• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films

    2024-01-25 07:29:34KaiChen陳凱JianguoZhao趙見(jiàn)國(guó)YuDing丁宇WenxiaoHu胡文曉BinLiu劉斌TaoTao陶濤ZheZhuang莊喆YuYan嚴(yán)羽ZiliXie謝自力JianhuaChang常建華RongZhang張榮andYouliaoZheng鄭有炓
    Chinese Physics B 2024年1期
    關(guān)鍵詞:嚴(yán)羽陳凱自力

    Kai Chen(陳凱), Jianguo Zhao(趙見(jiàn)國(guó)),2,?, Yu Ding(丁宇), Wenxiao Hu(胡文曉), Bin Liu(劉斌),?,Tao Tao(陶濤), Zhe Zhuang(莊喆), Yu Yan(嚴(yán)羽), Zili Xie(謝自力), Jianhua Chang(常建華),Rong Zhang(張榮),3, and Youliao Zheng(鄭有炓)

    1Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China

    2School of Electronics and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    3Xiamen University,Xiamen 361005,China

    Keywords: nonpolar a-plane GaN film,Mg-doping temperature,strains,activation efficiency

    1.Introduction

    III-nitrides are promising semiconductor systems with widespread applications for power,[1,2]radio frequency(RF),[3,4]optoelectronic,[5,6]and light-emitting devices.[7,8]In general, most of the conventional III-nitride-based devices are epitaxially grown along thec-plane direction.However,a strong built-in electric field parallel to thec-direction induced by the spontaneous and piezoelectric polarization forces the spatial separation of electrons and holes in the quantum wells,causing a reduction of the recombination rate and a redshift of the emission wavelength in III-nitrides based lightemitting devices.[9,10]This general phenomenon, known as the quantum-confined Stark effect (QCSE), severely hinders the improvement of the internal quantum efficiency in nitridebased optoelectronic devices.[11]Currently, various methods for conquering the adverse effects of QCSE have been reported, such as the introduction of V-pits,[12]the employment of AlN/AlGaN strain-compensating layers,[13]the usage of stress engineering,[14]and the growth of InGaN quantum dots.[15]In fact, the adverse effects of built-in electric field could also be eliminated by growing nonpolar GaNbased materials, which means that the growth direction of semiconductor is perpendicular to the direction of electric field.[16,17]Apparently, the adverse effects of built-in electric field could be suppressed with various degrees when the angle between growth direction of semiconductor and the direction of electric field is varied from 0°to 90°, which are semipolar materials.[18]Thus,the study of nonpolar/semipolar GaNbased materials has increasingly received more attention.

    Recently, the successful fabrications of semipolar (1–101)-plane,[19](11–22)-plane,[20]and(20–21)-plane[21]GaNbased LEDs have been reported.Moreover, high bandwidth visible light communication has been reported by using semipolar(20–21)-plane[22]and(11–22)-plane[23]GaN-based LEDs.However,given the presence of apparent anisotropy in the growth surface of nonpolar materials,the epitaxial growth of nonpolar GaN-based materials is relatively difficult when compared to the polar/semipolar counterparts.[24]Although studies of nonpolar (10–10)-plane AlGaN,[25]GaN,[26]and InGaN,[27]and nonpolar (11–20)-plane AlGaN,[11]GaN,[28]and InGaN[29]have recently been reported, the research of nonpolar III-nitrides based devices is significantly behind.A reliable p-type semiconductor is necessary for a device with p–n junction.Although the successful growth of nonpolar p-GaN has been reported,[30]there is no detailed and in-depth study of the activation efficiency and activation energy of Mg acceptors in nonpolar p-type GaN.

    In this paper,nonpolara-plane p-type GaN epilayers with growth temperatures from 980°C to 1010°C were grown onr-plane sapphire substrate by a close coupled shower head(CCS) metal–organic chemical vapor deposition (MOCVD)system.The influence of growth temperature on structural anisotropy and electrical properties of nonpolar p-type GaN films were investigated intensively.Eventually,a p-type GaN with high activation efficiency and high doping concentration was obtained.

    2.Experiment

    All the nonpolar (11–20)a-plane GaN samples were grown on semipolar (1–102)r-plane sapphire substrates by a CCS MOCVD system.Ammonia (NH3), trimethyl-gallium(TMGa), and bicyclopentadienyl-magnesium (Cp2Mg) were used as the N, Ga, and Mg source precursors, respectively,which were mainly introduced into the reaction chamber by hydrogen (H2) as a carrier gas.The pressure of the chamber was maintained at 53 mbar during the whole process.The schematic structure of the nonpolar p-type GaN samples prepared in this paper is shown in Fig.1(a).Figure 1(b) shows the temperature changed with time in the corresponding process.Before growth, high-temperature baking and a nitridation process were carried out at 990°C to remove the surface contamination of the sapphire substrate.Subsequently,a 20 nm-thick low-temperature GaN(LT-GaN)nucleation layer was deposited on the sapphire substrate at 550°C and followed by a high-temperature GaN (HT-GaN) buffer layer grown at 1030°C.Afterward,the temperature was raised to 1035°C to grow an undoped GaN (u-GaN) layer on the HT-GaN layer.Finally, the Mg-doped GaN layers with various temperatures with a V/III molar flow ratio of 5000 were grown on the u-GaN layer to explore the influence of temperature on the morphology and electrical properties of nonpolara-plane p-type GaN.Four nonpolara-plane p-type GaN samples were grown in this work with 980°C, 990°C, 1000°C, and 1010°C, and were named samples T1, T2, T3, and T4, respectively.To activate the Mg dopants,all of the samples were rapidly thermally annealed at 800°C for 10 min within a nitrogen ambient.

    The surface morphologies of the p-type GaN samples were characterized by scanning electron microscopy (SEM)and atomic force microscopy (AFM).The crystalline quality analysis of the samples was mainly achieved by high resolution x-ray diffraction (HR-XRD).The in-plane strains ofaplane p-GaN samples were evaluated with the Raman spectra excited by a 514 nm laser at room temperature.The Hall effect measurements were employed to estimate the electrical properties of all of the samples.Specifically, the Ni (20 nm)/Au(20 nm) electrodes were deposited at the four corners of the surface of the squarea-plane GaN sample by electron beam evaporation,and ohmic contact was formed between the metal and the sample after annealing at 500°C for 10 min in an air environment.The Mg incorporation density was determined using secondary ion mass spectroscopy (SIMS) measurements.

    3.Results and discussion

    The cross-sectional SEM graph for the nonpolara-plane p-GaN sample is shown in Fig.1(c).The difference in conductivity between the Mg-doped layer at the top and undoped layer at the bottom results in a clear boundary at the interface.The thickness of the Mg-doped layer was determined to be 270 nm by both the cross-sectional SEM graph and the in situ reflectance monitoring system(not shown).The threedimensional view AFM images of alla-plane p-GaN samples were measured in a detection area of 3 μm×3 μm.It is evidently observed from Fig.2 that the surface morphology of the four samples possesses an undulating structure that is distributed along thec-direction.This typical directional structure of nonpolar GaN is mainly related to the larger diffusion length of the Ga adatom along thec-direction than along them-direction on the surface.[31]Samples T1 and T2 with 0.83 nm and 0.97 nm root mean square(RMS)roughness feature a smoother and flatter surface that is comparable to the previously reported Mg-doped nonpolara-plane GaN.[32]In addition, for samples T3 and T4, the width of the undulating structure gradually increases and the corresponding RMS roughnesses are 1.41 nm and 1.62 nm,respectively.This phenomenon implies that a higher temperature might inhibit the in-plane surface diffusion of GaN along them-direction[33]and promote the growth along thec-direction,resulting in the deteriorated surface morphology.

    Fig.1.(a) The schematic layer structure for the nonpolar a-plane p-type GaN samples.(b) The growth temperature of each layer varies with time.(c)The cross-sectional SEM graph for the nonpolar a-plane p-GaN sample.

    Fig.2.(a)–(d)The AFM images for the samples T1–T4 with a detection area of 3μm×3μm.

    Fig.3.(a)The XRD ω–2θ scanning curve for the nonpolar a-plane p-type GaN.(b)XRCs of the samples T1–T4.

    Table 1.The FWHM values of XRCs and the anisotropy ratios for samples T1–T4 along c-and m-directions.

    The XRDω–2θscanning curve of the sample is shown in Fig.3(a).The diffraction peaks at 52.54°and 57.71°correspond to(2–204)r-plane sapphire substrate and(11–20)aplane GaN, respectively.[11]This further indicates that nonpolara-plane GaN has been successfully grown on semipolarr-plane sapphire substrate.The x-ray rocking curves(XRCs)based on 57.71°position were measured, respectively, at azimuth angles of?=0°(alongc-direction)and?=90°(alongm-direction) to describe the structural anisotropy of the nonpolara-plane GaN samples.The full width at half maximum (FWHM) values for XRCs of the four samples can be obtained by a Gauss function fitting the XRCs, as shown in Figs.3(b)and 3(c),and the results are summarized in Table 1.Significantly, the FWHM values of XRCs alongc-direction are much smaller than those along them-direction, which is due to the smaller lattice mismatch between the nonpolaraplane GaN and the semipolarr-plane sapphire substrate along thec-direction.[34]Additionally, the FWHM values of XRCs alongc-direction increased from 1019 arcsec for sample T1 to 1101 arcsec for sample T2, but decreased from 1515 arcsec to 1300 arcsec along them-direction.This indicates that temperature has a great difference on the crystalline quality in both directions.To accurately evaluate anisotropy in crystalline quality,the anisotropy ratioAis defined by the following equation:

    whereF90andF0are the FWHM values of XRC measured at azimuth angles of?=0°and?=90°, respectively.The calculation results of samples T1–T4 are presented in Table 1.The anisotropy ratios reduced sharply from 19.6% for sample T1 to 8.3%for sample T2.This remarkable improvement of anisotropy in crystalline quality can be attributed to the release of residual stress between u-GaN layer and p-type GaN layer as the temperature increased.[35]On the contrary, the anisotropy ratio increased significantly from 8.3%for sample T2 to 14.0% for sample T4.Although relatively high temperatures can promote the incorporation of Mg atoms,[35]an excess of Mg atoms can result in lattice distortion and an increased density of defects, particularly nitrogen vacancies, in the p-GaN layer.[34]The presence of excessive nitrogen vacancies can strengthen the self-compensation effect, leading to a decrease in the concentration of the holes.As a result,an 8.3%of low anisotropy in crystalline quality could be obtained at 990°C by optimizing the growth temperature.

    Fig.4.(a)Raman spectra and(b)calculated in-plane strains of samples T1–T4.

    The Raman spectra of the p-typea-plane GaN films prepared at different growth temperatures were carried out to investigate the strain state.As shown in Fig.4(a), the Raman peaks for all of the samples located at 418 cm?1belong to A1gmode ofr-sapphire and the peaks observed at 532 cm?1,559 cm?1,and 568 cm?1correspond to A1(TO),E1(TO),E2(high) mode of GaN, respectively.[36]In general, the biaxial in-plane strainεalongx,y, andzaxis for nonpolara-plane GaN film can be expressed as[36]

    whereC11,C12, andC13are all the elastic stiffness constants and thex,y, andzaxis are defined as GaN[11–20], [1–100],and[0001]-directions,respectively.Furthermore,the relationship between Raman peak shifts Δωand in-plane strain can be described as[36]

    Hereλrepresents a certain Raman mode andaλ,bλ, andcλare all the phonon deformation constants for the above homologous mode.Independent peaks,which are shown as the yellow dotted line in the Fig.4(a), can be obtained by Lorentz fitting Raman spectra so as to accurately extract the peaks positions.The relative displacement of peak position can be calculated according to the strain-free phonon frequencies of E1(TO)(558.8 cm?1)and E2(high)(567.6 cm?1)modes.The inplane strainsεyyandεzzare estimated by solving Eqs.(2)and(3).In order to correctly describe the in-plane strains of all of the samples,the Raman spectra at four positions were measured for each sample under the same conditions.Figure 4(b)gives a box-type statistical diagram of the calculated in-plane strains as a function of growth temperature.It is clearly noted that all of the samples suffered compressive strain along thec- andm-directions,[37]and the values of compressive stress inc-direction are less than those in them-direction.Interestingly,the strain variations alongc-andm-directions for samples T1–T4 are consistent with the trend of the FWHM values of the XRCs.This means that an increase or decrease in stress can be judged by an increase or decrease in the FWHM value of XRC, which indicates that the crystal quality seriously restricts the stress value.

    Fig.5.(a)The AC Hall effect measurement at room temperature for sample T1–T4.(b) The resistivity for sample T2 as a function of reciprocal temperature.The inset is the acceptor activation energy of samples T1–T4.

    The AC Hall effect measurement at room temperature was used to reliably determine the carrier type of Mg-doped nonpolara-plane GaN films, as shown in Fig.5(a).The hole concentrations after annealing were determined to be 4.1×1017cm?3, 1.3×1018cm?3, 5.9×1017cm?3, and 5.5×1017cm?3for samples T1,T2,T3,and T4,respectively,suggesting that all of the films achieve Mg activation and ptype semiconductor.Meanwhile, hole concentrations as the temperature increased first increased and then decreased.The contrary variation of carrier mobility was ascribed to the enhanced ionized impurity scattering caused by a relatively high hole concentration.It can be found that a hole concentration of 1.3×1018cm?3for sample T2 was achieved with a relatively smooth surface morphology (as shown in Fig.2(b)),a low anisotropy in crystalline quality (as shown in Table 1),and small strains(as shown in Fig.4(b)).Naturally,the carrier mobility of sample T2 was decreased evidently due to its high hole concentration.

    To explore the transmission characteristics of the carriers, we performed temperature dependent Hall-effect measurements on sample T2 from 298 to 853 K.From the resistivity as a function of reciprocal temperature in Fig.5(b),it is obvious that the sample presents a typical thermally activated conduction process.[38]The resistivity decreases with increasing temperature,whereas hole concentration is positively correlated with temperature.The acceptor activation energy(EA) can be deduced by fitting the measurement data with Arrhenius-type formula.[39]The inset shows the relationship between activation energy and temperature.The calculatedEAvalues of all nonpolara-plane GaN samples are smaller than that reported in thec-plane GaN(174 meV).[40]It can be inferred from this that the heavy hole band in nonpolar GaN would upward shift due to its strain anisotropy,so the Mg acceptors energy level will become shallower accordingly.Thus,the activation energy of Mg acceptors in nonpolar GaN is obviously smaller than that in polar GaN.

    Fig.6.SIMS measurement of sample T2.

    A SIMS measurement of sample T2 was recorded to confirm the Mg-doping concentration of Mg atoms into the GaN film, as shown in Fig.6.The Mg concentration signal increased along the growth direction and the strongest signal appeared near the surface of the sample, which could be explained by the Mg memory effect.[41]The significant Mg concentrations(>1.5×1019cm?3)are observed at profile depth<270 nm.This is in agreement with the SEM results.Furthermore, the Mg-doping efficiency is defined as the ratio of the hole concentration and Mg-doping density(Hall/SIMS ratio).Here,the average Mg concentration is 2×1019cm?3in the p-type GaN layer of sample T2 and the Hall/SIMS ratio is calculated to be as high as 6.5%,indicating that the optimized temperature can significantly suppress the self-compensation effect to effectively increase the hole concentration and activation rate.

    4.Conclusion

    We have grown nonpolara-plane p-type GaN with different Mg-doping temperatures on two-inch semipolarr-plane sapphire substrates by the MOCVD system.The sample with 0.97 nm RMS roughness at an optimized temperature of 990°C reveals high crystalline quality,relatively low in-plane strains, and high hole concentrations of 1.3×1018cm?3.It is revealed that the variation trend of the XRC FWHM values along thec- andm-directions are essentially consistent with the stress along the corresponding directions.Temperature dependent Hall measurements show that the acceptor activation energy is 114 meV at a growth temperature of 990°C.It is of note that a Mg activation efficiency as high as 6.5%has been achieved in this work by optimizing the growth temperature of the Mg-doped layer.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFB3601000 and 2021YFB3601002), the National Natural Science Foundation of China (Grant Nos.62074077, 61921005,61974062,62204121,and 61904082),Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No.BE2021008-2),and the China Postdoctoral Science Foundation(Grant No.2020M671441).

    猜你喜歡
    嚴(yán)羽陳凱自力
    A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography
    Students’ Feedback on Integrating Engineering Practice Cases into Lecture Task in Course of Built Environment
    種七彩顏色的太陽(yáng)
    這就是我
    清朝花瓶
    離婚,婚姻的一次“手術(shù)”
    女子世界(2017年6期)2017-06-08 20:16:15
    鮐巴魚(yú)奇事
    Different Pronunciation Features of “TH” in China and India’s Official News
    論嚴(yán)羽的詩(shī)歌創(chuàng)作特色——試析嚴(yán)羽所自為詩(shī)反映的思想風(fēng)貌
    人間(2015年20期)2016-01-04 12:47:06
    Coupled Faults Analysis and Evaluation Methods Based on Cellular Automata
    女同久久另类99精品国产91| 亚洲国产精品合色在线| av.在线天堂| 人人妻人人澡欧美一区二区| 亚洲国产欧美人成| 午夜爱爱视频在线播放| 国内精品久久久久精免费| 国语自产精品视频在线第100页| 波多野结衣高清无吗| 国产国拍精品亚洲av在线观看| 极品教师在线免费播放| 少妇人妻精品综合一区二区 | 久久久久久大精品| 无人区码免费观看不卡| 中文字幕人妻熟人妻熟丝袜美| 少妇熟女aⅴ在线视频| 免费看美女性在线毛片视频| 热99re8久久精品国产| 淫妇啪啪啪对白视频| 伦精品一区二区三区| 中文字幕av成人在线电影| 波多野结衣高清作品| 日韩高清综合在线| 乱码一卡2卡4卡精品| 看十八女毛片水多多多| 九九爱精品视频在线观看| netflix在线观看网站| 国产高潮美女av| 国产蜜桃级精品一区二区三区| 两个人视频免费观看高清| 干丝袜人妻中文字幕| 91在线观看av| 国产一区二区三区av在线 | 久久这里只有精品中国| 国模一区二区三区四区视频| 乱码一卡2卡4卡精品| 又紧又爽又黄一区二区| 97超视频在线观看视频| 禁无遮挡网站| 午夜精品一区二区三区免费看| 99视频精品全部免费 在线| 最新中文字幕久久久久| 在线观看午夜福利视频| 淫妇啪啪啪对白视频| 动漫黄色视频在线观看| 变态另类丝袜制服| 51国产日韩欧美| 日日夜夜操网爽| 999久久久精品免费观看国产| 最新中文字幕久久久久| 国产成人影院久久av| 在线播放国产精品三级| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产清高在天天线| 久久久久九九精品影院| 直男gayav资源| 婷婷亚洲欧美| 两个人的视频大全免费| www.色视频.com| 亚洲无线在线观看| 中国美女看黄片| 如何舔出高潮| 精品福利观看| 日本 av在线| 男女视频在线观看网站免费| 黄色丝袜av网址大全| 在线观看66精品国产| 婷婷六月久久综合丁香| 99久久精品国产国产毛片| 老师上课跳d突然被开到最大视频| 一级黄色大片毛片| 国产男人的电影天堂91| 精品无人区乱码1区二区| 麻豆一二三区av精品| 日本免费一区二区三区高清不卡| 听说在线观看完整版免费高清| 一级黄片播放器| 欧美高清成人免费视频www| 神马国产精品三级电影在线观看| 亚洲七黄色美女视频| 99久国产av精品| 天天一区二区日本电影三级| 他把我摸到了高潮在线观看| 精品一区二区三区视频在线| 热99re8久久精品国产| 亚洲avbb在线观看| 97超级碰碰碰精品色视频在线观看| 免费大片18禁| 久久久久久久久久久丰满 | 热99re8久久精品国产| 九九爱精品视频在线观看| 久久久久久久久中文| 成年版毛片免费区| 欧美一区二区精品小视频在线| www日本黄色视频网| 亚洲av成人av| 成人午夜高清在线视频| 好男人在线观看高清免费视频| 99久国产av精品| 真人做人爱边吃奶动态| 变态另类成人亚洲欧美熟女| 日本与韩国留学比较| 超碰av人人做人人爽久久| 极品教师在线视频| 国产高清不卡午夜福利| a级毛片免费高清观看在线播放| 一级黄片播放器| 熟妇人妻久久中文字幕3abv| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 18+在线观看网站| 人人妻人人澡欧美一区二区| 在线观看午夜福利视频| 看黄色毛片网站| 精品人妻1区二区| 校园人妻丝袜中文字幕| 中文字幕免费在线视频6| 婷婷精品国产亚洲av| 国产精品免费一区二区三区在线| 免费在线观看成人毛片| 国语自产精品视频在线第100页| 99久久中文字幕三级久久日本| 精品欧美国产一区二区三| 99久久精品一区二区三区| 此物有八面人人有两片| 毛片一级片免费看久久久久 | 国产av在哪里看| 两个人视频免费观看高清| 精品久久久久久久久久久久久| 久久精品91蜜桃| 99在线人妻在线中文字幕| 51国产日韩欧美| 国产免费男女视频| 精品午夜福利在线看| 午夜爱爱视频在线播放| 免费无遮挡裸体视频| 99久久中文字幕三级久久日本| 麻豆国产av国片精品| 国产精品人妻久久久久久| 精品人妻视频免费看| 欧美zozozo另类| 天堂影院成人在线观看| 亚洲精品在线观看二区| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站高清观看| 一级a爱片免费观看的视频| 精品久久久久久久末码| 日韩一区二区视频免费看| 午夜福利在线在线| 97热精品久久久久久| 日日夜夜操网爽| 无遮挡黄片免费观看| 欧美成人a在线观看| 精品久久久噜噜| 成人国产一区最新在线观看| 亚洲精品影视一区二区三区av| 精品久久久久久久久久免费视频| 美女大奶头视频| www.www免费av| 啦啦啦韩国在线观看视频| 国产av在哪里看| 啪啪无遮挡十八禁网站| 午夜视频国产福利| 婷婷色综合大香蕉| 国产亚洲av嫩草精品影院| 亚洲av中文字字幕乱码综合| 少妇丰满av| 午夜精品在线福利| 色综合色国产| 亚洲av日韩精品久久久久久密| 性欧美人与动物交配| 欧美日韩综合久久久久久 | 国产精品永久免费网站| av天堂在线播放| 男女视频在线观看网站免费| 精品久久久久久久人妻蜜臀av| 精品人妻视频免费看| 日韩高清综合在线| 国产成人一区二区在线| 亚洲av成人av| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 亚洲国产精品成人综合色| 又黄又爽又刺激的免费视频.| 亚洲精品在线观看二区| 久久国内精品自在自线图片| 国产伦在线观看视频一区| 日韩欧美一区二区三区在线观看| 国内精品久久久久久久电影| 小说图片视频综合网站| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美| 精品人妻视频免费看| 午夜福利视频1000在线观看| 尾随美女入室| 十八禁网站免费在线| 美女高潮的动态| 欧美最新免费一区二区三区| 乱人视频在线观看| 男女那种视频在线观看| 亚洲精品日韩av片在线观看| 亚洲四区av| 色5月婷婷丁香| 日日撸夜夜添| 欧美成人免费av一区二区三区| 欧美日韩黄片免| 一级毛片久久久久久久久女| 日韩大尺度精品在线看网址| 日本 av在线| 国产美女午夜福利| 全区人妻精品视频| 制服丝袜大香蕉在线| 国产高清三级在线| 黄片wwwwww| 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 国产精品三级大全| 久久人妻av系列| av天堂在线播放| 18禁裸乳无遮挡免费网站照片| 国产精品人妻久久久久久| 他把我摸到了高潮在线观看| 日本黄色片子视频| 一进一出抽搐gif免费好疼| 精品免费久久久久久久清纯| 中文字幕高清在线视频| 我的女老师完整版在线观看| 精品欧美国产一区二区三| 欧美高清性xxxxhd video| 亚洲狠狠婷婷综合久久图片| 免费人成视频x8x8入口观看| 性欧美人与动物交配| 床上黄色一级片| 久久99热6这里只有精品| 欧美区成人在线视频| or卡值多少钱| 国产精品电影一区二区三区| 99久久中文字幕三级久久日本| 夜夜夜夜夜久久久久| 精品不卡国产一区二区三区| 最近中文字幕高清免费大全6 | 成人av一区二区三区在线看| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区 | 18+在线观看网站| 高清日韩中文字幕在线| 中文字幕精品亚洲无线码一区| 日韩一区二区视频免费看| 色哟哟哟哟哟哟| 超碰av人人做人人爽久久| 99热这里只有精品一区| 中文亚洲av片在线观看爽| 深夜精品福利| 亚洲男人的天堂狠狠| 神马国产精品三级电影在线观看| 久久久国产成人免费| 国产白丝娇喘喷水9色精品| 狂野欧美激情性xxxx在线观看| 国产av一区在线观看免费| 亚洲乱码一区二区免费版| 免费观看的影片在线观看| 久久久久久久久久成人| 舔av片在线| 亚洲在线自拍视频| 免费av毛片视频| 久久精品国产99精品国产亚洲性色| 国产免费一级a男人的天堂| 成人午夜高清在线视频| 搞女人的毛片| or卡值多少钱| 天堂av国产一区二区熟女人妻| 久久久久久伊人网av| 成人二区视频| 久久欧美精品欧美久久欧美| 午夜爱爱视频在线播放| av在线蜜桃| 少妇猛男粗大的猛烈进出视频 | 别揉我奶头 嗯啊视频| 人人妻人人澡欧美一区二区| 午夜激情福利司机影院| 一区二区三区高清视频在线| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 性插视频无遮挡在线免费观看| 色5月婷婷丁香| 亚洲内射少妇av| 在线播放国产精品三级| 精华霜和精华液先用哪个| bbb黄色大片| 国产亚洲精品久久久久久毛片| 国产高清有码在线观看视频| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 成人美女网站在线观看视频| 国产精品免费一区二区三区在线| 精品久久久久久久久久久久久| av国产免费在线观看| 午夜激情欧美在线| 一区二区三区高清视频在线| 嫁个100分男人电影在线观看| 日韩精品中文字幕看吧| 一区二区三区四区激情视频 | 天堂网av新在线| 久久99热这里只有精品18| 啦啦啦啦在线视频资源| 国产男靠女视频免费网站| 麻豆国产av国片精品| 国产熟女欧美一区二区| 日本a在线网址| 韩国av一区二区三区四区| 久久精品影院6| 国产aⅴ精品一区二区三区波| www日本黄色视频网| 亚洲成a人片在线一区二区| ponron亚洲| 男人的好看免费观看在线视频| 黄色配什么色好看| 女人十人毛片免费观看3o分钟| 日韩在线高清观看一区二区三区 | 别揉我奶头 嗯啊视频| 亚洲国产精品sss在线观看| 非洲黑人性xxxx精品又粗又长| 欧美日韩黄片免| 午夜老司机福利剧场| 婷婷亚洲欧美| 少妇猛男粗大的猛烈进出视频 | 欧美一级a爱片免费观看看| 国产精品av视频在线免费观看| 蜜桃亚洲精品一区二区三区| 搡老岳熟女国产| 日本黄色片子视频| 婷婷精品国产亚洲av在线| 久9热在线精品视频| 网址你懂的国产日韩在线| 免费大片18禁| 国产午夜精品论理片| 国产成人福利小说| 久久人妻av系列| 日韩中字成人| 精品一区二区三区视频在线| 欧美激情国产日韩精品一区| 久久久久久国产a免费观看| 精品久久久久久成人av| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 日韩,欧美,国产一区二区三区 | 成人鲁丝片一二三区免费| 免费在线观看影片大全网站| 给我免费播放毛片高清在线观看| 网址你懂的国产日韩在线| 一个人免费在线观看电影| 国产精品电影一区二区三区| 色吧在线观看| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| 欧美色欧美亚洲另类二区| 国产高清视频在线播放一区| 99精品久久久久人妻精品| 久久香蕉精品热| 少妇猛男粗大的猛烈进出视频 | 老女人水多毛片| 国产伦精品一区二区三区视频9| 午夜福利成人在线免费观看| 热99在线观看视频| 级片在线观看| 久久中文看片网| 国产又黄又爽又无遮挡在线| 五月玫瑰六月丁香| 日日夜夜操网爽| 床上黄色一级片| 成人欧美大片| 狂野欧美激情性xxxx在线观看| 成人精品一区二区免费| 极品教师在线免费播放| 不卡视频在线观看欧美| av视频在线观看入口| 国产毛片a区久久久久| 欧美激情在线99| 国产毛片a区久久久久| 久久久久久久精品吃奶| 波野结衣二区三区在线| 日韩高清综合在线| 在线观看66精品国产| 中文字幕熟女人妻在线| 在线播放国产精品三级| 成人国产一区最新在线观看| 亚洲国产精品成人综合色| 久久国产精品人妻蜜桃| 婷婷色综合大香蕉| 一级av片app| 久久精品国产亚洲av香蕉五月| 国产午夜精品久久久久久一区二区三区 | 亚洲七黄色美女视频| 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 亚洲欧美激情综合另类| 91av网一区二区| 极品教师在线视频| 婷婷六月久久综合丁香| 国产高清三级在线| 色哟哟·www| 看黄色毛片网站| 国产精品精品国产色婷婷| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| 国产乱人伦免费视频| 最近最新免费中文字幕在线| 一区二区三区激情视频| 国产精品一区www在线观看 | 欧美高清性xxxxhd video| 久久99热这里只有精品18| 中文在线观看免费www的网站| 在线免费观看的www视频| 午夜老司机福利剧场| 成人高潮视频无遮挡免费网站| 两个人视频免费观看高清| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 日本黄大片高清| 国产精品美女特级片免费视频播放器| 午夜免费成人在线视频| 婷婷丁香在线五月| 亚洲av.av天堂| 亚洲人成网站高清观看| 亚洲av日韩精品久久久久久密| 国产精品不卡视频一区二区| 成人午夜高清在线视频| 九九在线视频观看精品| 1024手机看黄色片| 国产男靠女视频免费网站| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 99热这里只有精品一区| 88av欧美| 国产激情偷乱视频一区二区| 我要看日韩黄色一级片| 成人高潮视频无遮挡免费网站| 91在线精品国自产拍蜜月| 黄色一级大片看看| 欧美黑人巨大hd| av.在线天堂| 在线免费十八禁| 欧美一区二区精品小视频在线| 1024手机看黄色片| 精品一区二区三区人妻视频| aaaaa片日本免费| 欧美日韩精品成人综合77777| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 此物有八面人人有两片| 免费看av在线观看网站| 日本 av在线| 乱码一卡2卡4卡精品| 天堂√8在线中文| 中文字幕av在线有码专区| 免费大片18禁| 三级男女做爰猛烈吃奶摸视频| 日本熟妇午夜| 亚洲av一区综合| 色综合色国产| 日韩亚洲欧美综合| 成人国产一区最新在线观看| 婷婷丁香在线五月| 99久久中文字幕三级久久日本| 99热精品在线国产| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 99riav亚洲国产免费| 亚洲成人久久性| 亚洲人成伊人成综合网2020| 午夜a级毛片| 成人美女网站在线观看视频| 久久久久久大精品| 亚洲av五月六月丁香网| 禁无遮挡网站| 人人妻人人澡欧美一区二区| 99热这里只有精品一区| 天堂√8在线中文| 91在线观看av| 午夜福利在线观看吧| 日本黄大片高清| aaaaa片日本免费| 精品久久久久久久久亚洲 | 亚洲熟妇熟女久久| 国产亚洲精品av在线| 欧美zozozo另类| 午夜福利在线观看免费完整高清在 | 国产蜜桃级精品一区二区三区| 日本一本二区三区精品| 欧美性猛交╳xxx乱大交人| 国产乱人伦免费视频| 亚洲va在线va天堂va国产| 两个人的视频大全免费| 欧美丝袜亚洲另类 | 日本一本二区三区精品| 久久中文看片网| 老女人水多毛片| 美女大奶头视频| 精品无人区乱码1区二区| 中文字幕av成人在线电影| 国产精品美女特级片免费视频播放器| www日本黄色视频网| 亚洲图色成人| 国产一区二区在线av高清观看| 韩国av一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放| 99视频精品全部免费 在线| 精品人妻熟女av久视频| 黄片wwwwww| 男女那种视频在线观看| 免费看美女性在线毛片视频| 亚洲中文字幕日韩| 久久精品国产亚洲网站| 最新中文字幕久久久久| 亚洲三级黄色毛片| 日日干狠狠操夜夜爽| 亚洲国产高清在线一区二区三| aaaaa片日本免费| 国产精品av视频在线免费观看| av专区在线播放| 搡老妇女老女人老熟妇| 日本黄大片高清| 成年免费大片在线观看| 国产91精品成人一区二区三区| 日韩一区二区视频免费看| 岛国在线免费视频观看| 一区二区三区高清视频在线| 91麻豆av在线| 国产精品免费一区二区三区在线| 18+在线观看网站| 久久天躁狠狠躁夜夜2o2o| 日韩人妻高清精品专区| 亚洲avbb在线观看| 国国产精品蜜臀av免费| 欧美不卡视频在线免费观看| 麻豆国产av国片精品| 精品人妻偷拍中文字幕| 国产精品一区www在线观看 | 日韩亚洲欧美综合| 日本免费一区二区三区高清不卡| 国产精品久久电影中文字幕| 精品久久国产蜜桃| h日本视频在线播放| 狂野欧美白嫩少妇大欣赏| 午夜a级毛片| 看片在线看免费视频| 丝袜美腿在线中文| 国产高清视频在线播放一区| 老司机福利观看| 精品久久国产蜜桃| 国语自产精品视频在线第100页| 国产人妻一区二区三区在| 国内揄拍国产精品人妻在线| 免费观看精品视频网站| 69人妻影院| 国内精品美女久久久久久| 特大巨黑吊av在线直播| 长腿黑丝高跟| 免费看光身美女| 麻豆成人午夜福利视频| 国产主播在线观看一区二区| 成人美女网站在线观看视频| 日日干狠狠操夜夜爽| 久久久久久九九精品二区国产| 老司机午夜福利在线观看视频| 日本精品一区二区三区蜜桃| 久久久久国产精品人妻aⅴ院| 在现免费观看毛片| 少妇丰满av| 亚洲中文日韩欧美视频| 欧美成人a在线观看| 亚洲精品在线观看二区| 观看免费一级毛片| 免费看美女性在线毛片视频| 精品一区二区三区人妻视频| 成年免费大片在线观看| 男人舔女人下体高潮全视频| 国内久久婷婷六月综合欲色啪| 亚洲av美国av| 日本爱情动作片www.在线观看 | 午夜精品在线福利| 国产一区二区三区视频了| а√天堂www在线а√下载| 日韩中文字幕欧美一区二区| 久久精品国产99精品国产亚洲性色| 欧美黑人欧美精品刺激| 色综合色国产| 欧美xxxx性猛交bbbb| 久久99热这里只有精品18| 91狼人影院| 亚洲最大成人手机在线| 精华霜和精华液先用哪个| 成人一区二区视频在线观看| 中亚洲国语对白在线视频| 日本与韩国留学比较| 国产色爽女视频免费观看| 少妇裸体淫交视频免费看高清| 999久久久精品免费观看国产| 欧美另类亚洲清纯唯美| 中文字幕熟女人妻在线| 亚洲国产高清在线一区二区三| 特大巨黑吊av在线直播| 淫秽高清视频在线观看| 亚洲人成网站在线播放欧美日韩| 久久草成人影院| 国产成人福利小说| 99视频精品全部免费 在线| 国产v大片淫在线免费观看| 麻豆国产97在线/欧美| 日本成人三级电影网站| 中出人妻视频一区二区| 长腿黑丝高跟| 国产高清不卡午夜福利| 亚洲精品456在线播放app | 国产免费男女视频|