• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma

    2022-06-29 08:55:40QianZhang張茜YongliPing平永利WeimingAn安維明WeiSun孫偉andJiayongZhong仲佳勇
    Chinese Physics B 2022年6期
    關(guān)鍵詞:張茜孫偉永利

    Qian Zhang(張茜) Yongli Ping(平永利) Weiming An(安維明) Wei Sun(孫偉) and Jiayong Zhong(仲佳勇)

    1Department of Astronomy,Beijing Normal University,Beijing 100875,China

    2CAS Key Laboratory of Geospace Environment,University of Science&Technology of China,Hefei 230026,China

    Keywords: collisionless shocks,magnetic reconnection,magnetization parameter,electron acceleration

    1. Introduction

    There are a number of particle acceleration processes involved in astrophysical phenomena such as gamma ray bursts,jets from active galactic nuclei, and cosmic rays from the super-nova remnants.[1–5]Two of these processes are magnetic reconnection (MR) and collisionless shocks (CSs). Both of these processes lead to the acceleration of charged particles and will be discussed in this work. MR, for example, leads to the conversion of magnetic energy to kinetic energy. In the heliosphere, the current sheet formed by the interaction between the solar wind and the geomagnetic field is also considered as a region where magnetic fields reconnect,and thus energy conversion and dissipation occur.[6]Energetic particles accelerated by MR and/or CS have also been observed in the laboratory.

    In the laboratory,the use of nanosecond lasers focused on plastic or metal targets produces a warm dense plasma and a mega-Gauss(MG)magnetic field due to the Biermann battery effect, which is similar to the astrophysical environment.[7,8]Key features of MR have been found in plasmas generated by the interaction of two laser beams with a target,including the MR structure and two high-velocity collimated jets in the reconnection layer.[9,10]The MR-induced ring top x-ray source and outflow/jet in solar flares were first simulated in the laboratory using MG magnetic field generated by the interaction of a high-intensity laser with a target. In addition,the decoupling of ions and electrons at the length of the ion inertia of the diffusion region has been determined.[11]Electrons are accelerated to relativistic velocity driven by MR in the laboratory.[12–17]The pre-magnetized plasma CS front increases the reflection of particles on the shock surface before the collision of the two plasmas to form magnetic reconnection.[18]Electrons are effectively accelerated to relativistic non-thermal energy in the small-scale turbulence generated by shock by first-order Fermi acceleration.[19]In our work we will employ particle-in-cell(PIC)simulation methods;such methods have previously been used in comprehensive studies of high-energy-density plasmas and MR.[20–23]The high-energy electrons were accelerated and injected in the reconnection zone.[24]It is found that the electron “pick-up ring” and the electrons accelerated by MR have a flatter spectrum compared with single laser and target interaction.[25]

    The energy spectrum index is an important parameter of reaction electron acceleration efficiency.[26,27]In the relativistic MR regime, a large number of studies have shown that the electron energy spectrum indexpapproaches 1, where the distribution of the electron energy isN(γ) =Cγ-pandCis a constant.[28]The acceleration driven by the reconnection electric field is so intense that the power-law index of the non-thermal particle energy spectrum tail is close to 1.[29–31]For relativistic MR,the magnetization parameterσ=B2/(μ0nemec2) is usually much larger than 1,[32]whereσis the ratio of the energy density in reconnecting the magnetic field to the rest mass energy density andneis the electron density.

    In this paper, we present 3D PIC simulation results for relativistic MR driven by two ultra-intense lasers with different spot separation distance. The purpose of our simulation is to obtain the changing plasma environment(magnetization parameterσ)in the reconnection region with a variable separation of the laser spots and to study the influence of electron acceleration in different plasma environments. The simulation results show that the magnetization parameter in the reconnection region will increase when the distance between the two laser spots decreases. Because a larger magnetization parameter represents stronger magnetic energy, particles can be efficiently accelerated by MR and have a higher reconnection rate. It is found that CS plays an important role in electron acceleration in MR driven by ultra-intense lasers. Lastly, the 3D momentum configuration is presented.

    2. Simulation and setup

    We used KLAP,which is a PIC code used to study energetic particle acceleration under ultra-intense laser and plasma interactions.[33,34]In a previous simulation of MR, electrons with relativistic energies were generated in the MR process via an ultra-intense laser–plasma interaction.[25]In this paper,the relativistic MR process driven by two ultra-intense lasers with different spot separation distance is simulated. The simulation box size wasLx×Ly×Lz=30 μm×24 μm×50 μm,which was divided into 600×480×1000 cells. The number of particles per cell was 8 and there were more than 2.3 billion particles in total. Both particles and fields had periodic boundary conditions in thexandydirections, and radiating boundary conditions in thezdirection.

    Initially, two identical circularly polarized laser pulses were injected into the plasma target along thezdirection. Two laser pulses had a peak intensity of 5×1020W/cm2, with a 3 μm spot diameter size. The wavelength of the laser wasλ0=1 μm, and its period wasT0=λ/c ≈3.33 fs. The normalized laser vector potential wasa0=13.5. So,the upstream side of the MR region showed the bulk Lorentz factor ofγ0=(1+a20)1/2=13.5. The initial electron and ion temperatures were 10 keV and 0.01 keV respectively. The Debye length wasλD=(kTe/μ0nee2)1/2≈0.235 μm≈4.7L(L=0.05 μm is the cell size in the simulation box). The electron skin depth wasde=c/ωpe≈0.71 μm,whereωpe=(μ0e2n0/γ0me)1/2is the electron plasma frequency. In addition,deis close to the laser wavelengthλ0. Throughout this paper we set the laser frequency tof=c/λ, and we use the normal value of the mass ratio of a proton to an electron:mp/me=1836. In this paper, we normalize the magnetic field, the electric field and the electron density toB0=(I/εc)1/2/c=1.45×105T,E0=4.34×1013V/m,n0=nc=meω20/μ0e2=1.15×1021cm-3,respectively,wherencis the critical plasma density.

    The initial plasma density in the simulation box had a varying profile along thezdirection

    wherez0=5 μm,z1=15 μm,andL0=20 μm.

    Figure 1 shows the evolution of the reconnection rateEz/VAeBAversus time, whereEzare the electric fields in the reconnection points(X-point)versus time.VAeis the velocity of Alfv′en andBAis the asymptotic magnetic field strength at the time of the maximum reconnection field. With the laser separation distance ofdsof 8 μm(black solid line)in case A,the reconnection rate is almost zero between 20T0and 35T0,and MR does not occur. The reconnection rate increases from 40T0and reaches its maximum 0.28 att=50T0; then the reconnection rate starts to go down. For the cases with a laser separation distance of 9 μm (red dashed line) in case B and 10 μm (blue dotted line) in case C, the reconnecting rates reach their maximum,0.37 and 0.49,att=55T0,respectively.The reconnection rate increases with increasing spots separation distance,which means that the magnetic energy dissipates faster in the corresponding reconnection region.The evolution trend of the reconnection rate with the separation distance is consistent with the formula[35]

    wheredrdescribes the distance of the laser spot to the reconnection point andI0is the laser peak intensity. Att=75T0,there is a second bump in the reconnecting rate.

    Fig. 1. The reconnection rates for the lasers’ separation with 8 μm (black solid line)in case A,9 μm(red dashed line)in case B and 10 μm(blue dotted line)in case C are 50T0, 55T0 and 55T0, respectively, where the electric field is normalized by Ez/VAeBA.

    3. Electron acceleration in magnetic reconnection with different separation distances

    When two laser beams are injected into a plasma target with near-critical density,the laser will push the electrons forward and generate a co-directional current and a quasi-static in-plane magnetic field. The anti-parallel magnetic fields encounter each other and MR occurs in the middle of the two lasers, as shown enclosed by the white dotted rectangle in Figs. 2(a) and (b). Relativistic energetic electrons are generated through the interaction between the high-power ultrashort femetosecond laser pulses and the target.According to a previous study,the current layer of the MR driven by ultra-intense lasers is smaller than the ion scale (ion skin depth).[35]This means that the electrons are frozen with the magnetic field line and move towards one another. Therefore, this MR process happens in the electron diffusion region(EDR).

    Fig.2. The in-plane magnetic field|B⊥|for case A is on the x–y plane with z=20 μm at t =50T0 (a) and 55T0 (b), where the magnetic fields are normalized by the initial laser B0 =1.45×105 T. The electron energy density distributions(electron energy in the range of 3 <γe <20)for case A[(c),(d)],case B [(e),(f)], and case C [(g),(h)] are at t =50T0 (left column) and 55T0(right column),respectively.

    Figures 2(c)–2(h) show the electron energy density distribution electron energy in the range of (3<γe<20) along thezdirection att= 50T0and 55T0. It clearly shows that there are high-density electrons in the reconnection region and outflow region, where the black arrow points the outflow direction. In case A, a large number of the energetic particles are accelerated by the reconnection field of MR in the central X-line,where the dissipated magnetic energy is converted into electron kinetic energy. The larger the separation of the two laser spots, the fewer the high-energy particles accelerated at the magnetic energy dissipation area. However, we find that a large number of electrons have been accelerated to the high-energy state when two magnetic tubes compress each other before MR occurs, possibly due to magnetic pressure or/and CS(Fermi-like acceleration)as Luet al.presented.[21]As shown in Fig.2(g),more energetic electrons pile up to create a double-layer structure at the compressing magnetic rings,near the X-line region in the bottom of Fig. 2(g), shown in black dotted rectangle. Att=55T0, this double-layer structure still exists,as seen in Fig.2(h).

    Fig.3. Electron distribution in the phase space of(pz, py). From top to bottom,the rows correspond to case A,B,and C.From left to right,the columns correspond to 45T0,50T0,and 55T0,in chronological order.

    In order to study electron acceleration by MR, we select the electrons in the volume of 14 μm<x <16 μm,7 μm<y <17 μm, and 10 μm<z <25 μm fromt=45T0to 55T0, where the current sheet is located. In the previous work, we found there is a bubble (which is in the black rectangle)in the electron momentum distribution ofpz–py,which is called the pick-up ring.[25]As shown in Figs.3(c)–3(i),the smaller the lasers’separation distance is,the larger the“pickup ring”. The reconnection electric field isEz=0.037,0.032,and 0.028 in case A, B, and C, respectively. When the separation distance between the two lasers becomes smaller, the reconnection electric field becomes stronger and more electrons will be accelerated to higher energy along thezdirection in our simulation and induce a larger pick-up ring.

    Figure 4 shows the electron energy spectra in the reconnection region of case A, case B, and case C driven by two lasers with MR (shown as the black line) corresponding to a single laser case without MR(shown as the blue line). In the range ofγ0<γe<50,the electron energy spectrum is fit as a power-law distribution and its spectrum indexes arep2=2.5,3.0, and 3.2 in case A, B, C respectively as the pink dotted lines shown in Figs. 4(a)–4(c), which are as the same as the spectrum indexes obtained by single laser driving. Compared with the energy spectrum generated by the interaction of the single-sided laser and target,the range of the power-law spectrum with the same index is wider than that generated by the interaction of two lasers and plasma. With the increase of the laser separation distance,fewer electrons are accelerated in reconnection region that we selected,which makes the index of the power-law spectrum increase.

    In the range of 1<γe<γ0,the power-law indexes of the electron spectrum driven by two lasers with MR(shown as the green dotted lines)arep1=1.4,1.8,and 1.9 in case A,B,and C,respectively shown in Figs.4(a)–4(c). Compared with single laser driving case without MR, we find that MR amends the shape of the electron spectrum and makes the spectrum indexp1less than 2 because more low-energy electrons are accelerated to higher energy in the MR process driven by two lasers. Moreover, with a decrease of the laser separation distance, the power-law spectrum is flattened. This is because the electron energy spectrum accelerated by lasers is flatter in the reconnection region when laser the separation distance increases. Meanwhile, the magnetic parameterσof the background plasma before the MR is driven by lasers increases when the laser separation distance decreases(as shown in Table 1). Our simulation results agree with those of previous relativistic astrophysics research[32]in that the magnetic parameter affects electron acceleration in relativistic MR.

    Table 1. Important parameters of the plasma environment.

    Fig.4. The electron energy spectra for case A(a),B(b),and C(c)at the moment the maximum reconnection electric field is reached(t =50T0,55T0,and 55T0, respectively). The vertical axis is the electron count, and the horizontal axis is the relativistic factor of electron. The solid line is for the two-laser case,and the dashed line is for the single laser. The electron distribution is fitted with the power-law spectrum N(γ)=γ-p. The dotted line is the power-law spectrum line with different powers.The green dotted line is fitted with the low-energy region,and the pink dotted line is fitted with the middle-energy region.

    4. Collisionless shock acceleration and magnetic reconnection acceleration

    Figures 3(a)–3(c) not only present the electron pick-up ring but also two electron jets along thepydirection. In particular,in Figs.3(b)and 3(e),the pick-up ring is not obvious,while the electron jets along thepydirection are enhanced.On the whole, the electron jets along thepydirection are obviously present in case C.

    Next,the formation mechanism of the electron jets along thepydirection will be analyzed. Figure 5(a) shows the typical structures of CS, the electron density and electromagnetic fields around the shock front when the shock is fully formed[36]t=50T0in case C (aty=12 μm,z=20 μm).It is found that there are two regions of electron density accu-

    Fig.5. Internal structure of a pair of CS at t =50T0 in case C.(a)Line out of the electron density (ne; solid black line) and electromagnetic fields (Bz indicated by the blue dash-dotted line;Ey,red dashed line;Ex,purple dotted line), at y=12 μm and z=20 μm, region I from x=14 μm to 14.5 μm and region II from x=14.5 μm to 15 μm. The electron energy spectra for different acceleration mechanisms by CS(the blue dashed line)and MR(the red solid line)are in case A at t=50T0(b),case B at t=55T0(c)and case C at t=55T0 (d).

    Fig. 6. Evolution of electron kinetic energy over time. The work done by each electric field component(Wx,Wy,Wz)is plotted for case A,B,and C in panels(a),(b),and(c).

    Figure 6 shows that the electric fieldsExandEzall play important roles in electron acceleration for case A,case B,and case C.In Fig.6(a),for case A,the electron kinetic energyEkmainly comes fromWxandWz. The reconnection contribution is more than others. Figure 6(c)shows that some particles gained energy byWx, and reconnection has less influence in case C. Therefore, figure 6 implies the results of Figs. 5(b)–5(d), where more electrons are accelerated by collisionless shock when two magnetic tubes compress each other.

    5. The 3D effects

    In order to analyze some quantities,the 2D figures in the reconnection plane are presented, which are averaged along thezdirection. This method may lead to the absence of some three-dimensional information. In Figs.7(a)–7(c),the 3D isosurface distribution of the electron momentumpyis presented for case A att=50T0,and case B and case C att=55T0,respectively.High-energy electrons are distributed at the front of the laser transmission channel.In contrast,in case A,electrons are concentrated in the reconnected region with a very narrowxscope,while in case B and case C,more energetic electrons along theydirection are located over the whole interaction region of the plasma generated by the two lasers, which means that more energetic electrons are located over a wider range ofx. These features also imply that the acceleration mechanism is different.

    According to the location of the outflow in the 3D scenario of Figs.7(a)–7(c),the electron energy spectra are given in Figs. 7(d)–7(f) where the selected region is 13 μm<x <17 μm,5 μm<y <19 μm,and 25 μm<z <40 μm where the outflows are located. We find that one part of the energy spectrum for the two lasers with MR is the same as the case of the single laser without MR;the other part of the electron energy spectrum is modified by MR,which can be fit as a power-law distribution and its index is close to 1.Re-calculating the magnetization parameterσ, they are 70.2, 38.8, and 37.7 in case A,case B,and case C,respectively. This plasma environment is ultra-relativistic,which results in a very flat electron energy spectrum.

    Fig. 7. (a)–(c) Three-dimensional isosurface distributions of the electron momentum py for case A, B, and C are at t =50T0 (a), 55T0 (b), and 55T0 (c),respectively. Here,purple shows along positive py and blue shows along negative py. (d)–(f)The corresponding two-laser case spectra(black lines)and the single-laser case spectra(blue lines)in the contrast diagram are also drawn for the electrons in the reconnection area(x=13 μm–17 μm,y=5 μm–19 μm,z=25 μm–40 μm). The red lines indicate the power law of the spectrum 1 <γe <γ0.

    6. Discussion and conclusions

    Table 1 presents some parameters of the plasma environment driven by two ultra-intense femtosecond lasers and in a gamma ray burst environment. Theσis also much greater than unityσ ≥1, and the energy density of the reconnection magnetic field is larger than the rest mass energy density of the electrons. Therefore,the MR driven by ultra-intense lasers is ultra-relativistic.

    The plasma betaβ=2μ0nekBT/B2(βis the ratio of the thermal pressure to the magnetic pressure) is much smaller than 1. We find that the electron Alfv′en speed is close to the speed of lightνAe~c. These parameters match the environment of high-energy astronomical phenomena. Even though our simulation parameters do not exactly match high-energy astronomical ones,such as particle density,magnetic field energy, spatial and temporal scale, to some extent, our simulations reflect the mechanism and process of electron acceleration, corresponding to many high-energy emission of the astronomical observations.[40–42]

    In this paper, from the momentum diagram, the “pickup ring” shrinks as the laser separation distance increases.Fewer reconnection electric fields accelerate fewer electrons to higher energies. At the same time, two momentum jets alongpyare presented, and they are more obvious with an increase of the separation distance. This may be related with the different acceleration mechanisms in the case with a different separation distance. With the increase of the laser separation distance,the binding of electrons in the magnetic field becomes weaker,the duration of CS becomes longer,and the acceleration space becomes larger. So,more electrons can be accelerated by CS. Therefore, in thepydirection of the electron momentum phase space,jets appear and become larger as the laser separation distance increases. Then,through the energy spectrum analysis of different regions,we find that,with separation distance increasing, the electron energy spectrum of energetic electrons from collisionless shock approaches that from MR.As the separation distance decreases,the magnetization parameterσincreases,and the electron energy spectrum becomes flatter and less than 1. From the 3D momentum configuration, the outflow is presented between two lasers. According to the position of the outflow,the electron energy spectrum and the magnetization parameter are re-examined. The magnetization parameter is higher, and the index of the energetic electron spectrum is close to 1.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos. U1930108,12175018,12135001, 12075030, and 11903006) and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDA25030700). Yongli Ping acknowledges the support of the Open Research Program from Key Laboratory of Geospace Environment CAS.

    猜你喜歡
    張茜孫偉永利
    孫偉美術(shù)作品
    科技興邦 創(chuàng)新強(qiáng)國(guó)
    一種水陸兩棲飛機(jī)普通框結(jié)構(gòu)設(shè)計(jì)
    深圳市永利種業(yè)有限公司
    辣椒雜志(2021年4期)2021-04-14 08:28:14
    Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading*
    畢永利教授簡(jiǎn)介
    法眼看平等教學(xué)設(shè)計(jì)
    Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock?
    藝術(shù)百家
    氣球
    国产在视频线精品| 日韩,欧美,国产一区二区三区| 大话2 男鬼变身卡| 亚洲av男天堂| 久久青草综合色| 亚洲精品成人av观看孕妇| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 亚洲天堂av无毛| 亚洲内射少妇av| 我要看黄色一级片免费的| 午夜精品国产一区二区电影| 网址你懂的国产日韩在线| 日本午夜av视频| 丰满迷人的少妇在线观看| 国产成人aa在线观看| 成人综合一区亚洲| 身体一侧抽搐| 九色成人免费人妻av| 我要看黄色一级片免费的| 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品专区欧美| 成人无遮挡网站| 性色av一级| 久久久精品免费免费高清| 久久人妻熟女aⅴ| 免费播放大片免费观看视频在线观看| 国精品久久久久久国模美| 日本黄色片子视频| 国产毛片在线视频| 一区在线观看完整版| 偷拍熟女少妇极品色| 99热全是精品| 日韩国内少妇激情av| 国产精品福利在线免费观看| 免费观看性生交大片5| 性色av一级| 91狼人影院| 欧美亚洲 丝袜 人妻 在线| 成人特级av手机在线观看| 在线免费十八禁| 成人美女网站在线观看视频| 天天躁夜夜躁狠狠久久av| 高清av免费在线| 久久久色成人| 久久久欧美国产精品| 国产永久视频网站| 深爱激情五月婷婷| 亚洲精品国产av蜜桃| 看免费成人av毛片| av国产免费在线观看| 亚洲精品国产色婷婷电影| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频| 欧美精品一区二区大全| 亚洲国产精品一区三区| 男人狂女人下面高潮的视频| 国产男女超爽视频在线观看| 久久国产乱子免费精品| 久久久精品94久久精品| 久久久久国产精品人妻一区二区| 老熟女久久久| 亚洲电影在线观看av| 色吧在线观看| a 毛片基地| 国产伦精品一区二区三区四那| 男的添女的下面高潮视频| 精品久久国产蜜桃| 少妇熟女欧美另类| 大香蕉久久网| 五月玫瑰六月丁香| 国产淫片久久久久久久久| 国产成人精品一,二区| 99视频精品全部免费 在线| 视频区图区小说| 日本av手机在线免费观看| 一级黄片播放器| 国产伦精品一区二区三区四那| 久久久久久九九精品二区国产| 大码成人一级视频| 丝袜脚勾引网站| 一级爰片在线观看| 成人毛片60女人毛片免费| 精品午夜福利在线看| 中文字幕精品免费在线观看视频 | 免费看av在线观看网站| 少妇高潮的动态图| 久久99热这里只有精品18| 91精品国产国语对白视频| 91精品国产九色| 国产毛片在线视频| 成人黄色视频免费在线看| 亚洲av电影在线观看一区二区三区| 欧美精品亚洲一区二区| 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 97在线视频观看| 久久精品夜色国产| 日韩在线高清观看一区二区三区| 五月伊人婷婷丁香| 好男人视频免费观看在线| 欧美成人午夜免费资源| av天堂中文字幕网| 大码成人一级视频| 麻豆乱淫一区二区| 99国产精品免费福利视频| 国产黄频视频在线观看| 一区二区三区四区激情视频| 老熟女久久久| 交换朋友夫妻互换小说| 舔av片在线| 久久人人爽人人片av| 赤兔流量卡办理| 男女边摸边吃奶| 最近的中文字幕免费完整| 国产在线男女| 精品人妻视频免费看| 男男h啪啪无遮挡| 涩涩av久久男人的天堂| 亚洲精品乱码久久久久久按摩| 天堂8中文在线网| 18禁动态无遮挡网站| av天堂中文字幕网| 九色成人免费人妻av| 免费在线观看成人毛片| 亚洲av二区三区四区| 一本色道久久久久久精品综合| 成年人午夜在线观看视频| 午夜免费男女啪啪视频观看| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品电影小说 | 精品国产一区二区三区久久久樱花 | 插阴视频在线观看视频| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 色视频在线一区二区三区| 亚洲精品乱码久久久v下载方式| 99视频精品全部免费 在线| 日韩av免费高清视频| 麻豆精品久久久久久蜜桃| 日本黄色日本黄色录像| 亚洲av福利一区| 午夜激情福利司机影院| av天堂中文字幕网| 成人影院久久| 99久久人妻综合| 三级国产精品欧美在线观看| 久久青草综合色| videos熟女内射| 国产爱豆传媒在线观看| 毛片一级片免费看久久久久| 国产av一区二区精品久久 | 少妇 在线观看| 国产精品99久久久久久久久| 久久久久视频综合| 免费看日本二区| 国产熟女欧美一区二区| 18禁在线播放成人免费| 国产成人a区在线观看| 亚洲精品自拍成人| 精品久久久久久久末码| 欧美日本视频| av免费在线看不卡| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区| 我的女老师完整版在线观看| 天堂俺去俺来也www色官网| 看十八女毛片水多多多| 一边亲一边摸免费视频| 久久久久久人妻| 制服丝袜香蕉在线| 18禁在线播放成人免费| 中文字幕久久专区| 国内揄拍国产精品人妻在线| 熟女人妻精品中文字幕| 亚洲成色77777| 亚洲内射少妇av| 欧美成人精品欧美一级黄| 亚洲成色77777| 色哟哟·www| 极品教师在线视频| 国产爱豆传媒在线观看| av国产久精品久网站免费入址| 免费人成在线观看视频色| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影小说 | 日韩av免费高清视频| 美女视频免费永久观看网站| 人妻夜夜爽99麻豆av| 视频中文字幕在线观看| 免费人成在线观看视频色| 五月伊人婷婷丁香| 在线免费观看不下载黄p国产| www.av在线官网国产| 五月玫瑰六月丁香| 亚洲图色成人| 汤姆久久久久久久影院中文字幕| 国产精品久久久久成人av| 亚洲av中文字字幕乱码综合| 亚洲欧美成人综合另类久久久| 亚洲精品日本国产第一区| 成人高潮视频无遮挡免费网站| 自拍欧美九色日韩亚洲蝌蚪91 | 91狼人影院| 中国三级夫妇交换| 中文字幕亚洲精品专区| 亚洲av国产av综合av卡| 亚洲成人手机| 人妻一区二区av| 我的女老师完整版在线观看| 在线亚洲精品国产二区图片欧美 | 美女脱内裤让男人舔精品视频| 伦理电影免费视频| 精品久久久噜噜| 婷婷色综合大香蕉| 秋霞在线观看毛片| 亚洲第一区二区三区不卡| 偷拍熟女少妇极品色| 一级爰片在线观看| 久久久成人免费电影| 人妻系列 视频| 精品国产一区二区三区久久久樱花 | 国产精品国产三级国产专区5o| 亚洲中文av在线| 精品久久久久久久久av| 国产亚洲av片在线观看秒播厂| 一区二区三区精品91| 一本久久精品| 看十八女毛片水多多多| 日本av手机在线免费观看| 国产淫语在线视频| 色吧在线观看| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 嫩草影院入口| www.av在线官网国产| 欧美另类一区| 成人综合一区亚洲| 十分钟在线观看高清视频www | videos熟女内射| 黄片无遮挡物在线观看| 熟女人妻精品中文字幕| 大话2 男鬼变身卡| 日韩免费高清中文字幕av| 国产午夜精品一二区理论片| 大码成人一级视频| 国产大屁股一区二区在线视频| 欧美日韩在线观看h| 在线 av 中文字幕| 大陆偷拍与自拍| 国产精品女同一区二区软件| 国产又色又爽无遮挡免| 亚洲精品色激情综合| 亚洲av不卡在线观看| 永久免费av网站大全| 美女内射精品一级片tv| 人妻制服诱惑在线中文字幕| 国产综合精华液| 国产色婷婷99| 一区二区av电影网| 亚洲国产成人一精品久久久| 中文欧美无线码| 麻豆成人午夜福利视频| 亚洲欧美精品自产自拍| 插阴视频在线观看视频| 黑丝袜美女国产一区| 亚洲内射少妇av| 嘟嘟电影网在线观看| 91久久精品电影网| 老司机影院成人| 伦理电影大哥的女人| 伦理电影免费视频| 亚洲av中文字字幕乱码综合| 精品久久久久久久久av| 美女中出高潮动态图| 国产成人91sexporn| 韩国高清视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 免费大片18禁| 国产毛片在线视频| 一级二级三级毛片免费看| 成年女人在线观看亚洲视频| 一级片'在线观看视频| 亚洲国产精品国产精品| 少妇人妻 视频| 亚洲av综合色区一区| 国内少妇人妻偷人精品xxx网站| 插阴视频在线观看视频| 大陆偷拍与自拍| 日日摸夜夜添夜夜爱| 国产毛片在线视频| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 久久人人爽人人爽人人片va| 国产日韩欧美在线精品| 黑人高潮一二区| 亚洲精品乱码久久久v下载方式| 国产一区二区三区av在线| 国产成人aa在线观看| 成年美女黄网站色视频大全免费 | 天美传媒精品一区二区| 在线精品无人区一区二区三 | 大香蕉久久网| 亚洲aⅴ乱码一区二区在线播放| 在线播放无遮挡| 国产精品三级大全| 久久这里有精品视频免费| 亚州av有码| 精品亚洲乱码少妇综合久久| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| 亚洲精品日韩av片在线观看| 香蕉精品网在线| freevideosex欧美| 秋霞在线观看毛片| av在线观看视频网站免费| 国产人妻一区二区三区在| 免费观看在线日韩| 婷婷色综合www| 久久久久久久久久久免费av| 男男h啪啪无遮挡| 黄色配什么色好看| 卡戴珊不雅视频在线播放| 内射极品少妇av片p| 亚洲av电影在线观看一区二区三区| 日韩欧美一区视频在线观看 | av女优亚洲男人天堂| 日本-黄色视频高清免费观看| 美女内射精品一级片tv| 一个人看的www免费观看视频| 国产av国产精品国产| 国产伦理片在线播放av一区| 偷拍熟女少妇极品色| kizo精华| 青青草视频在线视频观看| 另类亚洲欧美激情| 我要看日韩黄色一级片| 麻豆成人av视频| 国产视频首页在线观看| 日韩一区二区视频免费看| 日韩三级伦理在线观看| 日本欧美视频一区| 亚洲内射少妇av| 美女中出高潮动态图| 自拍欧美九色日韩亚洲蝌蚪91 | 交换朋友夫妻互换小说| 国产黄色视频一区二区在线观看| 2022亚洲国产成人精品| 久久99热6这里只有精品| 国产精品国产三级专区第一集| 国产精品一区www在线观看| 亚洲av日韩在线播放| 大香蕉97超碰在线| 午夜福利网站1000一区二区三区| 国产精品99久久99久久久不卡 | 亚洲精品aⅴ在线观看| 我要看黄色一级片免费的| 全区人妻精品视频| 免费观看的影片在线观看| 日本免费在线观看一区| 久久久色成人| 日韩人妻高清精品专区| 国产精品嫩草影院av在线观看| 人人妻人人爽人人添夜夜欢视频 | 97在线视频观看| 亚洲美女搞黄在线观看| 色吧在线观看| 美女中出高潮动态图| 一边亲一边摸免费视频| 久久毛片免费看一区二区三区| 欧美少妇被猛烈插入视频| 国产伦精品一区二区三区四那| 多毛熟女@视频| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 人人妻人人爽人人添夜夜欢视频 | 久久国内精品自在自线图片| 我的老师免费观看完整版| 男人和女人高潮做爰伦理| av在线蜜桃| 国产片特级美女逼逼视频| 国产高潮美女av| 亚洲欧美中文字幕日韩二区| 午夜日本视频在线| 日本黄色片子视频| 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 欧美极品一区二区三区四区| 亚洲伊人久久精品综合| 久久国产精品男人的天堂亚洲 | 不卡视频在线观看欧美| 人人妻人人添人人爽欧美一区卜 | 18禁在线播放成人免费| 欧美激情极品国产一区二区三区 | 午夜福利高清视频| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 丝瓜视频免费看黄片| 少妇人妻 视频| 中文字幕人妻熟人妻熟丝袜美| 日本vs欧美在线观看视频 | 精品熟女少妇av免费看| 国产成人aa在线观看| 国产精品国产三级专区第一集| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 精品亚洲成a人片在线观看 | 一个人看视频在线观看www免费| 最近中文字幕高清免费大全6| 成人高潮视频无遮挡免费网站| 美女福利国产在线 | 高清不卡的av网站| 久久久久久久久久久免费av| 久久国内精品自在自线图片| 男女边摸边吃奶| 美女高潮的动态| 国产一区二区在线观看日韩| 精品亚洲成国产av| 麻豆国产97在线/欧美| 国产精品人妻久久久久久| 欧美日韩视频高清一区二区三区二| 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 身体一侧抽搐| 国产乱来视频区| 一区在线观看完整版| 老熟女久久久| 国产亚洲欧美精品永久| 国产精品不卡视频一区二区| 亚洲色图综合在线观看| 国产av码专区亚洲av| 久久久色成人| 在线观看免费日韩欧美大片 | 性色av一级| 99热国产这里只有精品6| 涩涩av久久男人的天堂| 国国产精品蜜臀av免费| 免费高清在线观看视频在线观看| 国产精品久久久久久久久免| 七月丁香在线播放| av视频免费观看在线观看| 视频中文字幕在线观看| 亚洲经典国产精华液单| 久久久久网色| 亚洲美女黄色视频免费看| 久久久久久久国产电影| 日韩三级伦理在线观看| 亚洲精品一二三| 久久99热这里只频精品6学生| 国产黄片美女视频| 日韩亚洲欧美综合| 久久99精品国语久久久| 精品99又大又爽又粗少妇毛片| 成人国产av品久久久| 18禁动态无遮挡网站| 精品久久久久久电影网| 成人美女网站在线观看视频| 搡老乐熟女国产| 国产在线免费精品| 国内精品宾馆在线| 亚洲真实伦在线观看| 女的被弄到高潮叫床怎么办| 国产一区亚洲一区在线观看| 国产又色又爽无遮挡免| 美女福利国产在线 | videossex国产| 国产女主播在线喷水免费视频网站| 免费黄色在线免费观看| 久久久久精品久久久久真实原创| 中文字幕久久专区| 天美传媒精品一区二区| 国产精品久久久久久久电影| 51国产日韩欧美| 久久国产乱子免费精品| av在线老鸭窝| 久久影院123| 看十八女毛片水多多多| 亚洲欧美中文字幕日韩二区| 哪个播放器可以免费观看大片| 精品亚洲成a人片在线观看 | 亚洲av二区三区四区| 成年人午夜在线观看视频| 亚洲欧美精品专区久久| 新久久久久国产一级毛片| 2018国产大陆天天弄谢| 国产成人freesex在线| 午夜福利影视在线免费观看| 亚洲精品久久久久久婷婷小说| 在线亚洲精品国产二区图片欧美 | 日本vs欧美在线观看视频 | 日产精品乱码卡一卡2卡三| 久久久久久人妻| 久久久国产一区二区| 亚洲久久久国产精品| 亚洲综合精品二区| 2022亚洲国产成人精品| 久久精品国产a三级三级三级| 免费久久久久久久精品成人欧美视频 | 亚洲真实伦在线观看| av线在线观看网站| 国国产精品蜜臀av免费| 亚洲色图av天堂| 下体分泌物呈黄色| 精品久久久久久久久亚洲| 国产日韩欧美在线精品| 人人妻人人添人人爽欧美一区卜 | 国产免费视频播放在线视频| 交换朋友夫妻互换小说| 亚洲精品国产av蜜桃| 中文精品一卡2卡3卡4更新| 亚洲性久久影院| 亚洲综合精品二区| 日本与韩国留学比较| 久久精品国产a三级三级三级| 夫妻午夜视频| 亚洲经典国产精华液单| 狂野欧美白嫩少妇大欣赏| 成人国产麻豆网| 国产淫语在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产女主播在线喷水免费视频网站| 蜜桃亚洲精品一区二区三区| 97超视频在线观看视频| 内射极品少妇av片p| 大香蕉97超碰在线| 一区在线观看完整版| 黄色欧美视频在线观看| 国产av国产精品国产| 亚洲精品aⅴ在线观看| 特大巨黑吊av在线直播| 亚洲内射少妇av| 色综合色国产| 欧美xxxx性猛交bbbb| 少妇丰满av| h视频一区二区三区| 亚洲,一卡二卡三卡| 三级国产精品欧美在线观看| 女的被弄到高潮叫床怎么办| 有码 亚洲区| 色综合色国产| 久久久久国产精品人妻一区二区| 亚洲伊人久久精品综合| 尾随美女入室| 免费观看的影片在线观看| 国产真实伦视频高清在线观看| 国产成人精品一,二区| 免费观看性生交大片5| 国产女主播在线喷水免费视频网站| 极品教师在线视频| 久久人人爽人人爽人人片va| 五月开心婷婷网| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| 91精品国产九色| 国产精品一及| 精品少妇黑人巨大在线播放| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 热re99久久精品国产66热6| 国产成人91sexporn| 久久av网站| 国产亚洲精品久久久com| 精华霜和精华液先用哪个| 亚洲丝袜综合中文字幕| 亚洲婷婷狠狠爱综合网| 午夜福利在线在线| 免费黄频网站在线观看国产| 国产黄片视频在线免费观看| 午夜福利高清视频| 高清在线视频一区二区三区| 天堂8中文在线网| 国产女主播在线喷水免费视频网站| 蜜桃久久精品国产亚洲av| 噜噜噜噜噜久久久久久91| 夜夜看夜夜爽夜夜摸| 男人狂女人下面高潮的视频| 日本猛色少妇xxxxx猛交久久| 性高湖久久久久久久久免费观看| 99热全是精品| 五月玫瑰六月丁香| 亚洲色图av天堂| 国产视频内射| 日韩中文字幕视频在线看片 | 99久国产av精品国产电影| av国产免费在线观看| 欧美变态另类bdsm刘玥| 婷婷色综合www| 黄片wwwwww| 蜜桃在线观看..| 亚洲精品国产av成人精品| 五月伊人婷婷丁香| 国产精品国产av在线观看| 婷婷色综合www| 精品国产乱码久久久久久小说| 免费看不卡的av| 男人和女人高潮做爰伦理| 视频区图区小说| 色5月婷婷丁香| 亚洲欧美中文字幕日韩二区| 美女国产视频在线观看| 不卡视频在线观看欧美| 久久久久国产精品人妻一区二区| 亚洲精品乱久久久久久| 国产精品.久久久| 性色av一级| 亚洲欧洲日产国产| 你懂的网址亚洲精品在线观看| 嘟嘟电影网在线观看| 男女国产视频网站| 亚洲欧美一区二区三区黑人 | 九九在线视频观看精品| 18禁动态无遮挡网站| 中国国产av一级|