <γe <γ0.

    6. Discussion and conclusions

    Table 1 presents some parameters of the plasma environment driven by two ultra-intense femtosecond lasers and in a gamma ray burst environment. Theσis also much greater than unityσ ≥1, and the energy density of the reconnection magnetic field is larger than the rest mass energy density of the electrons. Therefore,the MR driven by ultra-intense lasers is ultra-relativistic.

    The plasma betaβ=2μ0nekBT/B2(βis the ratio of the thermal pressure to the magnetic pressure) is much smaller than 1. We find that the electron Alfv′en speed is close to the speed of lightνAe~c. These parameters match the environment of high-energy astronomical phenomena. Even though our simulation parameters do not exactly match high-energy astronomical ones,such as particle density,magnetic field energy, spatial and temporal scale, to some extent, our simulations reflect the mechanism and process of electron acceleration, corresponding to many high-energy emission of the astronomical observations.[40–42]

    In this paper, from the momentum diagram, the “pickup ring” shrinks as the laser separation distance increases.Fewer reconnection electric fields accelerate fewer electrons to higher energies. At the same time, two momentum jets alongpyare presented, and they are more obvious with an increase of the separation distance. This may be related with the different acceleration mechanisms in the case with a different separation distance. With the increase of the laser separation distance,the binding of electrons in the magnetic field becomes weaker,the duration of CS becomes longer,and the acceleration space becomes larger. So,more electrons can be accelerated by CS. Therefore, in thepydirection of the electron momentum phase space,jets appear and become larger as the laser separation distance increases. Then,through the energy spectrum analysis of different regions,we find that,with separation distance increasing, the electron energy spectrum of energetic electrons from collisionless shock approaches that from MR.As the separation distance decreases,the magnetization parameterσincreases,and the electron energy spectrum becomes flatter and less than 1. From the 3D momentum configuration, the outflow is presented between two lasers. According to the position of the outflow,the electron energy spectrum and the magnetization parameter are re-examined. The magnetization parameter is higher, and the index of the energetic electron spectrum is close to 1.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos. U1930108,12175018,12135001, 12075030, and 11903006) and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDA25030700). Yongli Ping acknowledges the support of the Open Research Program from Key Laboratory of Geospace Environment CAS.

    猜你喜歡
    張茜孫偉永利
    孫偉美術(shù)作品
    科技興邦 創(chuàng)新強(qiáng)國(guó)
    一種水陸兩棲飛機(jī)普通框結(jié)構(gòu)設(shè)計(jì)
    深圳市永利種業(yè)有限公司
    辣椒雜志(2021年4期)2021-04-14 08:28:14
    Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading*
    畢永利教授簡(jiǎn)介
    法眼看平等教學(xué)設(shè)計(jì)
    Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock?
    藝術(shù)百家
    氣球
    国产精品久久久av美女十八| 国产精品自产拍在线观看55亚洲| 给我免费播放毛片高清在线观看| 久久影院123| 欧美日韩瑟瑟在线播放| 啦啦啦免费观看视频1| 琪琪午夜伦伦电影理论片6080| 视频在线观看一区二区三区| 中文字幕最新亚洲高清| 九色亚洲精品在线播放| 精品一品国产午夜福利视频| 久久精品国产亚洲av高清一级| 黄色片一级片一级黄色片| 欧美一级a爱片免费观看看 | 欧美不卡视频在线免费观看 | 18禁观看日本| 88av欧美| 国产熟女午夜一区二区三区| 人人澡人人妻人| 国产精品免费视频内射| 欧美老熟妇乱子伦牲交| 亚洲成av人片免费观看| 九色国产91popny在线| av免费在线观看网站| 美女大奶头视频| 嫩草影院精品99| 18禁黄网站禁片午夜丰满| 淫妇啪啪啪对白视频| 侵犯人妻中文字幕一二三四区| 中文字幕人成人乱码亚洲影| 亚洲黑人精品在线| 欧美国产日韩亚洲一区| 女同久久另类99精品国产91| 久久中文看片网| 中亚洲国语对白在线视频| 婷婷丁香在线五月| 欧美激情久久久久久爽电影 | 制服人妻中文乱码| 国产99白浆流出| 亚洲视频免费观看视频| 久久性视频一级片| 日日爽夜夜爽网站| 国产av在哪里看| 国产亚洲欧美在线一区二区| 欧美色欧美亚洲另类二区 | 高清黄色对白视频在线免费看| 桃色一区二区三区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 最好的美女福利视频网| 亚洲av熟女| 99久久综合精品五月天人人| 亚洲专区国产一区二区| 亚洲久久久国产精品| 91国产中文字幕| 国产精品一区二区在线不卡| 免费在线观看影片大全网站| 久久久久久大精品| 性欧美人与动物交配| av电影中文网址| 婷婷精品国产亚洲av在线| 成人亚洲精品一区在线观看| 亚洲一区高清亚洲精品| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 黄色视频,在线免费观看| 国产精品秋霞免费鲁丝片| 看片在线看免费视频| 一进一出抽搐gif免费好疼| 亚洲精品美女久久久久99蜜臀| 成人手机av| 国产日韩一区二区三区精品不卡| 国产欧美日韩一区二区三区在线| 亚洲九九香蕉| 欧美中文综合在线视频| 亚洲国产高清在线一区二区三 | 国产精品久久视频播放| 亚洲在线自拍视频| 午夜福利高清视频| 黑丝袜美女国产一区| x7x7x7水蜜桃| 熟妇人妻久久中文字幕3abv| 精品人妻在线不人妻| 电影成人av| svipshipincom国产片| 国产熟女xx| 欧美日本亚洲视频在线播放| 老鸭窝网址在线观看| 亚洲国产中文字幕在线视频| 激情视频va一区二区三区| 男女床上黄色一级片免费看| 久久这里只有精品19| 丝袜美足系列| 国产在线观看jvid| 久久精品成人免费网站| 最新美女视频免费是黄的| 成人特级黄色片久久久久久久| 亚洲成人国产一区在线观看| 女警被强在线播放| 免费在线观看日本一区| 国产三级在线视频| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| 黄片大片在线免费观看| 丝袜美足系列| 亚洲片人在线观看| 后天国语完整版免费观看| 国产精品电影一区二区三区| 亚洲美女黄片视频| 1024视频免费在线观看| 久久 成人 亚洲| 亚洲少妇的诱惑av| 久久精品成人免费网站| 50天的宝宝边吃奶边哭怎么回事| 免费看a级黄色片| 久久人妻熟女aⅴ| 亚洲国产中文字幕在线视频| 一进一出抽搐gif免费好疼| 免费高清在线观看日韩| 欧美成人免费av一区二区三区| 手机成人av网站| 宅男免费午夜| 欧美色欧美亚洲另类二区 | 欧美乱妇无乱码| 日日夜夜操网爽| www.自偷自拍.com| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看 | 亚洲全国av大片| 黑丝袜美女国产一区| 精品日产1卡2卡| 一级a爱视频在线免费观看| 欧美黄色片欧美黄色片| e午夜精品久久久久久久| 亚洲最大成人中文| www.999成人在线观看| 真人一进一出gif抽搐免费| 日日摸夜夜添夜夜添小说| 人人妻人人澡欧美一区二区 | 老司机靠b影院| 一个人免费在线观看的高清视频| 中出人妻视频一区二区| 成人av一区二区三区在线看| 国产成人精品无人区| xxx96com| 亚洲人成网站在线播放欧美日韩| 男女做爰动态图高潮gif福利片 | 97人妻天天添夜夜摸| 欧美黄色片欧美黄色片| www国产在线视频色| 两性午夜刺激爽爽歪歪视频在线观看 | 国产色视频综合| 男男h啪啪无遮挡| 村上凉子中文字幕在线| a在线观看视频网站| 精品国内亚洲2022精品成人| 国产一区在线观看成人免费| 99在线视频只有这里精品首页| 午夜日韩欧美国产| 少妇被粗大的猛进出69影院| 亚洲色图 男人天堂 中文字幕| 一区二区三区国产精品乱码| 色综合亚洲欧美另类图片| 男人操女人黄网站| 亚洲最大成人中文| 女生性感内裤真人,穿戴方法视频| 两人在一起打扑克的视频| 成人国产综合亚洲| 午夜福利免费观看在线| 伦理电影免费视频| 久久久国产欧美日韩av| 欧美乱妇无乱码| 在线观看舔阴道视频| 国产xxxxx性猛交| 嫁个100分男人电影在线观看| 一级毛片高清免费大全| 久久精品aⅴ一区二区三区四区| 精品欧美国产一区二区三| 亚洲av片天天在线观看| 在线观看免费视频网站a站| 久久午夜亚洲精品久久| 美女国产高潮福利片在线看| 成人免费观看视频高清| 国产人伦9x9x在线观看| 一级a爱片免费观看的视频| 禁无遮挡网站| 日韩精品中文字幕看吧| 亚洲久久久国产精品| 成人国语在线视频| 悠悠久久av| 一夜夜www| 久久午夜综合久久蜜桃| 国产真人三级小视频在线观看| 国产精华一区二区三区| 岛国在线观看网站| 91精品三级在线观看| 久久精品国产99精品国产亚洲性色 | 99国产精品免费福利视频| 桃色一区二区三区在线观看| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 精品一区二区三区av网在线观看| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 不卡一级毛片| 中亚洲国语对白在线视频| 成人精品一区二区免费| 亚洲av美国av| 欧美国产日韩亚洲一区| 男人舔女人的私密视频| 久久久久九九精品影院| 欧美精品啪啪一区二区三区| 国产精品自产拍在线观看55亚洲| 怎么达到女性高潮| 美女午夜性视频免费| tocl精华| 色老头精品视频在线观看| 国产精品一区二区三区四区久久 | 最新美女视频免费是黄的| 国产三级在线视频| 久久九九热精品免费| 好看av亚洲va欧美ⅴa在| 亚洲成人国产一区在线观看| 日韩一卡2卡3卡4卡2021年| 变态另类成人亚洲欧美熟女 | 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区激情短视频| 国产精品 欧美亚洲| 国产精品影院久久| 69精品国产乱码久久久| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 免费观看精品视频网站| 亚洲激情在线av| av片东京热男人的天堂| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久二区二区91| 可以在线观看毛片的网站| 久热这里只有精品99| 国产成人一区二区三区免费视频网站| 欧美日韩黄片免| 高清黄色对白视频在线免费看| 国产精品野战在线观看| 亚洲视频免费观看视频| 国产亚洲欧美精品永久| 久久国产乱子伦精品免费另类| 禁无遮挡网站| 老熟妇乱子伦视频在线观看| 大陆偷拍与自拍| 9色porny在线观看| 国产xxxxx性猛交| 黄色片一级片一级黄色片| 亚洲人成网站在线播放欧美日韩| 久久亚洲真实| 久久久久国产精品人妻aⅴ院| 黄色视频不卡| 九色国产91popny在线| 国产xxxxx性猛交| 三级毛片av免费| 亚洲欧美激情在线| 久久久久久久久久久久大奶| 欧美精品啪啪一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区国产精品乱码| 黄片小视频在线播放| 老司机午夜福利在线观看视频| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 亚洲五月色婷婷综合| 精品免费久久久久久久清纯| 热re99久久国产66热| 国产一卡二卡三卡精品| 欧美中文综合在线视频| 亚洲国产看品久久| 中文字幕色久视频| 村上凉子中文字幕在线| 免费不卡黄色视频| 91字幕亚洲| 高清毛片免费观看视频网站| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影| 国产亚洲精品综合一区在线观看 | 亚洲视频免费观看视频| 成人三级做爰电影| 国产又爽黄色视频| 精品久久蜜臀av无| 久久久国产欧美日韩av| 国产亚洲欧美98| 亚洲成人久久性| 丝袜人妻中文字幕| 国产亚洲av高清不卡| 久久精品国产亚洲av高清一级| 午夜日韩欧美国产| 亚洲av电影在线进入| 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| 精品久久久久久成人av| 无遮挡黄片免费观看| 久久久国产成人免费| 欧美不卡视频在线免费观看 | 女人被躁到高潮嗷嗷叫费观| 午夜免费激情av| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 精品一品国产午夜福利视频| 欧美中文日本在线观看视频| www.自偷自拍.com| 69精品国产乱码久久久| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 一本大道久久a久久精品| 亚洲av成人av| 两个人看的免费小视频| 日韩欧美一区视频在线观看| 女人被狂操c到高潮| 悠悠久久av| 亚洲精华国产精华精| 免费在线观看视频国产中文字幕亚洲| 久久久精品欧美日韩精品| 欧美久久黑人一区二区| 一区二区日韩欧美中文字幕| 首页视频小说图片口味搜索| 伊人久久大香线蕉亚洲五| 一区二区三区精品91| 色老头精品视频在线观看| 国产精品爽爽va在线观看网站 | 国产精品久久电影中文字幕| 免费看a级黄色片| 国产精品美女特级片免费视频播放器 | 亚洲精品在线美女| 69av精品久久久久久| 精品国产国语对白av| 91精品三级在线观看| 国产成人欧美在线观看| 动漫黄色视频在线观看| 午夜福利在线观看吧| 一本大道久久a久久精品| 91麻豆精品激情在线观看国产| 很黄的视频免费| 嫩草影视91久久| 国产熟女午夜一区二区三区| 午夜福利高清视频| 午夜老司机福利片| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 老熟妇仑乱视频hdxx| 午夜精品在线福利| 一区二区三区高清视频在线| 精品熟女少妇八av免费久了| 成人国产一区最新在线观看| 久久久精品国产亚洲av高清涩受| av中文乱码字幕在线| 人人妻人人澡人人看| 亚洲全国av大片| 日本一区二区免费在线视频| 婷婷精品国产亚洲av在线| 精品一区二区三区四区五区乱码| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 最好的美女福利视频网| 可以免费在线观看a视频的电影网站| 亚洲伊人色综图| 日韩一卡2卡3卡4卡2021年| 成年版毛片免费区| 国产精品久久久久久人妻精品电影| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 国产精品国产高清国产av| 搡老妇女老女人老熟妇| 美女国产高潮福利片在线看| 国产精品久久视频播放| 亚洲欧美日韩另类电影网站| 一级片免费观看大全| 亚洲午夜精品一区,二区,三区| 两个人视频免费观看高清| 日韩国内少妇激情av| 日本a在线网址| 欧美精品啪啪一区二区三区| 亚洲五月天丁香| 国产乱人伦免费视频| 国产精品久久久久久人妻精品电影| 亚洲av五月六月丁香网| 一边摸一边抽搐一进一小说| 国产精品99久久99久久久不卡| 一级,二级,三级黄色视频| av免费在线观看网站| 免费看十八禁软件| 国产午夜福利久久久久久| 男人操女人黄网站| 韩国精品一区二区三区| 欧美丝袜亚洲另类 | 人妻久久中文字幕网| 午夜福利欧美成人| 黄色丝袜av网址大全| 亚洲成人国产一区在线观看| 看免费av毛片| 日韩视频一区二区在线观看| 亚洲最大成人中文| 久久天躁狠狠躁夜夜2o2o| 在线观看66精品国产| 午夜免费激情av| 999久久久精品免费观看国产| 波多野结衣一区麻豆| 日本免费一区二区三区高清不卡 | 日韩精品免费视频一区二区三区| 国产精品永久免费网站| 欧美黄色片欧美黄色片| 久久 成人 亚洲| 精品久久久久久久毛片微露脸| 女人爽到高潮嗷嗷叫在线视频| 91av网站免费观看| 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 亚洲成人久久性| 美女 人体艺术 gogo| 涩涩av久久男人的天堂| 国产亚洲欧美精品永久| 宅男免费午夜| 国产1区2区3区精品| 大陆偷拍与自拍| 亚洲va日本ⅴa欧美va伊人久久| 免费人成视频x8x8入口观看| 国产精品亚洲一级av第二区| 欧美人与性动交α欧美精品济南到| 欧美一区二区精品小视频在线| 国产成人一区二区三区免费视频网站| 美女大奶头视频| 午夜久久久在线观看| 黄色女人牲交| 脱女人内裤的视频| 国产av精品麻豆| 久久久久国产精品人妻aⅴ院| 中亚洲国语对白在线视频| 激情视频va一区二区三区| 久99久视频精品免费| 亚洲精品在线观看二区| 成人亚洲精品av一区二区| 午夜福利一区二区在线看| 久久久久久久久免费视频了| 国产精品亚洲av一区麻豆| 亚洲中文字幕日韩| av福利片在线| 欧美av亚洲av综合av国产av| 亚洲国产精品久久男人天堂| 国产成年人精品一区二区| 欧美最黄视频在线播放免费| 国产欧美日韩精品亚洲av| 99久久99久久久精品蜜桃| 神马国产精品三级电影在线观看 | 他把我摸到了高潮在线观看| 国产熟女午夜一区二区三区| aaaaa片日本免费| 香蕉久久夜色| 淫秽高清视频在线观看| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 亚洲国产欧美网| 午夜福利免费观看在线| 一级毛片精品| 88av欧美| 亚洲天堂国产精品一区在线| 精品一品国产午夜福利视频| 十分钟在线观看高清视频www| 18禁观看日本| 99在线视频只有这里精品首页| 一级a爱视频在线免费观看| 99国产精品一区二区蜜桃av| 成人永久免费在线观看视频| 天天添夜夜摸| 亚洲中文日韩欧美视频| 欧美黑人欧美精品刺激| 美女扒开内裤让男人捅视频| 久久久久亚洲av毛片大全| bbb黄色大片| 国产高清视频在线播放一区| 波多野结衣一区麻豆| 变态另类成人亚洲欧美熟女 | 国产av一区在线观看免费| 日韩成人在线观看一区二区三区| 国产国语露脸激情在线看| 在线观看免费视频日本深夜| 69av精品久久久久久| 国产免费男女视频| 国产av精品麻豆| 亚洲情色 制服丝袜| 他把我摸到了高潮在线观看| 91麻豆av在线| 婷婷精品国产亚洲av在线| 人人妻人人澡人人看| 一区二区三区高清视频在线| 后天国语完整版免费观看| 久久香蕉精品热| 久久久久九九精品影院| 欧美成人午夜精品| 日本 欧美在线| av免费在线观看网站| 亚洲七黄色美女视频| 中文字幕精品免费在线观看视频| 极品教师在线免费播放| 看免费av毛片| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 日韩大尺度精品在线看网址 | 精品人妻1区二区| 如日韩欧美国产精品一区二区三区| 一区二区三区激情视频| 久久久久国内视频| 亚洲五月色婷婷综合| 两个人视频免费观看高清| 99国产精品99久久久久| 欧美日本中文国产一区发布| 黑人欧美特级aaaaaa片| 88av欧美| 黑人欧美特级aaaaaa片| 99热只有精品国产| 久久久久久久久免费视频了| 国产成年人精品一区二区| 黑人欧美特级aaaaaa片| 免费在线观看完整版高清| 多毛熟女@视频| 中文字幕人成人乱码亚洲影| 色av中文字幕| avwww免费| 欧美国产日韩亚洲一区| 午夜福利一区二区在线看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品aⅴ一区二区三区四区| 亚洲电影在线观看av| 久久精品91无色码中文字幕| 亚洲专区国产一区二区| www.www免费av| 成人特级黄色片久久久久久久| 国产av又大| 国产高清视频在线播放一区| 亚洲人成电影免费在线| 亚洲 国产 在线| 极品人妻少妇av视频| 在线观看免费视频网站a站| 国产1区2区3区精品| 母亲3免费完整高清在线观看| 午夜视频精品福利| 午夜福利成人在线免费观看| 亚洲精品粉嫩美女一区| 国产精品一区二区精品视频观看| 男人舔女人下体高潮全视频| 中文字幕久久专区| 免费人成视频x8x8入口观看| 嫩草影视91久久| 亚洲欧洲精品一区二区精品久久久| 19禁男女啪啪无遮挡网站| 国产乱人伦免费视频| 美女 人体艺术 gogo| 国产欧美日韩一区二区三| 欧美乱码精品一区二区三区| 国产色视频综合| 久久国产精品男人的天堂亚洲| 久久青草综合色| 久久久久久久久久久久大奶| 亚洲精品在线观看二区| xxx96com| 欧美成人性av电影在线观看| 亚洲专区中文字幕在线| 久久伊人香网站| 黄色视频,在线免费观看| 在线观看www视频免费| 精品久久蜜臀av无| 国产一区二区在线av高清观看| 国产精品98久久久久久宅男小说| 日本vs欧美在线观看视频| 1024香蕉在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产日韩欧美精品在线观看 | 精品久久久久久久久久免费视频| а√天堂www在线а√下载| ponron亚洲| 久久久久精品国产欧美久久久| 久久人妻福利社区极品人妻图片| 国产99白浆流出| 亚洲avbb在线观看| 久久精品人人爽人人爽视色| 欧美成人午夜精品| 亚洲第一欧美日韩一区二区三区| 啦啦啦 在线观看视频| 变态另类成人亚洲欧美熟女 | 宅男免费午夜| 亚洲最大成人中文| 三级毛片av免费| 国产精品,欧美在线| 99国产精品一区二区三区| 女警被强在线播放| 欧美老熟妇乱子伦牲交| 亚洲国产精品合色在线| 久久久精品国产亚洲av高清涩受| 亚洲男人天堂网一区| 手机成人av网站| 亚洲成a人片在线一区二区| 亚洲av成人av| 变态另类成人亚洲欧美熟女 | 精品乱码久久久久久99久播| 亚洲国产精品合色在线| 国产麻豆69| 岛国视频午夜一区免费看| 欧美不卡视频在线免费观看 | av欧美777| 好看av亚洲va欧美ⅴa在| 一级作爱视频免费观看| 91麻豆精品激情在线观看国产| 少妇熟女aⅴ在线视频| 国产国语露脸激情在线看| 午夜福利,免费看| 国产精品国产高清国产av|