• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films

    2024-01-25 07:29:34KaiChen陳凱JianguoZhao趙見(jiàn)國(guó)YuDing丁宇WenxiaoHu胡文曉BinLiu劉斌TaoTao陶濤ZheZhuang莊喆YuYan嚴(yán)羽ZiliXie謝自力JianhuaChang常建華RongZhang張榮andYouliaoZheng鄭有炓
    Chinese Physics B 2024年1期
    關(guān)鍵詞:嚴(yán)羽陳凱自力

    Kai Chen(陳凱), Jianguo Zhao(趙見(jiàn)國(guó)),2,?, Yu Ding(丁宇), Wenxiao Hu(胡文曉), Bin Liu(劉斌),?,Tao Tao(陶濤), Zhe Zhuang(莊喆), Yu Yan(嚴(yán)羽), Zili Xie(謝自力), Jianhua Chang(常建華),Rong Zhang(張榮),3, and Youliao Zheng(鄭有炓)

    1Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China

    2School of Electronics and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    3Xiamen University,Xiamen 361005,China

    Keywords: nonpolar a-plane GaN film,Mg-doping temperature,strains,activation efficiency

    1.Introduction

    III-nitrides are promising semiconductor systems with widespread applications for power,[1,2]radio frequency(RF),[3,4]optoelectronic,[5,6]and light-emitting devices.[7,8]In general, most of the conventional III-nitride-based devices are epitaxially grown along thec-plane direction.However,a strong built-in electric field parallel to thec-direction induced by the spontaneous and piezoelectric polarization forces the spatial separation of electrons and holes in the quantum wells,causing a reduction of the recombination rate and a redshift of the emission wavelength in III-nitrides based lightemitting devices.[9,10]This general phenomenon, known as the quantum-confined Stark effect (QCSE), severely hinders the improvement of the internal quantum efficiency in nitridebased optoelectronic devices.[11]Currently, various methods for conquering the adverse effects of QCSE have been reported, such as the introduction of V-pits,[12]the employment of AlN/AlGaN strain-compensating layers,[13]the usage of stress engineering,[14]and the growth of InGaN quantum dots.[15]In fact, the adverse effects of built-in electric field could also be eliminated by growing nonpolar GaNbased materials, which means that the growth direction of semiconductor is perpendicular to the direction of electric field.[16,17]Apparently, the adverse effects of built-in electric field could be suppressed with various degrees when the angle between growth direction of semiconductor and the direction of electric field is varied from 0°to 90°, which are semipolar materials.[18]Thus,the study of nonpolar/semipolar GaNbased materials has increasingly received more attention.

    Recently, the successful fabrications of semipolar (1–101)-plane,[19](11–22)-plane,[20]and(20–21)-plane[21]GaNbased LEDs have been reported.Moreover, high bandwidth visible light communication has been reported by using semipolar(20–21)-plane[22]and(11–22)-plane[23]GaN-based LEDs.However,given the presence of apparent anisotropy in the growth surface of nonpolar materials,the epitaxial growth of nonpolar GaN-based materials is relatively difficult when compared to the polar/semipolar counterparts.[24]Although studies of nonpolar (10–10)-plane AlGaN,[25]GaN,[26]and InGaN,[27]and nonpolar (11–20)-plane AlGaN,[11]GaN,[28]and InGaN[29]have recently been reported, the research of nonpolar III-nitrides based devices is significantly behind.A reliable p-type semiconductor is necessary for a device with p–n junction.Although the successful growth of nonpolar p-GaN has been reported,[30]there is no detailed and in-depth study of the activation efficiency and activation energy of Mg acceptors in nonpolar p-type GaN.

    In this paper,nonpolara-plane p-type GaN epilayers with growth temperatures from 980°C to 1010°C were grown onr-plane sapphire substrate by a close coupled shower head(CCS) metal–organic chemical vapor deposition (MOCVD)system.The influence of growth temperature on structural anisotropy and electrical properties of nonpolar p-type GaN films were investigated intensively.Eventually,a p-type GaN with high activation efficiency and high doping concentration was obtained.

    2.Experiment

    All the nonpolar (11–20)a-plane GaN samples were grown on semipolar (1–102)r-plane sapphire substrates by a CCS MOCVD system.Ammonia (NH3), trimethyl-gallium(TMGa), and bicyclopentadienyl-magnesium (Cp2Mg) were used as the N, Ga, and Mg source precursors, respectively,which were mainly introduced into the reaction chamber by hydrogen (H2) as a carrier gas.The pressure of the chamber was maintained at 53 mbar during the whole process.The schematic structure of the nonpolar p-type GaN samples prepared in this paper is shown in Fig.1(a).Figure 1(b) shows the temperature changed with time in the corresponding process.Before growth, high-temperature baking and a nitridation process were carried out at 990°C to remove the surface contamination of the sapphire substrate.Subsequently,a 20 nm-thick low-temperature GaN(LT-GaN)nucleation layer was deposited on the sapphire substrate at 550°C and followed by a high-temperature GaN (HT-GaN) buffer layer grown at 1030°C.Afterward,the temperature was raised to 1035°C to grow an undoped GaN (u-GaN) layer on the HT-GaN layer.Finally, the Mg-doped GaN layers with various temperatures with a V/III molar flow ratio of 5000 were grown on the u-GaN layer to explore the influence of temperature on the morphology and electrical properties of nonpolara-plane p-type GaN.Four nonpolara-plane p-type GaN samples were grown in this work with 980°C, 990°C, 1000°C, and 1010°C, and were named samples T1, T2, T3, and T4, respectively.To activate the Mg dopants,all of the samples were rapidly thermally annealed at 800°C for 10 min within a nitrogen ambient.

    The surface morphologies of the p-type GaN samples were characterized by scanning electron microscopy (SEM)and atomic force microscopy (AFM).The crystalline quality analysis of the samples was mainly achieved by high resolution x-ray diffraction (HR-XRD).The in-plane strains ofaplane p-GaN samples were evaluated with the Raman spectra excited by a 514 nm laser at room temperature.The Hall effect measurements were employed to estimate the electrical properties of all of the samples.Specifically, the Ni (20 nm)/Au(20 nm) electrodes were deposited at the four corners of the surface of the squarea-plane GaN sample by electron beam evaporation,and ohmic contact was formed between the metal and the sample after annealing at 500°C for 10 min in an air environment.The Mg incorporation density was determined using secondary ion mass spectroscopy (SIMS) measurements.

    3.Results and discussion

    The cross-sectional SEM graph for the nonpolara-plane p-GaN sample is shown in Fig.1(c).The difference in conductivity between the Mg-doped layer at the top and undoped layer at the bottom results in a clear boundary at the interface.The thickness of the Mg-doped layer was determined to be 270 nm by both the cross-sectional SEM graph and the in situ reflectance monitoring system(not shown).The threedimensional view AFM images of alla-plane p-GaN samples were measured in a detection area of 3 μm×3 μm.It is evidently observed from Fig.2 that the surface morphology of the four samples possesses an undulating structure that is distributed along thec-direction.This typical directional structure of nonpolar GaN is mainly related to the larger diffusion length of the Ga adatom along thec-direction than along them-direction on the surface.[31]Samples T1 and T2 with 0.83 nm and 0.97 nm root mean square(RMS)roughness feature a smoother and flatter surface that is comparable to the previously reported Mg-doped nonpolara-plane GaN.[32]In addition, for samples T3 and T4, the width of the undulating structure gradually increases and the corresponding RMS roughnesses are 1.41 nm and 1.62 nm,respectively.This phenomenon implies that a higher temperature might inhibit the in-plane surface diffusion of GaN along them-direction[33]and promote the growth along thec-direction,resulting in the deteriorated surface morphology.

    Fig.1.(a) The schematic layer structure for the nonpolar a-plane p-type GaN samples.(b) The growth temperature of each layer varies with time.(c)The cross-sectional SEM graph for the nonpolar a-plane p-GaN sample.

    Fig.2.(a)–(d)The AFM images for the samples T1–T4 with a detection area of 3μm×3μm.

    Fig.3.(a)The XRD ω–2θ scanning curve for the nonpolar a-plane p-type GaN.(b)XRCs of the samples T1–T4.

    Table 1.The FWHM values of XRCs and the anisotropy ratios for samples T1–T4 along c-and m-directions.

    The XRDω–2θscanning curve of the sample is shown in Fig.3(a).The diffraction peaks at 52.54°and 57.71°correspond to(2–204)r-plane sapphire substrate and(11–20)aplane GaN, respectively.[11]This further indicates that nonpolara-plane GaN has been successfully grown on semipolarr-plane sapphire substrate.The x-ray rocking curves(XRCs)based on 57.71°position were measured, respectively, at azimuth angles of?=0°(alongc-direction)and?=90°(alongm-direction) to describe the structural anisotropy of the nonpolara-plane GaN samples.The full width at half maximum (FWHM) values for XRCs of the four samples can be obtained by a Gauss function fitting the XRCs, as shown in Figs.3(b)and 3(c),and the results are summarized in Table 1.Significantly, the FWHM values of XRCs alongc-direction are much smaller than those along them-direction, which is due to the smaller lattice mismatch between the nonpolaraplane GaN and the semipolarr-plane sapphire substrate along thec-direction.[34]Additionally, the FWHM values of XRCs alongc-direction increased from 1019 arcsec for sample T1 to 1101 arcsec for sample T2, but decreased from 1515 arcsec to 1300 arcsec along them-direction.This indicates that temperature has a great difference on the crystalline quality in both directions.To accurately evaluate anisotropy in crystalline quality,the anisotropy ratioAis defined by the following equation:

    whereF90andF0are the FWHM values of XRC measured at azimuth angles of?=0°and?=90°, respectively.The calculation results of samples T1–T4 are presented in Table 1.The anisotropy ratios reduced sharply from 19.6% for sample T1 to 8.3%for sample T2.This remarkable improvement of anisotropy in crystalline quality can be attributed to the release of residual stress between u-GaN layer and p-type GaN layer as the temperature increased.[35]On the contrary, the anisotropy ratio increased significantly from 8.3%for sample T2 to 14.0% for sample T4.Although relatively high temperatures can promote the incorporation of Mg atoms,[35]an excess of Mg atoms can result in lattice distortion and an increased density of defects, particularly nitrogen vacancies, in the p-GaN layer.[34]The presence of excessive nitrogen vacancies can strengthen the self-compensation effect, leading to a decrease in the concentration of the holes.As a result,an 8.3%of low anisotropy in crystalline quality could be obtained at 990°C by optimizing the growth temperature.

    Fig.4.(a)Raman spectra and(b)calculated in-plane strains of samples T1–T4.

    The Raman spectra of the p-typea-plane GaN films prepared at different growth temperatures were carried out to investigate the strain state.As shown in Fig.4(a), the Raman peaks for all of the samples located at 418 cm?1belong to A1gmode ofr-sapphire and the peaks observed at 532 cm?1,559 cm?1,and 568 cm?1correspond to A1(TO),E1(TO),E2(high) mode of GaN, respectively.[36]In general, the biaxial in-plane strainεalongx,y, andzaxis for nonpolara-plane GaN film can be expressed as[36]

    whereC11,C12, andC13are all the elastic stiffness constants and thex,y, andzaxis are defined as GaN[11–20], [1–100],and[0001]-directions,respectively.Furthermore,the relationship between Raman peak shifts Δωand in-plane strain can be described as[36]

    Hereλrepresents a certain Raman mode andaλ,bλ, andcλare all the phonon deformation constants for the above homologous mode.Independent peaks,which are shown as the yellow dotted line in the Fig.4(a), can be obtained by Lorentz fitting Raman spectra so as to accurately extract the peaks positions.The relative displacement of peak position can be calculated according to the strain-free phonon frequencies of E1(TO)(558.8 cm?1)and E2(high)(567.6 cm?1)modes.The inplane strainsεyyandεzzare estimated by solving Eqs.(2)and(3).In order to correctly describe the in-plane strains of all of the samples,the Raman spectra at four positions were measured for each sample under the same conditions.Figure 4(b)gives a box-type statistical diagram of the calculated in-plane strains as a function of growth temperature.It is clearly noted that all of the samples suffered compressive strain along thec- andm-directions,[37]and the values of compressive stress inc-direction are less than those in them-direction.Interestingly,the strain variations alongc-andm-directions for samples T1–T4 are consistent with the trend of the FWHM values of the XRCs.This means that an increase or decrease in stress can be judged by an increase or decrease in the FWHM value of XRC, which indicates that the crystal quality seriously restricts the stress value.

    Fig.5.(a)The AC Hall effect measurement at room temperature for sample T1–T4.(b) The resistivity for sample T2 as a function of reciprocal temperature.The inset is the acceptor activation energy of samples T1–T4.

    The AC Hall effect measurement at room temperature was used to reliably determine the carrier type of Mg-doped nonpolara-plane GaN films, as shown in Fig.5(a).The hole concentrations after annealing were determined to be 4.1×1017cm?3, 1.3×1018cm?3, 5.9×1017cm?3, and 5.5×1017cm?3for samples T1,T2,T3,and T4,respectively,suggesting that all of the films achieve Mg activation and ptype semiconductor.Meanwhile, hole concentrations as the temperature increased first increased and then decreased.The contrary variation of carrier mobility was ascribed to the enhanced ionized impurity scattering caused by a relatively high hole concentration.It can be found that a hole concentration of 1.3×1018cm?3for sample T2 was achieved with a relatively smooth surface morphology (as shown in Fig.2(b)),a low anisotropy in crystalline quality (as shown in Table 1),and small strains(as shown in Fig.4(b)).Naturally,the carrier mobility of sample T2 was decreased evidently due to its high hole concentration.

    To explore the transmission characteristics of the carriers, we performed temperature dependent Hall-effect measurements on sample T2 from 298 to 853 K.From the resistivity as a function of reciprocal temperature in Fig.5(b),it is obvious that the sample presents a typical thermally activated conduction process.[38]The resistivity decreases with increasing temperature,whereas hole concentration is positively correlated with temperature.The acceptor activation energy(EA) can be deduced by fitting the measurement data with Arrhenius-type formula.[39]The inset shows the relationship between activation energy and temperature.The calculatedEAvalues of all nonpolara-plane GaN samples are smaller than that reported in thec-plane GaN(174 meV).[40]It can be inferred from this that the heavy hole band in nonpolar GaN would upward shift due to its strain anisotropy,so the Mg acceptors energy level will become shallower accordingly.Thus,the activation energy of Mg acceptors in nonpolar GaN is obviously smaller than that in polar GaN.

    Fig.6.SIMS measurement of sample T2.

    A SIMS measurement of sample T2 was recorded to confirm the Mg-doping concentration of Mg atoms into the GaN film, as shown in Fig.6.The Mg concentration signal increased along the growth direction and the strongest signal appeared near the surface of the sample, which could be explained by the Mg memory effect.[41]The significant Mg concentrations(>1.5×1019cm?3)are observed at profile depth<270 nm.This is in agreement with the SEM results.Furthermore, the Mg-doping efficiency is defined as the ratio of the hole concentration and Mg-doping density(Hall/SIMS ratio).Here,the average Mg concentration is 2×1019cm?3in the p-type GaN layer of sample T2 and the Hall/SIMS ratio is calculated to be as high as 6.5%,indicating that the optimized temperature can significantly suppress the self-compensation effect to effectively increase the hole concentration and activation rate.

    4.Conclusion

    We have grown nonpolara-plane p-type GaN with different Mg-doping temperatures on two-inch semipolarr-plane sapphire substrates by the MOCVD system.The sample with 0.97 nm RMS roughness at an optimized temperature of 990°C reveals high crystalline quality,relatively low in-plane strains, and high hole concentrations of 1.3×1018cm?3.It is revealed that the variation trend of the XRC FWHM values along thec- andm-directions are essentially consistent with the stress along the corresponding directions.Temperature dependent Hall measurements show that the acceptor activation energy is 114 meV at a growth temperature of 990°C.It is of note that a Mg activation efficiency as high as 6.5%has been achieved in this work by optimizing the growth temperature of the Mg-doped layer.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFB3601000 and 2021YFB3601002), the National Natural Science Foundation of China (Grant Nos.62074077, 61921005,61974062,62204121,and 61904082),Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No.BE2021008-2),and the China Postdoctoral Science Foundation(Grant No.2020M671441).

    猜你喜歡
    嚴(yán)羽陳凱自力
    A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography
    Students’ Feedback on Integrating Engineering Practice Cases into Lecture Task in Course of Built Environment
    種七彩顏色的太陽(yáng)
    這就是我
    清朝花瓶
    離婚,婚姻的一次“手術(shù)”
    女子世界(2017年6期)2017-06-08 20:16:15
    鮐巴魚(yú)奇事
    Different Pronunciation Features of “TH” in China and India’s Official News
    論嚴(yán)羽的詩(shī)歌創(chuàng)作特色——試析嚴(yán)羽所自為詩(shī)反映的思想風(fēng)貌
    人間(2015年20期)2016-01-04 12:47:06
    Coupled Faults Analysis and Evaluation Methods Based on Cellular Automata
    丰满人妻熟妇乱又伦精品不卡| 免费看a级黄色片| 欧美午夜高清在线| 精品久久久久久久末码| 国产单亲对白刺激| 欧美乱码精品一区二区三区| 亚洲国产高清在线一区二区三| 美女午夜性视频免费| a级毛片a级免费在线| 国产av又大| 欧美中文综合在线视频| 黄色成人免费大全| 日韩欧美一区二区三区在线观看| 99久久无色码亚洲精品果冻| 欧美极品一区二区三区四区| 曰老女人黄片| 成人三级黄色视频| av有码第一页| 91成年电影在线观看| 搡老妇女老女人老熟妇| 久99久视频精品免费| 亚洲av成人精品一区久久| 麻豆成人av在线观看| 午夜福利18| a级毛片a级免费在线| 操出白浆在线播放| 一级毛片精品| www.自偷自拍.com| 欧美日韩亚洲综合一区二区三区_| 一进一出抽搐动态| 黑人操中国人逼视频| 我的老师免费观看完整版| 88av欧美| 最近在线观看免费完整版| 久久午夜综合久久蜜桃| 午夜激情av网站| 国产一区二区在线观看日韩 | 久久精品亚洲精品国产色婷小说| 亚洲美女黄片视频| 最近最新中文字幕大全免费视频| 人妻久久中文字幕网| 亚洲va日本ⅴa欧美va伊人久久| 亚洲乱码一区二区免费版| 91成年电影在线观看| 无人区码免费观看不卡| 女人爽到高潮嗷嗷叫在线视频| 男人舔奶头视频| 久久精品综合一区二区三区| 97超级碰碰碰精品色视频在线观看| 99国产精品99久久久久| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看| tocl精华| 精品高清国产在线一区| 日韩欧美精品v在线| 香蕉丝袜av| 无人区码免费观看不卡| 中文字幕高清在线视频| 搡老岳熟女国产| 性色av乱码一区二区三区2| 成人国语在线视频| 欧美不卡视频在线免费观看 | 怎么达到女性高潮| 亚洲精品在线观看二区| 欧美zozozo另类| 色综合欧美亚洲国产小说| 99国产精品一区二区三区| 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 国产精品永久免费网站| 亚洲一区二区三区色噜噜| 波多野结衣高清作品| 国产av又大| 亚洲欧美日韩高清在线视频| 午夜福利在线在线| 最近最新中文字幕大全免费视频| 精品久久久久久成人av| 精品一区二区三区视频在线观看免费| 99在线人妻在线中文字幕| 最近在线观看免费完整版| 啦啦啦韩国在线观看视频| 一区二区三区高清视频在线| 床上黄色一级片| 国产麻豆成人av免费视频| 欧美高清成人免费视频www| 亚洲av成人不卡在线观看播放网| 亚洲性夜色夜夜综合| 久久久久性生活片| 九色国产91popny在线| 午夜福利免费观看在线| 精品国产乱码久久久久久男人| 午夜免费激情av| 午夜激情福利司机影院| 国产精品亚洲av一区麻豆| 人人妻人人看人人澡| 国产高清视频在线播放一区| 在线免费观看的www视频| 欧美成人性av电影在线观看| 操出白浆在线播放| 欧美久久黑人一区二区| 日本熟妇午夜| 国内少妇人妻偷人精品xxx网站 | 99国产极品粉嫩在线观看| 国产成年人精品一区二区| 日韩欧美免费精品| 国产精品美女特级片免费视频播放器 | 国产精品自产拍在线观看55亚洲| 麻豆国产av国片精品| 在线播放国产精品三级| 性欧美人与动物交配| 最近最新中文字幕大全电影3| 久久久久免费精品人妻一区二区| 悠悠久久av| 动漫黄色视频在线观看| 亚洲成人精品中文字幕电影| 国产午夜精品久久久久久| 久久人妻福利社区极品人妻图片| 久久久精品国产亚洲av高清涩受| 九色国产91popny在线| 亚洲国产欧美网| 亚洲最大成人中文| 亚洲成人精品中文字幕电影| 亚洲国产欧洲综合997久久,| 久久精品国产亚洲av高清一级| 久9热在线精品视频| tocl精华| 亚洲国产中文字幕在线视频| 成人精品一区二区免费| 小说图片视频综合网站| 亚洲欧美日韩无卡精品| 久久99热这里只有精品18| 国内毛片毛片毛片毛片毛片| 国产成人影院久久av| 精品久久蜜臀av无| 中文字幕高清在线视频| 日韩中文字幕欧美一区二区| 日韩欧美精品v在线| 日韩 欧美 亚洲 中文字幕| а√天堂www在线а√下载| а√天堂www在线а√下载| 国产成人一区二区三区免费视频网站| 久久久久国产一级毛片高清牌| 人人妻人人看人人澡| 国产精品综合久久久久久久免费| 国产av一区二区精品久久| 国内揄拍国产精品人妻在线| 男女视频在线观看网站免费 | 国产黄片美女视频| 免费看a级黄色片| 亚洲激情在线av| 久久精品国产亚洲av高清一级| 1024手机看黄色片| 最新美女视频免费是黄的| 搞女人的毛片| 日本黄色视频三级网站网址| 国产精品av视频在线免费观看| 成在线人永久免费视频| aaaaa片日本免费| 国产激情偷乱视频一区二区| 特级一级黄色大片| 成人av一区二区三区在线看| 久久婷婷人人爽人人干人人爱| 香蕉丝袜av| 两性夫妻黄色片| 99热6这里只有精品| 日韩欧美在线二视频| 亚洲av成人一区二区三| 久久久久久免费高清国产稀缺| 国产又色又爽无遮挡免费看| 国内毛片毛片毛片毛片毛片| 两人在一起打扑克的视频| 九色国产91popny在线| 在线观看66精品国产| 亚洲 国产 在线| 欧美午夜高清在线| 51午夜福利影视在线观看| 欧美中文日本在线观看视频| 人妻丰满熟妇av一区二区三区| 中文亚洲av片在线观看爽| 美女午夜性视频免费| 两个人视频免费观看高清| 日本一区二区免费在线视频| 国产又黄又爽又无遮挡在线| 成人永久免费在线观看视频| 悠悠久久av| 国产黄a三级三级三级人| 日韩有码中文字幕| 国产成人啪精品午夜网站| 欧美久久黑人一区二区| 亚洲国产精品合色在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区激情短视频| 亚洲欧美日韩高清专用| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| av中文乱码字幕在线| 免费高清视频大片| 国产高清有码在线观看视频 | 亚洲第一电影网av| 亚洲av成人一区二区三| 一进一出抽搐gif免费好疼| 国产私拍福利视频在线观看| 制服丝袜大香蕉在线| 禁无遮挡网站| 男女那种视频在线观看| 麻豆久久精品国产亚洲av| 1024香蕉在线观看| a级毛片a级免费在线| 99久久国产精品久久久| 窝窝影院91人妻| 国产一区二区三区视频了| 久久婷婷人人爽人人干人人爱| 国产一区二区三区在线臀色熟女| bbb黄色大片| 在线观看舔阴道视频| 999久久久精品免费观看国产| 日韩欧美三级三区| 国产精华一区二区三区| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 亚洲精品美女久久久久99蜜臀| 两性夫妻黄色片| 免费观看精品视频网站| 国产精品免费视频内射| 成人三级黄色视频| 男女之事视频高清在线观看| 老司机福利观看| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 一进一出抽搐动态| 制服人妻中文乱码| 亚洲精品在线美女| 精品久久久久久久末码| 久久久久国内视频| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 日韩欧美免费精品| 日本一区二区免费在线视频| 久久久精品大字幕| 国内精品一区二区在线观看| 亚洲精品一区av在线观看| 国产精品日韩av在线免费观看| 1024手机看黄色片| 精品高清国产在线一区| 人人妻,人人澡人人爽秒播| 无遮挡黄片免费观看| 性色av乱码一区二区三区2| 女人被狂操c到高潮| 成人高潮视频无遮挡免费网站| 久久精品aⅴ一区二区三区四区| 桃红色精品国产亚洲av| 亚洲人成网站高清观看| 精品少妇一区二区三区视频日本电影| 久久久水蜜桃国产精品网| 麻豆成人午夜福利视频| 国产熟女xx| 日本 av在线| 久久久久国内视频| 又爽又黄无遮挡网站| 国产精品一区二区三区四区免费观看 | 又黄又爽又免费观看的视频| 久久人人精品亚洲av| 一个人免费在线观看电影 | 老司机午夜十八禁免费视频| 香蕉久久夜色| 亚洲精品一区av在线观看| 搡老妇女老女人老熟妇| 精品久久久久久久久久久久久| 不卡一级毛片| 国产黄a三级三级三级人| tocl精华| 在线国产一区二区在线| 国产精品久久久久久亚洲av鲁大| 国产成人精品无人区| 美女扒开内裤让男人捅视频| 亚洲欧美日韩东京热| 最好的美女福利视频网| 黄频高清免费视频| 久久精品国产99精品国产亚洲性色| 欧美高清成人免费视频www| 又黄又爽又免费观看的视频| 在线观看一区二区三区| 大型av网站在线播放| 日本一本二区三区精品| 国产爱豆传媒在线观看 | 久久久精品国产亚洲av高清涩受| 在线十欧美十亚洲十日本专区| 一a级毛片在线观看| a在线观看视频网站| 欧美国产日韩亚洲一区| 亚洲专区中文字幕在线| 午夜亚洲福利在线播放| 国产日本99.免费观看| 免费无遮挡裸体视频| 国产免费av片在线观看野外av| 成年人黄色毛片网站| 99久久99久久久精品蜜桃| 午夜福利18| 在线观看免费日韩欧美大片| 中文字幕av在线有码专区| 女人高潮潮喷娇喘18禁视频| 18禁美女被吸乳视频| 熟女少妇亚洲综合色aaa.| 熟女电影av网| АⅤ资源中文在线天堂| bbb黄色大片| 手机成人av网站| 中文字幕人妻丝袜一区二区| av福利片在线| 岛国在线观看网站| 国产精品久久久久久精品电影| 成年人黄色毛片网站| 99久久99久久久精品蜜桃| 日韩精品免费视频一区二区三区| 两性夫妻黄色片| 亚洲午夜理论影院| 男人舔女人下体高潮全视频| 青草久久国产| 色综合婷婷激情| 男女下面进入的视频免费午夜| 国产亚洲av嫩草精品影院| 91在线观看av| 国产免费av片在线观看野外av| 在线观看日韩欧美| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久精品电影| 热99re8久久精品国产| 婷婷亚洲欧美| av有码第一页| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| 日韩三级视频一区二区三区| 性欧美人与动物交配| 国产亚洲av高清不卡| 亚洲av美国av| 又爽又黄无遮挡网站| 亚洲成人免费电影在线观看| 中文字幕熟女人妻在线| 成年女人毛片免费观看观看9| 日韩中文字幕欧美一区二区| 亚洲狠狠婷婷综合久久图片| √禁漫天堂资源中文www| 亚洲一区二区三区色噜噜| 亚洲人成77777在线视频| 精品午夜福利视频在线观看一区| 精品一区二区三区视频在线观看免费| 天堂√8在线中文| 国产成人欧美在线观看| 女同久久另类99精品国产91| 国产精品日韩av在线免费观看| 国产v大片淫在线免费观看| 悠悠久久av| 香蕉丝袜av| 成人18禁在线播放| 久久婷婷成人综合色麻豆| 国产亚洲精品久久久久5区| 国产精品永久免费网站| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩精品亚洲av| 中文字幕精品亚洲无线码一区| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 老司机福利观看| 亚洲国产欧美网| 日韩成人在线观看一区二区三区| 女警被强在线播放| 一级黄色大片毛片| 久久久久久久午夜电影| 成熟少妇高潮喷水视频| 日本黄大片高清| 日本免费a在线| 两个人看的免费小视频| 久久人人精品亚洲av| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 国产黄a三级三级三级人| 女人被狂操c到高潮| 两个人的视频大全免费| 国产成人精品无人区| 99国产精品99久久久久| 亚洲激情在线av| 欧美日韩福利视频一区二区| 亚洲国产精品合色在线| 久久精品综合一区二区三区| 淫妇啪啪啪对白视频| 国产免费av片在线观看野外av| 精品欧美一区二区三区在线| 99久久久亚洲精品蜜臀av| 亚洲七黄色美女视频| 好看av亚洲va欧美ⅴa在| 久久香蕉国产精品| 色av中文字幕| 久久久久亚洲av毛片大全| 亚洲国产欧美一区二区综合| 99国产精品99久久久久| 老汉色av国产亚洲站长工具| 观看免费一级毛片| 婷婷六月久久综合丁香| 亚洲一区高清亚洲精品| 日韩中文字幕欧美一区二区| 国产精品自产拍在线观看55亚洲| 99热6这里只有精品| 人人妻人人看人人澡| 午夜免费观看网址| 1024手机看黄色片| 中文资源天堂在线| 久久久久久久久久黄片| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看 | 不卡一级毛片| 精品久久久久久久末码| 91在线观看av| 亚洲熟妇中文字幕五十中出| 级片在线观看| 男女下面进入的视频免费午夜| av片东京热男人的天堂| 亚洲精品中文字幕在线视频| 夜夜爽天天搞| 757午夜福利合集在线观看| 91av网站免费观看| 正在播放国产对白刺激| 亚洲真实伦在线观看| 男人的好看免费观看在线视频 | 欧美日韩乱码在线| 色综合婷婷激情| 国产免费av片在线观看野外av| 欧美中文日本在线观看视频| 在线观看www视频免费| 亚洲七黄色美女视频| 亚洲专区字幕在线| 国产高清视频在线观看网站| www国产在线视频色| 免费看a级黄色片| 国产97色在线日韩免费| av天堂在线播放| 桃色一区二区三区在线观看| 国产三级在线视频| 首页视频小说图片口味搜索| 精品人妻1区二区| 久久性视频一级片| 欧美不卡视频在线免费观看 | 两个人看的免费小视频| 99久久精品热视频| 免费在线观看成人毛片| 精品一区二区三区视频在线观看免费| 久久久久久久精品吃奶| 麻豆一二三区av精品| 日本 av在线| 夜夜夜夜夜久久久久| 一区二区三区高清视频在线| 麻豆国产av国片精品| 精品国产亚洲在线| 国模一区二区三区四区视频 | 丁香欧美五月| 日韩大码丰满熟妇| 757午夜福利合集在线观看| av有码第一页| 久久热在线av| 国产精品久久久久久精品电影| 少妇的丰满在线观看| 老熟妇仑乱视频hdxx| 国产av又大| 黑人巨大精品欧美一区二区mp4| а√天堂www在线а√下载| 亚洲av成人一区二区三| 国产精品一区二区三区四区久久| 欧美中文综合在线视频| 成人国产一区最新在线观看| 制服诱惑二区| 日本成人三级电影网站| 啪啪无遮挡十八禁网站| 欧美精品啪啪一区二区三区| 香蕉丝袜av| 国产亚洲精品av在线| av有码第一页| 国产激情欧美一区二区| 中文字幕人妻丝袜一区二区| 国产aⅴ精品一区二区三区波| 男女做爰动态图高潮gif福利片| 老司机福利观看| 日韩成人在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 黄色女人牲交| 久久 成人 亚洲| 日本a在线网址| 日本成人三级电影网站| 国产麻豆成人av免费视频| av国产免费在线观看| 九色国产91popny在线| 91成年电影在线观看| 成人国产综合亚洲| 久久九九热精品免费| 国产av在哪里看| 国产激情久久老熟女| 亚洲熟妇中文字幕五十中出| 特级一级黄色大片| 男人的好看免费观看在线视频 | 久久久久国产一级毛片高清牌| 午夜a级毛片| 亚洲第一电影网av| 1024香蕉在线观看| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 看免费av毛片| 亚洲精品美女久久久久99蜜臀| 久久久久久久久免费视频了| 亚洲,欧美精品.| 亚洲欧洲精品一区二区精品久久久| 婷婷六月久久综合丁香| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 日本三级黄在线观看| 亚洲精品久久成人aⅴ小说| 色av中文字幕| av在线播放免费不卡| 人妻久久中文字幕网| 搡老岳熟女国产| 成人三级做爰电影| 国产又色又爽无遮挡免费看| 女人被狂操c到高潮| 色在线成人网| 女人被狂操c到高潮| 亚洲国产精品999在线| 国产高清videossex| 99精品欧美一区二区三区四区| 欧美一级a爱片免费观看看 | 国产成人一区二区三区免费视频网站| 悠悠久久av| 免费在线观看黄色视频的| 国产精品综合久久久久久久免费| 在线观看日韩欧美| 国产精品久久久久久亚洲av鲁大| 欧美中文日本在线观看视频| 男女下面进入的视频免费午夜| 国产精品 欧美亚洲| 色综合亚洲欧美另类图片| 级片在线观看| 国产私拍福利视频在线观看| 亚洲人成网站高清观看| 免费高清视频大片| 亚洲av中文字字幕乱码综合| 久久精品综合一区二区三区| 国产亚洲精品av在线| av在线天堂中文字幕| 99久久99久久久精品蜜桃| 听说在线观看完整版免费高清| 国产亚洲精品综合一区在线观看 | 亚洲av成人精品一区久久| 久久亚洲精品不卡| 亚洲第一电影网av| 亚洲成人国产一区在线观看| 精品久久久久久久久久免费视频| www.999成人在线观看| 国内精品久久久久精免费| 国产一区二区激情短视频| 午夜日韩欧美国产| 天天添夜夜摸| 欧美绝顶高潮抽搐喷水| 欧美日韩乱码在线| 亚洲自偷自拍图片 自拍| 一夜夜www| 婷婷亚洲欧美| 两性夫妻黄色片| 97人妻精品一区二区三区麻豆| 免费在线观看日本一区| 亚洲av熟女| 老熟妇仑乱视频hdxx| 国产精品 欧美亚洲| 天天添夜夜摸| 999久久久精品免费观看国产| 精品午夜福利视频在线观看一区| 久久香蕉国产精品| 一级黄色大片毛片| 欧美丝袜亚洲另类 | 久久久久九九精品影院| 在线视频色国产色| 窝窝影院91人妻| 精品久久久久久久末码| 最好的美女福利视频网| 50天的宝宝边吃奶边哭怎么回事| 欧美zozozo另类| 此物有八面人人有两片| 久久国产精品人妻蜜桃| 两个人视频免费观看高清| 亚洲 国产 在线| 国产又黄又爽又无遮挡在线| 精品免费久久久久久久清纯| 日韩免费av在线播放| 亚洲欧洲精品一区二区精品久久久| 精品国产乱码久久久久久男人| 老司机靠b影院| 国产精品永久免费网站| 免费观看人在逋| 老熟妇仑乱视频hdxx| 亚洲欧洲精品一区二区精品久久久| 香蕉丝袜av| 一进一出抽搐gif免费好疼| 国产av一区在线观看免费| 少妇裸体淫交视频免费看高清 | 中亚洲国语对白在线视频| 精品人妻1区二区| 人妻丰满熟妇av一区二区三区| 男女视频在线观看网站免费 | 国产片内射在线| 成在线人永久免费视频| 国产99白浆流出| 欧美中文综合在线视频| 久久中文字幕一级| 成人av一区二区三区在线看| 日韩欧美在线二视频| 久久人妻福利社区极品人妻图片| 国产高清视频在线播放一区| 午夜久久久久精精品| 国产高清有码在线观看视频 | 国产亚洲av嫩草精品影院|