• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources

    2024-02-29 09:16:54LeChenXu徐樂(lè)辰ChunHuiZhang張春輝XingYuZhou周星宇andQinWang王琴
    Chinese Physics B 2024年2期
    關(guān)鍵詞:春輝

    Le-Chen Xu(徐樂(lè)辰), Chun-Hui Zhang(張春輝), Xing-Yu Zhou(周星宇), and Qin Wang(王琴),?

    1Institute of Quantum Information and Technology,Nanjing 210003,China

    2Broadband Wireless Communication and Sensor Network Technology,Key Laboratory of Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3Telecommunication and Networks National Engineering Research Center,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: quantum key distribution,heralded single-photon source,decoy-state method

    1.Introduction

    Quantum key distribution (QKD),[1,2]based on the fundamental laws of physics,[3,4]allows two distant parties,Alice and Bob, to share secret keys in the presence of a malicious eavesdropper,Eve.Since the first QKD protocol(BB84)was proposed in 1984,[1]a great number of QKD experiments have been reported.[5–12]In most previous QKD protocols and corresponding security proofs,[13–19]people often assume the prepared states are perfect.However,preparation flaws inevitably exist in real-life situations due to the imperfect devices,resulting in reduced security of practical QKD systems.

    To alleviate the influence of state preparations flaws,Tamakiet al.[20]presented a loss-tolerant protocol, but it requires full characterization of the preparation states and causes increased system complexity.Fortunately, Yinet al.[21]proposed a QKD protocol without characterizing misalignment errors and the only assumption is that the quantum states are prepared in a two-dimensional Hilbert space.With which the secret keys can be extracted out using uncharacterized sources by exploiting the mismatched-basis statistics which are normally discarded, and related experiments have been successfully demonstrated.[22–24]

    Based on those previous works,[21–23]here we present a four-intensity decoy-state proposal on quantum key distribution using uncharacterized heralded single-photon sources(HSPS).First,the four-intensity scheme with biased basis can help to improve the key rate compared with the standard threeintensity method.[22,23]Second,by employing the intrinsic advantages of HSPS with a higher single-photon probability and a lower dark count rate compared with weak coherent sources(WCS),[25,26]one can obtain not only a much longer secure transmission distance, but also a higher key rate, compared with previous similar works.[22,23]

    2.Protocol description

    In our four-intensity BB84 protocol, Alice randomly modulates each pulse into one of the four different intensities,i.e.,the signal stateμ,the decoy statesνandω,and the vacuum stateo.However, different from the standard threeintensity method,Alice only prepares the signal pulses in basisZAand randomly prepares the decoy pulses in basisZAor basisXA.Considering typical encoding misalignments, Alice randomly prepares quantum states|?0〉=|0〉,|?1〉=sina|0〉+cosa|1〉,|?2〉 = cos(π/4+b)|0〉+sin(π/4+b)|1〉,|?3〉 =sin(π/4+c)|0〉-cos(π/4+c)|1〉, in which the degrees of anglesa,b, andcare the encoding misalignments.We define that basisZAconsists of|?0〉 and|?1〉, while basisXAconsists of|?2〉 and|?3〉.Besides, we make the assumption that Bob performs projective measurement on the received states to ensure protocol security.[21]Let Bob’s measurement for basisZBbe a projection onto{|ˉ?0〉,|ˉ?1〉}, and for basisXBbe{|ˉ?2〉,|ˉ?3〉}, where〈ˉ?0|ˉ?1〉 =〈ˉ?2|ˉ?3〉 = 0 and|ˉ?0〉〈ˉ?0|+|ˉ?1〉〈ˉ?1| =|ˉ?2〉〈ˉ?2|+|ˉ?3〉〈ˉ?3| =I.After basis sifting, the number of detected pulses can be obtained,of which matched-basis events are kept as sifted keys and mismatched-basis events are used to estimate the information leaked to Eve.

    By sacrificing some bits from matched-basis events and revealing all bits from mismatched-basis events, we can deduce conditional probability distributionPλ(y|x),whereλ ∈{μ,ν,ω,o},x ∈{|?0〉,|?1〉,|?2〉,|?3〉}andy ∈{|ˉ?0〉,|ˉ?1〉,|ˉ?2〉,|ˉ?3〉}.For simplicity, we assign value 0 to|?0〉 and|ˉ?0〉, value 1 to|?1〉 and|ˉ?1〉, value 2 to|?2〉 and|ˉ?2〉, and value 3 to|?3〉 and|ˉ?3〉.Pλ(y|x) can be expressed as follows:

    ηt=η10-αl/10represents the total transmission and detection efficiency,whereηrepresents the detection efficiency of the single-photon detector,αdenotes the loss coefficient of standard optical fibers andLdenotes the fiber length.F(j)represents the probability of the valid detection events (those only one detector clicks)onj-photon states,such as

    wheredrepresents the dark count rate of the single-photon detector andPi(λ)is the photon number distribution of the light sources.Here, we take HSPS as the uncharacterized source.Through a parametric down-conversion process, a two-mode state,including the idler mode and the signal mode,[27]is generated in HSPS.The idler modes are detected by Alice’s local single-photon detector working as heralding signals and the signal modes will be encoded and sent out to Bob.The photon number distribution of HSPS can be expressed as[26]

    wheredAandηAeach denote the dark count rate and the detection efficiency of Alice’s local detector,respectively.

    With Eqs.(1)–(3), we can obtain the expression of each observableMλ(y|x),namely the number of valid detections at Bob’s side after sifting.Considering statistical fluctuation,we use method in Refs.[28,29] to account for the finite-size key effects, which provides a tighter bound for the deviation between ideal expectations and actual observations.Then, the underlying expectation value ofMλ(y|x) for a given failure probabilityεis

    whereNλ(y|x) represents the total conditional detection events.Then,by using decoy-state method,[5,25]we can bound the conditional probabilities of single-photon eventsp(y|x)for both matched-basis and mismatched-basis as

    Thus, the detections on single-photon pulses with intensityλin basisZcan be expressed as

    and the lower bound of theMZ1,λsatisfies the following expressions:

    where

    and the single-photon phase error rate is bounded by

    We note thatp(y|x) in the above equations is constrained by lower boundp(y|x)Land upper boundp(y|x)U.

    Finally,the secret key rate in basisZis given by[23]

    3.Numerical simulation and discussion

    In this section, we carry out corresponding numerical simulations for our present scheme.In order to show the performance of our scheme, we first compare it with the threeintensity method in Ref.[23].To explain the main factors that make our scheme performs better, we do comparison of the phase error rate and comparison of the numbers of valid single-photon detection events used to generate final key bits.Indispensably, we also show that our scheme can generate secret key against encoding misalignments.Moreover,we also do comparisons between using HSPS and WCS.The full parameter optimization is carried out to obtain better performance, including optimizing the intensities of the signal state,two decoy states,and the probability to prepare quantum states with different intensities.In practical implementation of QKD,people often use the non-degenerated parametric downconversion to produce photon pairs, with one photon at the wavelength convenient for detection acting as heralding signal, and the other falls into the telecommunication windows for optimal propagation along the fiber or in open air acting as heralded signal.For example, in Ref.[10], the idler mode and signal mode are each centered at 633 nm and 1545 nm,respectively,and each is detected with a silicon-avalanche photodiode detector (SAPD) and InGaAs single-photon detector.Therefore, in our simulations, we have set reasonable values for the system parameters as shown in Table 1.Simulation results are shown in Figs.1–5.

    Table 1.List of practical parameters for simulations. η(ηA)represents the detection efficiency of the single-photon detector at Bob(Alice)’s side;d (dA)represents the dark count rate of the singlephoton detector at Bob (Alice)’s side; ed is the misalignment-error probability; α denotes the loss coefficient of standard optical fibers; fEC represents the inefficiency of error correction;ε represents the failure probability and N represents the total number of pulses sent out by Alice.

    In Fig.1,we do comparisons on the key rate between using different light sources(HSPS and WCS)and using different decoy-state methods whena=b=c=0?,i.e.,the threeintensity method[23]and the present four-intensity method.When comparing with using different light sources, it shows that HSPS experiences an enhancement of 17 km in the transmission distance,approximately 14%improvement due to the much lower vacuum component in HSPS.On the other hand,when comparing schemes with different decoy-state methods,although there is no obvious improvement in transmission distance,the four-intensity scheme significantly increases the key rate.As a result, the combination of HSPS and the fourintensity scheme can improve both the secure key rate and the transmission distance.

    Fig.1.Secure key rate versus transmission distance for different decoy-state schemes: The red solid(dash)lines represent four(three)-intensity method with HSPS for a=b=c=0?.The blue solid (dash) lines represent four(three)-intensity method with WCS for a=b=c=0?.

    We compare the phase error rate and the single-photon detection event between using different light sources whena=b=c=0?in Figs.2 and 3 respectively.As we can see from Fig.2 that, our present work using HSPS gives a much lower phase error rate comparing those using WCS because of the negligible vacuum components.Besides, for the ones using WCS, the curves of the single-photon detection event decline rapidly after 120 km,while for those using HSPS,the cut-off points reach up to 140 km.

    In Fig.4,based on four-intensity decoy-state method with HSPS(WCS),we plot out variations of the key rate with transmission distance under different values of encoding misalignments.The transmission distance decreases 4 km(5 km)whena=b=c= 3?and 18 km (23 km) whena=b=c= 6?as using HSPS (WCS).Overall, our protocol exhibits excellent tolerance to the existence of misalignment errors.It is worth noting that there is no need to characterize encoding errors in practical applications for our scheme,and consequently above-mentioned misalignments are just used to test the robust.

    Fig.2.Phase error rate versus transmission distance for different decoystate schemes.The red solid (dash) lines represent four (three)-intensity method with HSPS for a=b=c=0?.The blue solid(dash)lines represent four(three)-intensity method with WCS for a=b=c=0?.

    Fig.3.Valid single-photon detections versus transmission distance for different decoy-state schemes.The red solid(dash)lines represent four(three)-intensity method with HSPS for a=b=c=0?.The blue solid(dash)lines represent four(three)-intensity method with WCS for a=b=c=0?.

    Fig.4.Secure key rate versus transmission distance for different schemes with different source preparation errors.The red lines represent fourintensity method with HSPS for a=b=c=0?, 3?, 6?.The blue lines represent four-intensity method with WCS for a=b=c=0?,3?,6?.

    Finally, we do investigation on the detection efficiency of the local detectors at Alice’s side (ηA), by fixing the encoding misalignments asa=b=c=3?, see Fig.5.We can see from Fig.5 that the higher the detection efficiency, the higher the key rate and the transmission distance.With the state-of-the-art superconducting nanowire single-photon detector(ηA=0.9),[30]our scheme only presents a slightly lower key rate than the one using WCS at short transmission distance(<90 km);while shows more than 20-km longer transmission distance.

    Fig.5.Secure key rate versus transmission distance by using different light sources: The blue lines represent four-intensity method with WCS.The red lines represent four-intensity method with HSPS for ηA=0.9 and 1.

    4.Conclusion

    In conclusion, we have presented an improved decoystate QKD protocol with uncharacterized HSPS and investigated its performance.By exploiting the mismatched-basis statistics and preparing quantum states in a two-dimensional Hilbert space,our scheme reduces the requirements for preparation errors and lowers the system complexity compared with normal BB84 QKD protocol.Moreover,our simulation results show that the secure key rate and transmission distance have been significantly improved by using our present scheme comparing with former similar protocols.Therefore, our present work seems to be a very promising choice for practical implementations of QKD systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12074194, 12104240, and 62101285), the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key Research and Development Program (Grant No.BE2022071), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos.BK20192001 and BK20210582).

    猜你喜歡
    春輝
    背著“房子”的二次根式
    Quantum synchronization with correlated baths
    Gray code based gradient-free optimization algorithm for parameterized quantum circuit
    城市軌道交通員工專業(yè)英語(yǔ)素養(yǎng)構(gòu)建探討
    Performance of passive decoy-state quantum key distribution with mismatched local detectors
    解答抽象函數(shù)問(wèn)題的兩個(gè)策略
    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*
    羅綺映春輝——張萱《虢國(guó)夫人游春圖》品鑒
    4 萬(wàn)公里騎行:只為了滿滿的母愛(ài)
    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?
    日韩视频在线欧美| 国产av精品麻豆| 在线观看免费视频网站a站| 美女中出高潮动态图| 国产成人精品一,二区| 午夜免费观看性视频| 精品一区二区三卡| 国产色婷婷99| 亚洲精品国产av蜜桃| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久午夜乱码| 国产av国产精品国产| 亚洲欧美日韩卡通动漫| 久久青草综合色| 嫩草影院入口| 亚洲高清免费不卡视频| 久久国产亚洲av麻豆专区| 久久综合国产亚洲精品| 综合色丁香网| 91精品国产国语对白视频| av国产久精品久网站免费入址| 亚洲精华国产精华液的使用体验| 精品一区二区三卡| 91久久精品电影网| 青春草亚洲视频在线观看| 欧美日韩av久久| 久久久国产欧美日韩av| 日本黄大片高清| 桃花免费在线播放| 久久国内精品自在自线图片| 中文字幕久久专区| a级毛片在线看网站| 777米奇影视久久| 成人无遮挡网站| 国产爽快片一区二区三区| 亚洲欧美日韩东京热| 国产午夜精品久久久久久一区二区三区| 欧美另类一区| 国产日韩欧美视频二区| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 一级毛片电影观看| 国产亚洲一区二区精品| 一个人看视频在线观看www免费| 蜜臀久久99精品久久宅男| 丰满人妻一区二区三区视频av| 久久午夜福利片| 亚洲人成网站在线播| 国产在线视频一区二区| 国产一区二区三区av在线| 噜噜噜噜噜久久久久久91| 乱系列少妇在线播放| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久久电影| 国产亚洲91精品色在线| 国产视频内射| 亚洲av二区三区四区| 99热国产这里只有精品6| 91在线精品国自产拍蜜月| 热re99久久精品国产66热6| 日韩在线高清观看一区二区三区| 免费人妻精品一区二区三区视频| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲网站| 国产探花极品一区二区| 日本av免费视频播放| 18禁在线播放成人免费| 亚洲人与动物交配视频| 亚洲无线观看免费| 日韩中字成人| 欧美日韩国产mv在线观看视频| 99久久人妻综合| h日本视频在线播放| 人人妻人人澡人人看| 少妇猛男粗大的猛烈进出视频| 国产爽快片一区二区三区| 久久久久久久久久久免费av| 极品人妻少妇av视频| 亚洲婷婷狠狠爱综合网| 乱码一卡2卡4卡精品| 国产av精品麻豆| 亚洲精品乱久久久久久| 国产 精品1| 久久久欧美国产精品| 这个男人来自地球电影免费观看 | 亚洲高清免费不卡视频| 国产免费又黄又爽又色| 亚洲精品乱码久久久久久按摩| 一级毛片电影观看| 如何舔出高潮| 插逼视频在线观看| 久久久久视频综合| 久久久久国产精品人妻一区二区| 内射极品少妇av片p| 亚洲天堂av无毛| 91精品国产国语对白视频| 精品亚洲乱码少妇综合久久| 91久久精品电影网| 在线观看美女被高潮喷水网站| 欧美 日韩 精品 国产| 久久女婷五月综合色啪小说| 久久久久久久久大av| 午夜老司机福利剧场| 观看免费一级毛片| 久久免费观看电影| 国产黄片视频在线免费观看| 少妇精品久久久久久久| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 亚洲图色成人| a级毛片在线看网站| 99九九线精品视频在线观看视频| 老熟女久久久| 我的老师免费观看完整版| 黑人猛操日本美女一级片| 天堂俺去俺来也www色官网| 久久精品国产亚洲av涩爱| 精品久久久久久久久亚洲| 美女福利国产在线| 男人添女人高潮全过程视频| 亚洲欧美精品专区久久| 国模一区二区三区四区视频| 一级爰片在线观看| 亚洲av中文av极速乱| 少妇裸体淫交视频免费看高清| 极品教师在线视频| 成年美女黄网站色视频大全免费 | 精品一区二区三区视频在线| 亚洲,欧美,日韩| 亚洲av成人精品一二三区| 久久国内精品自在自线图片| 免费看不卡的av| 五月伊人婷婷丁香| 色婷婷久久久亚洲欧美| 18+在线观看网站| 欧美日韩精品成人综合77777| 热re99久久国产66热| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 18禁在线播放成人免费| 国产高清三级在线| 国产精品偷伦视频观看了| 国精品久久久久久国模美| 亚洲av在线观看美女高潮| 肉色欧美久久久久久久蜜桃| 噜噜噜噜噜久久久久久91| 国产欧美日韩一区二区三区在线 | 我的女老师完整版在线观看| 国产美女午夜福利| 五月开心婷婷网| av免费在线看不卡| 黄色视频在线播放观看不卡| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久亚洲| 最后的刺客免费高清国语| 夜夜爽夜夜爽视频| 欧美精品国产亚洲| 亚洲精品国产av蜜桃| 免费观看在线日韩| 我要看日韩黄色一级片| 99久久人妻综合| 亚洲精品aⅴ在线观看| 青春草亚洲视频在线观看| 蜜桃久久精品国产亚洲av| 日本免费在线观看一区| 18禁在线播放成人免费| 成人美女网站在线观看视频| 成人黄色视频免费在线看| 一区二区三区免费毛片| 日韩电影二区| 肉色欧美久久久久久久蜜桃| 只有这里有精品99| 国产熟女午夜一区二区三区 | 观看av在线不卡| 美女国产视频在线观看| 丰满迷人的少妇在线观看| 99久久精品国产国产毛片| av线在线观看网站| 亚洲精华国产精华液的使用体验| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品日韩av片在线观看| 国产精品免费大片| 中文字幕精品免费在线观看视频 | 欧美少妇被猛烈插入视频| 国产亚洲精品久久久com| 免费看日本二区| a级一级毛片免费在线观看| 亚洲欧美精品专区久久| 在现免费观看毛片| a级一级毛片免费在线观看| av.在线天堂| 日本免费在线观看一区| 日韩免费高清中文字幕av| 男男h啪啪无遮挡| 热re99久久国产66热| 中文字幕亚洲精品专区| 亚洲精品乱码久久久久久按摩| av在线播放精品| 一本久久精品| 亚洲美女搞黄在线观看| 亚洲国产精品999| 女性生殖器流出的白浆| 黄片无遮挡物在线观看| 中文字幕av电影在线播放| 色视频www国产| 午夜免费男女啪啪视频观看| 色网站视频免费| 日韩制服骚丝袜av| 校园人妻丝袜中文字幕| 亚洲av综合色区一区| 人人妻人人看人人澡| 永久免费av网站大全| 69精品国产乱码久久久| 亚洲精品久久午夜乱码| 97精品久久久久久久久久精品| a级一级毛片免费在线观看| 美女大奶头黄色视频| 久久综合国产亚洲精品| 亚洲精品乱码久久久v下载方式| 国产黄片美女视频| 久久久久久久久大av| a级毛色黄片| 久久人妻熟女aⅴ| 欧美日韩视频高清一区二区三区二| 涩涩av久久男人的天堂| 日本av免费视频播放| 亚洲欧美清纯卡通| 黄色日韩在线| 人人妻人人添人人爽欧美一区卜| 免费少妇av软件| 日本与韩国留学比较| 精品少妇内射三级| av专区在线播放| 国产伦精品一区二区三区视频9| 国产精品99久久99久久久不卡 | 国产男女超爽视频在线观看| 一级二级三级毛片免费看| 丝袜喷水一区| 亚洲欧洲国产日韩| 嘟嘟电影网在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精品久久午夜乱码| 久久亚洲国产成人精品v| 97超视频在线观看视频| 亚洲国产精品国产精品| 深夜a级毛片| av女优亚洲男人天堂| 色94色欧美一区二区| 欧美另类一区| 免费人成在线观看视频色| 欧美日韩精品成人综合77777| 婷婷色综合www| 成人美女网站在线观看视频| 精华霜和精华液先用哪个| 国产精品嫩草影院av在线观看| 99国产精品免费福利视频| 国产欧美另类精品又又久久亚洲欧美| 春色校园在线视频观看| 人人妻人人爽人人添夜夜欢视频 | 人妻人人澡人人爽人人| 十八禁网站网址无遮挡 | 国产精品不卡视频一区二区| 久久久久久久久大av| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 成人漫画全彩无遮挡| 日韩免费高清中文字幕av| 中国三级夫妇交换| 国产视频首页在线观看| 亚洲高清免费不卡视频| 内地一区二区视频在线| 日本黄大片高清| 日韩av免费高清视频| 老司机亚洲免费影院| 国产成人午夜福利电影在线观看| 中文欧美无线码| 中文字幕av电影在线播放| 精品亚洲成a人片在线观看| 三级国产精品欧美在线观看| 欧美精品国产亚洲| 97精品久久久久久久久久精品| 亚洲精品一二三| 成年av动漫网址| 99久久人妻综合| 国产熟女欧美一区二区| 五月玫瑰六月丁香| 春色校园在线视频观看| 国产午夜精品一二区理论片| 寂寞人妻少妇视频99o| 国产成人精品婷婷| 六月丁香七月| 精品亚洲成a人片在线观看| 亚洲成人av在线免费| 亚洲av男天堂| 老司机影院成人| av视频免费观看在线观看| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 国产黄色视频一区二区在线观看| 久久狼人影院| 日韩人妻高清精品专区| 青青草视频在线视频观看| 18禁动态无遮挡网站| 久久女婷五月综合色啪小说| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 久久久精品免费免费高清| 日本vs欧美在线观看视频 | 国产永久视频网站| 亚洲精品日本国产第一区| 波野结衣二区三区在线| 国产成人免费无遮挡视频| 在线播放无遮挡| 国产亚洲午夜精品一区二区久久| 日韩一区二区视频免费看| 国产欧美另类精品又又久久亚洲欧美| 又黄又爽又刺激的免费视频.| 亚洲怡红院男人天堂| 另类精品久久| 久久久午夜欧美精品| a 毛片基地| 寂寞人妻少妇视频99o| 国产在视频线精品| 黑丝袜美女国产一区| 色视频在线一区二区三区| 国产av一区二区精品久久| 啦啦啦在线观看免费高清www| 久久精品国产a三级三级三级| 国内少妇人妻偷人精品xxx网站| 亚洲欧洲精品一区二区精品久久久 | 国产精品免费大片| 国产亚洲精品久久久com| 日韩成人伦理影院| 69精品国产乱码久久久| 国产亚洲精品久久久com| 久久亚洲国产成人精品v| 精品久久久久久电影网| 中文乱码字字幕精品一区二区三区| 久久亚洲国产成人精品v| 在线观看免费日韩欧美大片 | 人妻少妇偷人精品九色| 日日摸夜夜添夜夜添av毛片| 国产一区亚洲一区在线观看| 免费在线观看成人毛片| 五月开心婷婷网| 又大又黄又爽视频免费| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲 | 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 国内揄拍国产精品人妻在线| 午夜福利影视在线免费观看| 国产色婷婷99| 欧美精品一区二区免费开放| 亚洲成人手机| 精品人妻一区二区三区麻豆| 日韩人妻高清精品专区| 久久青草综合色| 99热这里只有是精品50| freevideosex欧美| 一区二区三区乱码不卡18| 青春草视频在线免费观看| 亚洲欧美精品专区久久| 男人和女人高潮做爰伦理| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| 国内精品宾馆在线| 国产av一区二区精品久久| 亚洲综合色惰| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 视频中文字幕在线观看| 成年人免费黄色播放视频 | 欧美高清成人免费视频www| 精品久久久久久久久av| 久久久欧美国产精品| 夫妻午夜视频| 午夜免费观看性视频| √禁漫天堂资源中文www| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 亚洲精品中文字幕在线视频 | 男人和女人高潮做爰伦理| 亚洲国产精品一区二区三区在线| 在现免费观看毛片| 91午夜精品亚洲一区二区三区| a 毛片基地| 一级,二级,三级黄色视频| 国产中年淑女户外野战色| 美女大奶头黄色视频| 51国产日韩欧美| 这个男人来自地球电影免费观看 | 中文字幕人妻熟人妻熟丝袜美| 国产精品无大码| 一本大道久久a久久精品| 在线播放无遮挡| 国产精品免费大片| 精品亚洲乱码少妇综合久久| 三级国产精品欧美在线观看| 天堂8中文在线网| 久久久久精品性色| 国产在线男女| 欧美日韩视频精品一区| 中文字幕精品免费在线观看视频 | 99九九在线精品视频 | 国产精品免费大片| 免费看av在线观看网站| 久久久国产精品麻豆| 国产亚洲欧美精品永久| 在线观看www视频免费| 日本-黄色视频高清免费观看| 日本av手机在线免费观看| av视频免费观看在线观看| 亚洲一级一片aⅴ在线观看| 女的被弄到高潮叫床怎么办| 亚洲激情五月婷婷啪啪| 最近手机中文字幕大全| 黄色配什么色好看| 久久ye,这里只有精品| 精品亚洲成a人片在线观看| 久久国产乱子免费精品| 国产精品一区www在线观看| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 十八禁网站网址无遮挡 | 亚洲欧美一区二区三区黑人 | 精品国产乱码久久久久久小说| 免费黄网站久久成人精品| 亚洲av.av天堂| 国产高清三级在线| 欧美少妇被猛烈插入视频| 亚洲国产精品999| 一区二区三区四区激情视频| 午夜福利,免费看| 午夜激情久久久久久久| 蜜桃久久精品国产亚洲av| 亚洲精品久久久久久婷婷小说| 午夜福利视频精品| 成年人免费黄色播放视频 | 日韩 亚洲 欧美在线| 国产黄片美女视频| 国产精品欧美亚洲77777| 如何舔出高潮| 只有这里有精品99| 国产精品嫩草影院av在线观看| 九草在线视频观看| 少妇的逼水好多| 一级,二级,三级黄色视频| 久久99热6这里只有精品| 看非洲黑人一级黄片| 十八禁高潮呻吟视频 | 久久婷婷青草| 天堂8中文在线网| h日本视频在线播放| 国产亚洲精品久久久com| 久久久亚洲精品成人影院| 超碰97精品在线观看| 一区二区av电影网| 日本欧美视频一区| 成人影院久久| h日本视频在线播放| 一本一本综合久久| 国产精品成人在线| 高清毛片免费看| 大码成人一级视频| 蜜桃在线观看..| 久久 成人 亚洲| 精品国产一区二区三区久久久樱花| 久久久久网色| 欧美日韩视频精品一区| 丁香六月天网| 男女边吃奶边做爰视频| 内射极品少妇av片p| 99九九在线精品视频 | 国产精品蜜桃在线观看| 亚洲av男天堂| 午夜免费男女啪啪视频观看| 久久韩国三级中文字幕| 永久网站在线| 另类精品久久| 丰满人妻一区二区三区视频av| 80岁老熟妇乱子伦牲交| 免费观看无遮挡的男女| 国产精品一区二区性色av| 亚洲精品成人av观看孕妇| 一区在线观看完整版| 老女人水多毛片| 亚洲精品国产色婷婷电影| 日本黄色日本黄色录像| 日韩免费高清中文字幕av| 亚洲一区二区三区欧美精品| 自线自在国产av| 一边亲一边摸免费视频| 久久这里有精品视频免费| 免费av中文字幕在线| 午夜视频国产福利| 亚洲国产欧美在线一区| 国产精品麻豆人妻色哟哟久久| 久久久久久伊人网av| 国产日韩欧美亚洲二区| 人人妻人人澡人人看| 高清在线视频一区二区三区| 中国三级夫妇交换| 国产色婷婷99| 777米奇影视久久| 精品视频人人做人人爽| 亚洲欧洲日产国产| 日本欧美视频一区| 亚洲精品乱久久久久久| 国产亚洲av片在线观看秒播厂| 色婷婷av一区二区三区视频| 日本91视频免费播放| 久久久久久久久大av| 99热这里只有是精品50| av又黄又爽大尺度在线免费看| 日本欧美视频一区| 国产男女内射视频| 秋霞伦理黄片| 欧美少妇被猛烈插入视频| 国产精品国产av在线观看| 亚洲精品色激情综合| 日韩视频在线欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 美女国产视频在线观看| av在线老鸭窝| 99久久中文字幕三级久久日本| 蜜桃久久精品国产亚洲av| 七月丁香在线播放| 国产日韩欧美在线精品| 一级a做视频免费观看| 夜夜爽夜夜爽视频| 亚洲欧洲日产国产| 中国美白少妇内射xxxbb| 色视频在线一区二区三区| 亚洲国产日韩一区二区| 国产高清有码在线观看视频| 99国产精品免费福利视频| 亚洲欧美日韩卡通动漫| 波野结衣二区三区在线| 午夜福利影视在线免费观看| 女性生殖器流出的白浆| 搡老乐熟女国产| 国产午夜精品一二区理论片| 男女国产视频网站| 国产深夜福利视频在线观看| 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 国内少妇人妻偷人精品xxx网站| 97精品久久久久久久久久精品| 婷婷色麻豆天堂久久| 欧美丝袜亚洲另类| 美女主播在线视频| 九九爱精品视频在线观看| www.色视频.com| 秋霞伦理黄片| 亚洲国产精品一区三区| a级片在线免费高清观看视频| 一级毛片电影观看| 麻豆成人av视频| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 丰满少妇做爰视频| 高清黄色对白视频在线免费看 | 人人妻人人爽人人添夜夜欢视频 | 国产91av在线免费观看| 国产伦精品一区二区三区视频9| videos熟女内射| 自拍欧美九色日韩亚洲蝌蚪91 | 国国产精品蜜臀av免费| 熟女av电影| 久久99热这里只频精品6学生| 国产男女超爽视频在线观看| 一本久久精品| 色网站视频免费| 男人爽女人下面视频在线观看| 熟女电影av网| 插阴视频在线观看视频| 欧美精品一区二区大全| 黄色视频在线播放观看不卡| 如日韩欧美国产精品一区二区三区 | 国产精品秋霞免费鲁丝片| 少妇精品久久久久久久| 高清av免费在线| 国产精品国产av在线观看| 18禁在线播放成人免费| 精品酒店卫生间| 精品卡一卡二卡四卡免费| 日本免费在线观看一区| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 国产精品久久久久久精品古装| 国内揄拍国产精品人妻在线| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 欧美激情极品国产一区二区三区 | av免费观看日本| 精品亚洲成a人片在线观看| 一级a做视频免费观看| 免费观看的影片在线观看| 欧美三级亚洲精品| 亚洲精品第二区| 26uuu在线亚洲综合色| 高清在线视频一区二区三区| 少妇的逼好多水| 日韩在线高清观看一区二区三区| 久久6这里有精品| 最近中文字幕2019免费版| 国产老妇伦熟女老妇高清| 日日啪夜夜撸| 超碰97精品在线观看| 久久久久久久久大av| 99久久精品一区二区三区| 欧美性感艳星| 女人久久www免费人成看片| 一本一本综合久久|