• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational quantum semi-supervised classifier based on label propagation

    2023-09-05 08:47:32YanYanHou侯艷艷JianLi李劍XiuBoChen陳秀波andChongQiangYe葉崇強(qiáng)
    Chinese Physics B 2023年7期
    關(guān)鍵詞:李劍

    Yan-Yan Hou(侯艷艷), Jian Li(李劍), Xiu-Bo Chen(陳秀波), and Chong-Qiang Ye(葉崇強(qiáng))

    1College of Information Science and Engineering,ZaoZhuang University,Zaozhuang 277160,China

    2School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China

    3School of Cyberspace Security,Beijing University of Posts and Telecommunications,Beijing 100876,China

    4Information Security Center,State Key Laboratory Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

    Keywords: semi-supervised learning,variational quantum algorithm,parameterized quantum circuit

    1.Introduction

    Classification,one of the most common problems in machine learning, is devoted to predicting the labels of new input data based on labeled data.Classification algorithms have been widely applied in image processing,speech recognition,and other fields.With the development of artificial intelligence and cloud computing, data in classification tasks are expanding rapidly.Still,most of them are unlabeled and need to be labeled by experienced annotators in advance.As labeling data is expensive and time-consuming work,[1]researchers began to study how to add unlabeled data into the training set and utilize labeled and unlabeled data to build semi-supervised classifiers.Label propagation,a crucial semi-supervised learning method,predicts the labels of unlabeled data based on graphs.Semi-supervised classifiers based on label propagation pay more attention to the internal relevance of data and have good effects on the classification of multiple correlation data.However, as the scale of data grows, creating a graph requires a higher computational cost.Implementing the semi-supervised classifier based on label propagation becomes a challenging task for classical computers.

    Quantum machine learning, the intersection of quantum physics and machine learning,offers potential speed-ups over classical machine learning algorithms.Variational quantum algorithms (VQAs) are the dominant strategy in the noisy intermediate-scale quantum(NISQ)era.It is devoted to building hybrid quantum-classical models, where parameterized quantum circuits construct the cost function of issues, and classical computers train the parameters of quantum circuits by minimizing cost functions.In VQAs,quantum devices focus on classically intractable problems and transfer the problems difficult to implement on quantum devices to classical computers.Therefore, VQAs have lower requirements for quantum resources and have become important methods for implementing quantum machine learning tasks.At present,VQAs have been applied in classification,[2–5]clustering,[6,7]generative models,[8–10]dimensionality reduction,[11–13]etc.

    Quantum systems represent data in the Hilbert space of exponential dimension.Inspired by the advantages of quantum systems in processing high-dimensional data,researchers proposed a series of quantum classification algorithms.[14–17]Considering the high computational complexity of kernel computation,Rebentrostt[18]offered a quantum support vector machine (QSVM) algorithm.This algorithm adopted quantum matrix inversion[19]and a density matrix exponentiation method[20]to implement binary classifier tasks,and achieved exponential speed-ups over corresponding classical classifiers under certain conditions.Schuld[21]proposed a quantum distance-based classifier,which only used Hadamard gates and two single-qubit measurements to implement binary classification tasks.Blank[22]designed a quantum kernel classifier based on quantum swap test operation,which is called a swap test classifier.This classifier achieves good classification accuracies in non-linear classification tasks.

    The label propagation method predicts labels of unlabeled data by minimizing energy function, which is similar to cost function optimization of VQAs.Inspired by the similarity between VQAs and label propagation,we adopt VQAs to design a quantum label propagation method, and further implement a quantum semi-supervised classifier based on predicted labels.Our work has two main contributions.(i)A variable label propagation method based on locally parameterized quantum circuit is designed for the first time.The locally parameterized quantum circuit can be used to implement VQAs with only some unknown parameters.(ii)A classifier based on hybrid Bell andZbases measurement is designed,and this measurement method reduces circuit depth and is more suitable implemented on NISQ devices.We organize the paper as follows.Section 2 gives a review of classical label propagation.Section 3 outlines the variational quantum label propagation method.Section 4 designs a quantum semi-supervised classifier based on hybrid Bell andZbases measurement.Section 5 verifies the accuracies of label propagation and the semisupervised classifier.Finally,we get a conclusion and discuss future research directions.

    2.Review of label propagation

    Label propagation begins with mapping a data set into an undirected weight graph, where nodes represent data and edges reflect the similarities between data.If two data have a great similarity, the edge between them has a higher weight;otherwise, the edge has a lower weight.Labeled data propagates their labels to the neighboring unlabeled data based on undirected weight graphs.Since a graph corresponds to a matrix, matrix operations can be used to implement semisupervised learning.LetD={Dl,Du}denote a training data set,including labeled dataDl={(x1,y1),(x2,y2),...,(xl,yl)}and unlabeled dataDu={xl+1,xl+2,...,xl+u},wherexi ∈Rmis theithdata described bymreal-valued attributes andyi ∈{+1,?1}represents the corresponding label.knearest neighbors method is a common method for constructing undirected weight graphsG=(V,E),whereV={xi}i∈nrepresents nodes,E={ei j}i,j∈ndenotes the edges between the nodesxiandxj,andn=l+u.Ifxjis one ofknearest neighbors ofxi,there is an edge between the nodesxiandxj; otherwise, there are no edges.

    LetW={wij}i,j∈ndenote the weight matrix of edges,

    represents the weight of the edgeei j,whereNk(xi)means the set ofknearest neighbors ofxi.Letf(xi) represent the predicted label ofxi.Similar samples should have similar labels,the more similar the samples, the smaller the difference between the labels,then the energy function of all training data[1]is

    wheredi=∑1wijrepresents the sum of theithrow ofWandD=diag(d1,d2,...,dn)denotes the degree matrix.Equation(2)can be rewritten in the matrix form as

    wheref= () represents the predicted label vector of all training data.fl= (f(x1),...,f(xl)) andfu=(f(xl+1),...,f(xl+u)) correspond to the label vectors of labeled and unlabeled data,respectively.OnceE(f)obtains the minimum value,f(xi)for labeled data will be equal to the correct labelyi,andf(xi)for unlabeled data will be closest to the correct label.Thus,predicting the labels of unlabeled data can be implemented by solving the optimization problem

    whereL=D ?Wis the Laplacian matrix.Figure 1 shows a simple example of label propagation.

    Fig.1.Label propagation.Red nodes represent labeled data belonging to the +1 class.Blue nodes mean labeled data belonging to the ?1 class.White nodes indicate unlabeled data.Panel(a)shows the graph before label propagation.Panel (b) gives the graph after label propagation.After label propagation,labeled data propagate their labels to their neighboring unlabeled data according to the k nearest-neighbors principal.

    3.Variational quantum label propagation method

    In this section, we reformulate the original label propagation and design a variational quantum label propagation(VQLP) method according to the similarity between the energy functionE(f)and cost functions of VQAs.

    3.1.Reformulation of label propagation

    3.2.The overall structure of the VQLP algorithm

    The VQLP algorithm adopts an iterative optimization method to predict the optimal label vector.In each iteration,the work includes evaluation cost function, learning parameters, and predicting label vectors.Figure 2 shows the overall structure of the VQLP algorithm.In the first stage, the state|ψ〉for the incidence matrixBis prepared by conditionally accessing the state of weight matrixW.The label vector|?f(θ)〉 represents labels of labeled data and unlabeled data.As only the labels of unlabeled data are unknown,we design a locally parameterized quantum circuitV(θ)to build the label vector|?f(θ)〉.After preparing|ψ〉and|?f(θ)〉,a hybrid Bell andZbases measurement,called asU2,is applied on|ψ〉and|?f(θ)〉 to construct the cost functionC(θ).The label vector|?f(θ)〉based on initial parameters may not correspond to the correct labels of training data.Thus, the second work is to search for the optimal label vector.The cost function valueC(θ)is transmitted to a classical optimizer and minimized by tuning the parametersθ.OnceC(θ)reaches the maximum iteration numberτor is less than the specified error thresholdετ,the optimal parametersθ?are gotten.V(θ)consists of parameterized quantum circuit for building labels of unlabeled data and unparameterized quantum circuit for building labels of labeled data.In the third stage,parameterized quantum circuitV′(θ?) (partial circuit ofV(θ)) acts on the initial state|0〉 to construct the label vector|?u(θ?)〉 for unlabeled data.Algorithm 1 shows the outline of the VQLP algorithm.

    Fig.2.The overall structure of the VQLP algorithm. U1 acts on the initial state|ψ0〉to construct the state|ψ〉of the incidence matrixB.The parameterized quantum circuit V(θ)acts on the initial state|?0f〉to produce the state|?f(θ)〉of the label vector f.Cost function C(θ)is gotten by performing the unitary operation U2 followed by classical post-processing,where U2 is responsible for computing the Hibert–Schmidt inner product between |ψ〉 and |?f(θ)〉.In each iteration, the classical computer minimizes C(θ) to get the optimized parameters θ.Once the optimal parameter θ?is obtained,the ansatz V′(θ?)acts on the state|0···0〉r to build the label vector|?u(θ?)〉=|···〉for unlabeled data,where|?iu〉represents the ith qubit of|?u(θ?)〉.

    Algorithm 1 Variational quantum label propagation(VQLP)algorithm

    3.3.Construct normalized incidence matrix

    In this subsection, our primary work is to construct the state|ψ〉 for the normalized incidence matrixB.To compensate for scaling effects, we firstly standardize all training data to zero mean and unit variance, then normalize them into unit vectors.represent the amplitude encoding of the training dataxp, where|·| representsl2-norm andxp jmeans thejthelement ofxp.Reference [28] proposed a quantum algorithm for estimating Euclidean distances between quantum states, and this algorithm corresponds to a mapping|p〉|q〉|0〉|p〉|q〉|d2(φxp,φxq)〉,whered2(φxp,φxq) =|φxp ?φxq|2represents the square of the Euclidean distance between|φxp〉 and|φxq〉.The first work of constructing incidence matrix is to prepare the weight matrixWby theknearest-neighbor method.To implement this work, we prepare the superposition stateof Euclidean distances between|φxp〉 and|φxq〉, and searchkminimum of|d2(xp,xq)〉 by the minimum search method.After searchingkminimum values of all training data,the state

    for weight matrixWis constructed, wherewpqdescribes the neighbor relationship betweenxpandxq.Ifxqis one ofknearest neighbors ofxqorxpis one ofknearest neighbors ofxq,wpq=1;otherwise,wpq=0.

    According to Eq.(15), the elements of incidence matrixBcome fromW.The second work is to build the state|ψ〉for the incidence matrixBbased on|ψW〉.We prepare the state

    as input,where register 1 stores the indexes of nodes,and registers 2 and 3 store the indexes ofwpq.Registers 4, 5, and 6 with initial value|0〉|0〉|0〉will store comparison results.The specific steps of building the incidence matrixBare as follows.

    (1) Do comparison operation (UC)[28]on registers 2 and 3, where the comparison result is stored in registers 4 and 6,and yield the state

    Measure register 6 withZbasis, if the measurement result is 0,then get the state

    (2)Extract the elements of the incidence matrixB.Equality comparison is firstly applied on registers 1 and 2.If registers 1 and 2 have the same value, register 5 is set to|1〉.If register 5 is still|0〉after performing the equality comparison,another equality comparison is performed on registers 1 and 3.If registers 1 and 3 have the same value,register 4 is set to|1〉.Through two equality comparisons,we get the state

    (3)Perform CNOT operation on registers 5 and 4,where register 4 serves as control register, then measure register 5 withZbasis.If the measurement result is 1,the state

    (4) Act Hadamard operation on register 4, then measure it into|1〉.The system yields the state

    corresponding to the normalized incidence matrixB.Figure 3 shows the circuit implementation,and this circuit corresponds to the moduleU1in Fig.1.

    Fig.3.Circuit of constructing the incidence matrix.Reg.1–Reg.6 represent registers 1–6.The circuit in the dotted box (a) represents the comparison operation.The circuit in the dotted box (b) represents the equality comparison between Reg.1 and Reg.2, and the circuit in the dotted box(c)denotes the equality comparison between Reg.1 and Reg.3.The output state|ψ〉corresponds to the incidence matrixB.

    3.4.Build label vector

    In this subsection, our primary work is to build the state|?f(θ)〉of the predicted label vectorf=(fl,fu).As the correct label vector(y1,...,yl)of labeled data is known,the predicted label vectorfldoes not need to be updated in the optimization process.be the amplitude encoding offl, whereyi ∈{+1,?1}.As the predicted label vectorfuis unknown,we adopt parameterized quantum circuit(ansatz)to prepare the state

    is gotten.In general, the number of unlabeled data is not less than the number of labeled data in semi-supervised learning.To make two terms of|(θ)〉meet a particular proportion, the controlled rotation operationRy(2α) is applied on added register 9 conditional on register 8 being|1〉, where.This operation yields the state

    Subsequently,measure register 9 with theZbasis,if the measurement result is 0,get the state

    whereyi ∈{+1,?1}andAs register 8 is redundant, apply Hadamard operation on register 8 followed by measuring it withZbasis, if the measurement result is 0,finally,get the state

    where the amplitude of|?f(θ)〉is proportional to the predicted label vectorf.Figure 4 shows the circuit of constructing|?f(θ)〉, whereUlandV′(θ) are used to build the labels for labeled and unlabeled data,respectively.As part of the circuit is parameterized,the circuit is called as locally parameterized quantum circuit,corresponding to the moduleV(θ)of Fig.1.

    Fig.4.Circuit of constructing the label vector|?f(θ)〉.Reg.7, Reg.8,and Reg.9 represent registers 7,8,and 9,respectively. Ul means quantum access to labeled vector|?l〉,and V′(θ)is the parameterized quantum circuit for building|?u(θ)〉.

    Many ansatzes can be used to implementV′(θ).Hardware-efficient ansatz uses lower circuit depth and fewer parameters to represent the solution space of problems,[29,30]and we adopt this ansatz to buildV′(θ).Hardware-efficient ansatz adopts a layered layout.Each layer consists of multiple 2-qubit unitary modules,where e?iHμrepresents 1-qubit parameterized gate,Hμis Hermitian operator, andWμrepresents unparameterized gate.Usually,the unitary moduleV(θik)includes multiple 1-qubit parameterized gates, thenθik={,,...,,...}.In the parameters optimization process,the error of|?u(θ?)〉decreases exponentially with the layers of the ansatzV′(θ?) increasing.To get the exact number of layers, we first prepare the ansatz with fewer layers and gradually increase the layers until the ansatz satisfies the specified error tolerance.[31]With increased data scale, Hardware-efficient ansatz shows an exponentially vanishing gradient(barren plateau).The VQLP algorithm adopts the alternating layered layout to solve the barren plateau problem.In this layout, the entangled gates in each layer only act on local qubits,[32]and the cost function is the combination of local functions, so the ansatz uses shallower circuit depth to solve the vanishing gradient problem.Figure 5 shows the circuit implementation,whereandWμare implemented by by rotationRyand CNOT,respectively.

    Fig.5.Parameterized quantum circuit V′(θ)(6-qubit input).This circuit includes l layers,where{q1,....,q6}represents the qubit sequence of |?u(θ)〉.The ith dashed box indicates the unitary operation in the ith layer.Each layer is composed of multiple unitary modules (θ j i ),consisting of single qubit rotations Ry(θ j i )and CNOT gates acting on neighboring qubit pairs.The circuit uses alternating layered layout,and unitary modules of adjacent layers act on alternating qubit pairs.

    3.5.Compute cost function

    After getting the incidence matrix|ψ〉and the label vector|?f(θ)〉,the sequent work is to compute the cost functionC(θ).According toρ1=tr2,3(ρ),the cost function in Eq.(7)can be rewritten as

    which is the Hilbert–Schmidt inner product between|?f(θ)〉and|ψ〉.We adopt the Bell basis measurement method[33]to compute the cost functionC(θ).As|?f(θ)〉is stored in register 7 and|ψ〉is stored in registers 1,2,and 3,Eq.(21)is equal to?→c=(1,1,1,?1)?gdenote the post-processing vector of Bell basis measurement, and the cost function value can be computed byC(θ)=·.

    Fig.6.The circuit of computing the cost function C(θ).Reg.1, Reg.2,and Reg.3 store the incidence matrix |ψ〉, and Reg.6 stores the label vector |?f(θ)〉.Perform CNOT operation on registers 1 and 7, followed by Hadamard on register 7.After measuring the 2-qubit operator CZ on registers 1 and 7,the expectation value〈CZ〉1,7,corresponding to the cost function value C(θ),can be obtained by further classical computation.

    4.Semi-supervised binary classifier

    Quantum label propagation gets the labels of unlabeled data in training data set.In this section, we design a quantum semi-supervised binary classifier based on all training data.Let|φxi〉 represent training data, wherei ∈{1,...,n}andn=l+u.Ifi ∈{1,...,l},|φxi〉 represents labeled data;otherwise,|φxi〉 denotes unlabeled data.f′={f′1,f′2,...,f′n}denotes the predicted label vector got by label propagation,wheref′i=0 meansxibelonging to the +1 class andf′i=1 representsxibelonging to the?1 class.Let|φx?〉be test data,andk?i=|〈φx?|φxi〉|2represents the overlap between|φx?〉and|φxi〉.We adopt the weighted sum of overlaps between test and training data to predict the label

    for the test data|φx?〉, wherec1andc2are the weight coefficients determined by the importance of labeled and unlabeled data.In semi-supervised learning,labeled data is more important than unlabeled data,thenc1>c2.

    Quantum swap test operation can be used to compute|〈φx?|φxi〉|2, so it is also applied to predict the labelf?.However,this method needs multiple Toffoli gates,and the circuit has a higher depth as input qubits increase.Thus,implementing the classifier based on quantum swap test operation is not easy for current quantum devices.The Bell basis measurement method[33]is a novel method for computing the overlap of quantum states, which has a shallower circuit depth and is easy to implement on NISQ devices.Inspired by this method,we design a hybrid Bell andZbases measurement method to buildf?.

    Given the superposition state

    (1)Perform CNOT operation on registersAandB,where registerAserves as control register,then get the state

    (2)Apply Hadamard operation on registerAand get

    Through the first two steps, quantum state overlaps have been stored in the amplitudes of|ω2〉〈ω2|.

    (3)Measure the expectation value of controlled-Zoperator for registersAandBandσZoperator for registerD,and this operation can be written as〈ω2|CZABσDZ|ω2〉, whereCZABdenotes controlled-Zoperator on registersAandB, andσDZdenotesσZoperator on registerD.AsCZAB=(|00〉〈00|+|01〉〈01|+|10〉〈10|?|11〉〈11|)ABandσDZ=(|0〉〈0|?|1〉〈1|)D,the expectation value is

    where the superscriptsABDof operators are omitted for simplicity.When=0,registerDis|0〉;when=1,registerDis|1〉.According to the two values of registerD,Eq.(27)can be rewritten as

    Quantum swap test can be used to compute the overlap between two quantum states withnqubits, where the qubits that form states can be entangled.According to the circuit equivalence of the Bell basis measurement and quantum swap test,[22]the Bell basis measurement in the quantum semisupervised classifier can be generalized to compute the overlap between|φx?〉A(chǔ)and|φxi〉Bwithnqubits.Figure 7 shows the circuit implementation.

    Fig.7.The circuit of the semi-supervised binary classifier.Reg.A stores|φx?〉.Reg.B, Reg.C, and Reg.D store |φxi〉, the index |i〉, and the corresponding label |fi〉, respectively.CNOT is performed on registers A and B, followed by Hadamard operation acts on register A.The label vector f?is gotten by measuring the expectation value of controlled-Z operator for registers A,B,and the expectation value of σZ operator for register D.

    The quantum semi-supervised classifier based on the hybrid Bell andZbases measurement, shown in Fig.7, contains two layers.CNOT gates implement the first layer, and Hadamard gates implement the second layer.As CNOT gates act on different qubits, all CNOT gates can be executed in parallel.Similarly, Hadamard gates act on different qubits and can also be performed in parallel.No matter how many qubits of training or test data contains, the quantum semisupervised classifier based on hybrid Bell andZbases measurement needs only two layers,independent of the size of the classification problem.According to the method proposed in Ref.[24], the quantum semi-supervised classifier can also be implemented by swap test operation,shown in Fig.8.This circuit requires multiple CNOT and Toffoli gates, which cannot be implemented in parallel.One Toffoli gate requires multiple one-qubit and two-qubit gates to implement.Figure 9 shows Toffoli gate decomposition, where the Toffoli gate is implemented with CNOT, Hadamard,T, andT?gates.The quantum semi-supervised classifier based on the swap test operation needs 14 layers when training data or test data contains one qubit and 14mlayers when training data or test data hasmqubits.The circuit depth is linear with the size of the classification problem.Compared with the quantum semi-supervised classifier based on swap test operation,our proposed quantum semi-supervised classifier is more suitable for implementation on near-term quantum devices.

    The quantum semi-supervised classifier based on hybrid Bell andZbases measurement requires more complex classical post-processing operations, which scale linearly with the system sizel.From the realization difficulty, the classical post-processing with higher complexity is more easily implemented than the quantum circuit whose depth scales linearly withl.The speed-up of the quantum semi-supervised classifier does not come from transmitting the exponential complexity work to the classical computer but from parallel quantum operations.To reduce the complexity of classical post-processing,we can convert the complex classical post-processing into quantum operations.Figure 10 shows the circuit implementation.This circuit adds an ancilla register and Toffoli gates,and the expectation value ofσZoperator for the ancilla register replaces the expectation value of the controlled-Zoperator for registersAandB.Compared with the circuit in Fig.7.This circuit has a higher depth but simpler classical post-processing.

    Fig.10.The quantum semi-supervised binary classifier with simplified classical post processing.Compared with circuit Fig.7, this circuit converts the complex classical post-processing of the semi-supervised binary classifier into the quantum operation, where f?is obtained by measuring the expectation value of the σZ operator for the ancilla register(|0〉)and register D.The circuit in the dashed box has the same function as that in Fig.7.

    5.Numerical simulations and performance analysis

    In this section, we adopt the Iris dataset to test the performances of the quantum semi-supervised binary classifier based on hybrid Bell andZbases.The Iris dataset contains 150 samples, where samples 0–49 belong to class 1, samples 50–99 belong to class 2, and samples 100–149 belong to class 3.Classifying samples of classes 2 and 3 is the most difficult task for the Iris dataset, and we mainly analyze this task.We first choose 8 samples{x0,x1,x2,x3,x4,x5,x6,x7}to demonstrate label propagation,where samples{x0,x2,x4,x6}belong to class 2 and samples{x1,x3,x5,x7}belong to class 3.Let samples{x0,x1,x2,x3}represent labeled data.Assume the labels of samples{x4,x5,x6,x7}are unlabeled data, label propagation is to predict the labels of samples{x4,x5,x6,x7}.If the samplexibelongs to class 2, the labelyiis 1, and if the samplexibelongs to class 3, the labelyiis?1.Figure 11 shows the predicted labels of samples{x4,x5,x6,x7}.Simulation results show that the predicted labelf(xi)is close to the correct labelyi.represent the correct normalized label vector for samples{x4,x5,x6,x7},L=[f(x4),f(x5),f(x6),f(x7)] represents the predicted label vector,andS=L·LTdenotes the accuracy of the predicted labels.Figure 12 exhibits the accuracySunder different initial parameters.We can find that the accuracySreaches 99.5%after about 90 iterations regardless of the initial parameters.

    Fig.11.Predicted labels versus the number of iterations.The classical optimizer is the COBYLA method.Curves represent the estimated labels of unlabeled data.

    Fig.12.Accuracy versus the number of iterations.Curves represent the accuracies under four different random initialized parameters.

    Our second work is to demonstrate the accuracy of the semi-supervised binary classifier.Figure 13 presents the result for classifying samples of classes 1 and 2,where the predicted label greater than 0 represents the sample belonging to class 1;otherwise,the sample belongs to class 2.The result shows all samples of classes 1 and 2 can be correctly classified.Figure 14 shows the result for classifying samples of classes 1 and 3,where all samples can be correctly classified.Figure 15 shows the classification result of classifying samples of classes 2 and 3.As samples of classes 2 and 3 are not linearly separable,a few classification errors occurred in this task.

    Fig.13.Classification results of semi-supervised binary classifier(classes 1 and 2).The horizontal axis represents the index i of samples,and the vertical axis shows the predicted label f(xi).Stars represent samples from class 1,and dots represent samples from class 2.

    Fig.14.Classification results of semi-supervised binary classifier(classes 1 and 3).Stars represent samples from class 1, and crosses represent samples from class 3.

    Fig.15.Classification results of semi-supervised binary classifier(classes 2 and 3).Dots represent samples from class 2, and crosses represent samples from class 3.

    Table 1 shows mean accuracies and standard deviations for the quantum semi-supervised binary classifier based on Bell andZbases(semi-supervised classifier)and the quantum classifier based on swap test operation(swap test classifier)[22]under 10 random initial parameters, where each sample only contains two features.The cells of the format±m(xù)ean accuracy (standard deviation).For the semi-supervised classifier,the mean accuracy of classifying classes 1 and 2 is 100%,and the mean accuracy is also 100%for classifying classes 1 and 3.The mean accuracy of classifying classes 2 and 3 is 90.90%.Still, this accuracy of the semi-supervised classifier is higher than that of the swap test classifier.

    Table 1.Classification accuracy and standard deviation(two features).

    To improve the separability of classes 2 and 3,we extract four features from the Iris dataset.Table 2 shows mean accuracies and standard deviations for samples containing four features.Compared with Tables 1 and 2,we can find that classifying the Iris dataset containing four features has higher accuracy than classifying the Iris dataset containing two features.

    6.Conclusions and future work

    In this paper, we adopt a quantum method to implement a quantum semi-supervised binary classifier.By converting the incidence matrix and label vector into quantum states,we design a variational quantum label propagation (VQLP)method.This method utilizes locally parameterized quantum circuits to reduce parameters required in the optimization and is more suitable for implementation on quantum devices.Based on the predicted labels, we further design a quantum semi-supervised classifier based on hybrid Bell andZbases measurement, which has a shallower circuit depth compared with the swap test classifier.Simulation results show that the VQLP method can predict the labels of unlabeled data with 99.5% accuracy, and the quantum semi-supervised classifier has higher classification accuracy than the swap test classifier.This algorithm assumes quantum operations under noiseless environments.However,hardware noise exists when the semisupervised learning algorithms are implemented on near-term quantum devices.The quantum semi-supervised classifier under noise environments needs to be researched in future work.Besides,we can further investigate how to adopt multiple data copies to build quantum semi-supervised classifiers based on kernel functions.The design method of theknearest neighbor graph in VQLP provides a novel idea for creating quantum machine learning models based on graphs.Simultaneously,this research promotes the development of VQAs in quantum semi-supervised learning fields.

    Acknowledgements

    Project supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No.SKLACSS-202108), the National Natural Science Foundation of China (Grant No.U162271070),Scientific Research Fund of Zaozhuang University (Grant No.102061901).

    猜你喜歡
    李劍
    Efficient semi-quantum secret sharing protocol using single particles
    The coupled deep neural networks for coupling of the Stokes and Darcy–Forchheimer problems
    兩塊寶石
    Probabilistic quantum teleportation of shared quantum secret
    Efficient quantum private comparison protocol utilizing single photons and rotational encryption
    Constructing the three-qudit unextendible product bases with strong nonlocality
    Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
    Quantum partial least squares regression algorithm for multiple correlation problem
    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*
    Phase-sensitive Landau–Zener–St¨uckelberg interference in superconducting quantum circuit?
    最近的中文字幕免费完整| 欧美性感艳星| 日韩人妻高清精品专区| 国产毛片在线视频| 一本一本综合久久| 在线观看三级黄色| 国产伦精品一区二区三区视频9| 精品熟女少妇av免费看| 国产探花极品一区二区| 精品酒店卫生间| 亚洲欧美成人精品一区二区| 少妇精品久久久久久久| 美女cb高潮喷水在线观看| 97在线视频观看| 亚洲怡红院男人天堂| 在线观看一区二区三区| 日韩精品有码人妻一区| 欧美bdsm另类| 少妇丰满av| 久久99热这里只有精品18| 国产精品福利在线免费观看| 国产精品偷伦视频观看了| av国产免费在线观看| 永久免费av网站大全| 制服丝袜香蕉在线| 大香蕉久久网| 在线播放无遮挡| 美女中出高潮动态图| 国产一区有黄有色的免费视频| 小蜜桃在线观看免费完整版高清| 伦精品一区二区三区| 日韩国内少妇激情av| 欧美老熟妇乱子伦牲交| av专区在线播放| 男女无遮挡免费网站观看| 亚洲av中文字字幕乱码综合| 中文字幕久久专区| 在线观看一区二区三区激情| 亚洲精品一区蜜桃| 久久久久久久大尺度免费视频| 亚洲精品中文字幕在线视频 | 熟女av电影| 国产av一区二区精品久久 | 亚洲av在线观看美女高潮| 午夜福利高清视频| 久久亚洲国产成人精品v| 尾随美女入室| 网址你懂的国产日韩在线| av.在线天堂| 久久久午夜欧美精品| 亚洲精品亚洲一区二区| 亚洲精品自拍成人| 日产精品乱码卡一卡2卡三| 国产黄色免费在线视频| 日韩国内少妇激情av| 波野结衣二区三区在线| 亚洲成人av在线免费| 久久人妻熟女aⅴ| 亚洲第一区二区三区不卡| 精品人妻偷拍中文字幕| 亚洲精品日韩在线中文字幕| 蜜臀久久99精品久久宅男| 久久久午夜欧美精品| 日本与韩国留学比较| 五月伊人婷婷丁香| 日日撸夜夜添| 亚洲国产欧美在线一区| 各种免费的搞黄视频| 各种免费的搞黄视频| 观看美女的网站| 日本av手机在线免费观看| 舔av片在线| 免费大片18禁| 天堂8中文在线网| 久久青草综合色| 高清欧美精品videossex| a 毛片基地| 免费黄色在线免费观看| 国产69精品久久久久777片| 18禁动态无遮挡网站| 99热这里只有是精品50| av专区在线播放| 亚洲在久久综合| 免费大片黄手机在线观看| 肉色欧美久久久久久久蜜桃| 久久热精品热| av播播在线观看一区| 一级毛片 在线播放| 少妇人妻久久综合中文| 少妇人妻 视频| 九九久久精品国产亚洲av麻豆| 啦啦啦在线观看免费高清www| 搡老乐熟女国产| 午夜福利视频精品| 毛片女人毛片| 热99国产精品久久久久久7| 超碰97精品在线观看| 成年av动漫网址| 97在线人人人人妻| 在线观看一区二区三区激情| 免费看不卡的av| 人妻制服诱惑在线中文字幕| 大话2 男鬼变身卡| 欧美日韩在线观看h| 日韩精品有码人妻一区| 国产精品人妻久久久影院| 又粗又硬又长又爽又黄的视频| 国产高清国产精品国产三级 | 亚洲精华国产精华液的使用体验| 欧美区成人在线视频| 欧美三级亚洲精品| 亚洲av欧美aⅴ国产| 搡女人真爽免费视频火全软件| 一级毛片 在线播放| 国产精品女同一区二区软件| 国产精品一区二区在线不卡| 成人漫画全彩无遮挡| 国产av国产精品国产| 下体分泌物呈黄色| 特大巨黑吊av在线直播| 乱码一卡2卡4卡精品| 欧美激情极品国产一区二区三区 | 国产淫语在线视频| 80岁老熟妇乱子伦牲交| 九草在线视频观看| 男人舔奶头视频| 26uuu在线亚洲综合色| 有码 亚洲区| 国产亚洲午夜精品一区二区久久| 国产黄片视频在线免费观看| 五月天丁香电影| 欧美 日韩 精品 国产| 久久精品国产鲁丝片午夜精品| 国产在线男女| 久久久久国产网址| 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 日韩大片免费观看网站| 偷拍熟女少妇极品色| 亚洲国产最新在线播放| 国产精品国产三级国产专区5o| 亚洲美女搞黄在线观看| 亚洲第一av免费看| 少妇的逼水好多| 日韩国内少妇激情av| 22中文网久久字幕| 一区二区av电影网| 日本wwww免费看| 黄色视频在线播放观看不卡| 久久久久性生活片| 熟妇人妻不卡中文字幕| 午夜免费男女啪啪视频观看| 成人亚洲精品一区在线观看 | 免费久久久久久久精品成人欧美视频 | 久久久久久久国产电影| 一级爰片在线观看| 美女视频免费永久观看网站| 看非洲黑人一级黄片| 国产精品一区二区在线不卡| 中文字幕免费在线视频6| 亚洲精品乱久久久久久| 国产 一区精品| 我的老师免费观看完整版| av在线蜜桃| 成人黄色视频免费在线看| 成人特级av手机在线观看| 国产美女午夜福利| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品999| 99精国产麻豆久久婷婷| 国产精品福利在线免费观看| 777米奇影视久久| 美女福利国产在线 | 80岁老熟妇乱子伦牲交| 全区人妻精品视频| 亚洲成人中文字幕在线播放| 精品一区在线观看国产| 麻豆成人午夜福利视频| 亚洲av成人精品一区久久| 免费大片黄手机在线观看| 男人舔奶头视频| 国产亚洲欧美精品永久| 亚洲国产最新在线播放| 欧美成人精品欧美一级黄| 久久婷婷青草| 你懂的网址亚洲精品在线观看| 一区二区三区精品91| www.色视频.com| 少妇裸体淫交视频免费看高清| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av天美| 日韩成人伦理影院| 欧美xxⅹ黑人| 国产伦精品一区二区三区视频9| 久久6这里有精品| 免费在线观看成人毛片| 免费黄频网站在线观看国产| 欧美日本视频| 日本-黄色视频高清免费观看| 亚洲av成人精品一二三区| 欧美性感艳星| 久久久久性生活片| 男人添女人高潮全过程视频| 久久国产精品大桥未久av | 亚洲一区二区三区欧美精品| 爱豆传媒免费全集在线观看| 久久精品久久精品一区二区三区| 国产老妇伦熟女老妇高清| 91精品国产九色| 国产精品不卡视频一区二区| 国产高潮美女av| 日日撸夜夜添| 99久久综合免费| 狠狠精品人妻久久久久久综合| 性高湖久久久久久久久免费观看| 亚洲av国产av综合av卡| 麻豆国产97在线/欧美| 日本一二三区视频观看| 久久精品国产鲁丝片午夜精品| 日日摸夜夜添夜夜添av毛片| 国产有黄有色有爽视频| 日本午夜av视频| 久久久久久久精品精品| 国产视频内射| 在线观看免费视频网站a站| 欧美日韩一区二区视频在线观看视频在线| 日本午夜av视频| 一级二级三级毛片免费看| 国产 精品1| 日韩视频在线欧美| 久久女婷五月综合色啪小说| 只有这里有精品99| 久久99热这里只有精品18| 国精品久久久久久国模美| 国产人妻一区二区三区在| 国产乱人偷精品视频| 人妻制服诱惑在线中文字幕| 国产黄色免费在线视频| 国产精品免费大片| 丰满少妇做爰视频| 女的被弄到高潮叫床怎么办| 中国美白少妇内射xxxbb| 久久久亚洲精品成人影院| 国产欧美另类精品又又久久亚洲欧美| 少妇猛男粗大的猛烈进出视频| 亚洲av综合色区一区| 久久久精品免费免费高清| 亚洲成人av在线免费| 欧美精品一区二区免费开放| 日韩av免费高清视频| 91精品国产国语对白视频| 国产精品一二三区在线看| 小蜜桃在线观看免费完整版高清| 肉色欧美久久久久久久蜜桃| 国产成人91sexporn| av卡一久久| 亚洲欧美一区二区三区国产| 精品人妻一区二区三区麻豆| 精品久久久久久久久av| 在线观看国产h片| 国产片特级美女逼逼视频| 99久久人妻综合| 亚洲经典国产精华液单| 久久国产乱子免费精品| 国产亚洲午夜精品一区二区久久| 最后的刺客免费高清国语| 老熟女久久久| 欧美激情国产日韩精品一区| 成人毛片60女人毛片免费| 一本色道久久久久久精品综合| 一区二区三区乱码不卡18| 国产v大片淫在线免费观看| 久久亚洲国产成人精品v| 亚洲精品视频女| 国产精品一区二区在线不卡| 丝袜脚勾引网站| 夜夜爽夜夜爽视频| 在线看a的网站| 国产亚洲91精品色在线| 国产片特级美女逼逼视频| 一级毛片aaaaaa免费看小| 国产成人精品久久久久久| 又大又黄又爽视频免费| av卡一久久| 久久精品国产a三级三级三级| 老司机影院毛片| 成人黄色视频免费在线看| 久久青草综合色| 韩国高清视频一区二区三区| 麻豆成人av视频| 免费观看av网站的网址| 国产精品av视频在线免费观看| 久久国产亚洲av麻豆专区| 国产乱人偷精品视频| 欧美区成人在线视频| 少妇被粗大猛烈的视频| 99久久综合免费| 涩涩av久久男人的天堂| 亚洲欧美精品自产自拍| 午夜激情久久久久久久| 国产片特级美女逼逼视频| 夜夜爽夜夜爽视频| 在线观看av片永久免费下载| 国产成人免费观看mmmm| 午夜老司机福利剧场| 极品少妇高潮喷水抽搐| 美女脱内裤让男人舔精品视频| 中国三级夫妇交换| 成人无遮挡网站| av线在线观看网站| 一级毛片黄色毛片免费观看视频| 久久人人爽人人爽人人片va| 男人爽女人下面视频在线观看| 亚洲精华国产精华液的使用体验| 美女主播在线视频| 嫩草影院入口| 又黄又爽又刺激的免费视频.| 大话2 男鬼变身卡| 国国产精品蜜臀av免费| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 中文天堂在线官网| 黄色怎么调成土黄色| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| 国产成人91sexporn| 女性被躁到高潮视频| 97超碰精品成人国产| 久久国产乱子免费精品| av国产久精品久网站免费入址| tube8黄色片| 国产av码专区亚洲av| 国产成人免费观看mmmm| 日韩亚洲欧美综合| 久久久欧美国产精品| 精品久久久久久久久亚洲| 成人无遮挡网站| 亚洲人成网站高清观看| 1000部很黄的大片| 中国国产av一级| 在线亚洲精品国产二区图片欧美 | 日本欧美国产在线视频| 国产色婷婷99| 免费高清在线观看视频在线观看| 在线观看美女被高潮喷水网站| 狠狠精品人妻久久久久久综合| 国产黄片美女视频| 日日撸夜夜添| 亚洲人与动物交配视频| 黄色一级大片看看| av又黄又爽大尺度在线免费看| 国产精品久久久久成人av| 午夜免费男女啪啪视频观看| av免费观看日本| 一本久久精品| 80岁老熟妇乱子伦牲交| 日本av免费视频播放| 99久久综合免费| 国产又色又爽无遮挡免| 菩萨蛮人人尽说江南好唐韦庄| 免费观看的影片在线观看| 成人午夜精彩视频在线观看| 国产午夜精品久久久久久一区二区三区| 中国国产av一级| 人妻少妇偷人精品九色| 国产成人freesex在线| 一本—道久久a久久精品蜜桃钙片| 国产 精品1| 国产成人精品福利久久| 国产亚洲91精品色在线| 国产亚洲一区二区精品| 看免费成人av毛片| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的 | 国产精品久久久久久精品古装| 不卡视频在线观看欧美| 久久久久久久久大av| 一本久久精品| 午夜免费男女啪啪视频观看| 欧美亚洲 丝袜 人妻 在线| 国产免费视频播放在线视频| 中文字幕免费在线视频6| 国产精品久久久久久久电影| 午夜激情久久久久久久| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 91久久精品国产一区二区三区| 中文字幕亚洲精品专区| 22中文网久久字幕| 亚洲色图综合在线观看| 男人添女人高潮全过程视频| 欧美日韩在线观看h| 春色校园在线视频观看| 亚洲天堂av无毛| 中文字幕精品免费在线观看视频 | 久久久久久久久久成人| 色婷婷av一区二区三区视频| 在线免费观看不下载黄p国产| 久久女婷五月综合色啪小说| 男女国产视频网站| 丝瓜视频免费看黄片| 国产永久视频网站| 免费观看无遮挡的男女| 99久久精品一区二区三区| 黄片wwwwww| 日本一二三区视频观看| 在线观看免费视频网站a站| 2022亚洲国产成人精品| 久久韩国三级中文字幕| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 国产乱来视频区| 肉色欧美久久久久久久蜜桃| 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 精品久久久久久久久亚洲| 老司机影院成人| 三级经典国产精品| 在线观看国产h片| 国产色爽女视频免费观看| 国产精品成人在线| 欧美成人a在线观看| 人妻 亚洲 视频| 丰满人妻一区二区三区视频av| 美女高潮的动态| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 啦啦啦啦在线视频资源| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 国产午夜精品一二区理论片| 久久人妻熟女aⅴ| 人人妻人人添人人爽欧美一区卜 | 三级经典国产精品| 日韩强制内射视频| av黄色大香蕉| 午夜福利高清视频| 国产黄片视频在线免费观看| 久久婷婷青草| 国产成人免费观看mmmm| 热99国产精品久久久久久7| 欧美激情极品国产一区二区三区 | 高清欧美精品videossex| 99re6热这里在线精品视频| 国产国拍精品亚洲av在线观看| 女的被弄到高潮叫床怎么办| 午夜福利网站1000一区二区三区| 一二三四中文在线观看免费高清| 国产精品国产av在线观看| 一级毛片 在线播放| 91精品国产九色| 中文字幕av成人在线电影| 成人无遮挡网站| 高清视频免费观看一区二区| 夫妻午夜视频| 亚洲精品一区蜜桃| 久久99蜜桃精品久久| 毛片女人毛片| 久久久久久久久久人人人人人人| 亚洲国产成人一精品久久久| 国产欧美亚洲国产| 在线观看三级黄色| 直男gayav资源| 国产真实伦视频高清在线观看| 亚洲av电影在线观看一区二区三区| 亚洲图色成人| 日本午夜av视频| 99热全是精品| 国产爱豆传媒在线观看| 国产免费一区二区三区四区乱码| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 新久久久久国产一级毛片| 哪个播放器可以免费观看大片| 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 国产视频首页在线观看| 国产亚洲av片在线观看秒播厂| 精品国产三级普通话版| 色视频www国产| 亚洲精品视频女| 热99国产精品久久久久久7| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 蜜桃在线观看..| 麻豆国产97在线/欧美| 丝袜喷水一区| 日本wwww免费看| 免费看日本二区| 久久精品人妻少妇| 午夜老司机福利剧场| 亚洲av二区三区四区| 国产精品爽爽va在线观看网站| 国产成人精品一,二区| 成人国产麻豆网| 国产视频内射| 久久热精品热| 国产精品久久久久成人av| 黑丝袜美女国产一区| 卡戴珊不雅视频在线播放| 国产精品99久久久久久久久| 国产精品女同一区二区软件| 国产午夜精品一二区理论片| 一级片'在线观看视频| 少妇精品久久久久久久| 草草在线视频免费看| 免费看日本二区| 国产黄频视频在线观看| 一级黄片播放器| 91午夜精品亚洲一区二区三区| 最后的刺客免费高清国语| 伦理电影大哥的女人| 超碰av人人做人人爽久久| 尾随美女入室| 亚洲av电影在线观看一区二区三区| 国产伦精品一区二区三区四那| 一本色道久久久久久精品综合| 亚洲图色成人| 亚洲欧洲国产日韩| 国产欧美日韩一区二区三区在线 | 亚洲精品456在线播放app| 国产极品天堂在线| 亚洲人与动物交配视频| 纵有疾风起免费观看全集完整版| 亚洲欧美清纯卡通| 夫妻性生交免费视频一级片| 六月丁香七月| 免费av不卡在线播放| 卡戴珊不雅视频在线播放| 国产在线免费精品| 亚洲,一卡二卡三卡| 久久av网站| 亚洲国产精品一区三区| kizo精华| 搡老乐熟女国产| 久久这里有精品视频免费| 国产亚洲91精品色在线| 亚洲国产精品国产精品| 精品久久久久久久久亚洲| 欧美最新免费一区二区三区| 亚洲,一卡二卡三卡| 亚洲最大成人中文| 超碰av人人做人人爽久久| 国产午夜精品一二区理论片| 成人特级av手机在线观看| 日韩视频在线欧美| 在线观看三级黄色| 国产成人精品一,二区| 日韩三级伦理在线观看| 国产成人精品一,二区| 国产男人的电影天堂91| 黄色欧美视频在线观看| 亚洲国产欧美在线一区| 精品人妻一区二区三区麻豆| 美女国产视频在线观看| 女的被弄到高潮叫床怎么办| 日本色播在线视频| 中文字幕免费在线视频6| 日韩精品有码人妻一区| av线在线观看网站| 少妇人妻久久综合中文| 中文字幕人妻熟人妻熟丝袜美| 国产精品av视频在线免费观看| 国产深夜福利视频在线观看| 日本wwww免费看| 中文字幕制服av| 亚洲国产av新网站| 97在线人人人人妻| 丰满人妻一区二区三区视频av| 丝袜喷水一区| 亚州av有码| tube8黄色片| 日韩三级伦理在线观看| 亚洲国产毛片av蜜桃av| 又粗又硬又长又爽又黄的视频| 日韩电影二区| 一级毛片电影观看| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲无线观看免费| 少妇裸体淫交视频免费看高清| 成人高潮视频无遮挡免费网站| 免费观看无遮挡的男女| 看十八女毛片水多多多| 国语对白做爰xxxⅹ性视频网站| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 久久久久久九九精品二区国产| 建设人人有责人人尽责人人享有的 | 日韩,欧美,国产一区二区三区| 免费观看无遮挡的男女| 成人免费观看视频高清| 97热精品久久久久久| 天堂中文最新版在线下载| 中文乱码字字幕精品一区二区三区| 中文天堂在线官网| 国产中年淑女户外野战色| 国产午夜精品久久久久久一区二区三区| 极品教师在线视频| 国产精品秋霞免费鲁丝片| 国产日韩欧美在线精品| 国产精品欧美亚洲77777| 亚洲无线观看免费| 人人妻人人添人人爽欧美一区卜 | 亚洲欧美精品专区久久| 如何舔出高潮| 国产成人91sexporn| 欧美97在线视频| 狂野欧美激情性xxxx在线观看| 在线精品无人区一区二区三 | 国产探花极品一区二区| 国精品久久久久久国模美| 一个人看的www免费观看视频| 美女内射精品一级片tv| 亚洲国产高清在线一区二区三|