• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*

    2021-07-30 07:35:32JingWang王靜ChunHuiZhang張春輝JingYangLiu劉靖陽(yáng)XueRuiQian錢(qián)雪瑞JianLi李劍andQinWang王琴
    Chinese Physics B 2021年7期
    關(guān)鍵詞:李劍春輝王靜

    Jing Wang(王靜) Chun-Hui Zhang(張春輝) Jing-Yang Liu(劉靖陽(yáng))Xue-Rui Qian(錢(qián)雪瑞) Jian Li(李劍) and Qin Wang(王琴)

    1Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Broadband Wireless Communication and Sensor Network Technology,Key Laboratory of Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: quantum information,quantum communication,nonlinear optics

    1. Introduction

    Spectrally factorable photon pair has attracted a lot of attention from scientists since it can furnish a highpurity heralded single-photon source, which is essential for the application of quantum information processing,e.g., quantum cryptography,[1,2]quantum teleportation,[3]and quantum dense coding.[4]Both spontaneous parametric down-conversion(SPDC)and spontaneous four-wave-mixing(SFWM) can generate photon pairs, and the former is more widely utilized compared with the latter due to its simplicity and convenience in experimental preparations.In a SPDC process,when a laser incidents onto a piece of nonlinear crystal,it spontaneously generates photon pairs,one is denoted as the signal photon and the other is named the idle photon. It obeys both the laws of energy conservation and momentum conservation during the SPDC process. In most cases, the signal and the idler photons are spectrally correlated,then one might gather information of one photon after carrying out monitoring on the other one,resulting in side-channel information leakage in some applications, e.g., the quantum key distribution, the quantum random number generator. Therefore, it is very important to obtain spectrally or frequently uncorrelated photon pairs. Usually, purity is used to characterize the correlation degree of a photon pair, and the higher the purity, the lower the correlation in frequency.

    To date,different methods for improving the spectral purity of photon pairs have been put forward. For example,Mosleyet al.and Meyer-Scottet al.[5,6]proposed to improve the spectral purity by using narrow bandpass filters,since narrow bandpass filters can effectively filter out unwanted frequencies, and thus destroy the spectral correlations in SPDC sources.[7,8]However, narrow bandpass filters will inevitably bring into extra insertion loss, causing a lower photon counting rate in practical experiments.[6]Moreover,it is difficult to make the spectral shape of each filter identically matched with the photons passing by,since they might come from different crystals.[9]In contrast,another good choice is to select proper nonlinear crystal,pumping laser,and phase-match conditions for improving the spectral purity.

    There have been a lot of works addressing this aspect,and in general they can be divided into four categories: (i)to apply Gaussian approximation on the phase matching amplitude and then decompose the joint spectral amplitude (JSA)by selecting proper pump bandwidths and crystal lengths for spectral uncorrelation;[10-13](ii)to achieve frequency uncorrelated biphotons with group velocity matching (GVM)condition;[13-20](iii)to process optimizations by adjusting the ratio between the width of the pump envelope amplitude and the width of the phase-matching amplitude;[21](iv) to implement joint optimizations on both the pump bandwidth and the crystal length.[22]In this paper, we systematically study and summarize these existing methods, and further present improved techniques. By re-defining the formula of the ratio between the widths of the phase matching amplitude and the pump envelope amplitude, we can obtain an improved purity with the third method compared with former work. Moreover,by implementing the local search algorithm into the joint optimization process for the fourth approach,we can greatly reduce the time cost on searching the optimal values. We first describe the theory, then carry out corresponding numerical simulations,and finally discuss advantages and disadvantages of each method. To be noted, in principle, the introduced methods can be implemented on any kind of periodically poled nonlinear crystals. Here for simplicity, we just employ the periodically-poled potassium titanylphosphate(PPKTP)crystal and the periodically-poled lithium niobate (PPLN) crystal as examples for illustration.

    2. Theory

    For a collinear SPDC process, the signal photon and the idle photon are created by driving pump photon into a nonlinear crystal. At the output of the crystal,the biphoton state can be written as

    By Schmidt decomposition,[23,24]JSA can be decomposed into the product of two orthogonal basis sets,μn(ωs) andυn(ωi),as

    As a result, the spectral puritypof the biphoton state can be calculated by

    The PEA can be described by a Gaussian function as

    whereωp0andσpare the central frequency and the bandwidth in frequency of the pump photon.σpcan be converted into the bandwidth in wavelength Δλby

    whereλpis the wavelength of the pump. Due to the energy conservation

    whereωs0andωi0are the central frequencies of the signal photon and idle photon,and we can obtain

    whereνsandνiare the frequency differences between their respective frequencies and central frequencies,i.e.,νs=ωsωs0 andνi=ωi-ωi0.

    The PMA in a nonlinear crystal can be written as

    whereLis the crystal length,and Δkis the difference between the wave-vectors. The wave-vector is given by

    wherenis the refractive index. And the difference between the wave-vectors in s periodically poled crystal can be written as

    whereΛis the poling period of the periodically poled crystal.

    2.1. Uncorrelation obtained from JSA

    To reach spectral uncorrelation, the spectral distribution of PEA and PMA should be concentrated near the central frequency. Compared with sinc function, Gaussian function has less sideband. We can use the Gaussian approximation(sinc(x)≈e-γx2,γ= 0.193) to replace the sinc function of PMA,then JSA is updated with

    For Eq. (15), to acquire the spectrally uncorrelated state, the last item of the equation should be eliminated,thus we have

    Given determinate wavelengths of pump,signal,and idler,we can select the suitable pump bandwidth and crystal length to make Eq. (16) hold. As a result, the spectrally uncorrelated state can be achieved.

    This is the first method on how to improve the photon purity.It is easy to understand,and can also help us to learn other methods.Moreover,as long as Eq.(16)holds,it should satisfy

    That is to say, the group velocity of the pump should lie between the group velocities of the signal and the idler.

    Graphically, the width of PEA’s contour is in proportion to the pump bandwidth, and the angle between the contour line and theXaxis is 135°due to the law of energy conservation.[15]Here the width of PMA’s contour is inversely proportional to the length of the crystal. And its pinchθis not a fixed value and can be calculated. The tangent for the pinch of PMA can be defined as

    When Eq.(17)holds,the pinch of PMA will be positive.

    2.2. Engineering with the group velocity matching condition

    We now discuss the second method,to engineer with the GVM conditions.[25-27]GVM conditions can be applied on the pump pulse and at least one daughter photon. The photon pairs are generated in the spectral mode,where the velocity of the pump photon is equal to the group velocity of one daughter photon or the average group velocity of both daughter photons.[5]As a result, spectrally uncorrelated biphoton state and pure heralded single photon are directly generated at several fixed wavelengths. There are three types of GVM conditions[18]

    Equations (19)-(21) are symbolically represented by GVM1,GVM2, and GVM3, respectively. And they are individually consistent with

    2.3. Uncorrelation by adjusting the width ratio

    As addressed in Ref.[28],the formula of JSA can be decomposable only when doing approximation on PMA with Gaussian function,and the purity reaches its maximum value whenξ=1. However,without Gaussian approximation,the purity may not be optimal whenξ=1.

    Below let us present an improved method on increasing the photon purity. Considering that the expression ofξin Eq.(27)is asymmetric for the signal and the idler,we re-define an intermediate variableζ,

    Obviously, hereζis only related with the pump wavelengthσpand the crystal lengthL. Then the optimal experimental conditions can be found to get the maximum purity.

    2.4. Joint optimization of both the pump wavelength and the crystal length

    The fourth method is to directly implement joint optimizations on the pump bandwidth and the crystal length in order to obtain the highest purity value within certain spectral ranges. Here we propose to implement the local search algorithm(LSA)into the joint optimization process to replace the trivial exhaustive search method, which can simplify akdimensional optimization problem intokone-dimensional optimization problems, greatly reducing the time to search for the optimal values. Though the purity is not able to reach 1 even after applying this method, a proper interference filter can be employed to narrow the bandwidth and further improve the purity.

    3. Simulation

    Second-order nonlinear optical materials are excellent platforms for quantum optics. For example, potassium titanylphosphate(KTP)and lithium niobate(LN)not only have excellent second-order/third-order nonlinear coefficient and electro-optic effect, but also possess very mature technology on waveguide fabrication. These merits make them very promising candidates for applications in parametric downconversion, frequency conversion, modulation processes, etc.Here for simplicity,we take periodically poled KTiOPO4(PPKTP)and periodically poled lithium niobate(PPLN)crystals as examples for descriptions. Their refractive index and Sellmeier equations are referring from Refs.[30,31].

    For the first method addressed in Section 2, in order to satisfy the condition(17),we consider the case of type-I nondegenerate PDC. Moreover, for practical application requirements, one of the daughter photons is assumed being located in the communication band(1.3 μm-1.55 μm),then the range of the pump wavelength should lie within 546 nm-632 nm for PPLN and in the range of 756 nm-797 nm for PPKTP.For easy description, we first choose PPKTP as an example,the central wavelengths are chosen as 552 nm,857.3 nm,and 1550 nm, for the pump, the signal, and the idler photons, respectively. Then the period of the periodically poled is calculated asΛ= 11.6604 μm,k′s-k′p= 5.782×10-12s/m,andk′i-k′p=-1.507×10-10s/m. To satisfy Eq. (16),σpL=1.0906×1011Hz·m. If the pump bandwidth Δλand the crystal lengthLare set as 1.5915 nm and 1.1077 cm, respectively, the purity will be 0.99967 when applying Gaussian PMA,while the purity will be 0.96931 when implementing sinc PMA.Accordingly,we plot out corresponding PMA,PEA,and JSA in Fig.1. Besides,we choose another example of PPLN,the central wavelengths of the pump,the signal,and the idler are set as 775 nm, 1320 nm, and 1877 nm, respectively. Here,Λ=20.4014 μm,k′s-k′p=2.014×10-11s/m,andk′i-k′p=-2.488×10-11s/m. Accordingly, we obtainσpL=1.4379×1011Hz·m. When the pump bandwidth Δλand the crystal lengthLare 3.1831 nm and 1.4394 cm,respectively, the purity is 0.99877 with Gaussian PMA and 0.94746 with sinc PMA.Corresponding PMA,PEA,and JSA are shown in Fig.2.

    Fig.1. The contours of PMA,PEA,and JSA in PPKTP simulating with the first method. The biphoton is generated from type-I 552 nm(o)→857.3 nm(e)+1550 nm(e), when the bandwidth Δλ and the crystal length L are 1.5915 nm and 1.1077 cm, respectively. When PMA is approximated as Gaussian function,PMA,PEA,and JSA are shown in the first row,and the purity is 0.99967. When PMA is adopted with sinc function,PMA,PEA,and JSA are shown in the second row,and the purity is 0.96931.

    Fig.2. The contours of PMA,PEA,and JSA in PPLN simulating with the first method. The biphoton is generated from type-I 775 nm(e)→1320 nm(o)+1877 nm(o),when the bandwidth Δλ,the crystal length L,and temperature are 3.1831 nm,1.4394 cm,and 30 °C,respectively.When PMA is approximated as Gaussian function, PMA,PEA,and JSA are shown in the first row, and the corresponding purity is 0.99877.When PMA is adopted with sinc function,PMA,PEA,and JSA are shown in the second row,and accordingly,the purity is 0.94746.

    For the second method, we consider type-II degenerate SPDC.We find that GVM1is satisfied when the pump wavelength is 612 nm and GVM3is satisfied when the pump wavelength is 791 nm in PPKTP crystal. For GVM1or GVM2, a long crystal can be employed to improve the purity. When the pump wavelength is 612 nm,the pump bandwidth and crystal length might be chosen as 2 nm and 3 cm,respectively,accordingly,the purity is 0.98463 and its JSA is shown in Fig.3(a).For GVM3,the pump bandwidth and crystal length can be selected by following Eq. (16). With the pump wavelength of 791 nm, the pump bandwidth and crystal length can take the values of 0.51 nm and 1 cm, respectively. Then the purity is 0.81429 and its JSA is shown in Fig.3(b).

    Now, let us see the third method presented in Section 2,where GVM3is assumed to be satisfied. We analyze the relationship betweenξdefined in Eq. (27) and purity for two different types of PMAs, as illustrated in Fig. 4(a). It shows that the maximum purity can reach 1 whenξ=1 for Gaussian shaped PMA. However, for sinc shaped PMA, the purity just reaches its maximum value whenξ=1.14 and its maximum purity is 0.8146.Obviously,it only results in poor purity.Now let us see our improved method, the relationships betweenζdefined in Eq.(30)and purity are displayed out for two different types of PMAs, see Fig. 4(b). For easy description, here we use type-I 775 nm→1320 nm+1877 nm in PPLN as an example. As we can see from Fig.4(b),the purity reaches its maximum for the sinc shaped PMA whenζ=1.21, and its maximum value is 0.97924, where the pump bandwidth Δλand the crystal lengthLare 3.1831 nm and 1.1896 cm,respectively. Compared with the above maximum purity 0.8146,our modified method shows significant improved purity.

    Fig. 3. The contours of JSA for different wavelength matchings simulating with the second method. (a) The biphoton is generated from type-II 612 nm(o)→1224 nm(e)+1224 nm(o)in PPKTP and the purity is 0.98463, when the bandwidth Δλ and the crystal length L are 2 nm and 3 cm. (b) The biphoton is generated from type-II 791 nm(o)→1582 nm(e)+1582 nm(o)in PPKTP and the purity is 0.81429,when the bandwidth Δλ and the crystal length L are 0.51 nm and 1 cm.

    Fig.4.(a)The relationship between ξ and purity for Gaussian PMA and sinc PMA with GVM3. (b) The relationship between ζ and purity for Gaussian PMA and sinc PMA for type-I 775 nm→1320 nm+1877 nm in PPLN with the improved third method.

    For the fourth method, considering it does not need to satisfy any limitations on either inequality(17)or GVM conditions, it is a more general approach and has robust applications. For easy description,we use type-I PPKTP as an example, where the central wavelengths of pump, signal, and idler are set as 552 nm, 857.3 nm, and 1550 nm, respectively. We carry out jointly optimizing on both the pump band width and the crystal length,corresponding simulation results are shown in Fig.5. From Fig.5,we find that the purity can reach up to 1 after full parameter optimizations. If taking practical processing difficulty into account, we can select compromised pump bandwidth Δλand crystal lengthL, e.g., 2 nm and 8.8 mm,respectively, and the corresponding purity is 0.94569. Obviously, the fourth method is not only easy to implement, but also can show excellent performance.

    Fig. 5. Joint optimization of the pump bandwidth and crystal length with the fourth method. Meanwhile,the central wavelengths of pump,signal, and idler are 552 nm, 857.3 nm, and 1550 nm, respectively in type-I PPKTP.Different color represents different purity,and the value of purity represented by the color has been marked on the right column.

    In addition,we also carried out calculations for other nonlinear crystals or phase-matching conditions,e.g.,type-II BBO or type-0 PPLN, by implementing the above four methods.However, the obtained purities are in general quite low when without using filters. Therefore,we did not list them out in the simulation part.

    4. Conclusion

    Focusing on collinear and single mode SPDC and neglecting transversal and multi-mode effects,we have discussed four methods on how to improve the purity of down-converted photon sources. The first method is to derive from JSA function, through which we can obtain the relationship between the pump bandwidth and the crystal length for spectral uncorrelation. The second method is taking advantage of GVM conditions. The third method is to adjust the width ration of PEA and PMA under GVM3condition,without doing any approximation on PMA functions.The fourth method is to apply joint optimization on both the pump bandwidth and the crystal length without doing any approximation or assuming any GVM condition.For the first three methods,they need to meet certain applicable conditions, e.g., it needs to satisfy the inequality for method 1 or method 3; and the second method only works when satisfying one of the GVM conditions. For the fourth method, it does not assume any applicable conditions, while for some phase-matching conditions, sometimes resulting in moderate purities without filters. Therefore, different methods have their advantages and disadvantages, and a proper method should be chosen when people design their experimental parameters. We believe our work could provide valuable references for the generation and application of high purity single-photon sources in the fields of quantum information and quantum optics.

    猜你喜歡
    李劍春輝王靜
    Gray code based gradient-free optimization algorithm for parameterized quantum circuit
    Probabilistic quantum teleportation of shared quantum secret
    Quantum partial least squares regression algorithm for multiple correlation problem
    Performance of passive decoy-state quantum key distribution with mismatched local detectors
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?
    父與子
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    成人鲁丝片一二三区免费| 99热只有精品国产| 97人妻精品一区二区三区麻豆| ponron亚洲| 婷婷精品国产亚洲av| 中国美白少妇内射xxxbb| 国产成人一区二区在线| 欧美最黄视频在线播放免费| 男女做爰动态图高潮gif福利片| 亚洲,欧美,日韩| 亚洲在线自拍视频| 成熟少妇高潮喷水视频| 亚洲av电影不卡..在线观看| 亚洲图色成人| 国产日韩欧美在线精品| 精品久久久久久久人妻蜜臀av| 国产在线男女| 天天一区二区日本电影三级| 欧美区成人在线视频| 亚洲成人久久性| 在线观看av片永久免费下载| av天堂在线播放| 男人舔女人下体高潮全视频| or卡值多少钱| 老司机影院成人| 非洲黑人性xxxx精品又粗又长| 午夜福利成人在线免费观看| 如何舔出高潮| 日韩在线高清观看一区二区三区| 日本免费一区二区三区高清不卡| 中文精品一卡2卡3卡4更新| 性插视频无遮挡在线免费观看| 啦啦啦啦在线视频资源| 不卡视频在线观看欧美| 色噜噜av男人的天堂激情| 久久综合国产亚洲精品| 男人狂女人下面高潮的视频| 亚洲最大成人中文| 国内揄拍国产精品人妻在线| av卡一久久| 国产单亲对白刺激| 国产精品国产高清国产av| 久久99精品国语久久久| 午夜亚洲福利在线播放| 人妻系列 视频| 日韩一区二区视频免费看| 亚洲电影在线观看av| 国产伦精品一区二区三区视频9| 国产黄色小视频在线观看| 色视频www国产| 久久久久久久久中文| 国产乱人视频| 黄色视频,在线免费观看| 精品人妻熟女av久视频| 国产亚洲精品av在线| 欧美+亚洲+日韩+国产| 亚洲欧洲日产国产| 可以在线观看的亚洲视频| 成人综合一区亚洲| 日韩av不卡免费在线播放| 亚洲精品粉嫩美女一区| 麻豆精品久久久久久蜜桃| 中文字幕久久专区| 免费av不卡在线播放| av天堂在线播放| 丰满的人妻完整版| 国产国拍精品亚洲av在线观看| 一级二级三级毛片免费看| 99riav亚洲国产免费| 国产av一区在线观看免费| .国产精品久久| 精品国产三级普通话版| 99riav亚洲国产免费| 老女人水多毛片| 国产亚洲精品久久久久久毛片| 丰满的人妻完整版| 亚洲最大成人手机在线| a级一级毛片免费在线观看| 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 亚洲欧美中文字幕日韩二区| 国产成人一区二区在线| 亚洲美女视频黄频| 亚洲精品国产av成人精品| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 久久中文看片网| 久久久久九九精品影院| 黄色欧美视频在线观看| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区久久| 亚洲av男天堂| 一级毛片电影观看 | 嫩草影院入口| 日韩视频在线欧美| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx在线观看| 日韩 亚洲 欧美在线| 赤兔流量卡办理| 99国产极品粉嫩在线观看| 中国国产av一级| 日本黄色片子视频| 波野结衣二区三区在线| 99久久中文字幕三级久久日本| 一本久久精品| 国产在线男女| 黄片wwwwww| 天天躁日日操中文字幕| 久久久久久久亚洲中文字幕| 久久久午夜欧美精品| 免费大片18禁| 又爽又黄a免费视频| 女同久久另类99精品国产91| 国产一区二区激情短视频| 国产中年淑女户外野战色| 在线国产一区二区在线| 色噜噜av男人的天堂激情| 99国产精品一区二区蜜桃av| 韩国av在线不卡| a级一级毛片免费在线观看| 美女脱内裤让男人舔精品视频 | 亚洲国产色片| 国产成人一区二区在线| 久久精品国产清高在天天线| 狂野欧美白嫩少妇大欣赏| 欧美日韩国产亚洲二区| 免费av毛片视频| 日韩亚洲欧美综合| 色5月婷婷丁香| 日韩中字成人| 久久久国产成人免费| 亚洲成av人片在线播放无| 少妇人妻一区二区三区视频| 欧美成人一区二区免费高清观看| 成人一区二区视频在线观看| 18禁黄网站禁片免费观看直播| 国产成人a∨麻豆精品| 亚洲天堂国产精品一区在线| 边亲边吃奶的免费视频| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 国产午夜福利久久久久久| 精品久久久久久久久av| 亚洲av不卡在线观看| 一级黄色大片毛片| 国产视频首页在线观看| 国产精品蜜桃在线观看 | 日韩成人av中文字幕在线观看| 欧美成人精品欧美一级黄| h日本视频在线播放| 97超视频在线观看视频| 美女高潮的动态| 婷婷亚洲欧美| 亚洲欧洲日产国产| 亚洲国产精品久久男人天堂| 国产三级中文精品| 久久午夜福利片| 啦啦啦观看免费观看视频高清| 国产极品天堂在线| 午夜老司机福利剧场| 免费观看精品视频网站| 最好的美女福利视频网| 高清毛片免费观看视频网站| 色5月婷婷丁香| 婷婷六月久久综合丁香| 国产精品嫩草影院av在线观看| 国产在线男女| 久久久久久久久大av| 男人和女人高潮做爰伦理| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 99riav亚洲国产免费| 看片在线看免费视频| 久久国产乱子免费精品| av女优亚洲男人天堂| 亚洲性久久影院| 草草在线视频免费看| 99久国产av精品国产电影| 在线国产一区二区在线| 国产精品免费一区二区三区在线| 免费看av在线观看网站| 国产免费一级a男人的天堂| 国产一区二区三区在线臀色熟女| 免费黄网站久久成人精品| 永久网站在线| 久久6这里有精品| 老师上课跳d突然被开到最大视频| 麻豆久久精品国产亚洲av| 听说在线观看完整版免费高清| 欧美成人免费av一区二区三区| 国产午夜福利久久久久久| 青春草亚洲视频在线观看| 欧美高清性xxxxhd video| 国产免费一级a男人的天堂| 午夜亚洲福利在线播放| 黄色欧美视频在线观看| 久久亚洲精品不卡| 秋霞在线观看毛片| 亚洲经典国产精华液单| 国产精品精品国产色婷婷| 99久久人妻综合| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 亚洲国产日韩欧美精品在线观看| 波多野结衣高清作品| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 偷拍熟女少妇极品色| 亚洲第一电影网av| 欧美又色又爽又黄视频| 好男人在线观看高清免费视频| 欧美+日韩+精品| 爱豆传媒免费全集在线观看| 亚洲久久久久久中文字幕| 又粗又爽又猛毛片免费看| 亚洲高清免费不卡视频| 欧美+日韩+精品| 国产精品国产三级国产av玫瑰| 欧美色欧美亚洲另类二区| 国产熟女欧美一区二区| 99国产精品一区二区蜜桃av| 中文资源天堂在线| 国产一区二区在线av高清观看| 亚洲av不卡在线观看| 国产女主播在线喷水免费视频网站 | 日韩欧美国产在线观看| 久久久久久久久中文| 女人十人毛片免费观看3o分钟| 亚洲久久久久久中文字幕| 国内精品一区二区在线观看| 中国国产av一级| 日韩成人av中文字幕在线观看| 亚洲人与动物交配视频| 欧美高清性xxxxhd video| 国产精品1区2区在线观看.| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说 | 少妇丰满av| 亚洲aⅴ乱码一区二区在线播放| 乱码一卡2卡4卡精品| 永久网站在线| 狂野欧美激情性xxxx在线观看| 婷婷色av中文字幕| 色综合色国产| 亚洲欧美精品专区久久| 九九热线精品视视频播放| 精品无人区乱码1区二区| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区| 最近视频中文字幕2019在线8| 能在线免费观看的黄片| 国产av麻豆久久久久久久| 亚洲精品日韩在线中文字幕 | 久久这里有精品视频免费| 成人毛片60女人毛片免费| 精品午夜福利在线看| 亚洲四区av| av在线老鸭窝| 亚洲电影在线观看av| 99九九线精品视频在线观看视频| 亚洲精品乱码久久久v下载方式| 大香蕉久久网| 99热只有精品国产| 午夜激情福利司机影院| av专区在线播放| 亚洲中文字幕日韩| 最近视频中文字幕2019在线8| 成人性生交大片免费视频hd| 日韩大尺度精品在线看网址| 久久热精品热| 嫩草影院精品99| 一级黄片播放器| 人人妻人人看人人澡| 欧美日韩精品成人综合77777| 最近手机中文字幕大全| 麻豆一二三区av精品| 少妇被粗大猛烈的视频| 国产精品嫩草影院av在线观看| 中文字幕免费在线视频6| 国语自产精品视频在线第100页| 免费av毛片视频| 最近2019中文字幕mv第一页| 久久久a久久爽久久v久久| 亚洲国产精品sss在线观看| 99久久中文字幕三级久久日本| 国产成人aa在线观看| 成熟少妇高潮喷水视频| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 99九九线精品视频在线观看视频| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 日韩制服骚丝袜av| 国产美女午夜福利| 国产精品国产高清国产av| 美女脱内裤让男人舔精品视频 | 五月伊人婷婷丁香| 在线播放国产精品三级| 精品欧美国产一区二区三| 两个人视频免费观看高清| 国产成年人精品一区二区| 美女大奶头视频| 亚洲成人久久性| 人人妻人人澡人人爽人人夜夜 | 国产伦精品一区二区三区四那| 亚洲图色成人| АⅤ资源中文在线天堂| 国产成人91sexporn| 黄片无遮挡物在线观看| 在线观看免费视频日本深夜| 日韩,欧美,国产一区二区三区 | 老司机影院成人| 日日摸夜夜添夜夜爱| 欧美日韩乱码在线| 亚洲精品粉嫩美女一区| 国产精品国产三级国产av玫瑰| 色综合亚洲欧美另类图片| 日韩精品有码人妻一区| 哪个播放器可以免费观看大片| 国产三级在线视频| 99国产极品粉嫩在线观看| 91午夜精品亚洲一区二区三区| 22中文网久久字幕| 午夜福利高清视频| 一进一出抽搐gif免费好疼| 亚洲一区二区三区色噜噜| 久久精品91蜜桃| 日本-黄色视频高清免费观看| 国产精品久久久久久久电影| 熟女电影av网| 欧美三级亚洲精品| 永久网站在线| 麻豆久久精品国产亚洲av| 12—13女人毛片做爰片一| av在线蜜桃| 男的添女的下面高潮视频| 一区二区三区高清视频在线| 1000部很黄的大片| 成人毛片a级毛片在线播放| 国内少妇人妻偷人精品xxx网站| 人妻夜夜爽99麻豆av| 身体一侧抽搐| 午夜福利高清视频| 国产乱人视频| 欧美一区二区精品小视频在线| 欧美不卡视频在线免费观看| 一级黄片播放器| 别揉我奶头 嗯啊视频| 午夜激情福利司机影院| 日韩欧美精品免费久久| 欧美性感艳星| 精品久久国产蜜桃| 只有这里有精品99| av.在线天堂| 亚洲国产精品sss在线观看| 亚洲婷婷狠狠爱综合网| 欧美色视频一区免费| 午夜福利成人在线免费观看| av黄色大香蕉| 一级毛片aaaaaa免费看小| 内射极品少妇av片p| 国产一区二区在线观看日韩| 久久99精品国语久久久| 12—13女人毛片做爰片一| 亚洲电影在线观看av| 性欧美人与动物交配| 亚洲va在线va天堂va国产| 国产黄色小视频在线观看| 国产精品精品国产色婷婷| 波多野结衣高清作品| 美女黄网站色视频| 久久精品夜夜夜夜夜久久蜜豆| av在线观看视频网站免费| 亚洲欧美精品自产自拍| 婷婷色综合大香蕉| 亚洲国产欧美在线一区| 亚洲最大成人av| 天天躁日日操中文字幕| 简卡轻食公司| 欧美色欧美亚洲另类二区| 可以在线观看毛片的网站| 国产综合懂色| 亚洲成人久久爱视频| 免费大片18禁| 国产一区二区三区在线臀色熟女| 国产精品一区二区三区四区久久| 成人国产麻豆网| 亚洲精品久久久久久婷婷小说 | 在线观看av片永久免费下载| 99视频精品全部免费 在线| av在线亚洲专区| 丝袜喷水一区| 乱码一卡2卡4卡精品| 亚洲久久久久久中文字幕| 亚洲欧美精品综合久久99| 嫩草影院入口| 超碰av人人做人人爽久久| 嫩草影院精品99| 床上黄色一级片| 免费电影在线观看免费观看| 欧美bdsm另类| 国产一区二区三区av在线 | 久久亚洲精品不卡| 深夜a级毛片| 国产日韩欧美在线精品| 亚洲图色成人| 久久国内精品自在自线图片| 精品久久久久久久末码| 日日干狠狠操夜夜爽| 乱人视频在线观看| 麻豆国产97在线/欧美| 亚洲国产欧洲综合997久久,| 美女高潮的动态| 热99re8久久精品国产| 久久午夜亚洲精品久久| 久久午夜亚洲精品久久| 久久久久网色| 欧美成人一区二区免费高清观看| 亚洲国产精品成人综合色| 亚洲av第一区精品v没综合| 乱人视频在线观看| 免费大片18禁| 一夜夜www| 乱系列少妇在线播放| 禁无遮挡网站| 人妻少妇偷人精品九色| 国产91av在线免费观看| 国产av一区在线观看免费| 欧美成人免费av一区二区三区| 校园春色视频在线观看| 国产在视频线在精品| 中文字幕人妻熟人妻熟丝袜美| 非洲黑人性xxxx精品又粗又长| 可以在线观看的亚洲视频| 秋霞在线观看毛片| 免费看av在线观看网站| 九九爱精品视频在线观看| 亚洲国产精品国产精品| 午夜精品一区二区三区免费看| 亚洲av成人精品一区久久| 精华霜和精华液先用哪个| 村上凉子中文字幕在线| 日本色播在线视频| 精品一区二区免费观看| 日韩欧美三级三区| 国产蜜桃级精品一区二区三区| 深夜a级毛片| 亚洲欧美成人综合另类久久久 | 欧美zozozo另类| 99国产精品一区二区蜜桃av| 校园人妻丝袜中文字幕| 国产精品日韩av在线免费观看| av在线天堂中文字幕| 亚洲aⅴ乱码一区二区在线播放| 亚洲av熟女| 欧美zozozo另类| 97热精品久久久久久| 国产亚洲av嫩草精品影院| 亚洲国产精品成人久久小说 | 亚洲无线在线观看| 色综合站精品国产| 综合色av麻豆| 免费看美女性在线毛片视频| 校园人妻丝袜中文字幕| videossex国产| 美女 人体艺术 gogo| 久久久国产成人精品二区| 国产v大片淫在线免费观看| 精品人妻一区二区三区麻豆| 国产 一区 欧美 日韩| 97超碰精品成人国产| 波多野结衣高清无吗| 国产亚洲91精品色在线| 毛片一级片免费看久久久久| 美女高潮的动态| 真实男女啪啪啪动态图| 国产亚洲av片在线观看秒播厂 | 午夜福利在线在线| 久久精品夜夜夜夜夜久久蜜豆| 中文精品一卡2卡3卡4更新| 久久综合国产亚洲精品| 男女视频在线观看网站免费| 可以在线观看的亚洲视频| 亚洲av电影不卡..在线观看| 99久久精品一区二区三区| 黄色一级大片看看| av.在线天堂| 人人妻人人澡欧美一区二区| 精品久久国产蜜桃| 国产淫片久久久久久久久| 日韩亚洲欧美综合| 久久久久免费精品人妻一区二区| 久久久午夜欧美精品| 午夜亚洲福利在线播放| 简卡轻食公司| 亚洲丝袜综合中文字幕| .国产精品久久| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 黄色欧美视频在线观看| 免费观看a级毛片全部| 国产精品一二三区在线看| 亚洲一区二区三区色噜噜| 哪里可以看免费的av片| 少妇猛男粗大的猛烈进出视频 | 免费观看的影片在线观看| 久久99热6这里只有精品| 午夜久久久久精精品| 91狼人影院| 日韩欧美 国产精品| 热99在线观看视频| 亚洲精品国产成人久久av| 欧美成人a在线观看| 女人被狂操c到高潮| 成人美女网站在线观看视频| 亚洲性久久影院| 九九在线视频观看精品| 日韩精品青青久久久久久| 国产精品一及| 18禁在线播放成人免费| 给我免费播放毛片高清在线观看| 特大巨黑吊av在线直播| 精品久久久久久久人妻蜜臀av| 日韩在线高清观看一区二区三区| 熟女电影av网| 久久亚洲精品不卡| 亚洲av一区综合| 日韩 亚洲 欧美在线| 亚洲人成网站高清观看| 国产免费男女视频| 91久久精品电影网| 亚洲18禁久久av| av在线播放精品| 秋霞在线观看毛片| 免费人成在线观看视频色| 欧美区成人在线视频| 日本色播在线视频| a级毛片a级免费在线| 亚洲va在线va天堂va国产| 成年av动漫网址| 97超碰精品成人国产| 国产一级毛片七仙女欲春2| 九九久久精品国产亚洲av麻豆| 搡老妇女老女人老熟妇| 精品无人区乱码1区二区| 午夜精品一区二区三区免费看| h日本视频在线播放| 亚洲精品乱码久久久久久按摩| 爱豆传媒免费全集在线观看| 亚洲av熟女| 成人亚洲精品av一区二区| 特级一级黄色大片| 自拍偷自拍亚洲精品老妇| 精品久久国产蜜桃| 亚洲欧美清纯卡通| 午夜精品国产一区二区电影 | 亚洲va在线va天堂va国产| 日韩 亚洲 欧美在线| 国产精品久久久久久久久免| a级一级毛片免费在线观看| 中文亚洲av片在线观看爽| 一区福利在线观看| 舔av片在线| 久99久视频精品免费| 91精品国产九色| 国产成人一区二区在线| 波多野结衣高清无吗| 中文精品一卡2卡3卡4更新| 亚洲va在线va天堂va国产| 欧美另类亚洲清纯唯美| 伊人久久精品亚洲午夜| 亚洲激情五月婷婷啪啪| 99热只有精品国产| 一区二区三区免费毛片| 特大巨黑吊av在线直播| 国产免费男女视频| 国产精品福利在线免费观看| 美女xxoo啪啪120秒动态图| 99久久无色码亚洲精品果冻| 欧美丝袜亚洲另类| 久久久久久久亚洲中文字幕| 在线a可以看的网站| 国产精品久久久久久久电影| 五月伊人婷婷丁香| 国产成年人精品一区二区| 岛国在线免费视频观看| 欧美另类亚洲清纯唯美| 久久久久国产网址| 自拍偷自拍亚洲精品老妇| av免费在线看不卡| 日本免费a在线| 免费在线观看成人毛片| 看片在线看免费视频| 一进一出抽搐gif免费好疼| 久久人人爽人人爽人人片va| 国产精品一区www在线观看| 国产探花在线观看一区二区| 三级男女做爰猛烈吃奶摸视频| 一进一出抽搐gif免费好疼| 波多野结衣高清作品| 99在线视频只有这里精品首页| 亚洲在线观看片| 99久久久亚洲精品蜜臀av| 又粗又硬又长又爽又黄的视频 | 赤兔流量卡办理| 亚洲欧美日韩高清专用| 久久久精品大字幕| 日韩人妻高清精品专区| 久久久精品94久久精品| 少妇人妻精品综合一区二区 | 观看美女的网站| 免费看av在线观看网站| 国产精品人妻久久久久久| 亚洲精品日韩在线中文字幕 | 搡老妇女老女人老熟妇|