• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneous dual memristive circuit: Multistability,symmetry,and FPGA implementation?

    2021-12-22 06:46:10YiZiCheng承亦梓FuHongMin閔富紅ZhiRui芮智andLeiZhang張雷
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張雷

    Yi-Zi Cheng(承亦梓), Fu-Hong Min(閔富紅), Zhi Rui(芮智), and Lei Zhang(張雷)

    School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China

    Keywords: memristive circuit,chaos,multistability,FPGA implementation

    1. Introduction

    Memristor,the 4th basic circuit element,[1]which reveals the relationship between flux and charge, has great application potentials in the fields of neural network,[2]nonlinear circuit design,[3]image encryption,[4]etc. In recent years, various novel memristor-based circuits were widely built, and the complex dynamical behaviors of such memristive systems have been also studied. For example, a Duffing oscillator with memristor was experimentally realized in Ref. [5],and a Chua’s circuit with memristor, which shows extreme multistability and other complex dynamics, was proposed in Ref. [6]. In Ref. [7], a discrete memristor model was defined and applied to H′enon map. An Sr0.95Ba0.05TiO3(SBT)memristor is a new kind of physical memristor, and the complex behaviors of memristive circuit based on SBT was studied in Ref. [8]. A variety of autonomous or non-autonomous oscillators based on memristors expanded the research areas for these nonlinear systems.[9–11]Compared with the conventional chaotic circuits,[12]the memristor-based circuits can easily procduce diverse nonlinear motions,such as self-excited chaotic behaviors,[13]hidden attractors,[14]hyperchaos,[15]and anti-monotonic properties.[16]Because the memristive circuit is sensitive to initial values, the multistability, a typical behavior of such circuits, has become a research hotspot in recent years. The multistability in circuits with single or multiple memristors has been reported by a large number of researches.[17–21]For example, the serial-parallel memristor was introduced into the Chua’s circuit, and the influence of memristor polarity and series-parallel structure on mutistability phenomenon was explored and concluded.[2]The memristive Chua’s circuit based on active band-pass filter (BPF)was studied,in which the stable distribution of the equilibrium points was divided to confirm the trace of memristive circuit starting from different initial states.[21]And then,the extreme multistability of infinite coexistence attractors was observed,which provides the guidance for further exploring the relationship between the equilibrium points and the multistability.

    To make in depth analysis of the multistability, a new modeling method called state variable mapping (SVM) was proposed.[22]However, the SVM has its disadvantages: it is suitable only for the normalized state equation and those memristive systems with only simple nonlinear terms. To improve SVM, Chenet al.proposed a method of combining the incremental integral change with linear state variable,[23]which was named hybrid state variable incremental integral(HSVII).As the dimensionality reduction methods mentioned above still cannot directly simplify the model, in the light of flux–charge analysis method(FCAM)[24]which offers an effective way to analyze the infinite many dynamics caused by memristor, a dimensionality reduction analysis was carried out in the memeristive circuits in Ref.[25]. However,because of the complexity of the equation derivation and state variable selection, the application of FCAM in memristive systems has rarely been reported.

    In this paper, a heterogeneous DMC with two different memristors, based on Chua’s circuit, is constructed, and its nonlinear dynamical behaviors are investigated from multiple perspectives. This DMC can be used for encrypting an image.The rest of this paper is organized as follows. In Section 2,the DMC schematics are presented, and their mathematical models in the voltage–current domains and the flux–charge domains are established respectively. In Section 3, the symmetrical bifurcation and the parameter mappings with specific parameters are discussed by the 5th-order model(5OM)in the volt–ampere domain. Subsequently in Section 4, the dimensionality reduction model, 3rd-order model (3OM) in flux–charge domain,is derived by FCAM,and its hardware circuit is realized through field-programmable gate array (FPGA).Then,the multistability is illustrated through attraction basins and phase diagrams in 3OM and 5OM.Finally,some conclusions are drawn in Section 6.

    2. Circuit modeling

    In this section, a memristive circuit with two different memristors is proposed based on Chua’s circuit. The voltage–ampere model of heterogeneous dual memristive circuit is derived by Kirchhoff’s law and the volt–ampere relationship,and the flux–charge model is subsequently obtained through flux–charge analysis method to make it more controllable.

    2.1. Voltage–ampere model

    The heterogeneous DMC is constructed based on memristive Chua’s circuit[26]as shown in Fig. 1, where the circuit consists of two capacitorsC1andC2, an inductorL, a linear negative conductance-G, a third-order nonlinear flux–controlled memristorW, and a charge-controlled memristorMdescribed by absolute value. For the rationality of the mathematical model,the flux–controlled memristorW(?)and the capacitorC1are connected in parallel, while the chargecontrolled memristorM(q)and the inductorLare in series.

    Fig.1. Heterogeneous DMC.

    According to Kirchhoff’s law and the volt–ampere relationship, the state equation of the DMC can be derived into five first-order differential equations:

    where the flux-controlled memristor is described asW(?)=a+3b?2,the charge-controlled memristorM(q)=?c+d|q|,v1andv2represent the voltage of capacitorC1andC2,ithe current through the parallel branch of the charge-controlled memristor and the inductanceL,?the internal flux of the cubic memristor,qthe internal charge of the quadratic memristor. Assumingv1=x,v2=y,i=z,?=w,q=v,1/C1=α,1/C2=β,1/L=η,G=γ,we can obtain 5OM from Eq.(1)as follows:

    whereW(w)=a+3bw2andM(v)=?c+d|v|. For convenience,the system parameters are taken as

    2.2. Flux–charge model

    Through the flux–charge method, the increment of flux and charge from 0 totare defined as?(t;0)=?(t)??(0)andq(t;0) =q(t)?q(0), respectively, where?(0,0) = 0 andq(0,0)=0, the flux increments are?M1(t;0),?M2(t;0),?C1(t;0),?C2(t;0),?L(t;0), and?G(t;0). The charge increments areqM1(t;0),qM2(t;0),qC1(t;0),qC2(t;0),qL(t;0),andqG(t;0),and the reference directions are shown in Fig.2.

    Fig.2. DMC with reference directions.

    where the constitutive relationships of the elements can be obtained as follows:

    The initial values of the above elements are expressed asqC1(0) =C1uC1(0),qC2(0) =C2uC2(0),?L(0) =LiL(0),anduC1(0),uC2(0),iL(0) are equivalent to the initial values of the first three equations in Eq. (1). The model of fluxcontrolled memristor can thus be expressed asqM1(t;0) =f[?M1(t;0)+?M1(0)]?qM1(0), and the charge-controlled memristor?M2(t;0) =h[qM2(t;0)+qM2(0)]??M2(0), in whichqM1(0)=f[?M1(0)],?M2(0)=h[qM2(0)]. According to the actual circuit, the mathematical model of two memristors can be described as

    Here,we seta=?0.3,b=0.6,c=0.03,andd=0.02.

    According to Kirchhoff’s law and the circuit model in Fig.2,it follows that

    and the third-order differential equation

    Substituting Eq.(9)into Eq.(10),we obtain in the flux–charge domain

    Compared with the 5OM, the 3OM converts the initial values into the system parameters,thereby improving the controllability of the circuit.

    3. Symmetry sensitive to parameters

    In this section,the symmetric dynamical behavior which depends on the system parameters is analyzed. Firstly, based on the volt–ampere model (2), the symmetric coexistence bifurcation behaviors under special conditions are studied.Then, aiming at the dimensionality reduction model(12), the motions with corresponding parameters are simulated,and the differences between the above two models are compared.

    3.1. Symmetry in voltage–current domain

    For the parameters in Eq. (3) and the initial conditions(±10?9,0,0,0,0),the bifurcation diagrams and Lyapunov exponent spectrumsversus γandηare calculated and depicted in Fig.3,where the blue represents the coexisting bifurcation diagram with (10?9,0,0,0,0), red denotes the coexisting bifurcation diagram with(?10?9,0,0,0,0),two superposed bifurcation trajectories ofxmaxcan be observed. As the variation trend of Lyapunov exponent spectrums under two opposite initial conditions are almost the same,only the Lyapunov exponent spectrums at positive initial condition are exhibited in Fig.3.

    As can be seen from Fig.3,there are four symmetric motions, that is the following: ‘SP (stable point)’, ‘period(periodic state)’,‘CM(complex motion)’,and‘LP(large period)’.Forγincreasing in Fig. 3(a) andγ ∈(0.45,0.85), the system moves from SP to period, then to CM through perioddoubling bifurcation, and finally jumps to LP. Forηincreasing in Fig.3(b)andη ∈(0.65,1.95),the motion is exactly the opposite, starting from LP, then moving into CM and entering into period by reverse period-doubling bifurcation,finally dropping to SP. It should be noted that in the CM area, there appears mainly chaos with different periodic windows in the middle. Although the phase trajectories of the conventional period-1 and the large period are all limit cycles, while their Lyapunov exponents are different. When the large period appears,the minimum Lyapunov exponent will suddenly drop to an abnormally small value. In order to distinguish it between“period”and“LP”,the minimum Lyapunov exponent is used as a criterion.

    Fig.3. Bifurcation and Lyapunov exponent spectrum versus(a)γ and(b)η.

    To intuitively show the distribution characteristics of the dynamical behaviors for varying parametersγandη, the parameter mappings (γ,α) and (η,α) are depicted respectively in Fig. 4, where four colors are used to mark four motions: ‘blue-SP’, ‘orange-period’, ‘purple-CM’, and ‘yellow-LP’.From Fig.4,we can see that the symmetric characteristic still exist within the attraction basins,and it is not affected by other parameters. The whole evolution of “SP–period–CM–LP”, in positive or reverse order, can be fully presented for 1.4≤α ≤6. Ifαis less than 1.4,no matter how other parameters are changed,the circuit always goes through two states,SP and period,in which the system is extremely stable. Phase diagrams of each motion are given in Fig. 5 withα=2.66 and(10?9,0,0,0,0)as verification. When the specific chaotic signals need to be used,it is necessary to avoid fixing the parameter range within this range. It can been seen thatγandηhave good symmetry, for theGand 1/Lhave opposite trends in circuit evolution while other parameters have little effect on the symmetry.

    Fig.4. Parameter mappings with(10?9,0,0,0,0)on(a)γ–α plane and(b)η–α plane.

    Fig.5. Coexisting attractors with α =2.66 and(10?9,0,0,0,0).

    3.2. Symmetry in flux–charge domain

    After the dimensionality reduction by FCAM, the initial values are converted into the system parameters in flux–charge model(12), which can make the in-depth analysis of the heterogeneous dual memristive circuit. The original system (2)has symmetrical characteristics,which should not be changed by the dimensionality reduction model(12). To validate this,the bifurcation trajectory and Lyapunov exponent spectrums of 3OM are calculated and illustrated in Figs. 6(a) and 6(b),

    where the initial condition is (0,0,0), and the parameters are from Eq.(13).

    From Fig.6,we know that the diagrams,such as symmetric bifurcation and four motions,look similar to those in Fig.3,which means that Eq. (12) is consistent with system (1). Forγ1∈(0.45,0.5),g1=±10?9, andg2=g3=0, as shown in Fig.6(a),the corresponding maximum Lyapunov exponentL1is less than zero,and the system is in the stable state. With increasingγ1∈(0.5,0.85), the system enters into the period 1,then changes to period 2 through the period-doubling bifurcation,subsequently moves into complex motion through saddle junction bifurcation,in which several periodic windows exist,finally,suddenly jumps into a large period withL1returning to zero,andL2showing a steep drop. However,forηincreasing,η1∈(0.65,1.95), the movement trend of Fig. 6(b) is almost opposite to that of Fig.6(a).The system first moves from LP to chaos,and then enters into multi-period from the saddle junction bifurcation. Finally,it goes into period 1 through reverse period-doubling bifurcation and then remains stable.

    Comparing with the above analysis, it can be seen that the five-dimensional model in thev–idomain has been transformed into a three-dimensional model in the?–qdomain via FCAM.Although the system dimension decreases and the mathematical model changes,the dynamical behavior with the corresponding parameters does not change, and the special symmetric coexistence bifurcation still exists.

    Fig. 6. Bifurcation diagrams and Lyapunov exponent spectra for (a) γ1 ∈(0.45, 0.85)and(b)η1 ∈(0.65, 1.95).

    4. Multistability sensitive to initial conditions

    In this section, the multistability of the system with the initial values is analyzed based on the system model(Eqs.(2)and (13)), the similarities and differences among the multistable behaviors are studied through bifurcation diagrams and attraction basins.

    4.1. Bifurcation structures with initial conditions

    The different initial values each as a single variable will cause the system to exhibit bifurcation structures. The voltage–current model of the dual memristive system in Eq.(2)is described by the fifth-order equation,which has five initial conditions:x(0),y(0), andz(0) corresponding to the voltage ofC1,C2, and the current ofL, named “conventional initial value”;w(0)andv(0)corresponding to the internal variables ofM1,M2,as“memristive initial value”. To compare the influences of two kinds of initial values on multistability, the conventional initial values are firstly discussed.

    Fig. 7. Bifurcation diagrams with (a) (x(0), 0, 0, 0, 0), x(0)∈(?1.3,1.3), (b) (0, y(0), 0, 0, 0), y(0)∈(?0.5,0.5); and (c) (0, 0,z(0), 0, 0),z(0)∈(?0.7,0.7),respectively.

    Assume that the system parameters are from expression(3),then the bifurcation diagrams of the conventional initial values will be calculated and depicted in Fig. 7, where we can see that although the initial terms and the ranges of its variation are different,the system motion types look similar,i.e., the motion evolves from the LP into the chaos, then back to the LP. The structure of chaotic band in Fig. 7(a) is almost the same as that in Fig. 7(b), and the chaotic band in Fig.7(c)is like a mirror image of the structure of chaotic band in Fig. 7(a) or Fig. 7(b). The difference in the chaotic zone will cause chaotic attractors of different topological structures.Considering that three conventional initial values represent the voltage or current values of different components,it is believed that the difference in the structure of the chaotic zone is caused by the nature of each dynamic element. In addition, the corresponding Lyapunov exponents are also calculated and illustrated,where the curves are similar to those in Fig.8,since the Lyapunov exponents of the LP and chaos are (0,?,?,?,?)and(+,0,?,?,?),respectively.

    Fig. 8. Lyapunov exponent spectra with: (a) (x(0), 0, 0, 0, 0), x(0)∈(?1.3,1.3); (b) (0, y(0), 0, 0, 0), y(0)∈(?0.5,0.5); and (c) (0, 0,z(0), 0, 0),z(0)∈(?0.7,0.7),respectively.

    4.2. Multistability via voltage–current model

    In this subsection, the multistable characteristics of the system are revealed through the basin of attraction corresponding to the voltammetry model. The initial terms with different properties are selected as bivariate combinations to obtain the attraction basins as shown in Fig. 9, where dark blue, green and red color respectively represent the coexisting motions as“stable point”, “period”, and “complex motion” respectively.As the motions corresponding to the conventional initial values are similar, the motion ofxis taken for example. The periodic states include a variety of coexisting periodic states,such as coexisting left and right small period and large periodic limit cycles.

    As can be seen from Fig.9,the multistable diagrams symmetric with respect to the origin are observed,which is consistent with the system symmetric characteristic and the motion states withinx(0)∈(?1.3,1.3) in Figs. 9(a), 9(b), and 9(d)are the same as in Fig.9(a). The motion in Fig.9(a)shows a“reverse S”shape,and the state distribution in Fig.9(b)shows some distortions with respect to the origin. The chaotic attractors in Figs. 9(a) and 9(b) are mainly distributed near the origin, and the motions switch quickly. On the contrary, the distribution in Fig.9(d)is in the strip-type,i.e.,the system has a stable and wide chaotic band. Distinguishingly, the stable points disappear and the color boundary is fuzzy,which means that the system is more sensitive to the memristive initial values. From Fig.9(c), the symmetry of the motion distribution about the origin disappears in the attraction basin,meanwhile,the color boundary is more blurred and a stable fixed point appears,which indicates that the system that relies on the change of the initial value of dual memristance has more complex dynamical behavior.

    Fig.9. Attraction basins in voltage–current domain with(a)(x(0), 0, 0, w(0), 0);(b)(x(0), 0, 0, 0, v(0));(c)(0, 0, 0, w(0), v(0));and(d)(x(0), 0, z(0), 0, 0).

    In summary, the dual memristive system in Eq. (2) is more sensitive to the initial value of memristive resistance.When the conventional initial value is changed,the nonlinear behavior of the system is relatively simple,and it cannot fully reflect the multistable characteristics of the system. However,the change of the initial conditions of the memristive element causes the system to produce a variety of and even an infinite number of different types of attractors, which presents better multistable characteristics.

    4.3. Multistability via flux–charge model

    To validate the consistency between multistabilities before and after dimensionality reduction, the attraction basin in flux–charge domain is calculated by 3OM (12) and illustrated in Figs.10,12(a),and 13(a),in which eight coexistence attractor types are observed as listed in Table 1. Figure 10 shows that the symmetry with respect to the origin still exists in Fig.10(a),but the motion distribution is distorted about the origin in Fig.10(b). The initial values of circuit elements have different effects on the motion distribution,e.g., the initial value of memristor can make the system produce more coexisting structures. With the conventional initial values varying,the chaotic behaviors are observed within a larger parameter range,but the phenomenon of multistability cannot be fully reflected. Comparing with the charge-controlled memristorM2,the motion distribution of the flux-controlled memristorM1has a wide parameter range and concentrates near the origin,so the attractor structure is more stable.

    Fig.10. Two-dimensional initial value plane attraction basin for(a)uC1(0)–qM2(0)and(b)?M1(0)–qM2(0).

    Table 1. Types of attractors in different attraction domains.

    Fig.11. Chaotic attractors in planes of(a)x–z and(b)y–z.

    The existence of multistability needs to be verified by the trajectory of phase plane.The chaotic attractors of 3OM under parameters in Eq.(13)are given in Fig.11 with initial conditions(0,0,0),g1=10?9,andg2=g3=0,and the coexisting attractors are also shown in Figs. 12 and 13, where different kinds of attractors can be captured by attraction basins. In Fig. 12(a), the coexistence behavior presents an ‘S’ type. In Fig.13(a),the motion distribution looks like bands and strips,which is consistent with that observed in voltage–current domain. The evolution process of the coexisting attractor corresponding to Fig. 12(a) is given in Fig. 12(b). With the increase ofuC1(0), the system trajectory changes from a large period (type 3) to a left-side cycle 1 limit cycle (type 2), and then enters into the left-side chaotic state (type 6) after multiple period bifurcation. With the increase ofuC1(0), the left chaotic attractor changes into the right chaotic attractor(type 7), then it becomes the right cycle 1 (type 1) and eventually evolves back into a large cycle limit cycle(type 3)after multiple inverse cycle bifurcations. Similarly, the coexistent attractor change process corresponding to theuC2(0)–iL(0)twodimensional initial value plane is shown in Fig.13(b). WhenuC2(0) increases from?1 to 1, the system first stabilizes in the large-cycle state(type 3), then changes into a small cycle on the left(cycle 2,type 4),and then enters into the complex motion after bicyclic cycle bifurcation has evolved into a left chaotic attractor(type 6). Subsequently,repeating the foregoing process, the attractor structure changes again into a right chaotic attractor (type 7), and then enters into a small period state (right period 2, type 5) and eventually jumps to a large period(type 3). It should be pointed out that there is a transition state of cycle 1(types 1, 2)in the movement state of the system from large cycle to small cycle.

    Fig.12. Evolution process of corresponding coexisting attractors in attraction basin: (a)?M1(0)versus uC1(0)and(b)coexisting attractors.

    Fig.13. Evolution process of corresponding coexisting attractors in the attraction basin: (a)uC2(0)versus iL(0)and(b)coexisting attractors.

    Therefore, in contrast with 5OM (in Eq. (2)), by using 3OM(in Eq.(12)),more precise and effective discussion of infinite many coexisting attractors can be obtained for the transform from initial conditions to system parameters.The motion distribution trend of the circuit on the two-dimensional initial plane before and after dimension reduction are roughly the same,in which the multistable phenomenon shows the consistency.

    4.4. FPGA implementation of coexisting multistability

    In this subsection, equation (12) is transformed by the FCAM, which is beneficial to the study of multistability that depends on the initial values,and its hardware memristive circuit is realized via FPGA. Analog equivalent circuit is also a way to realize the chaotic system,[27]but the setting of initial conditions is not an easy task in practice.Such a digital experiment platform can set system parameters or initial values more quickly and accurately,and is suitable for implementing memristive chaotic circuits with higher precision requirements.[28]The digital implementation of the 3OM (12) is given as follows:

    The iteration stephis set to be 0.01, andKi j(i,j=1,2,3,4)are expressed as follows:

    Fig. 14. FPGA implementation, showing (a) connection diagram, (b)chaotic attractor in x–z plane.

    The physical connection diagram and the chaotic attractor are shown in Fig. 14. The trajectory is corresponding to that of in Fig.11(a),which verifies the correctness of numerical results. Subsequently, to reduce the multistability in the heterogeneous dual memristive circuit, a series of symmetrical coexistence attractors is presented in Fig.15,which physically realizes the unique multistability phenomenon as those shown in Figs.12 and 13. Therefore,the FPGA-based digital implementation of 3OM has high stability,good accuracy,and certain portability and universality.

    Fig.15. Coexisting attractors,showing(a)left-right-period 2,(b)left-right-period 3,and(c)left-right-chaos.

    5. Conclusions

    In this paper, a dual-memristor-based Chua’s circuit,which shows good symmetry and multistability,is constructed by introducing two memristors with different structures. To analyze its dynamical behaviors, such as the system mechanism and the influences of the initial conditions,two analysis models,i.e.,5OM in the voltage–current domain and 3OM in the flux–charge domain, are compared with each other. The symmetric bifurcation behaviors of the DMC are first investigated in the 5OM via parameter mappings to confirm the existence of symmetry under some special system parameters.By using the 3OM, a similar symmetry with corresponding parameters is also illustrated, which partly confirms the effectiveness and correctness of FCAM in the proposed circuit.Moreover,the multistabilities in two models are observed and compared to show the coexistence of complex multiple attractors in DMC. The reliability of FCAM is validated by both numerical simulations and FPGA implementation. For engineering applications,the analysis model selection shall depend on the practical situation.

    猜你喜歡
    張雷
    漲渡湖濕地冬韻
    A new stage of the Asian laser-induced breakdown spectroscopy community
    In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
    Measurement and analysis of species distribution in laser-induced ablation plasma of an aluminum–magnesium alloy
    黃科院田世民、呂錫芝、張雷入選水利青年拔尖人才
    人民黃河(2022年4期)2022-04-07 09:03:16
    張雷詠
    登銅雀臺
    Dynamic and inner-dressing control of four-wave mixing in periodically-driven atomic system?
    關(guān)于“見元る”的“自發(fā)”與“可能”
    耳邊不停的嘶喊
    女性天地(2018年3期)2018-03-27 09:55:22
    www.色视频.com| 成人毛片a级毛片在线播放| 色噜噜av男人的天堂激情| 九九热线精品视视频播放| 国产精华一区二区三区| 欧美极品一区二区三区四区| 亚洲一区二区三区不卡视频| 精品人妻1区二区| 亚洲国产欧洲综合997久久,| 在现免费观看毛片| 99热精品在线国产| 人妻夜夜爽99麻豆av| 久久这里只有精品中国| 国产精品久久久久久人妻精品电影| 国产69精品久久久久777片| 国产精品电影一区二区三区| av在线蜜桃| 在线免费观看的www视频| 色精品久久人妻99蜜桃| 别揉我奶头 嗯啊视频| 国产熟女xx| 久久精品人妻少妇| 免费高清视频大片| 能在线免费观看的黄片| 人人妻人人看人人澡| 国产午夜福利久久久久久| 久久久久久久久大av| 色播亚洲综合网| 蜜桃亚洲精品一区二区三区| 伊人久久精品亚洲午夜| 国产主播在线观看一区二区| 免费搜索国产男女视频| 成人av在线播放网站| 国内精品久久久久久久电影| 蜜桃久久精品国产亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲欧美98| 国产成人欧美在线观看| 又爽又黄a免费视频| 成人一区二区视频在线观看| 国产色婷婷99| 亚洲在线观看片| 中文资源天堂在线| 中文字幕人成人乱码亚洲影| 亚洲av熟女| 如何舔出高潮| 国产老妇女一区| 丰满的人妻完整版| 国产精品嫩草影院av在线观看 | 99热精品在线国产| 国产免费一级a男人的天堂| 深夜精品福利| 午夜精品久久久久久毛片777| 亚洲欧美日韩高清在线视频| 99久久久亚洲精品蜜臀av| 欧美精品国产亚洲| 最近在线观看免费完整版| 亚洲在线自拍视频| 两个人的视频大全免费| 嫩草影院精品99| 亚洲欧美激情综合另类| 色综合婷婷激情| 欧美一区二区精品小视频在线| АⅤ资源中文在线天堂| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品国产三级普通话版| 久久九九热精品免费| 午夜精品一区二区三区免费看| 亚洲一区二区三区色噜噜| 亚洲国产欧洲综合997久久,| 国产美女午夜福利| 久久精品国产亚洲av涩爱 | 乱码一卡2卡4卡精品| 在线观看免费视频日本深夜| 丰满人妻一区二区三区视频av| 久久久久九九精品影院| 99热精品在线国产| 日韩欧美精品v在线| 亚洲av第一区精品v没综合| 国产成人欧美在线观看| 国产亚洲精品久久久久久毛片| 亚洲av.av天堂| 男人的好看免费观看在线视频| 十八禁国产超污无遮挡网站| 91午夜精品亚洲一区二区三区 | aaaaa片日本免费| a级毛片a级免费在线| 欧美色欧美亚洲另类二区| 欧美日韩国产亚洲二区| 国产高清激情床上av| 久久天躁狠狠躁夜夜2o2o| 别揉我奶头 嗯啊视频| 小说图片视频综合网站| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 亚洲午夜理论影院| 午夜影院日韩av| 51午夜福利影视在线观看| 欧美极品一区二区三区四区| 永久网站在线| 深爱激情五月婷婷| 国产v大片淫在线免费观看| 黄色一级大片看看| 天堂动漫精品| 一本一本综合久久| 久久草成人影院| 内射极品少妇av片p| 亚洲 国产 在线| 亚州av有码| 久久久久国内视频| 国产精品一区二区免费欧美| 国产精品久久久久久亚洲av鲁大| 啪啪无遮挡十八禁网站| 国产大屁股一区二区在线视频| 日本黄色视频三级网站网址| 国产亚洲欧美在线一区二区| 国内精品久久久久久久电影| 欧美最新免费一区二区三区 | 中出人妻视频一区二区| 又紧又爽又黄一区二区| 欧美精品国产亚洲| 中出人妻视频一区二区| 99视频精品全部免费 在线| 免费高清视频大片| 免费在线观看亚洲国产| 婷婷亚洲欧美| 九色成人免费人妻av| 中文字幕精品亚洲无线码一区| 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 性色avwww在线观看| 国产色婷婷99| 村上凉子中文字幕在线| 最后的刺客免费高清国语| 精品国内亚洲2022精品成人| 精品人妻1区二区| 欧美激情在线99| 国产大屁股一区二区在线视频| 国产高清视频在线播放一区| 日日干狠狠操夜夜爽| 尤物成人国产欧美一区二区三区| 又粗又爽又猛毛片免费看| 免费观看人在逋| 久久伊人香网站| 日本黄色视频三级网站网址| 日本免费a在线| 别揉我奶头 嗯啊视频| 国产一级毛片七仙女欲春2| 久久久久久国产a免费观看| 美女高潮的动态| 国产白丝娇喘喷水9色精品| 色吧在线观看| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 综合色av麻豆| 一本精品99久久精品77| 午夜影院日韩av| 精品久久久久久久末码| 国产亚洲精品综合一区在线观看| 99久久精品热视频| 亚洲欧美激情综合另类| 亚洲电影在线观看av| 国产一区二区在线av高清观看| 麻豆成人午夜福利视频| 亚洲av电影不卡..在线观看| 好看av亚洲va欧美ⅴa在| 亚洲精品在线观看二区| 国产伦精品一区二区三区视频9| 精品久久国产蜜桃| 国产精品女同一区二区软件 | 国模一区二区三区四区视频| 精品一区二区三区视频在线| 成人亚洲精品av一区二区| 成人欧美大片| 一区二区三区激情视频| 亚洲一区二区三区色噜噜| 日本与韩国留学比较| 精品久久国产蜜桃| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费| а√天堂www在线а√下载| 一本精品99久久精品77| 亚洲精品成人久久久久久| 亚洲五月婷婷丁香| 亚洲欧美日韩东京热| 久久久久久久久久黄片| 亚洲人成网站在线播| 国产精品一区二区性色av| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩无卡精品| 熟女人妻精品中文字幕| 小说图片视频综合网站| 69人妻影院| 国产aⅴ精品一区二区三区波| 欧美+亚洲+日韩+国产| 色播亚洲综合网| 美女被艹到高潮喷水动态| 五月伊人婷婷丁香| 无人区码免费观看不卡| 亚洲经典国产精华液单 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲,欧美精品.| 桃色一区二区三区在线观看| 一区二区三区高清视频在线| 午夜亚洲福利在线播放| 午夜视频国产福利| 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 亚洲av二区三区四区| 麻豆国产97在线/欧美| 欧美另类亚洲清纯唯美| 精品人妻1区二区| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 亚洲激情在线av| 99久久精品国产亚洲精品| 麻豆成人av在线观看| 亚洲狠狠婷婷综合久久图片| 精品国内亚洲2022精品成人| 久久久成人免费电影| 国产成人av教育| 在线a可以看的网站| 淫秽高清视频在线观看| 久久久精品大字幕| 日韩欧美一区二区三区在线观看| 久久草成人影院| 一区二区三区激情视频| 成年女人永久免费观看视频| 最新在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 最好的美女福利视频网| 日韩 亚洲 欧美在线| 又黄又爽又免费观看的视频| 少妇的逼好多水| 国产久久久一区二区三区| 午夜福利在线在线| 最近在线观看免费完整版| 久久精品国产亚洲av涩爱 | 内射极品少妇av片p| АⅤ资源中文在线天堂| 久久人妻av系列| 少妇人妻一区二区三区视频| 久久久久性生活片| 91久久精品电影网| 一本一本综合久久| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 国产 一区 欧美 日韩| 一级a爱片免费观看的视频| av女优亚洲男人天堂| 亚洲色图av天堂| 国产一区二区三区在线臀色熟女| 免费一级毛片在线播放高清视频| 深夜精品福利| 国产综合懂色| 国产高清激情床上av| 99热这里只有是精品在线观看 | 国产日本99.免费观看| 亚洲 欧美 日韩 在线 免费| 性插视频无遮挡在线免费观看| 国产精品人妻久久久久久| 亚洲,欧美精品.| 欧美极品一区二区三区四区| 亚洲精品日韩av片在线观看| xxxwww97欧美| 欧美+亚洲+日韩+国产| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| 在线观看美女被高潮喷水网站 | 在线免费观看的www视频| 91麻豆av在线| 亚洲成人精品中文字幕电影| 两人在一起打扑克的视频| 成人av一区二区三区在线看| 亚洲最大成人手机在线| 国产视频一区二区在线看| 69人妻影院| 亚洲午夜理论影院| 哪里可以看免费的av片| 99热这里只有是精品50| 国产91精品成人一区二区三区| 国产精品久久久久久久久免 | 在现免费观看毛片| av天堂中文字幕网| 天天躁日日操中文字幕| 久久精品国产亚洲av涩爱 | 国产精品98久久久久久宅男小说| 丝袜美腿在线中文| 成人国产综合亚洲| 亚洲aⅴ乱码一区二区在线播放| netflix在线观看网站| 天堂动漫精品| 久久久精品大字幕| 波多野结衣高清作品| 尤物成人国产欧美一区二区三区| 日韩中字成人| 亚洲欧美精品综合久久99| av在线观看视频网站免费| 简卡轻食公司| 一进一出抽搐gif免费好疼| 18禁裸乳无遮挡免费网站照片| 99久久九九国产精品国产免费| 我要搜黄色片| 国产成+人综合+亚洲专区| 琪琪午夜伦伦电影理论片6080| 成人美女网站在线观看视频| 男女床上黄色一级片免费看| 九色国产91popny在线| 国产高清激情床上av| 99久国产av精品| 亚洲真实伦在线观看| 午夜精品久久久久久毛片777| 婷婷亚洲欧美| 久久久久久国产a免费观看| 一进一出抽搐动态| 国产午夜精品论理片| 精品人妻1区二区| 亚洲av第一区精品v没综合| 国产视频内射| 韩国av一区二区三区四区| 国产伦精品一区二区三区视频9| 男人和女人高潮做爰伦理| 国内久久婷婷六月综合欲色啪| 久久国产精品影院| 国产三级黄色录像| 99久久精品国产亚洲精品| 国产黄片美女视频| 一个人观看的视频www高清免费观看| 特级一级黄色大片| 一夜夜www| 好看av亚洲va欧美ⅴa在| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 淫秽高清视频在线观看| 在线观看舔阴道视频| 成人特级av手机在线观看| 免费在线观看日本一区| 亚洲国产欧美人成| 久久久久久久久中文| 琪琪午夜伦伦电影理论片6080| 欧美最黄视频在线播放免费| 国产一区二区亚洲精品在线观看| 午夜免费男女啪啪视频观看 | 久久久久久久久大av| 国产精品永久免费网站| 丰满的人妻完整版| 国产 一区 欧美 日韩| 久久久久久久久大av| 黄色丝袜av网址大全| 男女做爰动态图高潮gif福利片| 特大巨黑吊av在线直播| 午夜福利欧美成人| 亚洲男人的天堂狠狠| 国产不卡一卡二| 色av中文字幕| 国产高清激情床上av| 亚洲美女搞黄在线观看 | 亚洲国产精品sss在线观看| xxxwww97欧美| 亚洲成人中文字幕在线播放| 国产成人啪精品午夜网站| 国内揄拍国产精品人妻在线| 亚洲第一电影网av| 美女高潮喷水抽搐中文字幕| 免费观看精品视频网站| 国产精品日韩av在线免费观看| a级一级毛片免费在线观看| 变态另类丝袜制服| 日韩欧美在线乱码| 一个人免费在线观看电影| 伊人久久精品亚洲午夜| 天天躁日日操中文字幕| 中文亚洲av片在线观看爽| 性色avwww在线观看| 亚洲中文字幕日韩| 精品一区二区三区视频在线| 男人舔奶头视频| 很黄的视频免费| 99国产极品粉嫩在线观看| 久久99热6这里只有精品| 亚洲美女黄片视频| 一卡2卡三卡四卡精品乱码亚洲| 少妇被粗大猛烈的视频| 高清在线国产一区| 天堂动漫精品| 午夜免费男女啪啪视频观看 | 精品久久久久久久久av| 亚洲午夜理论影院| 日本a在线网址| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 在线天堂最新版资源| 免费观看的影片在线观看| 999久久久精品免费观看国产| 久久久国产成人免费| 在线观看av片永久免费下载| 美女高潮的动态| 亚洲成人中文字幕在线播放| 国产精品永久免费网站| 精品午夜福利在线看| 欧美性猛交╳xxx乱大交人| 在线观看舔阴道视频| 日本免费a在线| 日韩精品中文字幕看吧| 十八禁人妻一区二区| 欧美三级亚洲精品| 狂野欧美白嫩少妇大欣赏| av中文乱码字幕在线| 美女高潮的动态| 日韩中字成人| 乱码一卡2卡4卡精品| 一二三四社区在线视频社区8| 看片在线看免费视频| 国产成人福利小说| 中文资源天堂在线| 成人午夜高清在线视频| 国产视频一区二区在线看| 男人和女人高潮做爰伦理| 中文字幕av成人在线电影| 亚洲成a人片在线一区二区| 久久国产乱子免费精品| 亚洲第一电影网av| 天堂√8在线中文| 少妇的逼水好多| 制服丝袜大香蕉在线| 老熟妇乱子伦视频在线观看| 久久性视频一级片| 91午夜精品亚洲一区二区三区 | 少妇的逼水好多| 在线观看美女被高潮喷水网站 | 少妇裸体淫交视频免费看高清| 国产毛片a区久久久久| 午夜福利在线观看吧| 国产极品精品免费视频能看的| 亚洲人成电影免费在线| 2021天堂中文幕一二区在线观| 特大巨黑吊av在线直播| 黄片小视频在线播放| 啦啦啦韩国在线观看视频| 亚洲av电影在线进入| 欧美绝顶高潮抽搐喷水| 中亚洲国语对白在线视频| 欧美日韩黄片免| 国产成人aa在线观看| 啪啪无遮挡十八禁网站| 国产精品一区二区三区四区免费观看 | 可以在线观看毛片的网站| 舔av片在线| 欧美激情久久久久久爽电影| 毛片女人毛片| 日韩欧美国产一区二区入口| 成熟少妇高潮喷水视频| 亚洲18禁久久av| 真人做人爱边吃奶动态| 18禁在线播放成人免费| h日本视频在线播放| 亚洲av免费高清在线观看| 亚洲精品亚洲一区二区| 免费看日本二区| 99久久精品热视频| 国产激情偷乱视频一区二区| 日本免费a在线| 三级男女做爰猛烈吃奶摸视频| 久9热在线精品视频| av中文乱码字幕在线| 精品久久久久久成人av| 欧美精品国产亚洲| 欧美乱色亚洲激情| 十八禁人妻一区二区| 91字幕亚洲| 老司机福利观看| 久久久久久久久久黄片| 国产熟女xx| 色播亚洲综合网| 身体一侧抽搐| 久久精品国产99精品国产亚洲性色| 草草在线视频免费看| 欧美最黄视频在线播放免费| 亚洲av第一区精品v没综合| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 日韩成人在线观看一区二区三区| 亚洲人成伊人成综合网2020| 91久久精品电影网| 18禁黄网站禁片午夜丰满| 12—13女人毛片做爰片一| 69av精品久久久久久| 国产免费男女视频| 最近视频中文字幕2019在线8| 人妻丰满熟妇av一区二区三区| 深夜精品福利| 国内精品久久久久精免费| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 丁香欧美五月| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线观看二区| xxxwww97欧美| 中文字幕人成人乱码亚洲影| 夜夜躁狠狠躁天天躁| 超碰av人人做人人爽久久| 在线a可以看的网站| 狂野欧美白嫩少妇大欣赏| avwww免费| 国产精品电影一区二区三区| 99国产精品一区二区蜜桃av| 悠悠久久av| 特大巨黑吊av在线直播| 国产国拍精品亚洲av在线观看| 欧美+日韩+精品| 美女cb高潮喷水在线观看| 欧美日本亚洲视频在线播放| 久久国产精品人妻蜜桃| 国产精品自产拍在线观看55亚洲| 欧美最新免费一区二区三区 | 国产乱人伦免费视频| 国产美女午夜福利| 草草在线视频免费看| 波多野结衣巨乳人妻| 天天躁日日操中文字幕| 日韩精品青青久久久久久| 亚洲美女搞黄在线观看 | 欧美精品国产亚洲| 757午夜福利合集在线观看| 久久午夜亚洲精品久久| 精华霜和精华液先用哪个| 人妻丰满熟妇av一区二区三区| 日本a在线网址| 国产免费一级a男人的天堂| 欧美成人免费av一区二区三区| 久久人人爽人人爽人人片va | 最近视频中文字幕2019在线8| 国产老妇女一区| 两人在一起打扑克的视频| 国产91精品成人一区二区三区| 久久久久免费精品人妻一区二区| 99riav亚洲国产免费| 久久人人精品亚洲av| 国产精品一区二区免费欧美| 搡老妇女老女人老熟妇| 两个人的视频大全免费| 亚洲男人的天堂狠狠| 成人特级av手机在线观看| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 男女床上黄色一级片免费看| 欧美日韩瑟瑟在线播放| 欧美日韩福利视频一区二区| 国内揄拍国产精品人妻在线| 18+在线观看网站| 桃红色精品国产亚洲av| 少妇人妻一区二区三区视频| 99精品在免费线老司机午夜| 老鸭窝网址在线观看| 欧美又色又爽又黄视频| 国产 一区 欧美 日韩| 一个人免费在线观看电影| 两个人的视频大全免费| 国产久久久一区二区三区| 舔av片在线| 国产午夜福利久久久久久| 欧美成人免费av一区二区三区| 国产三级黄色录像| 女同久久另类99精品国产91| 欧美中文日本在线观看视频| 床上黄色一级片| 变态另类成人亚洲欧美熟女| 色视频www国产| 亚洲av成人av| 国产乱人伦免费视频| 99久久精品国产亚洲精品| 亚洲自偷自拍三级| 欧美不卡视频在线免费观看| 国内精品久久久久久久电影| 男女床上黄色一级片免费看| 伦理电影大哥的女人| 少妇人妻精品综合一区二区 | 久久伊人香网站| av在线天堂中文字幕| 三级国产精品欧美在线观看| 日韩欧美在线二视频| 最近视频中文字幕2019在线8| 国产极品精品免费视频能看的| 校园春色视频在线观看| 欧美一区二区国产精品久久精品| 欧美日韩综合久久久久久 | 久久国产精品人妻蜜桃| 两个人视频免费观看高清| 好男人电影高清在线观看| 国产大屁股一区二区在线视频| а√天堂www在线а√下载| 成人国产一区最新在线观看| 国产高清三级在线| 丝袜美腿在线中文| 亚洲一区二区三区色噜噜| 一卡2卡三卡四卡精品乱码亚洲| or卡值多少钱| 国产午夜福利久久久久久| 欧美高清性xxxxhd video| 偷拍熟女少妇极品色| 1000部很黄的大片| 在线播放国产精品三级| 99国产综合亚洲精品| 亚洲成人久久性| 精品久久久久久久久久久久久| 亚洲七黄色美女视频| 亚洲精品在线观看二区|