• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum partial least squares regression algorithm for multiple correlation problem

    2022-03-12 07:44:14YanYanHou侯艷艷JianLi李劍XiuBoChen陳秀波andYuanTian田源
    Chinese Physics B 2022年3期
    關(guān)鍵詞:李劍

    Yan-Yan Hou(侯艷艷) Jian Li(李劍) Xiu-Bo Chen(陳秀波) and Yuan Tian(田源)

    1School of Artificial Intelligence,Beijing University of Post and Telecommunications,Beijing 100876,China

    2College of Information Science and Engineering,Zaozhuang University,Zaozhuang 277160,China

    3Information Security Center,State Key Laboratory of Networking and Switching Technology,Beijing University of Post and Telecommunications,Beijing 100876,China

    4GuiZhou University,Guizhou Provincial Key Laboratory of Public Big Data,Guiyang 550025,China

    Keywords: quantum machine learning,partial least squares regression,eigenvalue decomposition

    1. Introduction

    Linear regression is a statistical technique for analyzing and modeling the linear relationship between independent and dependent variables.Applications of linear regression occur in almost every field, including engineering, economics, chemical, and social sciences, etc. According to the number of independent variables, linear regression is divided into univariate linear regression and multiple linear regression. Actual problems are usually associated with various factors,and thus multiple linear regression has been used more widely than univariate linear regression.[1]However,multiple correlations between variables often seriously influence the construction of multiple linear regression models and damage the stability of models.Partial least squares(PLS)regression is a multiple linear regression algorithm related to principal component analysis,which builds the regression model by extracting the principal components reflecting the variation between independent and dependent variables.[2]Compared with other linear regression algorithms, the PLS regression can better solve the multiple correlation problem and be effectively modeled when the number of independent variables is less than the independent variable dimension. However,when the independent variable dimension is large,the PLS regression has high time complexity and becomes difficult to implement on classical computers.

    With the development of quantum computing, quantum algorithms show better computing performance over the corresponding classical ones.[3]Superposition and entanglement of quantum states make quantum algorithms especially suitable for high-dimensional data computation in machine learning.[4]Recently, researchers proposed a series of quantum machine learning algorithms, such as classification,[5-11]clustering,[12-15]dimensionality reduction,[16-22,24]and neural networks.[25-29]These algorithms accelerate the development of quantum machine learning. Large-scale matrix computation in linear regression has high computational complexity,and various quantum regression algorithms have been proposed to solve this problem. Based on the quantum algorithm for solving systems of linear equations (HHL),[30]Wiebe[31]suggested a quantum regression algorithm from statistics. The time complexity of this algorithm is logarithmic in the data matrix dimension when the data matrix is sparse and wellconditioned. Schuld[32]established a quantum least-squares linear regression model that achieved an exponential acceleration in data size and significantly improved the dependency on the condition number. Wang[33]proposed an improved quantum linear regression algorithm. What is remarkable is that this algorithm can output regression parameters in classical form. In general, quantum regression algorithms have exponential speed-ups over the corresponding classical algorithms under certain conditions. However, the existing quantum regression algorithms are based on univariate linear regression models and can not solve the multiple correlation problem in regression.

    In this paper, we design a quantum partial least squares(QPLS)regression algorithm for the multiple correlation problem. Our work has three significant contributions: (i)We propose the first quantum PLS regression algorithm to speed up the regression function construction. (ii) A quantum eigenvector search method is given to parallel search the specified eigenvector, which provides a novel idea for mapping highdimensional data to low-dimensional space. (iii) A density matrix product method is designed to build residual matrix products, and this method can be a branch of other quantum algorithms to construct Hermitian matrix products.

    The remainder of this paper is organized as follows. Section 2 reviews the PLS regression algorithm. Section 3 describes the QPLS regression algorithm and the related circuits. Section 4 analyzes the space and time complexities of the QPLS regression algorithm. Finally,we give a conclusion and discuss the future research directions.

    2. Review of the PLS regression

    In this section, we briefly review the PLS regression. The kernel work of the PLS regression is to build a linear regression function by projecting independent variables and dependent variables into the new feature space. Based on the linear regression function, we can predict the dependent variable for any independent variable. LetX={x1,...,xm}be the set of the independent variablesxi ∈RnandY={y1,...,ym}be the set of the dependent variablesyi ∈Rw. We centralize and normalizeXandY,respectively,and get the independent variable matrixE0∈Rn×mand the dependent variable matrixF0∈Rn×w. The PLS regression algorithm is an iterative process,and we firstly analyze the first iteration.

    Fig. 1. The flow diagram of the PLS regression algorithm, i is the index of the current iteration, variable maxi stores the total number of iterations.

    The first work is to find the principal axes(projection directions)p1andq1to create the principal componentsh1andg1such that these two principal components have maximum covariance, whereh1=ET0p1represents the linear combination of the columns ofE0andg1=FT0q1represents the linear combination of the columns ofF0. This work corresponds to the following optimization problem:

    where〈,〉means the inner product operation, and||·|| represents thel2norm. Lagrange multiplier method is a way to solve the extremum of multivariate function under a set of constraints. Introducing Lagrange multipliersα1andα2, we transform Eq.(1)into the unconstrained optimization problem

    3. QPLS regression algorithm

    In this section, we incorporate the design of the quantum eigenvector search method and the residual matrix product method into implementing the QPLS regression algorithm.Firstly,the quantum eigenvector search method is designed to compute the quantum state of the principal axispi. Secondly,the quantum state of the regression parameterriis constructed by combining the quantum eigenvector search method and the inner product operation. Thirdly, the density matrix product method is developed to build the residual matrix productETi FiFTi Ei. Finally, we create a quantum prediction function to predict the dependent variables for new independent variables. Now, we show the implementation process of the first iteration.

    3.1. Quantum state preparation

    3.2. Quantum eigenvector search method

    The second work is to extract the eigenvector|u1〉from|φ2〉. QPCA[36]is a quantum principal component analysis method for quantum state tomography. The eigenvectors and eigenvalues can be estimated by measuring the eigenvalue register,and this procedure will be highly efficient when the matrix is low rank. However,the probability of the quantum state of the eigenvalue determines the number of the measurements,so this method would lose logarithmic speed-up when the data set corresponds to an exponentially sizeable high-dimensional matrix. Yu[37]presented another quantum principal component analysis method, which could project high-dimensional data into low-dimensional space,but this method relies on the eigenvalues sorted in descending order. Unfortunately,eigenvalues are stored disorderly in a quantum superposition state,and it is not easy to obtain the ordered eigenvalues.[38]Here,we adopt quantum comparison and amplitude estimation to design a quantum binary search method.This method can extract the eigenvector|u1〉without the ordered eigenvalues and quantum state tomography. The specific process is as follows.

    (1) Initialize comparison timesls= log(1/ε), whereεis the error of the estimated eigenvalues. Since all ~λiare in the range (0,1], we initialize the lower boundτmin= 0,the upper boundτmax=1, and the comparison thresholdτ=(τmin+τmax)/2.

    (2)Compare the estimated eigenvalue|~λi〉with the comparison threshold|τ〉. We first prepare the initial state|φ2〉|τ〉4|0〉5|0〉6=∑rmi=1σi|ui〉1|vi〉2|~λi〉3|τ〉4|0〉5|0〉6as the input, where register 4 stores the comparison threshold|τ〉and registers 5 and 6 store the comparison result. LetR1represent the comparison operation,which obeys:If|~λi〉is less than|τ〉,set register 6 to|0〉;otherwise,set register 6 to|1〉. After performing the comparison operationR1,we get the state

    Figure 2 shows the circuit for a single qubit comparison operation. In this circuit, registers 3 and 4 store|~λi〉and|τ〉,respectively; registers 5 and 6 store the comparison result. If|~λi〉 >|τ〉, set registers 5 and 6 to|1〉|1〉; if|~λi〉 <|τ〉, set them to|0〉|0〉; otherwise, set them to|0〉|1〉. Figure 3 shows the circuit for thenqubits comparison operation. Similar to the classical comparison circuit, the comparison circuit fornqubits is implemented bynsingle qubit comparison circuits cascading. Let{an,an-1,...,a2,a1}and{bn,bn-1,...,b2,b1}represent the qubit sequences of registers 3 and 4,respectively.This circuit compares the qubit pair(ai,bi)in order from highorder qubit to low-order qubit and passes the comparison result of each qubit pair to the lower-order qubit comparisons.Register 5 contains the qubit sequences{cn,cn-1,...,c2,c1}and{dn-1,...,d2}), which are used to store the comparison results of each qubits pair. Finally, we get the final comparison result from register 6(the qubitd1). Assume|~λi〉and|τ〉are stored in registers 3 and 4, respectively, we perform the comparison operationR1and get the final comparison result:if|~λi〉≥|τ〉,register 6 is|1〉; otherwise,register 6 is|0〉. For the specific design method,refer to Ref.[39].

    Fig. 2. Comparison circuit on a single qubit. Reg. 3, Reg. 4, Reg. 5, and Reg.6 represent registers 3,4,5,and 6,respectively. Reg.3 and Reg.4 store|~λi〉and|τ〉,respectively;Reg.5 and Reg.6 store the comparison results.

    Fig. 3. Comparison circuit on n qubits. {an,an-1,...,a2,a1} and{bn,bn-1,...,b2,b1} represent the qubit sequences of register 3 and register 4,respectively. {cn,cn-1,...,c2,c1}and{dn,dn-1,...,d2}represent the qubit sequence of register 5,and the qubit d1 represents register 6. All qubit sequences are arranged in descending order. The circuit compares each qubit pair(ai,bi)in order from high-order qubit to low-order qubit and passes the comparison result of each qubit pair to the lower-order qubit comparison.The output of d1 represents the final comparison result.

    (5) Measure register 6 into|1〉, and remove registers 2,3, 4, and 5. Finally, we get the state|u1〉in register 1, which corresponds to the quantum state of the principal axis|u1〉.It is worth mentioning that amplitude amplification can improve the probability of measurement success quadratically.The quantum eigenvector search method is described in Algorithm 1.

    Algorithm 1 Quantum eigenvector search method Input: the quantum state|φ〉for ET0 F0,the reduced density matrix ρ0 for ET0 F0FT0 E0,the iteration times ls.Output: the quantum state|u1〉for the principal axis p1.1: Perform phase estimation on|φ〉and get the eigenvalue decomposition of|φ2〉.2: Initialize i=1,τmin=0,τmax=1,and τ =(τmin+τmax)/2.3: while i ≤ls do 4:Perform comparison operation R1 on|φ2〉and|τ〉and get the comparison result in|φ3〉.5:Act amplitude estimation on|φ3〉to get θ representing the probability of~λi <τ.6:If θ <0 then 7:Update τmax=τ,and τ =(τmax+τmin)/2 in turn.8:else 9:Update τmin=τ,and τ =(τmax+τmin)/2 in turn.10: i=i+1.11: Measure register 6 with|1〉to get|u1〉corresponding to the principal axis p1.

    The circuit of the quantum eigenvector search method is shown in Fig.4,including phase estimation,comparison operation,and amplitude estimation.

    Fig. 4. The circuit of the quantum eigenvector search method. Reg. 1-Reg. 7 represent registers 1-7, respectively. The circuit in the first dotted box represents phase estimation,where H means Hadamard transform; eiρ0t represents the unitary operation controlled by eiρ0t;FT+ denotes the inverse operation of quantum Fourier transform. The circuit in the second dotted box represents the quantum binary search operation,R1 denotes comparison operation, and the combination of unitary operations H, G1, and FT+ corresponds to amplitude estimation. The rest dotted boxes represent the repeated quantum binary search operations.

    3.3. Construct regression parameters

    Fig. 5. Circuit of computing ||h1||2. |φE0〉 and |u1〉 represent the quantum states of the matrix E0 and the principal axis p1, respectively. Registers A and B store the quantum state|φE0〉,and register C stores the quantum state|u1〉. Registers A′ and B′ store the quantum state |φ′E0〉, the copy of |φE0〉.Register C′ stores the quantum state|u′1〉,the copy of|u1〉. |φEp〉and|φ′Ep〉are the output of the first circuit model. Two dashed boxes represent two models of the circuit, respectively. The classical post-processing is omitted in this circuit.

    3.4. Build residual matrix product

    (4)Perform inverse phase estimation and remove the second register. Subsequently, measure the ancilla register into|0〉,and get

    Algorithm 2 Quantum density matrix product method Input: the density matrix ρU1 for U1UT1,the density matrix ρ0 for ET0 F0FT0 E0,the number of iterations l.Output: the residual matrix product ρl.1: Iteration i=1.2: while i ≤l do 3:Perform phase estimation on ρi-1 with eiρUit as the controlled unitary and get ρ′i-1.4:Do controlled rotation operation on ρ′i-1 and get ρ′′i-1.5:Perform inverse phase estimation and measurement on ρ′′i-1 and get ρi.6:i=i+1 7: return the residual matrix product ρl.

    Figure 6 shows the circuit of building the residual matrix product. The circuit includeslmodels,and thei-th model is used to construct the density matrixρi.

    Fig.6. Circuit of building the residual matrix product. The circuit includes l models, where the ith model is used to build the quantum state of the ith residual matrix product. Each module comprises phase estimation PE, inverse phase estimation PE+, and the controlled rotation operation Ry,where phase estimation PE contains Hadamard operation H,the controlled unitary eiρU1t,and inverse quantum Fourier transform FT+. ρi represents the residual matrix product built in the ith iteration. Due to each module has the similar circuit structure, only the first module shows the complete circuit,and the remaining modules are represented by the label eiρUit in the dotted box.

    3.5. Prediction

    4. Complexity analysis

    In this section, we analyze the space and time complexities of the QPLS regression algorithm, which is mainly determined by principal axes computation, building regression parameters,and residual matrices construction.

    4.1. Space complexity analysis

    In the first stage,we prepare the quantum state|φ〉as the input,which needsO(log(nw))qubits. Letεdenote the error of phase estimation. Phase estimation requiresO(log(1/ε))qubits to store the estimated eigenvalues.[42]Assume amplitude estimation and phase estimation have the same errorε, amplitude estimation needsO(log(1/ε)) qubits to store the estimated amplitudeθ. We get the space complexityO(log(nw/ε2))of the first stage by adding all space complexities together. Forliterations, the total space complexity isO(log(nw/ε2)l).

    In the second stage, we first adopt the same operations as the first stage to build the regression parametersr′1; thus,the space complexity isO(log(nw/ε2)). Compared with the first stage,we need to compute the coefficient||E0p1||2further.|φE0〉A(chǔ)Band|u1〉CneedO(log(nm))andO(log(m))qubits,respectively,so the space complexity of calculating||E0p1||2isO(log(nm)+log(m)). Sinceεis very small,O(log(nm)+log(m))can be negligible compared withO(log(nw/ε2)),and the space complexity of this stage isO(log(nw/ε2)). Forliterations,the total space complexity isO(log(nw/ε2)l).

    In the third stage,preparation the stateρ0and phase estimation needO(log(nw))andO(log(1/ε))qubits,respectively.Therefore,the space complexity of this stage isO(log(nw/ε)).Since the space complexity of state preparation and phase estimation is the same in each iteration,the total space complexity forliterations isO(log(nw/ε)l).

    Table 1 shows the space complexities of the QPLS regression and the PLS regression. Consider thatεis usually very small, the space complexity of the third stage can be negligible. We add all space complexities together and get the total space complexity ~O(log(nw/ε2)l),logarithmic in the independent variable dimensionnand the dependent variable dimensionw.

    Table 1. Space complexity.

    Finally,we adopt controlled swap test operation to predict the dependent variabley*for the new independent variablex*.Due to|φ*x〉is ann-dimensional vector, the space complexity of controlled swap test isO(log(n)). We need to measure the ancilla resisterO(P(1)(1-P(1))/ε21)times to ensure the errorε1, whereP(1) is the probability that the measurement result is|1〉. SinceP(1)can be viewed as a constant andlcontrolled swap test operations are required,the space complexity of the prediction stage isO(log(n)l/ε21).

    4.2. Time complexity analysis

    Now, we analyze the time complexity of the QPLS regression. Since the time complexity of preparing the input state|φ〉isO(polylog(nw)), the total time complexity of state preparation isO(polylog(nw)l) forliterations. In the first stage, the time complexity is dominated by phase estimation and the quantum binary search. Phase estimation adopts Hamiltonian evolution[8]to build the unitary operation eiρ0t= eiρ0KΔt.[26]wheretis the evolution time, Δtis the time interval, andKis the number of time intervals. According to Suzuki-Trotter expansion,[23]the error of eiρ0ΔtisO(Δt2), and the maximum error of eiρ0kΔt(k=0,...,K-1)isO(t2/K). Since phase estimation needsKcopies ofρ0and the time to accessρ0isO(polylog(nw)), the time complexity of phase estimation isO(ε-1t2polylog(nw)). The relative error of the eigenvalueλisatisfiesO(λi/t)≤O(λmax/t),whereλmaxrepresents the largest eigenvalue.[43]Since the evolution timetshould beO(1/ε) to ensure the relative error ofO(ε), the time complexity of phase estimation can be further written asO(ε-3polylog(nw)). The time complexity of the quantum binary search is dominated by amplitude estimation. The time complexity of amplitude estimation isO((2+1/2ξ)tG1/ε),[43]wheretG1is the run time ofG1operation, (2+1/2ξ) is a constant determined by the success probability of amplitude estimation. Similar to phase estimation,tG1isO(ε-3polylog(nw)). Amplitude estimation needs to be performedls=log(1/ε)times,thus the time complexity of this stage isO(log(1/ε)ε-4polylog(nw)). Forliterations,the total time complexity of this stage isO(ε-3polylog(nw)l+log(1/ε)ε-4polylog(nw)l).

    In the second stage,the time complexity of computing the parameterr′1is the same as the first stage. The time complexity of computing||u1||2is dominated by CNOT andHoperations and can be negligible. Therefore,the total time complexity of this stage forliterations is alsoO(ε-3polylog(nw)l+log(1/ε)ε-4polylog(nw)l).

    Table 2. Time complexity.

    In the prediction stage,the time complexity of controlled swap test operation isO(1), the inner product〈φ*x|ui1〉can reach accuracyε1by iterating controlled swap test operationO(P(1)(1-P(1))/ε21) times, whereP(1) is the probability that the measurement result is|1〉. Therefore, the total time complexity of the prediction stage isO(lP(1)(1-P(1))/ε21).SinceP(1) is a constant, the time complexity can be further written asO(l/ε21),which is determined by the errorε1.

    5. Conclusion and future work

    Acknowledgements

    Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A02),the National Natural Science Foundation of China (Grant Nos.U1636106,61671087,61170272,and 92046001),Natural Science Foundation of Beijing Municipality,China(Grant No. 4182006), Technological Special Project of Guizhou Province,China(Grant No.20183001),and the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant Nos.2018BDKFJJ016 and 2018BDKFJJ018).

    猜你喜歡
    李劍
    Variational quantum semi-supervised classifier based on label propagation
    Efficient semi-quantum secret sharing protocol using single particles
    The coupled deep neural networks for coupling of the Stokes and Darcy–Forchheimer problems
    兩塊寶石
    Probabilistic quantum teleportation of shared quantum secret
    Efficient quantum private comparison protocol utilizing single photons and rotational encryption
    Constructing the three-qudit unextendible product bases with strong nonlocality
    Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*
    Phase-sensitive Landau–Zener–St¨uckelberg interference in superconducting quantum circuit?
    男人舔奶头视频| 一边摸一边抽搐一进一小说| 欧美午夜高清在线| 岛国视频午夜一区免费看| 天天躁狠狠躁夜夜躁狠狠躁| 日本五十路高清| 老熟妇仑乱视频hdxx| 日韩精品青青久久久久久| 精华霜和精华液先用哪个| www日本黄色视频网| 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色| 免费一级毛片在线播放高清视频| 全区人妻精品视频| 波多野结衣高清作品| 中国美女看黄片| 亚洲精品乱码久久久v下载方式 | 天堂av国产一区二区熟女人妻| 亚洲午夜精品一区,二区,三区| 床上黄色一级片| 亚洲五月婷婷丁香| 久久伊人香网站| 岛国在线观看网站| 久久这里只有精品中国| 亚洲精品久久国产高清桃花| 国产aⅴ精品一区二区三区波| 亚洲色图av天堂| 一级a爱片免费观看的视频| 天天添夜夜摸| 国产成人欧美在线观看| 一本综合久久免费| 五月伊人婷婷丁香| 中亚洲国语对白在线视频| 校园春色视频在线观看| 亚洲专区国产一区二区| 深夜精品福利| 久99久视频精品免费| 中文字幕久久专区| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 国产激情久久老熟女| 欧美精品啪啪一区二区三区| 最新中文字幕久久久久 | 精品久久久久久久人妻蜜臀av| 一个人看视频在线观看www免费 | 亚洲成人久久性| 日韩欧美三级三区| 午夜精品久久久久久毛片777| 特大巨黑吊av在线直播| 国产伦精品一区二区三区四那| 我的老师免费观看完整版| 中文字幕人妻丝袜一区二区| 亚洲人与动物交配视频| 欧美乱色亚洲激情| 婷婷六月久久综合丁香| 久久午夜亚洲精品久久| 亚洲中文日韩欧美视频| 亚洲欧美日韩无卡精品| 精品免费久久久久久久清纯| 午夜福利成人在线免费观看| 九九在线视频观看精品| 十八禁网站免费在线| 香蕉国产在线看| 夜夜躁狠狠躁天天躁| 日本黄大片高清| 亚洲国产欧洲综合997久久,| 午夜激情福利司机影院| 在线国产一区二区在线| 国产一区在线观看成人免费| 夜夜爽天天搞| 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 波多野结衣高清作品| 精品欧美国产一区二区三| 久久久精品大字幕| 国产亚洲精品久久久久久毛片| 特级一级黄色大片| 免费人成视频x8x8入口观看| 国产成人精品无人区| 18美女黄网站色大片免费观看| 亚洲色图 男人天堂 中文字幕| 免费搜索国产男女视频| 后天国语完整版免费观看| 最新在线观看一区二区三区| 中文字幕最新亚洲高清| 国产aⅴ精品一区二区三区波| 久久久久免费精品人妻一区二区| 久久久久国产精品人妻aⅴ院| 精品国产亚洲在线| 美女大奶头视频| 男女做爰动态图高潮gif福利片| 亚洲国产欧美人成| cao死你这个sao货| 久久久国产成人免费| 熟女少妇亚洲综合色aaa.| 免费无遮挡裸体视频| 在线视频色国产色| 久久亚洲精品不卡| 亚洲一区二区三区不卡视频| 欧美绝顶高潮抽搐喷水| 激情在线观看视频在线高清| 在线观看66精品国产| 亚洲精品一卡2卡三卡4卡5卡| 久久久久亚洲av毛片大全| 久久精品夜夜夜夜夜久久蜜豆| 国产私拍福利视频在线观看| 国产精品日韩av在线免费观看| av视频在线观看入口| 午夜精品在线福利| 久久草成人影院| 高潮久久久久久久久久久不卡| 超碰成人久久| 国产三级中文精品| 香蕉丝袜av| 一卡2卡三卡四卡精品乱码亚洲| 国产黄片美女视频| 麻豆国产97在线/欧美| 国产美女午夜福利| 国语自产精品视频在线第100页| 国产免费av片在线观看野外av| 禁无遮挡网站| 搡老熟女国产l中国老女人| 精华霜和精华液先用哪个| 嫩草影院入口| 淫妇啪啪啪对白视频| 日本免费一区二区三区高清不卡| 精品国产乱码久久久久久男人| 色av中文字幕| 成人av一区二区三区在线看| 制服丝袜大香蕉在线| 成人三级做爰电影| 国产亚洲av高清不卡| АⅤ资源中文在线天堂| 亚洲一区高清亚洲精品| 女同久久另类99精品国产91| 九九热线精品视视频播放| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 日韩欧美三级三区| 又爽又黄无遮挡网站| 白带黄色成豆腐渣| 久久精品综合一区二区三区| 法律面前人人平等表现在哪些方面| 久久香蕉精品热| 亚洲av成人av| 日本黄色片子视频| 午夜两性在线视频| 免费看美女性在线毛片视频| 男女那种视频在线观看| 国产野战对白在线观看| 中国美女看黄片| 美女被艹到高潮喷水动态| 午夜福利18| 啪啪无遮挡十八禁网站| 麻豆一二三区av精品| 亚洲国产精品999在线| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久免费视频了| 在线视频色国产色| 国产成人影院久久av| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9 | 性色avwww在线观看| 成人欧美大片| www日本黄色视频网| 十八禁人妻一区二区| 免费观看精品视频网站| 午夜福利18| 亚洲精品久久国产高清桃花| netflix在线观看网站| avwww免费| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添小说| 亚洲国产精品999在线| 欧美xxxx黑人xx丫x性爽| 国产精品电影一区二区三区| 一区福利在线观看| 国内精品久久久久久久电影| 中文亚洲av片在线观看爽| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 午夜视频精品福利| 制服丝袜大香蕉在线| 最新美女视频免费是黄的| 亚洲av成人不卡在线观看播放网| 嫁个100分男人电影在线观看| 久久久久久久久中文| 国产精品香港三级国产av潘金莲| 99精品久久久久人妻精品| 亚洲最大成人中文| 淫秽高清视频在线观看| 欧美中文综合在线视频| 12—13女人毛片做爰片一| 观看美女的网站| 欧美大码av| 人人妻,人人澡人人爽秒播| 国产精品 国内视频| 国产精品电影一区二区三区| 香蕉av资源在线| 三级毛片av免费| 国产黄片美女视频| 欧美日韩乱码在线| 日日夜夜操网爽| 一级a爱片免费观看的视频| 欧美成狂野欧美在线观看| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 久久天躁狠狠躁夜夜2o2o| 人人妻人人看人人澡| 男女做爰动态图高潮gif福利片| 99久久无色码亚洲精品果冻| 1024手机看黄色片| 色综合站精品国产| 亚洲五月婷婷丁香| 国产综合懂色| 国内精品一区二区在线观看| 日韩欧美精品v在线| 色综合站精品国产| 久久久久九九精品影院| 亚洲第一电影网av| 又紧又爽又黄一区二区| 国产野战对白在线观看| 欧美性猛交黑人性爽| 青草久久国产| 久久久久久久久免费视频了| 天天一区二区日本电影三级| av欧美777| 免费人成视频x8x8入口观看| 久久草成人影院| 亚洲自偷自拍图片 自拍| av欧美777| 热99re8久久精品国产| 亚洲欧美精品综合一区二区三区| 日本免费a在线| 国产成人av激情在线播放| 麻豆久久精品国产亚洲av| 午夜a级毛片| 精品电影一区二区在线| 宅男免费午夜| 男女视频在线观看网站免费| 中出人妻视频一区二区| 一级毛片女人18水好多| 欧美精品啪啪一区二区三区| 美女大奶头视频| 国产精品日韩av在线免费观看| 免费在线观看成人毛片| 两个人看的免费小视频| 动漫黄色视频在线观看| 久久久成人免费电影| 久久中文字幕人妻熟女| 欧美中文日本在线观看视频| 亚洲av片天天在线观看| av中文乱码字幕在线| 成人无遮挡网站| 国产伦一二天堂av在线观看| 视频区欧美日本亚洲| 亚洲天堂国产精品一区在线| av欧美777| 久久久久性生活片| 久久久久久九九精品二区国产| 嫩草影院入口| 亚洲午夜精品一区,二区,三区| 午夜福利免费观看在线| 91老司机精品| 久久中文看片网| 精品久久蜜臀av无| 久久人人精品亚洲av| 午夜精品在线福利| 欧美日韩精品网址| 成人午夜高清在线视频| 超碰成人久久| 国产精品女同一区二区软件 | 国产私拍福利视频在线观看| svipshipincom国产片| 人人妻人人澡欧美一区二区| 午夜激情欧美在线| 欧美一区二区精品小视频在线| 中国美女看黄片| 日韩国内少妇激情av| 亚洲国产欧美人成| 国产精品电影一区二区三区| 亚洲熟妇中文字幕五十中出| 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| 1000部很黄的大片| 真人一进一出gif抽搐免费| 国产精品国产高清国产av| 一个人免费在线观看的高清视频| 亚洲在线观看片| 国模一区二区三区四区视频 | 国产精品自产拍在线观看55亚洲| 国产探花在线观看一区二区| 国产精品一区二区三区四区久久| xxx96com| 久久精品国产亚洲av香蕉五月| 欧美zozozo另类| 首页视频小说图片口味搜索| 成年版毛片免费区| 最近最新中文字幕大全免费视频| 免费在线观看视频国产中文字幕亚洲| 免费大片18禁| 亚洲一区二区三区不卡视频| 国产精品自产拍在线观看55亚洲| 国产欧美日韩精品一区二区| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 深夜精品福利| 天堂网av新在线| 久久精品国产清高在天天线| 久久午夜综合久久蜜桃| 一a级毛片在线观看| 两人在一起打扑克的视频| 99久久久亚洲精品蜜臀av| 日本一二三区视频观看| 亚洲电影在线观看av| 中国美女看黄片| 手机成人av网站| 国产伦人伦偷精品视频| 天天一区二区日本电影三级| 日日干狠狠操夜夜爽| 亚洲国产日韩欧美精品在线观看 | 精品熟女少妇八av免费久了| 一进一出抽搐gif免费好疼| 毛片女人毛片| 三级国产精品欧美在线观看 | 国产男靠女视频免费网站| 久9热在线精品视频| 国产视频一区二区在线看| 国产精品 国内视频| 色老头精品视频在线观看| 一个人免费在线观看电影 | 欧美成人性av电影在线观看| 好看av亚洲va欧美ⅴa在| 国产一区二区三区在线臀色熟女| 91九色精品人成在线观看| 国产精品日韩av在线免费观看| 啦啦啦观看免费观看视频高清| 午夜免费观看网址| 欧美大码av| 一进一出好大好爽视频| 真实男女啪啪啪动态图| 亚洲av免费在线观看| www.熟女人妻精品国产| 国产主播在线观看一区二区| 日本在线视频免费播放| 18禁国产床啪视频网站| 淫妇啪啪啪对白视频| 97超视频在线观看视频| 两个人看的免费小视频| 长腿黑丝高跟| 丁香六月欧美| 90打野战视频偷拍视频| 亚洲成av人片在线播放无| a级毛片a级免费在线| 美女被艹到高潮喷水动态| 亚洲精品美女久久av网站| 亚洲av成人精品一区久久| 岛国视频午夜一区免费看| 亚洲天堂国产精品一区在线| 深夜精品福利| 丁香六月欧美| 天天添夜夜摸| 亚洲va日本ⅴa欧美va伊人久久| 一个人免费在线观看电影 | 这个男人来自地球电影免费观看| 日韩中文字幕欧美一区二区| 亚洲色图 男人天堂 中文字幕| 不卡一级毛片| 久99久视频精品免费| 午夜福利高清视频| 亚洲欧美激情综合另类| 亚洲av成人不卡在线观看播放网| 国产97色在线日韩免费| 国产一区二区在线观看日韩 | 中文字幕久久专区| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 欧美性猛交╳xxx乱大交人| 91在线观看av| 两个人视频免费观看高清| 99国产精品一区二区三区| 亚洲av第一区精品v没综合| 欧美精品啪啪一区二区三区| 色精品久久人妻99蜜桃| 午夜两性在线视频| 午夜精品久久久久久毛片777| 日韩免费av在线播放| 国产成人av教育| 国产精品影院久久| 久久精品国产99精品国产亚洲性色| 在线视频色国产色| www.精华液| 国产伦精品一区二区三区视频9 | 国产伦一二天堂av在线观看| 久久久久久久精品吃奶| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 人人妻,人人澡人人爽秒播| 夜夜夜夜夜久久久久| 美女大奶头视频| 精品99又大又爽又粗少妇毛片 | 麻豆一二三区av精品| 久久精品影院6| 国产综合懂色| 色噜噜av男人的天堂激情| 99精品久久久久人妻精品| 天天一区二区日本电影三级| 欧美黄色片欧美黄色片| 午夜久久久久精精品| 99热只有精品国产| 亚洲av中文字字幕乱码综合| 我要搜黄色片| 国产精品一区二区精品视频观看| 俺也久久电影网| 999精品在线视频| 国产成人aa在线观看| 18禁观看日本| 日本黄色片子视频| 精品国产三级普通话版| 国产在线精品亚洲第一网站| www.999成人在线观看| 脱女人内裤的视频| 久久中文字幕人妻熟女| 国产黄片美女视频| 后天国语完整版免费观看| 欧美+亚洲+日韩+国产| 国产69精品久久久久777片 | 国产激情欧美一区二区| 日韩欧美免费精品| 国产精品一区二区精品视频观看| 男人和女人高潮做爰伦理| 日韩免费av在线播放| xxxwww97欧美| 久久精品aⅴ一区二区三区四区| 最新美女视频免费是黄的| 床上黄色一级片| 亚洲国产日韩欧美精品在线观看 | www.精华液| 99热只有精品国产| 色综合婷婷激情| а√天堂www在线а√下载| av福利片在线观看| 麻豆国产av国片精品| 人人妻,人人澡人人爽秒播| 99久国产av精品| 色综合亚洲欧美另类图片| 99热这里只有是精品50| 亚洲无线在线观看| 欧美日韩瑟瑟在线播放| 亚洲五月婷婷丁香| 久久久久亚洲av毛片大全| 国产亚洲精品综合一区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 日本a在线网址| 亚洲欧美精品综合一区二区三区| av女优亚洲男人天堂 | 亚洲欧美激情综合另类| 男人舔女人的私密视频| 男人和女人高潮做爰伦理| 动漫黄色视频在线观看| 黄色片一级片一级黄色片| 久久人人精品亚洲av| 国产久久久一区二区三区| 亚洲18禁久久av| 亚洲成av人片在线播放无| 久久久久久久精品吃奶| 国内精品美女久久久久久| 亚洲欧美激情综合另类| 婷婷六月久久综合丁香| 国产av麻豆久久久久久久| 制服丝袜大香蕉在线| av福利片在线观看| 国产精品美女特级片免费视频播放器 | 亚洲av电影在线进入| 一个人看视频在线观看www免费 | 精品一区二区三区av网在线观看| 淫秽高清视频在线观看| 亚洲色图av天堂| 亚洲欧美日韩高清专用| 男人舔女人的私密视频| 熟女少妇亚洲综合色aaa.| 88av欧美| 久久精品亚洲精品国产色婷小说| www.www免费av| 嫩草影视91久久| 91麻豆av在线| 亚洲av成人av| 不卡av一区二区三区| 十八禁人妻一区二区| www.自偷自拍.com| 欧美中文综合在线视频| 国产三级黄色录像| 欧美激情久久久久久爽电影| 1024手机看黄色片| 国产精品久久久av美女十八| 亚洲在线自拍视频| 我要搜黄色片| 动漫黄色视频在线观看| 亚洲一区高清亚洲精品| 日韩欧美三级三区| 国产精品亚洲美女久久久| 又大又爽又粗| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 国产精品日韩av在线免费观看| 岛国在线观看网站| 一级作爱视频免费观看| 国产不卡一卡二| 脱女人内裤的视频| 亚洲欧美日韩卡通动漫| 国产高潮美女av| 欧美成人免费av一区二区三区| 99精品欧美一区二区三区四区| 国产午夜精品论理片| 99riav亚洲国产免费| 波多野结衣高清无吗| 蜜桃久久精品国产亚洲av| 国产成人福利小说| 国产毛片a区久久久久| 两性夫妻黄色片| 精品久久久久久,| 黑人欧美特级aaaaaa片| 偷拍熟女少妇极品色| 亚洲熟女毛片儿| 国产视频内射| 亚洲av美国av| 99国产精品一区二区三区| 香蕉国产在线看| 一级a爱片免费观看的视频| 午夜精品一区二区三区免费看| 性色av乱码一区二区三区2| 亚洲精品在线美女| 中出人妻视频一区二区| 九色成人免费人妻av| 亚洲国产精品合色在线| 成人性生交大片免费视频hd| 美女午夜性视频免费| 国内精品久久久久精免费| 欧美色视频一区免费| 中文字幕高清在线视频| 欧美不卡视频在线免费观看| 69av精品久久久久久| 亚洲熟女毛片儿| 俺也久久电影网| 色哟哟哟哟哟哟| 99热6这里只有精品| 一级a爱片免费观看的视频| 欧美一级毛片孕妇| 宅男免费午夜| netflix在线观看网站| 99国产精品一区二区蜜桃av| 99久久久亚洲精品蜜臀av| 久久久国产成人精品二区| 国产高清激情床上av| 欧美最黄视频在线播放免费| 舔av片在线| 一个人看的www免费观看视频| 好男人在线观看高清免费视频| 91av网一区二区| 99热精品在线国产| 51午夜福利影视在线观看| 亚洲精品一卡2卡三卡4卡5卡| 桃红色精品国产亚洲av| 午夜免费成人在线视频| 一本精品99久久精品77| 一个人免费在线观看电影 | 精品欧美国产一区二区三| 国产野战对白在线观看| 国产一区二区在线观看日韩 | 国产探花在线观看一区二区| 亚洲七黄色美女视频| 免费在线观看影片大全网站| 人妻久久中文字幕网| 国产精品,欧美在线| 精品久久久久久久人妻蜜臀av| 99久久无色码亚洲精品果冻| 欧美+亚洲+日韩+国产| 欧美+亚洲+日韩+国产| 午夜久久久久精精品| 露出奶头的视频| 国产精品亚洲一级av第二区| 日本黄色片子视频| 欧美黑人欧美精品刺激| 天天一区二区日本电影三级| 99精品久久久久人妻精品| 少妇丰满av| 一区二区三区国产精品乱码| 麻豆av在线久日| 免费看a级黄色片| 日本一本二区三区精品| 51午夜福利影视在线观看| 大型黄色视频在线免费观看| 在线播放国产精品三级| 亚洲精品粉嫩美女一区| 手机成人av网站| 精品无人区乱码1区二区| 国产精品,欧美在线| 757午夜福利合集在线观看| 欧美日韩福利视频一区二区| 久久精品国产亚洲av香蕉五月| 国产亚洲精品综合一区在线观看| a在线观看视频网站| 亚洲国产精品sss在线观看| 99久久精品一区二区三区| 中亚洲国语对白在线视频| 亚洲真实伦在线观看| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全免费视频| 午夜福利高清视频| 级片在线观看|