• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gray code based gradient-free optimization algorithm for parameterized quantum circuit

    2024-02-29 09:16:46AnqiZhang張安琪ChunhuiWu武春輝andShengmeiZhao趙生妹
    Chinese Physics B 2024年2期
    關鍵詞:春輝

    Anqi Zhang(張安琪), Chunhui Wu(武春輝), and Shengmei Zhao(趙生妹),2,?

    1Institute of Signal Processing and Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education),Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: gradient-free optimization,Gray code,genetic-based method

    1.Introduction

    Parameterized quantum circuits (PQCs) offer a useful way to implement quantum algorithms[1–10]and can demonstrate quantum supremacy in the noisy intermediate scale quantum(NISQ)area.[11–15]PQCs are typically composed of fixed gates, e.g., controlled NOTs, or adjustable gates with phase rotations.Even at low circuit depth, some classes of PQCs are capable of generating highly non-trivial outputs.Usually, the parameter optimization in PQCs involves evaluation of the cost functionC(θ) from the quantum circuit and the computation of the cost function gradient ?C(θ) from the classical computer, where the barren plateau, in which the gradient of cost function vanishes exponentially with the size of system, is an important issue that needs to be carefully considered.[1,16]Various strategies have been suggested to tackle this issue.For instance, Skoliket al.[17]proposed a layer-wise learning optimization method where only a subset of all parameters is updated in each iteration.Additionally,clever parameter initialization and ansatz construction have been shown to enhance the stability and efficiency of training parameterized quantum circuits, thus preventing them from getting trapped in regions of vanishing gradients.[18–20]Nevertheless,further research is needed to assess the effectiveness of these strategies across different problem domains.Therefore,for large-scale parameter optimization problems,gradient-free optimization can be a preferable choice to avoid the barren plateau problem,which is promising for the devices in NISQ.For example,based on Gaussian process regression(GPR)and noisy expected improvement (NEI), a Bayesian optimization(BO)was proposed by Iannelliet al.[21]to provide an estimation of the ground state energy.An efficient method for optimizing the values of parameters by finding the direction and angle of rotation of quantum gates that yield minimum energy in PQCs was proposed by Ostaszewskiet al.[22]for variational quantum eigenvalue (VQE) tasks.However, these works are more effective for smooth optimization surfaces,they may lose their effectiveness for tasks with rough optimization surfaces in the presence of noise.In Ref.[23]the authors represented parameters using regular binary strings and performed iterative optimization within a genetic framework for parameter optimization.Nevertheless, the issue that minor parameter changes can trigger multiple bits to switch arises,causing significant step jumps throughout the optimization process.This phenomenon complicates the task of locating the global optimum.

    In this work,we propose a Gray code based gradient-free optimization (GCO) algorithm for optimizing the parameters of parameterized quantum circuits (PQCs).First, for a given PQC, the parameter is encoded into a set of binary strings,called genes.Next, each individual gene is decoded using Gray code into decimal values, which are applied as parameters to the PQC for evaluation,obtaining corresponding cost values for fitness calculation.Then, the fitness values of all individuals are processed as probabilities when the roulettewheel selection strategy is adopted to prepare the parent population.Finally,the crossover and mutation operations are carried out to generate the offspring.The parameters in the PQC are optimized one by one until the cost value satisfies the stop conditions.

    The proposed GCO algorithm offers several advantages:(1) The proposed GCO algorithm utilizes Gray code decoding techniques to optimize the parameters of PQCs,leading to improved optimization results for high-dimensional and nonconvex quantum circuit optimization problems,while avoiding the complexity of gradient computation.(2) The Gray code decoding method ensures that the parameters between two iterations only differ by one bit, helpful to avoid local optima in some optimization problems.Moreover,the proposed GCO algorithm enables the control of parameter precision by adjusting the number of bits in genes, which is particularly useful for quantum optimization tasks that require refining parameter values.(3)In the GCO algorithm,the roulette-wheel selection strategy is employed within the genetic framework to map fitness values to selection probabilities,enabling the selection of individuals with higher fitness as the parent population.Simultaneously,this strategy enhances offspring diversity and helps to prevent the algorithm from getting trapped in local optima.(4) The proposed GCO algorithm can optimize multiple parameters simultaneously,thereby the training time is reduced.

    2.The Gray code based gradient-free optimization algorithm.

    Figure 1 illustrates the framework of the proposed Gray code based optimization algorithm.The optimization process consists of the following steps.In step 1,a group of the initial population ofθmis generated randomly, where each individual is encoded as binary strings termed genes.Hereθmis them-th component of the parameter vectorθ.In step 2, all individuals of genes are decoded into decimals and evaluated in a fixed PQC which is selected according to the optimization task,to achieve cost values costmi(θ),respectively.In step 3,the fitness values are calculated according to the cost with the summation of all the fitness values to 1,and the fitness values are the probabilities to prepare the parent population by using roulette-wheel election strategy.In step 4, the crossover and mutation operations are performed on the parent population to generate the offspring.In step 5,the offspring is decoded and evaluated in the same PQC to check whether the minimum cost min[costm(θ′)] satisfies the stop condition.If the minimum cost does not satisfy the stop condition,updateθm+1;if the minimum cost satisfies the stop condition or the number of iterations is reached, the optimization process is stopped and the optimal parametersθ*are achieved.

    Fig.1.The framework of the GCO algorithm for optimizing parameters in PQC.

    The proposed algorithm is detailed in the following.

    (1) Generation of genes forθmAssume that theθmofθis optimized at the moment.In our proposed algorithm,θmis represented byNbinary Gray code strings which are randomly generated using a classical device in step 1 of Fig.1 askmi,i=1,...,N,each is called a gene.The number of bits in a gene is determined by the precision of the corresponding decimalθm, and the number after the dot specifies the precision.The range of parameters for a quantum gate is[-π,π].To set the precision of a decimal parameter ton, the number of bits required in genes isl,and their relationship can be expressed

    as

    therefore,lcan be

    (2)Evaluation of individualsAll genes ofθmare evaluated in the quantum device to achieve the cost values.

    As shown in step 2 of Fig.1,the genekmiis decoded into decimal value using Gray code and then loaded into the quantum device.Quantum devices in which the quantum gatesGpossess parameters can be referred as parameterized quantum circuits(PQCs).Therefore, when the types of quantum gates are fixed, the result of PQC depends on the parameter vectorθ.The circuit of PQC is determined by the specific optimization task,and as a result,the cost function is also dependent on the optimization task.In the case of a classification task, the optimization typically involves the preparation of the output quantum state of the PQC,denoted asφout,to a particular target quantum state,denoted asφopt.The cost is then calculated by using the fidelity-based approach,

    (3) Selection of parent population In step 3 of Fig.1,the parent population is generated using the roulette-wheel selection[24]sampling strategy.The roulette-wheel selection is a method of sampling with replacement based on the probabilities assigned to each individual.This means that the same individual may be sampled more than once,and the higher the likelihood of an individual,the more times it may be sampled.The fitness values of each individual are determined using the cost values obtained in step 2 as follows:

    where costmiis theith cost value estimated.Then the fitness values are processed so that all values are equal to 1 by the softmax function as

    The parent population is prepared based on their processed fitness values until the sample size reaches the maximum population, as illustrated in step 3 of Fig.1.The processed fitness values are mapped into a circle and the size of area in the circle is corresponding to the probability of selecting individual,kmi,i=1,...,N.As shown in step 3 of Fig.1,km1with the largest size of area in the circle is more likely to be selected;whilekmNwith the lowest probability is less to be selected.

    (4) Crossover and mutation operations The crossover strategy and mutation strategy are presented in step 4 of Fig.1.

    Crossover The two adjacent parents are grouped together, and each bit position of gene is traversed separately.For each bit position,a bit swap with a certain probability may occur between the two adjacent parents.As illustrated in step 4 of Fig.1,the first 6 bit positions of genes of the two adjacent parents,denoted bykiandki+1,are presented.When traverse at the 3rd position,kiandki+1occur in bit swap.

    Mutation Each bit of any gene in the parent population is traversed and may undergo a 0–1 transformation with a certain probability.As illustrated in step 4 of Fig.1,each bit position ofkjis traversed, and 1 to 0 transformation occurs at the 1st bit position and 0 to 1 transformation occurs at the 6th bit position.

    (5) Evaluation of offspring In step 5, all genes of the offspring are evaluated in the same PQC as step 2 to achieve cost values.Then the minimum cost value, denoted by min(costm(θ′)),is selected and checked to determine if it satisfies the stop condition.If the minimum cost satisfies the stop condition, the iteration is stopped, and the optimal parameter vector, represented asθ*, is outputted.If the minimum cost fails to satisfy the stop condition, the next component ofθ,θm+1,is updated,and the optimization process is repeated.

    The processes of the GCO algorithm are shown as algorithm 1.

    Algorithm 1 The Gray code optimization algorithm Require: Initialize the parameters in the PQC randomly;calculate the number of bits used l according to the precise of parameters n;a stop condition 1.loop 2.Calculate the value of cost function as cost-now 3.for m=1 to M 4.Generate N bit strings of θm randomly,in which each individual has l bits Evaluate the cost of each individual Fitness is calculated by using cost values achieved from step 2 and processed as the probabilities of the roulette-wheel selection sampling strategy to sample the parent population Crossover and mutation are carried out in the parent population to achieve the offspring Evaluate the cost of each individual in the offspring and record the minimum value of costs,min(costm(θ′)),as cost-min 5.if cost-min

    3.Result and discussion

    In this section,the feasibility of the proposed GCO algorithm is demonstrated through classification tasks on Iris and MNIST datasets, which are commonly employed in machine learning and deep learning.

    To compare the performance of the proposed GCO algorithm,Bayesian optimization(BO)algorithm,[21]binary code based optimization (BCO) algorithm,[23]and an adam-based optimization method, are simulated simultaneously.In this work, the BCO algorithm is almost identical to the GCO algorithm, with the only difference that BCO uses regular binary conversion when decoding from binary to decimal while GCO utilizes Gray code decoding.Gradient-based parameter optimization is the mainstream optimization approach in machine learning.In this simulation, the results of adam-based method are used as a benchmark, facilitating the understanding of the strengths and limitations of the proposed GCO algorithms.The simulations were realized by the PennyLane[25]module in Python.In the training processes, the number of gene bits for the parameters is 10.The probabilities of crossover and mutation are 0.3 and 0.05, respectively.There are 30 circles of all parameters that are trained at one time during the training process for GCO,BO and BCO,15 circles for the adam-based method.The classification tasks of Iris are achieved in the environment without noise, and the tasks in MNIST are achieved in the environment with four typical quantum noise,[26]i.e., bit flip, depolarizing, phase flip, and amplitude damping,under a probability of 5%.In Pennylane,noises are modeled as unitary operation and introduced into the PQC.The PQC we use[27]for the quantum classifier is shown in the Fig.2, two registers are contained in the PQC,A and B, which are used to store the training data and corresponding labels, respectively.During the training process,the training data of two datasetsX1,X2and parametersθare input into the register A, while the labels are input into the register B.The training objective is to ensure that the quantum state of register A forms the same as of register B, that is,U(X1,θ*)|0〉A=|0〉AandU(X2,θ*)|0〉A=|1〉A,thus the PQC trains data of two datasets simultaneously by creating a unique mapping between the training data and the labels.After training,the final state of the PQC is|00〉AB+|11〉AB.The quantum gateCU(Xi,θ)is composed of multiple controlledphase gates,and each controlled-phase gate contains one component of the training data and parameter vectors.As a result,the depth of the PQC is dependent on the dimensionality of the training data vector.

    Fig.2.The parameterized quantum circuit(PQC)for classification tasks(a)and the details for uploading training data Xi and parameter θ into the PQC(b),where Xi=(x1,x2,...,xn)and θ=(θ1,θ2,...,θn).

    Fig.3.The cost value against the time for the three classification tasks in four types of noise by using GCO (red), BO (blue), BCO (black), and the adam-based method(pink)algorithms.

    Table 1.The accuracy by using GCO and BO for Iris dataset.

    For Iris dataset, we discuss the performance of the GCO and BO algorithms.Here, 40 training samples and 10 testing samples are randomly selected from each class,with three different subsets used.Specifically, the PQC for the classification task on the Iris dataset consists of 2 qubits with 10 serial controlled quantum gates.The numerical experiments are conducted five times, and the average results are listed in Table 1.From Table 1,it is obvious that the GCO algorithm outperforms the BO algorithm in terms of accuracy for all three subsets of the Iris dataset.

    For MNIST dataset, we randomly select 2000 training samples and 500 testing samples for each class,which are subsequently resized into 16 dimensions.Specifically, the PQC for the classification task on the MNIST dataset consists of 2 qubits with 34 serial controlled quantum gates.To evaluate the performance of three optimizing algorithms, we perform numerical simulations on the classification tasks for both similar handwritten digits (1&7) and difficult-to-recognize digits(2&4 and 4&9).

    The results of the proposed GCO, BO, BCO and adambased algorithms for the three classification tasks 1&7, 2&4,and 4&9, are evaluated in terms of cost value against time in Fig.3.In comparison to the BO,BCO and adam-based algorithms, the GCO algorithm maintains the ability for continuous convergence during the training process for four types of noise.It hints that the GCO algorithm is robust and has some resistance to the noisy environment.While the BO algorithm only has good robustness against phase flip and amplitude damping noises, the BCO algorithm exhibits both lower convergence capability and poorer robustness compared to the BO and GCO algorithms.The adam-based optimization method fluctuates in bit flip and depolarizing noises and shows good performances in phase flip and amplitude damping noises.However, overall, the adam-based method consistently converges,indicating robustness to four types of noises.

    Fig.4.The classification accuracy against the time respectively for the three classification tasks in four types of noise by using GCO(red),BO(blue),BCO(black),and the adam-based method(pink)algorithms.

    The classification accuracies of the GCO,BO,BCO and adam-based algorithms against time during the training process are shown in Fig.4.In comparison to the BO, BCO and adam-based algorithms, the GCO algorithm consistently demonstrates enhanced classification accuracy regardless of the noise type.Notably, the GCO algorithm achieves accuracy levels of around 0.8 for the 1&7 task, over 0.7 for the 2&4 task, and around 0.8 for the 4&9 task.It indicates the effectiveness of the GCO algorithm in noisy environments for the three classification tasks.Conversely, the BO algorithm’s performance is influenced by both the classification task and the specific noise type.It exhibits significant accuracy fluctuations when subjected to bit flip and depolarizing noise environments.Moreover,in comparison to the 1&7 and 4&9 tasks,the BO algorithm achieves lower accuracy in the 2&4 task,reaching below 0.65.Meanwhile, the BCO algorithm consistently shows poor accuracy performance across various noise types and classification tasks.The adam-based optimization method shows less improvement in the early stages of training processing in environments with four types of noise,but it eventually achieves higher classification accuracy than other optimization methods.Additionally, in some classification tasks, such as the task 4&9,it can achieve higher accuracy.This is due to the fact that gradient-based optimization methods are better suited for searching within local regions, allowing for more precise parameter optimization values.

    4.Conclusion

    In this work, we have proposed a GCO algorithm for a parameterized quantum circuits(PQCs).The parameters in a PQC are expressed as binary strings and are decoded in Gray code way to keep Hamming distance.In the training process,an genetic-based method is adopted to generate the next generation so as to update the parameters of the PQC iteratively.One parameter is optimized in each iteration, so that the proposed GCO algorithm has a shorter time for optimization.Furthermore, we simulate the GCO algorithm for classification tasks in two datasets,and compare the results with those using the BO algorithm and the GCO algorithm.The simulation results show that the GCO algorithm has a good ability to resist the noises and makes better optimization performance in the optimizing processes, both for the similar handwritten digits and the difficult-to-distinguish handwritten digits.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos.61871234 and 62375140),and Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX190900).

    猜你喜歡
    春輝
    背著“房子”的二次根式
    Quantum synchronization with correlated baths
    Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
    城市軌道交通員工專業(yè)英語素養(yǎng)構建探討
    Performance of passive decoy-state quantum key distribution with mismatched local detectors
    解答抽象函數(shù)問題的兩個策略
    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*
    羅綺映春輝——張萱《虢國夫人游春圖》品鑒
    藝術品鑒(2020年10期)2020-11-27 01:54:22
    4 萬公里騎行:只為了滿滿的母愛
    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?
    日本欧美国产在线视频| 三级国产精品欧美在线观看| 国产精品1区2区在线观看.| 波野结衣二区三区在线| av.在线天堂| 国产午夜福利久久久久久| av.在线天堂| 亚洲精品一区av在线观看| avwww免费| 亚洲自偷自拍三级| 久久午夜福利片| 国产v大片淫在线免费观看| 美女被艹到高潮喷水动态| 熟女电影av网| 3wmmmm亚洲av在线观看| 久久韩国三级中文字幕| 亚洲美女搞黄在线观看 | 深夜精品福利| 国产亚洲精品久久久com| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添小说| 变态另类成人亚洲欧美熟女| 国产精品,欧美在线| 露出奶头的视频| 日韩亚洲欧美综合| 免费人成在线观看视频色| 一级黄色大片毛片| 免费av毛片视频| 亚洲七黄色美女视频| 男插女下体视频免费在线播放| 国产精品一区www在线观看| 成年免费大片在线观看| 国产精品久久久久久久久免| 国产在线精品亚洲第一网站| 观看免费一级毛片| 亚洲在线自拍视频| 久久亚洲国产成人精品v| 三级经典国产精品| ponron亚洲| 91av网一区二区| 国产精品一及| 亚洲无线在线观看| 一区二区三区四区激情视频 | 热99re8久久精品国产| 又爽又黄无遮挡网站| 中文在线观看免费www的网站| a级一级毛片免费在线观看| 国产黄片美女视频| 波多野结衣高清无吗| avwww免费| 女生性感内裤真人,穿戴方法视频| 亚洲欧美清纯卡通| 赤兔流量卡办理| av在线蜜桃| 亚州av有码| 男插女下体视频免费在线播放| 国产又黄又爽又无遮挡在线| 身体一侧抽搐| 亚洲18禁久久av| 毛片女人毛片| 国产精品电影一区二区三区| 午夜影院日韩av| 嫩草影院精品99| 韩国av在线不卡| 欧美日韩国产亚洲二区| 亚洲欧美日韩无卡精品| 免费人成视频x8x8入口观看| 中文字幕免费在线视频6| 看免费成人av毛片| 国产成人91sexporn| 两个人视频免费观看高清| 少妇熟女欧美另类| 国产亚洲精品综合一区在线观看| 99国产极品粉嫩在线观看| 99九九线精品视频在线观看视频| 亚洲一区高清亚洲精品| 国语自产精品视频在线第100页| 欧美日韩精品成人综合77777| 一个人免费在线观看电影| 美女高潮的动态| 久久久久久久久久成人| 日韩制服骚丝袜av| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩高清在线视频| 国产三级中文精品| 听说在线观看完整版免费高清| 可以在线观看的亚洲视频| 看片在线看免费视频| 男女啪啪激烈高潮av片| 99九九线精品视频在线观看视频| 高清毛片免费看| 在线观看66精品国产| 免费电影在线观看免费观看| 国产片特级美女逼逼视频| 日韩大尺度精品在线看网址| 国产三级中文精品| 免费搜索国产男女视频| 国产在视频线在精品| 欧美区成人在线视频| 黑人高潮一二区| 99久久无色码亚洲精品果冻| 最近手机中文字幕大全| 国产精品不卡视频一区二区| 国产白丝娇喘喷水9色精品| 日本免费一区二区三区高清不卡| 亚洲欧美成人综合另类久久久 | av在线天堂中文字幕| 变态另类丝袜制服| 欧美日韩乱码在线| 国模一区二区三区四区视频| 欧美色欧美亚洲另类二区| 国产精品一区二区免费欧美| 国产精品99久久久久久久久| 麻豆久久精品国产亚洲av| 男人舔女人下体高潮全视频| 欧美性猛交╳xxx乱大交人| 日韩高清综合在线| 成人二区视频| 日日摸夜夜添夜夜添小说| 在线观看免费视频日本深夜| 日本色播在线视频| 亚洲无线在线观看| 老司机影院成人| 国产精品久久电影中文字幕| 少妇的逼水好多| 亚洲电影在线观看av| 村上凉子中文字幕在线| 亚洲精品在线观看二区| 日韩制服骚丝袜av| 亚洲国产精品成人综合色| 亚洲成a人片在线一区二区| 99九九线精品视频在线观看视频| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久av不卡| 熟女人妻精品中文字幕| 直男gayav资源| 日韩成人伦理影院| av福利片在线观看| 最好的美女福利视频网| 我的女老师完整版在线观看| 一个人免费在线观看电影| 欧美xxxx性猛交bbbb| 免费黄网站久久成人精品| 人妻久久中文字幕网| 青春草视频在线免费观看| 观看免费一级毛片| 伦理电影大哥的女人| 国内精品美女久久久久久| 青春草视频在线免费观看| 少妇熟女欧美另类| 亚洲人成网站在线播| 18+在线观看网站| 寂寞人妻少妇视频99o| 菩萨蛮人人尽说江南好唐韦庄 | 别揉我奶头 嗯啊视频| 亚洲欧美日韩东京热| 此物有八面人人有两片| 日韩三级伦理在线观看| 18禁在线无遮挡免费观看视频 | 欧美日韩在线观看h| 97在线视频观看| 国产精品美女特级片免费视频播放器| 大又大粗又爽又黄少妇毛片口| 欧美+亚洲+日韩+国产| 亚洲av熟女| 天堂影院成人在线观看| 最好的美女福利视频网| 午夜福利在线观看吧| 亚洲丝袜综合中文字幕| 精品国产三级普通话版| 欧美色欧美亚洲另类二区| 欧美最新免费一区二区三区| 亚洲性夜色夜夜综合| 亚洲av不卡在线观看| 国产精品亚洲一级av第二区| 超碰av人人做人人爽久久| 成年av动漫网址| 免费观看在线日韩| 69人妻影院| 久久久久久久亚洲中文字幕| 深夜a级毛片| 日韩欧美精品免费久久| 日日摸夜夜添夜夜添av毛片| 97超视频在线观看视频| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲内射少妇av| 日本黄色片子视频| 日本黄大片高清| 舔av片在线| 特大巨黑吊av在线直播| 欧美+日韩+精品| 欧美最黄视频在线播放免费| 国产精品伦人一区二区| 天堂av国产一区二区熟女人妻| 国产免费一级a男人的天堂| 丰满人妻一区二区三区视频av| 日韩高清综合在线| 久久精品夜色国产| 一级av片app| 最近最新中文字幕大全电影3| 久久鲁丝午夜福利片| 欧美日韩在线观看h| 欧美一区二区亚洲| 精品无人区乱码1区二区| 97超碰精品成人国产| 99国产极品粉嫩在线观看| 成人漫画全彩无遮挡| 精品无人区乱码1区二区| 中文字幕av在线有码专区| 亚洲激情五月婷婷啪啪| 亚洲精品国产成人久久av| 少妇熟女欧美另类| 97超碰精品成人国产| 午夜影院日韩av| 超碰av人人做人人爽久久| 欧美丝袜亚洲另类| 国产毛片a区久久久久| 五月玫瑰六月丁香| 亚洲国产精品国产精品| 五月伊人婷婷丁香| 三级毛片av免费| 欧美日韩综合久久久久久| 听说在线观看完整版免费高清| 天堂影院成人在线观看| 一a级毛片在线观看| 国产精品美女特级片免费视频播放器| 欧美日韩综合久久久久久| av在线天堂中文字幕| 久久久a久久爽久久v久久| 欧美日韩在线观看h| 国产欧美日韩一区二区精品| 亚洲人成网站在线播放欧美日韩| 亚洲av第一区精品v没综合| 精品一区二区三区av网在线观看| 最新中文字幕久久久久| 夜夜夜夜夜久久久久| 全区人妻精品视频| 亚洲高清免费不卡视频| 内射极品少妇av片p| 天堂动漫精品| 色尼玛亚洲综合影院| 亚洲精品日韩在线中文字幕 | 午夜激情欧美在线| 永久网站在线| 插阴视频在线观看视频| 亚洲性久久影院| 长腿黑丝高跟| 日韩欧美国产在线观看| 91av网一区二区| 人妻少妇偷人精品九色| 日本黄色视频三级网站网址| videossex国产| 国产伦一二天堂av在线观看| 国产成人福利小说| 国产大屁股一区二区在线视频| 国产精品福利在线免费观看| 乱系列少妇在线播放| av福利片在线观看| 免费搜索国产男女视频| 看免费成人av毛片| 天美传媒精品一区二区| 日韩欧美在线乱码| 天堂动漫精品| 日本一本二区三区精品| 99久久中文字幕三级久久日本| 欧美3d第一页| 波多野结衣高清无吗| 99久国产av精品国产电影| 免费看光身美女| 久久久精品94久久精品| 欧美另类亚洲清纯唯美| 国产极品精品免费视频能看的| 日韩欧美一区二区三区在线观看| 国产免费一级a男人的天堂| 国产亚洲91精品色在线| 最新中文字幕久久久久| 国产成人aa在线观看| 成人亚洲欧美一区二区av| 99热只有精品国产| 久久精品夜色国产| 又黄又爽又免费观看的视频| 免费电影在线观看免费观看| 日韩 亚洲 欧美在线| 亚洲欧美日韩东京热| 国产精品,欧美在线| 色视频www国产| 精品不卡国产一区二区三区| 国产成人福利小说| 午夜福利视频1000在线观看| h日本视频在线播放| 超碰av人人做人人爽久久| 99久久精品一区二区三区| 香蕉av资源在线| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 欧美丝袜亚洲另类| 神马国产精品三级电影在线观看| 欧美色视频一区免费| 亚洲av二区三区四区| 日本a在线网址| 91在线观看av| 九九热线精品视视频播放| 十八禁国产超污无遮挡网站| 色吧在线观看| 日本在线视频免费播放| 18禁黄网站禁片免费观看直播| 51国产日韩欧美| 精品一区二区三区视频在线观看免费| 国产精华一区二区三区| 国产精品亚洲一级av第二区| 最后的刺客免费高清国语| 少妇熟女aⅴ在线视频| 成人特级av手机在线观看| 成人综合一区亚洲| 免费高清视频大片| 天堂网av新在线| 久久婷婷人人爽人人干人人爱| 如何舔出高潮| 国产不卡一卡二| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久亚洲av鲁大| 51国产日韩欧美| 成人毛片a级毛片在线播放| 99久久精品国产国产毛片| 成人亚洲欧美一区二区av| 免费搜索国产男女视频| 婷婷精品国产亚洲av| 嫩草影院新地址| 91在线观看av| 超碰av人人做人人爽久久| 日韩在线高清观看一区二区三区| 嫩草影院精品99| 成人精品一区二区免费| 日本精品一区二区三区蜜桃| 人妻丰满熟妇av一区二区三区| 99热网站在线观看| 久久精品国产鲁丝片午夜精品| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 亚洲精品成人久久久久久| 在线看三级毛片| 中文字幕av成人在线电影| 亚洲精品国产av成人精品 | 日韩成人av中文字幕在线观看 | 成人无遮挡网站| 日韩成人伦理影院| 亚洲av一区综合| 少妇的逼水好多| 久久久精品94久久精品| 亚洲成av人片在线播放无| 男女边吃奶边做爰视频| 天堂av国产一区二区熟女人妻| 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| 亚洲一级一片aⅴ在线观看| 天堂影院成人在线观看| 黑人高潮一二区| 亚洲在线自拍视频| 九色成人免费人妻av| 精品一区二区三区av网在线观看| 亚洲熟妇熟女久久| 久久久欧美国产精品| 精品久久国产蜜桃| 国产伦精品一区二区三区四那| 国产一区亚洲一区在线观看| 男人狂女人下面高潮的视频| 欧美激情久久久久久爽电影| 联通29元200g的流量卡| 亚洲中文字幕日韩| 99在线人妻在线中文字幕| 麻豆乱淫一区二区| 精品福利观看| 亚洲18禁久久av| 国产久久久一区二区三区| 国产极品精品免费视频能看的| av视频在线观看入口| 亚洲中文日韩欧美视频| 一区二区三区高清视频在线| 日本免费a在线| 最近最新中文字幕大全电影3| 日本与韩国留学比较| 一边摸一边抽搐一进一小说| 欧美激情国产日韩精品一区| 色吧在线观看| 蜜桃亚洲精品一区二区三区| 国产精品一区二区性色av| 日本a在线网址| 国产在线男女| www.色视频.com| 在线免费观看不下载黄p国产| 成人特级黄色片久久久久久久| 听说在线观看完整版免费高清| 淫妇啪啪啪对白视频| 美女免费视频网站| 六月丁香七月| 看片在线看免费视频| 亚洲18禁久久av| 日本三级黄在线观看| 午夜a级毛片| 麻豆乱淫一区二区| 亚洲成人久久性| 乱系列少妇在线播放| 日韩精品青青久久久久久| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久亚洲av鲁大| 中出人妻视频一区二区| 丰满的人妻完整版| 国产探花在线观看一区二区| 久久久精品欧美日韩精品| 国产精品99久久久久久久久| 六月丁香七月| 麻豆久久精品国产亚洲av| 51国产日韩欧美| 国产精品福利在线免费观看| 内地一区二区视频在线| av免费在线看不卡| 国产探花在线观看一区二区| 成人漫画全彩无遮挡| 久久鲁丝午夜福利片| 亚洲婷婷狠狠爱综合网| 麻豆久久精品国产亚洲av| 51国产日韩欧美| 亚洲美女黄片视频| 日本在线视频免费播放| 久久人人爽人人爽人人片va| 18+在线观看网站| 国产黄色小视频在线观看| 伦精品一区二区三区| 日韩av在线大香蕉| 亚洲成人av在线免费| 久久久色成人| 人人妻人人澡欧美一区二区| 高清毛片免费看| 亚洲av免费在线观看| 国产激情偷乱视频一区二区| 校园人妻丝袜中文字幕| 亚洲经典国产精华液单| 国产片特级美女逼逼视频| 国产精品久久久久久亚洲av鲁大| 人妻久久中文字幕网| 久久久久久久久大av| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清作品| 欧美高清性xxxxhd video| 亚洲乱码一区二区免费版| 成人av在线播放网站| 一本一本综合久久| aaaaa片日本免费| 国产精品乱码一区二三区的特点| 搡女人真爽免费视频火全软件 | 晚上一个人看的免费电影| 波多野结衣高清无吗| 18禁在线无遮挡免费观看视频 | 长腿黑丝高跟| 99精品在免费线老司机午夜| 国产成人福利小说| 麻豆一二三区av精品| 一级毛片电影观看 | 久久久久久久久大av| 在线播放国产精品三级| 久久精品久久久久久噜噜老黄 | 观看美女的网站| 午夜免费男女啪啪视频观看 | 91在线观看av| 国国产精品蜜臀av免费| 天堂影院成人在线观看| 国产成人91sexporn| 高清毛片免费看| 久久久成人免费电影| 在线免费观看不下载黄p国产| 国产伦在线观看视频一区| 淫秽高清视频在线观看| 精品人妻一区二区三区麻豆 | 免费搜索国产男女视频| 国产毛片a区久久久久| 亚洲七黄色美女视频| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 亚洲av成人精品一区久久| 国产精品,欧美在线| 国产大屁股一区二区在线视频| 日韩欧美一区二区三区在线观看| 欧美国产日韩亚洲一区| 国产高清激情床上av| 九九爱精品视频在线观看| 亚洲欧美成人综合另类久久久 | 美女cb高潮喷水在线观看| 国产免费男女视频| 免费人成视频x8x8入口观看| 三级国产精品欧美在线观看| 亚洲成人精品中文字幕电影| 狂野欧美白嫩少妇大欣赏| 天天躁夜夜躁狠狠久久av| 熟女人妻精品中文字幕| 欧美一区二区精品小视频在线| 男插女下体视频免费在线播放| 中文亚洲av片在线观看爽| 99久久无色码亚洲精品果冻| 欧美激情久久久久久爽电影| 观看美女的网站| 少妇熟女aⅴ在线视频| av视频在线观看入口| 成人高潮视频无遮挡免费网站| 国产精品女同一区二区软件| 亚洲性久久影院| 我要搜黄色片| 久久精品国产亚洲av涩爱 | 99riav亚洲国产免费| 99久久九九国产精品国产免费| 日韩欧美免费精品| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 人人妻人人看人人澡| 嫩草影院精品99| 中国美白少妇内射xxxbb| 欧美日韩乱码在线| 国产精品国产高清国产av| 91在线精品国自产拍蜜月| 99久久九九国产精品国产免费| 一区二区三区免费毛片| 99视频精品全部免费 在线| 久久久色成人| 久久精品人妻少妇| 欧美丝袜亚洲另类| 精品人妻视频免费看| 成人亚洲精品av一区二区| 无遮挡黄片免费观看| 中出人妻视频一区二区| 精品午夜福利在线看| 亚洲中文日韩欧美视频| 亚洲婷婷狠狠爱综合网| 日韩精品青青久久久久久| 色尼玛亚洲综合影院| 综合色av麻豆| 国产黄片美女视频| 久久精品夜色国产| 日韩欧美一区二区三区在线观看| 国产精品人妻久久久久久| 在线观看午夜福利视频| 亚洲精品一区av在线观看| 国产综合懂色| 亚洲av一区综合| 不卡一级毛片| 精品午夜福利视频在线观看一区| 亚洲av美国av| 天天一区二区日本电影三级| 国产片特级美女逼逼视频| 在线观看一区二区三区| 真人做人爱边吃奶动态| 免费搜索国产男女视频| 国产三级中文精品| 亚洲天堂国产精品一区在线| 国产精品爽爽va在线观看网站| 国产老妇女一区| 亚洲一区高清亚洲精品| 国产高清视频在线观看网站| 亚洲国产精品合色在线| 99在线视频只有这里精品首页| 亚洲欧美日韩无卡精品| 日韩大尺度精品在线看网址| 久久6这里有精品| 男女啪啪激烈高潮av片| 精品久久久久久久久久久久久| 亚洲无线在线观看| 九九在线视频观看精品| 久久99热6这里只有精品| 亚洲av免费在线观看| 人妻制服诱惑在线中文字幕| 人妻少妇偷人精品九色| 日韩欧美一区二区三区在线观看| 搡老熟女国产l中国老女人| 99久国产av精品国产电影| 看非洲黑人一级黄片| 小蜜桃在线观看免费完整版高清| 午夜老司机福利剧场| 亚洲欧美日韩无卡精品| 一级毛片aaaaaa免费看小| av在线天堂中文字幕| 永久网站在线| 亚洲久久久久久中文字幕| 国产精品三级大全| 亚洲成人av在线免费| 性欧美人与动物交配| 哪里可以看免费的av片| 伦精品一区二区三区| av女优亚洲男人天堂| 99久久精品热视频| 欧美人与善性xxx| 人妻少妇偷人精品九色| 日日撸夜夜添| 久久鲁丝午夜福利片| 美女 人体艺术 gogo| 亚洲av美国av| 看十八女毛片水多多多| 色视频www国产| 变态另类丝袜制服| 在线观看免费视频日本深夜| 亚洲精品456在线播放app| 搡女人真爽免费视频火全软件 | 国国产精品蜜臀av免费| 中文亚洲av片在线观看爽| 色av中文字幕| 最近视频中文字幕2019在线8| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av天美| 日韩欧美免费精品| 在线观看av片永久免费下载| 非洲黑人性xxxx精品又粗又长| 国产精品人妻久久久影院| 国产黄片美女视频| 免费看av在线观看网站| 国产成年人精品一区二区| h日本视频在线播放|