• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources

    2024-02-29 09:16:54LeChenXu徐樂(lè)辰ChunHuiZhang張春輝XingYuZhou周星宇andQinWang王琴
    Chinese Physics B 2024年2期
    關(guān)鍵詞:春輝

    Le-Chen Xu(徐樂(lè)辰), Chun-Hui Zhang(張春輝), Xing-Yu Zhou(周星宇), and Qin Wang(王琴),?

    1Institute of Quantum Information and Technology,Nanjing 210003,China

    2Broadband Wireless Communication and Sensor Network Technology,Key Laboratory of Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3Telecommunication and Networks National Engineering Research Center,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: quantum key distribution,heralded single-photon source,decoy-state method

    1.Introduction

    Quantum key distribution (QKD),[1,2]based on the fundamental laws of physics,[3,4]allows two distant parties,Alice and Bob, to share secret keys in the presence of a malicious eavesdropper,Eve.Since the first QKD protocol(BB84)was proposed in 1984,[1]a great number of QKD experiments have been reported.[5–12]In most previous QKD protocols and corresponding security proofs,[13–19]people often assume the prepared states are perfect.However,preparation flaws inevitably exist in real-life situations due to the imperfect devices,resulting in reduced security of practical QKD systems.

    To alleviate the influence of state preparations flaws,Tamakiet al.[20]presented a loss-tolerant protocol, but it requires full characterization of the preparation states and causes increased system complexity.Fortunately, Yinet al.[21]proposed a QKD protocol without characterizing misalignment errors and the only assumption is that the quantum states are prepared in a two-dimensional Hilbert space.With which the secret keys can be extracted out using uncharacterized sources by exploiting the mismatched-basis statistics which are normally discarded, and related experiments have been successfully demonstrated.[22–24]

    Based on those previous works,[21–23]here we present a four-intensity decoy-state proposal on quantum key distribution using uncharacterized heralded single-photon sources(HSPS).First,the four-intensity scheme with biased basis can help to improve the key rate compared with the standard threeintensity method.[22,23]Second,by employing the intrinsic advantages of HSPS with a higher single-photon probability and a lower dark count rate compared with weak coherent sources(WCS),[25,26]one can obtain not only a much longer secure transmission distance, but also a higher key rate, compared with previous similar works.[22,23]

    2.Protocol description

    In our four-intensity BB84 protocol, Alice randomly modulates each pulse into one of the four different intensities,i.e.,the signal stateμ,the decoy statesνandω,and the vacuum stateo.However, different from the standard threeintensity method,Alice only prepares the signal pulses in basisZAand randomly prepares the decoy pulses in basisZAor basisXA.Considering typical encoding misalignments, Alice randomly prepares quantum states|?0〉=|0〉,|?1〉=sina|0〉+cosa|1〉,|?2〉 = cos(π/4+b)|0〉+sin(π/4+b)|1〉,|?3〉 =sin(π/4+c)|0〉-cos(π/4+c)|1〉, in which the degrees of anglesa,b, andcare the encoding misalignments.We define that basisZAconsists of|?0〉 and|?1〉, while basisXAconsists of|?2〉 and|?3〉.Besides, we make the assumption that Bob performs projective measurement on the received states to ensure protocol security.[21]Let Bob’s measurement for basisZBbe a projection onto{|ˉ?0〉,|ˉ?1〉}, and for basisXBbe{|ˉ?2〉,|ˉ?3〉}, where〈ˉ?0|ˉ?1〉 =〈ˉ?2|ˉ?3〉 = 0 and|ˉ?0〉〈ˉ?0|+|ˉ?1〉〈ˉ?1| =|ˉ?2〉〈ˉ?2|+|ˉ?3〉〈ˉ?3| =I.After basis sifting, the number of detected pulses can be obtained,of which matched-basis events are kept as sifted keys and mismatched-basis events are used to estimate the information leaked to Eve.

    By sacrificing some bits from matched-basis events and revealing all bits from mismatched-basis events, we can deduce conditional probability distributionPλ(y|x),whereλ ∈{μ,ν,ω,o},x ∈{|?0〉,|?1〉,|?2〉,|?3〉}andy ∈{|ˉ?0〉,|ˉ?1〉,|ˉ?2〉,|ˉ?3〉}.For simplicity, we assign value 0 to|?0〉 and|ˉ?0〉, value 1 to|?1〉 and|ˉ?1〉, value 2 to|?2〉 and|ˉ?2〉, and value 3 to|?3〉 and|ˉ?3〉.Pλ(y|x) can be expressed as follows:

    ηt=η10-αl/10represents the total transmission and detection efficiency,whereηrepresents the detection efficiency of the single-photon detector,αdenotes the loss coefficient of standard optical fibers andLdenotes the fiber length.F(j)represents the probability of the valid detection events (those only one detector clicks)onj-photon states,such as

    wheredrepresents the dark count rate of the single-photon detector andPi(λ)is the photon number distribution of the light sources.Here, we take HSPS as the uncharacterized source.Through a parametric down-conversion process, a two-mode state,including the idler mode and the signal mode,[27]is generated in HSPS.The idler modes are detected by Alice’s local single-photon detector working as heralding signals and the signal modes will be encoded and sent out to Bob.The photon number distribution of HSPS can be expressed as[26]

    wheredAandηAeach denote the dark count rate and the detection efficiency of Alice’s local detector,respectively.

    With Eqs.(1)–(3), we can obtain the expression of each observableMλ(y|x),namely the number of valid detections at Bob’s side after sifting.Considering statistical fluctuation,we use method in Refs.[28,29] to account for the finite-size key effects, which provides a tighter bound for the deviation between ideal expectations and actual observations.Then, the underlying expectation value ofMλ(y|x) for a given failure probabilityεis

    whereNλ(y|x) represents the total conditional detection events.Then,by using decoy-state method,[5,25]we can bound the conditional probabilities of single-photon eventsp(y|x)for both matched-basis and mismatched-basis as

    Thus, the detections on single-photon pulses with intensityλin basisZcan be expressed as

    and the lower bound of theMZ1,λsatisfies the following expressions:

    where

    and the single-photon phase error rate is bounded by

    We note thatp(y|x) in the above equations is constrained by lower boundp(y|x)Land upper boundp(y|x)U.

    Finally,the secret key rate in basisZis given by[23]

    3.Numerical simulation and discussion

    In this section, we carry out corresponding numerical simulations for our present scheme.In order to show the performance of our scheme, we first compare it with the threeintensity method in Ref.[23].To explain the main factors that make our scheme performs better, we do comparison of the phase error rate and comparison of the numbers of valid single-photon detection events used to generate final key bits.Indispensably, we also show that our scheme can generate secret key against encoding misalignments.Moreover,we also do comparisons between using HSPS and WCS.The full parameter optimization is carried out to obtain better performance, including optimizing the intensities of the signal state,two decoy states,and the probability to prepare quantum states with different intensities.In practical implementation of QKD,people often use the non-degenerated parametric downconversion to produce photon pairs, with one photon at the wavelength convenient for detection acting as heralding signal, and the other falls into the telecommunication windows for optimal propagation along the fiber or in open air acting as heralded signal.For example, in Ref.[10], the idler mode and signal mode are each centered at 633 nm and 1545 nm,respectively,and each is detected with a silicon-avalanche photodiode detector (SAPD) and InGaAs single-photon detector.Therefore, in our simulations, we have set reasonable values for the system parameters as shown in Table 1.Simulation results are shown in Figs.1–5.

    Table 1.List of practical parameters for simulations. η(ηA)represents the detection efficiency of the single-photon detector at Bob(Alice)’s side;d (dA)represents the dark count rate of the singlephoton detector at Bob (Alice)’s side; ed is the misalignment-error probability; α denotes the loss coefficient of standard optical fibers; fEC represents the inefficiency of error correction;ε represents the failure probability and N represents the total number of pulses sent out by Alice.

    In Fig.1,we do comparisons on the key rate between using different light sources(HSPS and WCS)and using different decoy-state methods whena=b=c=0?,i.e.,the threeintensity method[23]and the present four-intensity method.When comparing with using different light sources, it shows that HSPS experiences an enhancement of 17 km in the transmission distance,approximately 14%improvement due to the much lower vacuum component in HSPS.On the other hand,when comparing schemes with different decoy-state methods,although there is no obvious improvement in transmission distance,the four-intensity scheme significantly increases the key rate.As a result, the combination of HSPS and the fourintensity scheme can improve both the secure key rate and the transmission distance.

    Fig.1.Secure key rate versus transmission distance for different decoy-state schemes: The red solid(dash)lines represent four(three)-intensity method with HSPS for a=b=c=0?.The blue solid (dash) lines represent four(three)-intensity method with WCS for a=b=c=0?.

    We compare the phase error rate and the single-photon detection event between using different light sources whena=b=c=0?in Figs.2 and 3 respectively.As we can see from Fig.2 that, our present work using HSPS gives a much lower phase error rate comparing those using WCS because of the negligible vacuum components.Besides, for the ones using WCS, the curves of the single-photon detection event decline rapidly after 120 km,while for those using HSPS,the cut-off points reach up to 140 km.

    In Fig.4,based on four-intensity decoy-state method with HSPS(WCS),we plot out variations of the key rate with transmission distance under different values of encoding misalignments.The transmission distance decreases 4 km(5 km)whena=b=c= 3?and 18 km (23 km) whena=b=c= 6?as using HSPS (WCS).Overall, our protocol exhibits excellent tolerance to the existence of misalignment errors.It is worth noting that there is no need to characterize encoding errors in practical applications for our scheme,and consequently above-mentioned misalignments are just used to test the robust.

    Fig.2.Phase error rate versus transmission distance for different decoystate schemes.The red solid (dash) lines represent four (three)-intensity method with HSPS for a=b=c=0?.The blue solid(dash)lines represent four(three)-intensity method with WCS for a=b=c=0?.

    Fig.3.Valid single-photon detections versus transmission distance for different decoy-state schemes.The red solid(dash)lines represent four(three)-intensity method with HSPS for a=b=c=0?.The blue solid(dash)lines represent four(three)-intensity method with WCS for a=b=c=0?.

    Fig.4.Secure key rate versus transmission distance for different schemes with different source preparation errors.The red lines represent fourintensity method with HSPS for a=b=c=0?, 3?, 6?.The blue lines represent four-intensity method with WCS for a=b=c=0?,3?,6?.

    Finally, we do investigation on the detection efficiency of the local detectors at Alice’s side (ηA), by fixing the encoding misalignments asa=b=c=3?, see Fig.5.We can see from Fig.5 that the higher the detection efficiency, the higher the key rate and the transmission distance.With the state-of-the-art superconducting nanowire single-photon detector(ηA=0.9),[30]our scheme only presents a slightly lower key rate than the one using WCS at short transmission distance(<90 km);while shows more than 20-km longer transmission distance.

    Fig.5.Secure key rate versus transmission distance by using different light sources: The blue lines represent four-intensity method with WCS.The red lines represent four-intensity method with HSPS for ηA=0.9 and 1.

    4.Conclusion

    In conclusion, we have presented an improved decoystate QKD protocol with uncharacterized HSPS and investigated its performance.By exploiting the mismatched-basis statistics and preparing quantum states in a two-dimensional Hilbert space,our scheme reduces the requirements for preparation errors and lowers the system complexity compared with normal BB84 QKD protocol.Moreover,our simulation results show that the secure key rate and transmission distance have been significantly improved by using our present scheme comparing with former similar protocols.Therefore, our present work seems to be a very promising choice for practical implementations of QKD systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12074194, 12104240, and 62101285), the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key Research and Development Program (Grant No.BE2022071), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos.BK20192001 and BK20210582).

    猜你喜歡
    春輝
    背著“房子”的二次根式
    Quantum synchronization with correlated baths
    Gray code based gradient-free optimization algorithm for parameterized quantum circuit
    城市軌道交通員工專業(yè)英語(yǔ)素養(yǎng)構(gòu)建探討
    Performance of passive decoy-state quantum key distribution with mismatched local detectors
    解答抽象函數(shù)問(wèn)題的兩個(gè)策略
    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*
    羅綺映春輝——張萱《虢國(guó)夫人游春圖》品鑒
    4 萬(wàn)公里騎行:只為了滿滿的母愛(ài)
    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?
    久久久久精品人妻al黑| 欧美中文综合在线视频| 午夜亚洲福利在线播放| 欧美av亚洲av综合av国产av| 香蕉久久夜色| 亚洲视频免费观看视频| 国产精品免费大片| 多毛熟女@视频| 99热只有精品国产| 久久精品国产综合久久久| 满18在线观看网站| 亚洲欧美激情在线| 日本vs欧美在线观看视频| 精品视频人人做人人爽| 国产99久久九九免费精品| 欧美激情高清一区二区三区| 好看av亚洲va欧美ⅴa在| 国产精品国产高清国产av | 国产高清视频在线播放一区| 欧美+亚洲+日韩+国产| 村上凉子中文字幕在线| 亚洲熟妇中文字幕五十中出 | 搡老岳熟女国产| 在线永久观看黄色视频| 老司机影院毛片| 一夜夜www| 电影成人av| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩一区二区精品| 精品第一国产精品| 在线观看66精品国产| 亚洲少妇的诱惑av| 日本黄色日本黄色录像| 成人黄色视频免费在线看| 国产成人啪精品午夜网站| 丝袜美足系列| 女人被躁到高潮嗷嗷叫费观| 国产免费av片在线观看野外av| 国内毛片毛片毛片毛片毛片| а√天堂www在线а√下载 | 亚洲少妇的诱惑av| 久久久水蜜桃国产精品网| av网站免费在线观看视频| 亚洲人成电影免费在线| 国产精品一区二区在线不卡| 色播在线永久视频| 国产精品1区2区在线观看. | 香蕉丝袜av| 99riav亚洲国产免费| e午夜精品久久久久久久| 精品久久蜜臀av无| 少妇猛男粗大的猛烈进出视频| 中文亚洲av片在线观看爽 | 国产成人av教育| 成熟少妇高潮喷水视频| 成人永久免费在线观看视频| 亚洲精品国产区一区二| 精品国产美女av久久久久小说| 国产亚洲欧美在线一区二区| 国产精华一区二区三区| 十分钟在线观看高清视频www| svipshipincom国产片| 在线播放国产精品三级| 看片在线看免费视频| 色婷婷久久久亚洲欧美| 午夜影院日韩av| 欧美午夜高清在线| 免费久久久久久久精品成人欧美视频| 久热爱精品视频在线9| 巨乳人妻的诱惑在线观看| 两个人看的免费小视频| 免费日韩欧美在线观看| 999久久久国产精品视频| 成年动漫av网址| 亚洲av日韩精品久久久久久密| 人成视频在线观看免费观看| 可以免费在线观看a视频的电影网站| 国产成人av激情在线播放| 又黄又粗又硬又大视频| 黑人巨大精品欧美一区二区mp4| 麻豆av在线久日| 精品国产国语对白av| 国产黄色免费在线视频| 女人久久www免费人成看片| 国产视频一区二区在线看| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人 | 国产不卡一卡二| 高清欧美精品videossex| bbb黄色大片| 人人妻人人爽人人添夜夜欢视频| 亚洲精品成人av观看孕妇| 国精品久久久久久国模美| 水蜜桃什么品种好| 国产高清激情床上av| 国产一区二区三区在线臀色熟女 | 一边摸一边做爽爽视频免费| 搡老岳熟女国产| 一区二区日韩欧美中文字幕| 午夜福利在线免费观看网站| 精品一区二区三区四区五区乱码| 精品国产乱子伦一区二区三区| 757午夜福利合集在线观看| 九色亚洲精品在线播放| 久久亚洲精品不卡| 日韩人妻精品一区2区三区| 亚洲免费av在线视频| 亚洲欧美日韩高清在线视频| 午夜两性在线视频| 国产欧美日韩一区二区三| 18禁美女被吸乳视频| 人人妻人人澡人人看| 校园春色视频在线观看| 一级毛片精品| 亚洲专区字幕在线| 久久香蕉精品热| 在线观看一区二区三区激情| 99精国产麻豆久久婷婷| 亚洲欧美激情综合另类| 亚洲av片天天在线观看| 国产男靠女视频免费网站| 午夜福利乱码中文字幕| cao死你这个sao货| 精品欧美一区二区三区在线| 国产成+人综合+亚洲专区| 老熟妇仑乱视频hdxx| 精品国产美女av久久久久小说| 国产精品av久久久久免费| 欧美日韩福利视频一区二区| 一区二区三区国产精品乱码| 婷婷精品国产亚洲av在线 | 国产精品自产拍在线观看55亚洲 | 91老司机精品| 一区二区三区激情视频| 在线观看免费视频网站a站| 视频区欧美日本亚洲| 色精品久久人妻99蜜桃| 国产精品欧美亚洲77777| 黄色丝袜av网址大全| av电影中文网址| 婷婷成人精品国产| 国产一卡二卡三卡精品| 国产成人精品久久二区二区91| 亚洲人成伊人成综合网2020| 在线国产一区二区在线| 亚洲av成人不卡在线观看播放网| 美女高潮到喷水免费观看| cao死你这个sao货| 免费久久久久久久精品成人欧美视频| 老司机在亚洲福利影院| 日韩 欧美 亚洲 中文字幕| 大陆偷拍与自拍| 久9热在线精品视频| 国产高清videossex| 欧美日韩瑟瑟在线播放| 久久国产精品男人的天堂亚洲| 高清视频免费观看一区二区| 麻豆国产av国片精品| 国产高清videossex| 亚洲欧美精品综合一区二区三区| 亚洲国产看品久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av日韩精品久久久久久密| 中文字幕人妻熟女乱码| xxxhd国产人妻xxx| 91字幕亚洲| 国产精品免费一区二区三区在线 | 高清视频免费观看一区二区| videosex国产| 日韩精品免费视频一区二区三区| 久久国产精品人妻蜜桃| 国产成人av激情在线播放| 久久精品亚洲精品国产色婷小说| 午夜福利欧美成人| 免费看十八禁软件| 国产亚洲欧美98| 亚洲av成人一区二区三| 啦啦啦免费观看视频1| 51午夜福利影视在线观看| 国产成人av教育| 在线国产一区二区在线| videos熟女内射| 精品国产乱码久久久久久男人| 性少妇av在线| av在线播放免费不卡| 久久久久国内视频| 一区二区三区国产精品乱码| 国产又爽黄色视频| 18在线观看网站| 亚洲欧洲精品一区二区精品久久久| 国产精品亚洲一级av第二区| 国产精品.久久久| bbb黄色大片| 99久久99久久久精品蜜桃| 国产精品影院久久| 久久国产精品大桥未久av| 亚洲人成伊人成综合网2020| 国产精品一区二区精品视频观看| 99精品欧美一区二区三区四区| 国产av又大| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区精品视频观看| 国产一区二区三区综合在线观看| 免费在线观看亚洲国产| 欧美精品亚洲一区二区| 成年版毛片免费区| 精品视频人人做人人爽| 欧美精品一区二区免费开放| 久久影院123| 日本黄色视频三级网站网址 | 久久人妻熟女aⅴ| 最新在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲| av线在线观看网站| 极品少妇高潮喷水抽搐| 香蕉久久夜色| e午夜精品久久久久久久| 国内久久婷婷六月综合欲色啪| 亚洲一区高清亚洲精品| 亚洲中文日韩欧美视频| 久久精品国产综合久久久| 亚洲欧美激情在线| 亚洲全国av大片| 国产又爽黄色视频| 成人免费观看视频高清| 在线看a的网站| 久久亚洲真实| 欧美人与性动交α欧美精品济南到| 欧美日韩福利视频一区二区| 久久久久国产一级毛片高清牌| 国产精品永久免费网站| 啦啦啦在线免费观看视频4| 亚洲中文字幕日韩| 视频区欧美日本亚洲| 亚洲精品乱久久久久久| 九色亚洲精品在线播放| 啦啦啦 在线观看视频| 亚洲欧美激情综合另类| 侵犯人妻中文字幕一二三四区| 99re6热这里在线精品视频| av福利片在线| 精品福利观看| 欧美日本中文国产一区发布| 99精品久久久久人妻精品| 在线国产一区二区在线| 国产蜜桃级精品一区二区三区 | 两性夫妻黄色片| 久久人人爽av亚洲精品天堂| 天天躁狠狠躁夜夜躁狠狠躁| 国产精华一区二区三区| 在线观看舔阴道视频| 丁香欧美五月| 欧美黄色片欧美黄色片| 成年动漫av网址| 嫩草影视91久久| 亚洲男人天堂网一区| 亚洲精品中文字幕一二三四区| bbb黄色大片| 丰满迷人的少妇在线观看| av不卡在线播放| 男人舔女人的私密视频| 黄频高清免费视频| 免费在线观看日本一区| 亚洲少妇的诱惑av| 丝袜人妻中文字幕| 午夜日韩欧美国产| 精品一品国产午夜福利视频| 亚洲人成伊人成综合网2020| 激情视频va一区二区三区| 亚洲精品国产精品久久久不卡| 1024视频免费在线观看| 看片在线看免费视频| 天天影视国产精品| 午夜精品久久久久久毛片777| 欧美国产精品一级二级三级| 婷婷成人精品国产| 69av精品久久久久久| 久久影院123| 欧美精品av麻豆av| 午夜精品国产一区二区电影| 久久中文字幕一级| 精品欧美一区二区三区在线| 老熟妇仑乱视频hdxx| 欧美日韩亚洲综合一区二区三区_| 正在播放国产对白刺激| 国产高清视频在线播放一区| 男女下面插进去视频免费观看| 亚洲情色 制服丝袜| 成人国产一区最新在线观看| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜添小说| 欧美av亚洲av综合av国产av| 一区二区三区精品91| 一级毛片高清免费大全| 宅男免费午夜| 超色免费av| 日日摸夜夜添夜夜添小说| 日韩 欧美 亚洲 中文字幕| 亚洲七黄色美女视频| 中文字幕人妻丝袜制服| 在线视频色国产色| 99re6热这里在线精品视频| 亚洲精品自拍成人| 99久久精品国产亚洲精品| 脱女人内裤的视频| 国产亚洲精品久久久久久毛片 | 午夜影院日韩av| 国产亚洲欧美在线一区二区| 女人精品久久久久毛片| 久久婷婷成人综合色麻豆| 不卡一级毛片| 高清视频免费观看一区二区| 一本一本久久a久久精品综合妖精| 又大又爽又粗| 国产在视频线精品| 亚洲国产看品久久| 国产精品秋霞免费鲁丝片| 欧美精品啪啪一区二区三区| 久久精品aⅴ一区二区三区四区| 后天国语完整版免费观看| 精品国产国语对白av| av视频免费观看在线观看| 男人的好看免费观看在线视频 | 一进一出抽搐动态| 我的亚洲天堂| 成人特级黄色片久久久久久久| 国产精品免费一区二区三区在线 | 国产精品国产av在线观看| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 亚洲欧美日韩高清在线视频| 热re99久久精品国产66热6| 亚洲第一青青草原| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| 91在线观看av| 美女福利国产在线| 午夜视频精品福利| 99re在线观看精品视频| 日本wwww免费看| 一边摸一边抽搐一进一出视频| 亚洲精品粉嫩美女一区| 正在播放国产对白刺激| 精品视频人人做人人爽| 超色免费av| 国产免费男女视频| 亚洲精品美女久久久久99蜜臀| 成年女人毛片免费观看观看9 | 亚洲熟妇熟女久久| 正在播放国产对白刺激| 悠悠久久av| 欧美日韩乱码在线| 日日摸夜夜添夜夜添小说| 国产免费av片在线观看野外av| 性少妇av在线| 999久久久精品免费观看国产| 欧美日韩乱码在线| 黄色毛片三级朝国网站| 午夜福利,免费看| 99久久精品国产亚洲精品| 美女视频免费永久观看网站| 亚洲欧美一区二区三区黑人| 91老司机精品| 丰满的人妻完整版| 久久久国产一区二区| 日韩制服丝袜自拍偷拍| 国产欧美日韩一区二区精品| 亚洲欧美激情在线| 国产精品久久久久久人妻精品电影| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免费看| 在线av久久热| 十八禁高潮呻吟视频| 丝袜人妻中文字幕| 9热在线视频观看99| 大陆偷拍与自拍| 窝窝影院91人妻| 久久精品aⅴ一区二区三区四区| 色婷婷av一区二区三区视频| 精品一区二区三区视频在线观看免费 | 捣出白浆h1v1| av天堂久久9| 99re在线观看精品视频| 欧美黄色淫秽网站| 久久精品熟女亚洲av麻豆精品| 亚洲国产中文字幕在线视频| 少妇被粗大的猛进出69影院| 制服人妻中文乱码| 日韩欧美三级三区| 久久久久精品国产欧美久久久| 丁香欧美五月| 国产成人av教育| 亚洲精品在线美女| 高清毛片免费观看视频网站 | 人妻久久中文字幕网| 搡老岳熟女国产| 高清av免费在线| 午夜福利欧美成人| 美女 人体艺术 gogo| 亚洲中文字幕日韩| 欧美日韩成人在线一区二区| 亚洲精品国产区一区二| 十八禁人妻一区二区| 99国产精品一区二区三区| 亚洲av电影在线进入| 免费久久久久久久精品成人欧美视频| 天天躁夜夜躁狠狠躁躁| 亚洲欧美激情综合另类| 日本五十路高清| 99久久国产精品久久久| 久久婷婷成人综合色麻豆| 一级片免费观看大全| 久久人妻av系列| 久久亚洲精品不卡| 成人三级做爰电影| 天天躁狠狠躁夜夜躁狠狠躁| 夜夜夜夜夜久久久久| av线在线观看网站| 在线观看日韩欧美| 日韩中文字幕欧美一区二区| 啪啪无遮挡十八禁网站| 女性被躁到高潮视频| 久久人妻福利社区极品人妻图片| 久久精品国产综合久久久| av视频免费观看在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久,| 日韩一卡2卡3卡4卡2021年| 91字幕亚洲| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 视频区欧美日本亚洲| 国产成人啪精品午夜网站| 欧美日韩亚洲高清精品| 亚洲欧美激情在线| 一二三四在线观看免费中文在| 午夜免费观看网址| 欧美日韩视频精品一区| 黑人操中国人逼视频| 亚洲国产看品久久| 午夜精品在线福利| 国产成+人综合+亚洲专区| 岛国毛片在线播放| 中文字幕最新亚洲高清| 午夜福利欧美成人| 十分钟在线观看高清视频www| 建设人人有责人人尽责人人享有的| xxx96com| 亚洲美女黄片视频| 露出奶头的视频| 国产精品 欧美亚洲| 国产精品久久久久久精品古装| 自线自在国产av| 啪啪无遮挡十八禁网站| 国产激情欧美一区二区| 国产主播在线观看一区二区| 极品人妻少妇av视频| 乱人伦中国视频| 啦啦啦在线免费观看视频4| 国产亚洲一区二区精品| 国产精品 国内视频| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 美国免费a级毛片| 国产午夜精品久久久久久| 久久久久久亚洲精品国产蜜桃av| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 日韩成人在线观看一区二区三区| 免费不卡黄色视频| 国产主播在线观看一区二区| xxx96com| 黄色视频,在线免费观看| 9191精品国产免费久久| 亚洲av日韩在线播放| 又紧又爽又黄一区二区| 中文字幕人妻熟女乱码| videos熟女内射| 欧美另类亚洲清纯唯美| 午夜免费观看网址| 日日爽夜夜爽网站| 久久中文字幕人妻熟女| av免费在线观看网站| 中文欧美无线码| 三上悠亚av全集在线观看| 亚洲欧美激情综合另类| 在线观看免费视频网站a站| 久久热在线av| 国产男女超爽视频在线观看| 欧美不卡视频在线免费观看 | 人妻 亚洲 视频| 久久人人爽av亚洲精品天堂| 精品久久久久久久毛片微露脸| av不卡在线播放| 视频在线观看一区二区三区| 久久久久久人人人人人| 成年女人毛片免费观看观看9 | 国产亚洲欧美98| avwww免费| 精品第一国产精品| 天天添夜夜摸| 九色亚洲精品在线播放| 69精品国产乱码久久久| 欧美av亚洲av综合av国产av| 国产精品一区二区在线不卡| 亚洲av日韩精品久久久久久密| 啦啦啦视频在线资源免费观看| 免费观看人在逋| 在线观看66精品国产| 一进一出抽搐动态| 亚洲国产精品sss在线观看 | 国产精品久久电影中文字幕 | 久久久久国产一级毛片高清牌| 精品国产美女av久久久久小说| 国产成人免费无遮挡视频| 久久人妻福利社区极品人妻图片| 老熟妇乱子伦视频在线观看| 成年人黄色毛片网站| 亚洲 国产 在线| 亚洲第一欧美日韩一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲在线自拍视频| 国产有黄有色有爽视频| 精品国产亚洲在线| netflix在线观看网站| 免费观看人在逋| 一区二区三区激情视频| 国产麻豆69| avwww免费| 国产激情欧美一区二区| 狠狠狠狠99中文字幕| 精品国产亚洲在线| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三| 亚洲中文日韩欧美视频| 人成视频在线观看免费观看| 黄色 视频免费看| 少妇的丰满在线观看| 黄片小视频在线播放| 精品国产国语对白av| 日韩人妻精品一区2区三区| 久久久久久久国产电影| 欧美日韩亚洲国产一区二区在线观看 | 午夜激情av网站| 欧美日韩一级在线毛片| 一a级毛片在线观看| 怎么达到女性高潮| 亚洲av日韩在线播放| 女人被躁到高潮嗷嗷叫费观| 国产精品免费大片| 欧美日韩中文字幕国产精品一区二区三区 | 最近最新免费中文字幕在线| 成人国产一区最新在线观看| 午夜成年电影在线免费观看| 亚洲中文av在线| 欧美不卡视频在线免费观看 | 亚洲国产欧美网| 国产精品 国内视频| 国产精品影院久久| av天堂久久9| 欧美激情高清一区二区三区| 妹子高潮喷水视频| 亚洲一区高清亚洲精品| 日本精品一区二区三区蜜桃| 欧美乱色亚洲激情| 久久午夜亚洲精品久久| 国产真人三级小视频在线观看| 一级毛片女人18水好多| cao死你这个sao货| 18禁观看日本| 国产人伦9x9x在线观看| 国产精品av久久久久免费| 一区二区三区激情视频| 精品午夜福利视频在线观看一区| 高清视频免费观看一区二区| 超碰成人久久| 大香蕉久久成人网| 天天躁狠狠躁夜夜躁狠狠躁| 高潮久久久久久久久久久不卡| 亚洲欧美一区二区三区黑人| 久久久久久人人人人人| 在线播放国产精品三级| 99精国产麻豆久久婷婷| 国产无遮挡羞羞视频在线观看| 色综合欧美亚洲国产小说| 搡老乐熟女国产| 黑丝袜美女国产一区| 亚洲成人免费电影在线观看| 久久久久视频综合| 亚洲精品粉嫩美女一区| 女性被躁到高潮视频| 精品国产一区二区久久| 国产一卡二卡三卡精品| 色播在线永久视频| 欧美乱妇无乱码| 国产淫语在线视频| 中文字幕高清在线视频| 丝袜人妻中文字幕| 国产在线观看jvid| 啦啦啦视频在线资源免费观看| 免费看十八禁软件| 国产成人系列免费观看| 中文字幕av电影在线播放| 精品亚洲成国产av| 久久热在线av| cao死你这个sao货| 新久久久久国产一级毛片| 精品久久久久久久久久免费视频 | 麻豆国产av国片精品| 在线观看免费视频网站a站| 精品久久久精品久久久| 国产熟女午夜一区二区三区| 国产一区有黄有色的免费视频| 亚洲色图综合在线观看| 中亚洲国语对白在线视频|