• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction

    2022-09-24 08:01:16RuijieWang王瑞潔QilongCui崔其龍WenZhu朱文YijieNiu牛藝杰ZhanfengLiu劉站鋒LeiZhang張雷XiaojunWu武曉君ShuangmingChen陳雙明andLiSong宋禮
    Chinese Physics B 2022年9期
    關(guān)鍵詞:張雷朱文

    Ruijie Wang(王瑞潔) Qilong Cui(崔其龍) Wen Zhu(朱文) Yijie Niu(牛藝杰) Zhanfeng Liu(劉站鋒)Lei Zhang(張雷) Xiaojun Wu(武曉君) Shuangming Chen(陳雙明) and Li Song(宋禮)

    1National Synchrotron Radiation Laboratory,University of Science and Technology of China(USTC),Hefei 230029,China

    2School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    3Department of Materials Sciences and Engineering,School of Chemistry and Materials Sciences,University of Science and Technology of China,Hefei 230026,China

    4School of Materials Science and Physics,China University of Mining and Technology,Xuzhou 221116,China

    Keywords: two-dimensional(2D)materials,in-plane anisotropy,Raman spectra

    1. Introduction

    Two-dimensional (2D) materials, such as black phosphorus,[1-3]tellurium,[4]and transition metal dichalcogenide (TMDs),[5-15]show unique in-plane electrical, magnetic, optical, and thermal anisotropy due to their anisotropy of crystal structure. These characteristics endow 2D materials great potential in a diverse angle-dependent optoelectronic application.[3,16,17]Based on the above views, the fundamental physical properties,such as polarization-dependent behavior and phonon modes, are critical for the design of highperformance devices based on 2D materials with in-plane anisotropic properties.

    As one of the 2D transition-metal oxyhalides (M=Fe,Cr, V;O= oxygen,X= F, Cl, Br, I), VOCl has been widely studied for its physical properties and applications.Among them, theoretical calculations predicted that it is a multiorbital Mott-insulator, and the bandgap is about 2 eV with high resistivity.[18-20]Recently,VOCl single-crystal have been demonstrated possess high dielectric constant[20]and strong spin-phonon coupling.[21]Besides, research on similar materials has also been carried out widely. For example,CrOCl/CrOBr monolayer have been identified as intrinsic ferromagnetic semiconductors with Curie temperatures of up to 160 K and 129 K, respectively.[22]Ultrathin ytterbium oxychloride(YbOCl)single crystals are successfully synthesized via chemical vapor deposition (CVD) method.[23]However,the intrinsic in-plane anisotropic properties of 2D VOCl still lacks in-depth research.

    Raman spectroscopy is a non-destructive method to investigate the anisotropy properties of 2D materials because it can provide structural and electronic information of characterized 2D materials with high spectral and spatial resolution together.[24-26]Using angle-resolved Raman spectroscopy,the polarization-dependent behavior of 2D materials can be exploited.[27]And temperature-dependent Raman spectroscopy can show the temperature effect of the phonon mode and enables us to further understand the atomic structure,valence bond, electrical, and thermal properties of the material being studied.[28,29]Furthermore the thickness-dependent Raman spectra can also reflect influence of 2D materials interlayer force on phonon and photon vibrational modes.

    Herein, we synthesized the single crystal of VOCl by the chemical vapor transport (CVT) method successfully, the polarization-dependent behavior of VOCl is detected by using polarized Raman scattering on the (001) crystal plane,then the strong in-plane vibrational anisotropy of 2D VOCl is demonstrated. The Raman peaks are shown in the range of 100 cm-1-500 cm-1, and nuclear site group theory is used to distinguish the different Raman modes correspond to peaks. The temperature-dependent Raman experiment is performed to study the lattice vibrational behavior and showed the phonon modes change at 150 K. The corresponding Raman spectra of VOCl flakes with different thickness indicate the weak interlayer van der Waal interaction in VOCl crystals.[30]This work could provide useful information for the convenience of 2D materials in the field research of electronics and optics.

    2. Experiment details

    2.1. Synthesis of VOCl

    The VOCl single crystal was prepared by the CVT method. Firstly, the V2O3powders were synthesized by annealing the V2O5(99%,Aldrich)in Ar/H2(10%)atmosphere with a flow rate of 100 sccm,the furnace was heated to 600°C in 60 min, and kept at this temperature for 30 min, then the temperature rose to 900°C in 30 min and hold for 2 hours,the furnace was cooled down naturally. Secondly,in the glove box, the V2O3and VCl3(99%, Aldrich) were weighed in a stoichiometric ratio and placed in a quartz glass tube,then the tube was taken out, evacuated to 6×10-3Pa, and sealed by propane and oxygen gas. Thirdly, this tube was put in a twozone furnace with a temperature gradient of 850°C-750°C and held for 5 days. After natural cooling,single-crystal samples can be obtained.

    2.2. Transfer and characterizations

    The VOCl crystal was mechanically exfoliated by scotch tape and transferred to 300-nm SiO2/Si substrate with PDMS.The size, morphology, and thickness of as-grown VOCl samples were characterized by OM (Olympus BX53-P) and AFM (Bruker Dimension Icon). Raman and PL spectra were obtained from a confocal microscope Raman spectrometer (HORIBA LabRAM HR-800, 532-nm excitation laser with 1 mW). The high-resolution TEM (HRTEM) and corresponding SAED analyses were performed on a JEOL(JEMARF200F TEM). The x-ray absorption fine structure(XAFS)spectra were collected in the Beijing Synchrotron Radiation Facility(1W1B,BSRF)to detect the VK-edges. The x-ray was monochromatized by an Si(111)monochromator.

    3. Results and discussion

    3.1. Characterization of synthesized VOCl

    Fig.1. Synthesis and characterization of VOCl single crystals. (a)The crystal structure of VOCl under side and top views. (b)Powder x-ray pattern of the VOCl crystals. (c)The TEM image of VOCl crystals,scale bar: 2 nm. And the selective area electron diffraction of VOCl,scale bar: 5 1/nm. (d)The corresponding Fourier transforms FT(k3χ(k))and the first shell fitting of Fourier transform of XAFS spectra(V-V,V-O,and V-V)for VOCl. (e)Raman spectra of VOCl at 93 K.

    Figure 1(c) show the transmission electron microscopy(TEM) image and the selective area electron diffraction(SAED) spots of VOCl, which reveals the arrangement of atoms on the(101)-basal plane,the lattice spacing of the crystal planes of(101)can be measured at 0.324 nm. Meanwhile,the SAED spots reflects the high crystallinity of VOCl. Besides, the (200), (220), and (020) planes are confirmed from the[001]zone axis.

    In addition,x-ray absorption fine structure(XAFS)is also used to determine the crystal structure of VOCl(see Section 2 for XAFS experimental parameters). The XAFS results of VOCl,V2O3and VO2single crystals(see Fig.S1)show that,with the V2O3and VO2as references,the absorption edge of V shifts to lower energies, indicating the V valence state is about+3. The coincidence of its fourier transform spectra of extended XAFS (V-O, V-Cl, and V-V) and first shell fitting results(Fig.1(d))indicate the correct judgment in structure of VOCl. And the structural parameters of the calculation show in Table S1. Figure 1(e) shows the identified three Raman modes at 93 K(see section 2 for Raman experimental parameters). The three peaks at around 200 cm-1, 383 cm-1, and 402 cm-1can be assigned toAgmodes. These three modes are ascribed to the stretching vibrations of V-Cl bonds.[31]The absence ofBgmodes might be the weak electron-phonon interactions.[32]TheAgandBgare Raman-active phonons,see Subsection 3.2 for their specific meanings.

    3.2. Angle-dependent polarized Raman spectra

    Raman spectrum contains abundant information of crystal structural orientation and phonon vibration.[33]The Raman scattered intensity can be described as

    Fig.2. The angle-resolved Raman spectroscopy of VOCl. (a)The contour colour map of Raman intensities under the parallel configuration. (b)The contour colour map of Raman intensities under the vertical configuration. (c)-(f)Polar plots of the Raman intensity change with respect to rotation angle.

    The incident laser parallels with thecaxis of the crystal,which is polarized along theaaxis or baxis of the crystal. In the laboratory frameXYZ,theZaxis coincides with thecaxis. The Raman tensor can be described as The intermediate matrix is the Raman tensor of VOCl crystal,which is correspond to theAgandBg. In the laboratory frame,the Raman tensor elements can be given by

    Table 1.Under parallel and vertical scattering geometries,the anisotropic Raman scattering intensity for two vibrational modes in layered VOCl sample.

    The Raman peak intensity in the parallel scattering geometry isIS∝|αXX|2, and the Raman peak intensity in the vertical scattering geometry isIS∝|αXY|2. Accordingly,the relationship between Raman peak intensity and angle forAgandBgmodes under parallel and vertical polarizations is listed in Table 1.

    To verify the above calculation results,the angle-resolved Raman spectroscopy experiments were carried out by rotating VOCl samples, and the results are shown in Fig. 2. It can be seen from Figs. 2(a) and 2(b) that the contour colour map of Raman intensities with rotation angles changing from 0°to 360°at a step of 10°. Under the parallel configuration,A1gandA2gmodes have two maxima values at 0°and 180°. The intensity ofA3gis too weak to be distinguished,but the evolution period ofA3gis same as those ofA1gandA2gmodes. Under vertical configuration,A1gandA2gmodes have four maxima values at 45°, 135°, 225°, and 315°, respectively. The evolution periods ofA1gandA2gmodes areπ/2. Besides, figures 2(c)-2(f)shows the polar plots ofA1gandA2gmodes Raman position in parallel and perpendicular polarization configuration,in which the black dots are experimental values and the red lines represent the fitting result based on the above equations.A1gandA2gpeaks show a 2-lobed shape in parallel polarization configuration but a 4-lobed shape in vertical configuration. This is consistent with the calculation in Table 1. The above results indicate that the polarized Raman intensities of VOCl are dependent on the crystal structural orientation.

    3.3. Temperature-dependent Raman spectra

    In addition, temperature-dependent Raman spectroscopy is highly important for further research of lattice vibration behavior. The contour colour map of low layer VOCl is shown in Fig.3(a). Three modes peaksA1g,A2g,andA3gcan be distinguished. The temperature ranges of the experiment are from 93 K to 453 K with a step of 30 K. With the increase of temperature, the intensity of the Raman peak weakens obviously,which is probably because the anharmonic coupling ofAgmodes are enhanced and Raman activity of the vibratory group is limited.[33]In addition to Raman peak intensity, the shift of the Raman peak position also contains a lot of information. To observe the shift of the Raman peak, figure 3(b)shows the enlarged view of offset in theA1g-A3gpeaks at different temperatures. It can be clearly seen that all three peaks show red-shift with the temperature going up,which is similar to experimental results from TMDs.[35-37]This shift is usually caused by electron-phonon,anharmonic phonon-phonon interaction and thermal expansion.[38,39]

    Fig.3. Temperature-dependent Raman spectra of VOCl sample. (a)The contour colour map of temperature-dependent Raman spectra. (b)The typical modes for Raman peak positions as a function of temperature. (c)The first-order temperature coefficient fitting of Raman peaks. (d)The temperature-dependent FWHM of A1g,A2g,and A3g modes for the Raman peaks of 2D VOCl.

    The temperature-dependence ofA1g,A2g, andA3gphonon frequencies are linear,which can be fitted below:

    whereω0is the phonon frequency of vibration modes at zero Kelvin temperature, andχis the first-order temperature coefficient, which can be obtained from the slope of the fitted straight line. As shown in Fig.3(c),the fitted first-order temperature coefficientχforA1g,A2g,andA3gmodes are estimated as-0.00779,-0.01509,and-0.02086 cm-1/K,respectively.It is indicated thatA3gmodes are more sensitive to temperature. Moreover, the first-order temperature coefficient is proportional to the interlayer forces. The reported temperature coefficients of common two-dimensional materials are sorted out in Table S2.[38,40,41]Inferring that the interlayer forces of VOCl are similar to the TMDs system. This conclusion was also supported by the subsequent VOCl stripping process.

    Meanwhile,the temperature-dependent full width at half maximum(FWHM)ofA1g,A2g,andA3gmodes were examined as shown in Fig.3(d).The broadening of phonon modes in Raman spectroscopy is the result of an optical phonon decaying into two distinct phonons caused by anharmonic forces in the crystal. Thus, the phonon lifetime is inversely proportional to the FWHM of the Raman peak.[42]With the increase of temperature,the FWHM of vibration modes increase linearly,indicating that the phonon lifetime (phonon relaxation time)decreases with the increasing temperature.[43]

    3.4. Thickness-dependent optical properties

    When the crystal has strong interlayer forces, thickness reduction also modulates the electron-phonon interaction, which appears as different vibrational bands in Raman spectra.[44]In order to investigate the interlayer forces of VOCl crystal. We conducted Raman test on VOCl with different thicknesses. The atomic force microscope(AFM)tests in Fig. 4(a) show that 2D VOCl flakes with thickness of 1.9 nm(two layer),4.7 nm(five layer),9.3 nm(ten layer),and 18.6 nm (twenty layer) were successfully exfoliated on 300-nm SiO2/Si. The optical images of VOCl single crystal with different thicknesses are shown in Fig. S2. The corresponding Raman spectra of VOCl flakes with different thicknesses are shown in Fig. 4(b). This can be seen by contrast with bulk crystal, the vibration frequencies ofA1g(201.0 cm-1),A2g(383.8 cm-1), andA3g(402.9 cm1) do not change with the thickness of VOCl flakes,indicating the interlayer van der Waal interaction in VOCl crystal is weak.

    Fig.4. (a)AFM images and corresponding curve of cross profiles of different VOCl samples,scale bar: 5 nm. (b)The Raman spectra of VOCl with several thicknesses.

    4. Conclusions

    In summary, we have successfully prepared 2D VOCl crystal and investigated its crystal structure and in-plane photon anisotropy. Employing the angle-dependent polarization Raman scattering experiment, the Raman peaks (A1g,A2g, andA3g) which belong toAgvibrational modes are determined,and the specific shape shown in polar plots of the Raman intensity change with respect to rotation angle is consistent with the calculation. The temperature co-efficient forA1g,A2g, andA3gmodes were estimated as-0.00779 cm-1/K,-0.01509 cm-1/K,and-0.02086 cm-1/K,respectively. The FWHM of different Raman modes in VOCl is observed to increase with temperature. Finally, the Raman spectra of 2D VOCl layers with different thicknesses are presented, three Raman peaks show little shift with thickness changes,proving the weak van der Waals force exists between layers of VOCl crystals. Based on the above experiments, this study could provide useful information for accelerating specific applications of 2D materials in the field of electronics and optics.

    Acknowledgements

    Project financially supported by National Natural Science Foundation of China(Grant No.U1932201),the International Partnership Program(Grant No.211134KYSB20190063),the CAS (Chinese Academy of Sciences) Collaborative Innovation Program of Hefei Science Center (Grant No. 2020HSCCIP002), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2020-002), the Youth Innovation Promotion Association of CAS (Grant No. 2022457), and the USTC Research Funds of the Double First-Class Initiative(YD2310002004).

    We thank the Shanghai Synchrotron Radiation Facility(14W1 and 14B1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B, 4W1B, and 4B9A, BSRF), the Hefei Synchrotron Radiation Facility (MCD-A and MCD-B Soochow Beamline for Energy Materials, Catalysis/Surface Science Endstations at NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for helps in characterizations.

    猜你喜歡
    張雷朱文
    漲渡湖濕地冬韻
    Measurement and analysis of species distribution in laser-induced ablation plasma of an aluminum–magnesium alloy
    黃科院田世民、呂錫芝、張雷入選水利青年拔尖人才
    人民黃河(2022年4期)2022-04-07 09:03:16
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    Heterogeneous dual memristive circuit: Multistability,symmetry,and FPGA implementation?
    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    Dynamic and inner-dressing control of four-wave mixing in periodically-driven atomic system?
    關(guān)于“見(jiàn)元る”的“自發(fā)”與“可能”
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    国产精品一二三区在线看| 亚洲av一区综合| 波多野结衣巨乳人妻| 亚洲人与动物交配视频| 亚州av有码| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩高清专用| 黄色视频,在线免费观看| 国产亚洲5aaaaa淫片| 一本精品99久久精品77| 亚洲国产精品成人久久小说 | 又爽又黄无遮挡网站| 国产黄a三级三级三级人| 大型黄色视频在线免费观看| 欧美激情国产日韩精品一区| 国产高清三级在线| 国产人妻一区二区三区在| 国产精品国产三级国产av玫瑰| 中文字幕av成人在线电影| 亚洲欧美日韩东京热| 久久久久久久亚洲中文字幕| 国产人妻一区二区三区在| 欧美激情在线99| 热99在线观看视频| 国产伦一二天堂av在线观看| 亚洲精品乱码久久久v下载方式| 国产片特级美女逼逼视频| 国产精品爽爽va在线观看网站| 免费看a级黄色片| 日本成人三级电影网站| 日韩大尺度精品在线看网址| 国产片特级美女逼逼视频| 免费电影在线观看免费观看| 91午夜精品亚洲一区二区三区| 国产精品国产高清国产av| 国产精品永久免费网站| 国产精品无大码| 全区人妻精品视频| 黄色日韩在线| 欧美最新免费一区二区三区| 久久久久免费精品人妻一区二区| 一级av片app| 人妻少妇偷人精品九色| 欧美在线一区亚洲| 亚洲欧洲国产日韩| 身体一侧抽搐| 午夜福利高清视频| 日韩欧美国产在线观看| 亚州av有码| 插阴视频在线观看视频| 久久久久久久久久黄片| 亚洲国产高清在线一区二区三| 人妻少妇偷人精品九色| 国产精品精品国产色婷婷| 美女国产视频在线观看| 日韩精品青青久久久久久| 黄色日韩在线| 国内精品久久久久精免费| 干丝袜人妻中文字幕| 嫩草影院入口| 久久精品国产清高在天天线| 精品一区二区三区人妻视频| 别揉我奶头 嗯啊视频| 男人的好看免费观看在线视频| 噜噜噜噜噜久久久久久91| 亚洲成人中文字幕在线播放| 日本黄色视频三级网站网址| 国产激情偷乱视频一区二区| 亚洲精品456在线播放app| 午夜亚洲福利在线播放| 久久这里只有精品中国| 插逼视频在线观看| 伦精品一区二区三区| 一边亲一边摸免费视频| h日本视频在线播放| 波野结衣二区三区在线| 在线观看免费视频日本深夜| 国产一级毛片七仙女欲春2| 久久久久久九九精品二区国产| 久久欧美精品欧美久久欧美| 亚洲自拍偷在线| 九九久久精品国产亚洲av麻豆| 久久这里只有精品中国| 亚洲av免费在线观看| 波多野结衣高清作品| 国产视频首页在线观看| 一个人免费在线观看电影| 91在线精品国自产拍蜜月| 久久6这里有精品| 毛片女人毛片| 最近的中文字幕免费完整| 国产亚洲欧美98| 老司机福利观看| 中文字幕人妻熟人妻熟丝袜美| 国产在线精品亚洲第一网站| 麻豆一二三区av精品| 日韩国内少妇激情av| 国产高清不卡午夜福利| 成人毛片60女人毛片免费| 亚洲精品乱码久久久久久按摩| 2022亚洲国产成人精品| 成人国产麻豆网| 日韩欧美三级三区| 欧美一区二区亚洲| 一区二区三区四区激情视频 | 91久久精品国产一区二区成人| 六月丁香七月| 久久午夜亚洲精品久久| 免费在线观看成人毛片| 内地一区二区视频在线| 国产亚洲av片在线观看秒播厂 | 国产爱豆传媒在线观看| 最好的美女福利视频网| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看av片永久免费下载| 久久99蜜桃精品久久| 菩萨蛮人人尽说江南好唐韦庄 | 国内少妇人妻偷人精品xxx网站| 亚洲激情五月婷婷啪啪| 成人国产麻豆网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人精品久久久久久| 久久热精品热| 色噜噜av男人的天堂激情| 亚洲av男天堂| 天堂√8在线中文| 乱人视频在线观看| 亚洲精品影视一区二区三区av| 国产亚洲av嫩草精品影院| 成人鲁丝片一二三区免费| 日韩大尺度精品在线看网址| 日韩国内少妇激情av| 三级国产精品欧美在线观看| 亚洲精品成人久久久久久| 久久婷婷人人爽人人干人人爱| 男女边吃奶边做爰视频| 免费观看人在逋| 亚洲精品国产av成人精品| 久久精品国产亚洲网站| 高清在线视频一区二区三区 | 美女 人体艺术 gogo| 如何舔出高潮| 精品久久久久久久久久免费视频| 日韩一区二区视频免费看| 欧美人与善性xxx| 两个人的视频大全免费| 国产一区二区三区av在线 | 麻豆精品久久久久久蜜桃| 亚洲精品乱码久久久v下载方式| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 亚洲激情五月婷婷啪啪| 99热网站在线观看| 成人漫画全彩无遮挡| 久久国内精品自在自线图片| 午夜福利成人在线免费观看| a级一级毛片免费在线观看| 大香蕉久久网| 大型黄色视频在线免费观看| 精品一区二区免费观看| 国产一区二区在线av高清观看| 少妇猛男粗大的猛烈进出视频 | 91精品国产九色| 亚洲在线观看片| 国产精品国产高清国产av| 不卡一级毛片| 国产高清激情床上av| 黄色视频,在线免费观看| 亚洲四区av| 久久精品久久久久久久性| 亚洲av免费高清在线观看| 一边摸一边抽搐一进一小说| 麻豆乱淫一区二区| 99热这里只有精品一区| 中文字幕av在线有码专区| 变态另类成人亚洲欧美熟女| 欧美又色又爽又黄视频| 久久久久久伊人网av| 国产一区二区三区在线臀色熟女| 亚洲五月天丁香| 国产黄色视频一区二区在线观看 | 男人狂女人下面高潮的视频| 如何舔出高潮| 赤兔流量卡办理| 国产一级毛片七仙女欲春2| 看非洲黑人一级黄片| 丰满乱子伦码专区| 精品欧美国产一区二区三| 国产乱人偷精品视频| 黄色一级大片看看| 免费看a级黄色片| 长腿黑丝高跟| 欧美xxxx黑人xx丫x性爽| 99热这里只有精品一区| 久久亚洲国产成人精品v| 成人毛片a级毛片在线播放| 婷婷六月久久综合丁香| 综合色av麻豆| 精品久久久久久久末码| 男人狂女人下面高潮的视频| 赤兔流量卡办理| 22中文网久久字幕| 久久久久久伊人网av| 天美传媒精品一区二区| 乱系列少妇在线播放| 在线播放国产精品三级| 麻豆成人av视频| 日韩人妻高清精品专区| 亚洲av免费在线观看| 午夜福利在线观看吧| 美女 人体艺术 gogo| 如何舔出高潮| 精品久久久久久久人妻蜜臀av| 在线观看66精品国产| 国产精品无大码| 99九九线精品视频在线观看视频| 国产黄色视频一区二区在线观看 | 99久久成人亚洲精品观看| 特级一级黄色大片| 日韩一本色道免费dvd| 色吧在线观看| 日韩av在线大香蕉| 夜夜夜夜夜久久久久| av专区在线播放| 亚洲电影在线观看av| 看非洲黑人一级黄片| 偷拍熟女少妇极品色| 青春草国产在线视频 | 非洲黑人性xxxx精品又粗又长| 最近视频中文字幕2019在线8| 久久午夜福利片| 亚洲av电影不卡..在线观看| 国产午夜精品一二区理论片| 三级男女做爰猛烈吃奶摸视频| 日日啪夜夜撸| 美女国产视频在线观看| 亚洲国产欧美人成| 亚洲精品国产av成人精品| 91精品国产九色| 国产探花极品一区二区| 亚洲乱码一区二区免费版| 欧美一区二区国产精品久久精品| 性色avwww在线观看| 久久精品国产亚洲av天美| 伊人久久精品亚洲午夜| 亚洲精品日韩在线中文字幕 | 99久久人妻综合| 伦理电影大哥的女人| 亚洲国产精品sss在线观看| 日本av手机在线免费观看| 狂野欧美白嫩少妇大欣赏| 18+在线观看网站| 久久精品人妻少妇| av又黄又爽大尺度在线免费看 | 精品一区二区免费观看| 高清日韩中文字幕在线| 免费观看在线日韩| 国产一区二区在线av高清观看| 我要搜黄色片| 亚洲天堂国产精品一区在线| 男人狂女人下面高潮的视频| 国产探花在线观看一区二区| 在线观看免费视频日本深夜| 亚洲欧美成人综合另类久久久 | 亚洲精品粉嫩美女一区| 一级毛片我不卡| 免费黄网站久久成人精品| 色5月婷婷丁香| 亚洲欧美精品专区久久| 91久久精品国产一区二区三区| 午夜激情欧美在线| 日韩视频在线欧美| 人妻夜夜爽99麻豆av| 久久这里只有精品中国| 欧美日韩乱码在线| 精品日产1卡2卡| 久久鲁丝午夜福利片| 男人舔奶头视频| 精品99又大又爽又粗少妇毛片| 国产综合懂色| 身体一侧抽搐| 久久婷婷人人爽人人干人人爱| 亚洲精品影视一区二区三区av| 午夜福利成人在线免费观看| 搞女人的毛片| 亚洲成人精品中文字幕电影| av视频在线观看入口| 久久精品国产99精品国产亚洲性色| 久久精品国产亚洲av涩爱 | 国产视频内射| 久久久久免费精品人妻一区二区| 久久人人精品亚洲av| 国产精品精品国产色婷婷| 久久99热6这里只有精品| 亚洲国产日韩欧美精品在线观看| 亚洲av中文av极速乱| 国产视频首页在线观看| 最近2019中文字幕mv第一页| 亚洲欧美成人精品一区二区| 中文欧美无线码| 一夜夜www| 国产精品蜜桃在线观看 | 看免费成人av毛片| 午夜福利在线在线| 精品一区二区免费观看| 国产高清有码在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女| 久久久久久久久久黄片| 亚洲欧美中文字幕日韩二区| 一级毛片aaaaaa免费看小| 男的添女的下面高潮视频| 国产一区二区激情短视频| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久人妻蜜臀av| 久久精品人妻少妇| 亚洲国产欧美人成| 秋霞在线观看毛片| 国产午夜精品论理片| 久久99蜜桃精品久久| 国产黄片视频在线免费观看| 久久精品久久久久久久性| www.av在线官网国产| 91麻豆精品激情在线观看国产| 一本一本综合久久| av专区在线播放| 国产精品福利在线免费观看| av在线播放精品| 中文在线观看免费www的网站| 高清午夜精品一区二区三区 | 久久久精品大字幕| 一区二区三区高清视频在线| 色哟哟·www| 干丝袜人妻中文字幕| 人人妻人人澡人人爽人人夜夜 | 国产伦精品一区二区三区四那| 日本黄大片高清| 97在线视频观看| 亚洲成a人片在线一区二区| 成年版毛片免费区| 在线免费观看的www视频| 日本一二三区视频观看| 免费人成在线观看视频色| 男女啪啪激烈高潮av片| 欧美性感艳星| 国产91av在线免费观看| 国产黄片美女视频| 久久精品影院6| 啦啦啦啦在线视频资源| 欧美+日韩+精品| 久久99热这里只有精品18| 久99久视频精品免费| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 六月丁香七月| 精品久久久久久久久久免费视频| 中文亚洲av片在线观看爽| 日韩制服骚丝袜av| 亚洲四区av| 特级一级黄色大片| 最新中文字幕久久久久| 国产高清有码在线观看视频| 老女人水多毛片| 国产精品久久久久久亚洲av鲁大| 卡戴珊不雅视频在线播放| 十八禁国产超污无遮挡网站| 久久精品人妻少妇| av卡一久久| 欧美最黄视频在线播放免费| 久久99蜜桃精品久久| 亚洲精品久久国产高清桃花| 美女被艹到高潮喷水动态| www日本黄色视频网| 一本久久精品| 久久久久久久久中文| 看非洲黑人一级黄片| 男人的好看免费观看在线视频| 国产成人午夜福利电影在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲精品影视一区二区三区av| 精品国内亚洲2022精品成人| 人人妻人人澡欧美一区二区| 亚洲va在线va天堂va国产| 国产亚洲精品av在线| 国内揄拍国产精品人妻在线| 国产老妇伦熟女老妇高清| 欧美+日韩+精品| 亚洲av成人av| 国产精品伦人一区二区| 成人特级黄色片久久久久久久| 色综合站精品国产| 99久国产av精品| 国产熟女欧美一区二区| 一边亲一边摸免费视频| 国产日本99.免费观看| 精品不卡国产一区二区三区| 丰满乱子伦码专区| 国产av一区在线观看免费| 神马国产精品三级电影在线观看| 99久久无色码亚洲精品果冻| 欧美一级a爱片免费观看看| 久久久午夜欧美精品| 校园人妻丝袜中文字幕| 免费在线观看成人毛片| av福利片在线观看| 中文字幕熟女人妻在线| 欧美极品一区二区三区四区| 男的添女的下面高潮视频| 一个人免费在线观看电影| 国产亚洲av片在线观看秒播厂 | 一边亲一边摸免费视频| 亚洲欧美精品综合久久99| 亚洲在久久综合| 久久99热这里只有精品18| 国产人妻一区二区三区在| 看免费成人av毛片| 欧美精品国产亚洲| 老司机福利观看| 男女啪啪激烈高潮av片| 欧美zozozo另类| 99热精品在线国产| 久久99蜜桃精品久久| 97热精品久久久久久| 小蜜桃在线观看免费完整版高清| 日韩精品有码人妻一区| 国产淫片久久久久久久久| 国产精品一区二区三区四区免费观看| 久久精品综合一区二区三区| 日本三级黄在线观看| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 国产免费男女视频| 长腿黑丝高跟| 亚洲第一电影网av| 日本五十路高清| 日本一二三区视频观看| 日韩国内少妇激情av| 久久人人爽人人爽人人片va| 欧美丝袜亚洲另类| 婷婷精品国产亚洲av| 亚洲国产欧美人成| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 91午夜精品亚洲一区二区三区| 一个人观看的视频www高清免费观看| 99久久精品一区二区三区| av免费在线看不卡| 性欧美人与动物交配| 亚洲国产高清在线一区二区三| 最近中文字幕高清免费大全6| a级一级毛片免费在线观看| 99久久中文字幕三级久久日本| 成人鲁丝片一二三区免费| 不卡一级毛片| 日本av手机在线免费观看| 免费观看精品视频网站| 成人国产麻豆网| 99热全是精品| av天堂中文字幕网| 欧美性感艳星| 国产成人a区在线观看| 久久国产乱子免费精品| 一本久久中文字幕| 大香蕉久久网| 听说在线观看完整版免费高清| 日韩视频在线欧美| 久久亚洲精品不卡| 午夜激情福利司机影院| 国产高清不卡午夜福利| 亚洲av一区综合| 大又大粗又爽又黄少妇毛片口| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人精品二区| 边亲边吃奶的免费视频| 97热精品久久久久久| 内射极品少妇av片p| 亚洲国产欧美人成| 亚洲av成人精品一区久久| 精品国产三级普通话版| 三级毛片av免费| 国语自产精品视频在线第100页| 麻豆国产97在线/欧美| av在线老鸭窝| 国产 一区精品| 午夜爱爱视频在线播放| 亚洲色图av天堂| 校园人妻丝袜中文字幕| 国产日韩欧美在线精品| 国产精品av视频在线免费观看| 99久国产av精品| 大型黄色视频在线免费观看| 日韩欧美精品免费久久| 九草在线视频观看| 综合色av麻豆| 国产伦精品一区二区三区四那| 亚洲av免费在线观看| 女的被弄到高潮叫床怎么办| 神马国产精品三级电影在线观看| 在线免费十八禁| 欧美日韩一区二区视频在线观看视频在线 | 国产麻豆成人av免费视频| 国产一级毛片七仙女欲春2| 丝袜美腿在线中文| 日韩国内少妇激情av| 免费看美女性在线毛片视频| 99热精品在线国产| 丰满人妻一区二区三区视频av| 特大巨黑吊av在线直播| 日本色播在线视频| 国产精品一二三区在线看| 国产精品久久久久久亚洲av鲁大| 能在线免费观看的黄片| 亚洲中文字幕一区二区三区有码在线看| 69av精品久久久久久| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 99久久中文字幕三级久久日本| 在线播放国产精品三级| 成人国产麻豆网| 成人亚洲精品av一区二区| www日本黄色视频网| 国产视频内射| 亚洲精品自拍成人| 熟女人妻精品中文字幕| 1000部很黄的大片| 国产真实乱freesex| 国产爱豆传媒在线观看| 99久久精品国产国产毛片| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人综合色| www.av在线官网国产| 一级毛片久久久久久久久女| 亚洲无线观看免费| 中文字幕熟女人妻在线| kizo精华| 国产视频首页在线观看| 国内精品久久久久精免费| 深夜精品福利| 精品久久久久久久久久免费视频| 99久久中文字幕三级久久日本| 蜜桃久久精品国产亚洲av| 中文欧美无线码| 日韩 亚洲 欧美在线| 又粗又爽又猛毛片免费看| 国产中年淑女户外野战色| 日韩欧美 国产精品| 国产精品久久久久久精品电影小说 | 久久精品国产自在天天线| 成人亚洲精品av一区二区| 久久国产乱子免费精品| 晚上一个人看的免费电影| 97人妻精品一区二区三区麻豆| 国产精品日韩av在线免费观看| 日韩一区二区视频免费看| 国国产精品蜜臀av免费| 国产欧美日韩精品一区二区| 男女边吃奶边做爰视频| 成人一区二区视频在线观看| 床上黄色一级片| 欧美高清成人免费视频www| 久久精品综合一区二区三区| 国产成人午夜福利电影在线观看| 久久久久久大精品| 99久久精品一区二区三区| 九色成人免费人妻av| 联通29元200g的流量卡| a级毛片免费高清观看在线播放| 成人欧美大片| 激情 狠狠 欧美| 91狼人影院| 日韩成人av中文字幕在线观看| 特级一级黄色大片| 欧美zozozo另类| 在线a可以看的网站| 国产成人影院久久av| 亚洲欧美精品自产自拍| 国产美女午夜福利| 国产成人精品久久久久久| 成人性生交大片免费视频hd| 波多野结衣高清无吗| 婷婷色av中文字幕| 欧美日韩在线观看h| 特大巨黑吊av在线直播| 色综合亚洲欧美另类图片| 中文字幕人妻熟人妻熟丝袜美| 国产成年人精品一区二区| 丝袜喷水一区| 国产亚洲91精品色在线| 亚洲av中文字字幕乱码综合| 乱人视频在线观看| 国内精品一区二区在线观看| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 午夜爱爱视频在线播放| 国产极品天堂在线| 国产精品蜜桃在线观看 | 99久久无色码亚洲精品果冻| 一级黄色大片毛片| 国产精品久久久久久精品电影小说 | 好男人视频免费观看在线| 成人特级黄色片久久久久久久| 能在线免费观看的黄片| 只有这里有精品99| 欧美另类亚洲清纯唯美| 高清日韩中文字幕在线| 国产探花在线观看一区二区| 久久久久久大精品| 久久精品国产亚洲av涩爱 | 国产黄片美女视频| 精品欧美国产一区二区三| 久久欧美精品欧美久久欧美| 欧美成人精品欧美一级黄| 日韩欧美一区二区三区在线观看| 天堂网av新在线|