• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discontinuous and continuous transitions of collective behaviors in living systems?

    2021-12-22 06:41:04XuLi李旭TingtingXue薛婷婷YuSun孫宇JingfangFan樊京芳HuiLi李輝MaoxinLiu劉卯鑫ZhangangHan韓戰(zhàn)鋼ZengruDi狄增如andXiaosongChen陳曉松
    Chinese Physics B 2021年12期
    關(guān)鍵詞:李輝

    Xu Li(李旭) Tingting Xue(薛婷婷) Yu Sun(孫宇) Jingfang Fan(樊京芳) Hui Li(李輝)Maoxin Liu(劉卯鑫) Zhangang Han(韓戰(zhàn)鋼) Zengru Di(狄增如) and Xiaosong Chen(陳曉松)

    1School of Systems Science,Beijing Normal University,Beijing 100878,China

    2Institute of Nonequilibrium Systems,Beijing Normal University,Beijing 100878,China 3School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

    Keywords: living systems,phase emergence,phase transitions,eigen mircostate

    1. Introduction

    Collective behaviors are the most important properties of systems consisting of many individuals. Collective motion of large groups of individuals is a truly fascinating collective behavior in living systems and was observed in starlings,[1–3]bacterial communities,[4,5]ant colonies,[6,7]locusts,[8]midges,[9,10]sheep,[11]etc. While detailed case studies are preferred in general by biologists,[8,12,13]physicists usually seek for universal features behind seemingly diverse observations and the models sufficient to capture the fundamental features[14]to find the fundamental principles of collective motion.

    It is the mission of statistical physics to connect the microscopic properties of individual with the macroscopic behavior using the probability theory and statistics.[15–17]In addition, the studies of phase transitions and critical phenomena[18]need to identify order-parameters in advance.

    As a prototype model of collective motion in living systems,the standard Viscek model(SVM)[19]was introduced.In the original work of SVM,it was claimed that phase transition of collective motion is continuous. But this was challenged later by Chat′eet al.[20,21]They showed that the continuous nature observed is actually due to finite-size effects and the phase transition is discontinuous. Since the precise order-parameter of collective motion is unknown and no systematic analysis of finite-size scaling has been made, these results about the nature of phase transitions until now are not conclusive.

    In an eigen microstate approach developed recently,[22,23]collective behaviors of systems are indicated by the condensation of eigen microstate in statistical ensemble,[24]which is analogous to the Bose–Einstein condensation of Bose gases.[25]The approach has been applied successfully to study the phase transitions of Ising models.[22,23]Here we use this approach to investigate collective behaviors of living systems and identify order-parameters and the nature of phase transitions precisely.

    2. Eigen microstates and phase transitions

    2.1. Microstates

    For a particleiof a living system,its state is characterized by velocityvi(t)and positionxi(t).It is more relevant to introduce neighborhood density ofiasni(t)=Ni(t)/(2r)2, whereris the interaction distance andNi(t)is the number of the particles aroundiwithin a square with side length 2r. From states ofNcomponents att=1,2,...,M,we can obtain the average velocity and neighborhood density as

    2.2. Eigen microstates[22]

    UsingMmicrostates of the living system, a statistical ensemble[24]can be composed and characterized by anNT×MmatrixAwithNT=3Nand elements[22]

    2.3. Phase emergence

    If a probability amplitudeσI →no-zero at the limitsM →∞andN →∞, there is a condensation of the eigen microstateuIin the statistical ensemble. This condensation of eigen microstate is analogous to the Bose–Einstein condensation of Bose gases,[25]in which a finite part of total bosons simultaneously occupy the ground state. This condensation of eigen microstate implies an emergent phase described byuI.More than one emergent phase can exist in a system.

    2.4. Phase transition and finite-size scaling

    With changes of external conditions or internal conditions of living systems, a probability amplitudeσImay increase from zero to finite. Now there is a phase transition with orderparameter described byσIand new phase characterized byuI.

    With external conditions characterized by a parameterη,we haveη=ηcat the phase transition point. The distance from the phase transition point ish= (η ?ηc)/ηc. In the asymptotic region with|h|?1,we proposed a finite-size scaling form ofσIas[22]

    whereLis the system size,βis the critical exponent of order parameter,andνis the critical exponent of correlation length.

    Forβ> 0, we haveσI(η,∞) = 0 atη>ηcandσI(η,∞)∝(ηc?η)βforη<ηc. This is a continuous phase transition.

    Whenβ=0,there is a jump fromσI(η,∞)=0 atη>ηctoσI(ηc,L)=fI(0)/=0 atηc. This indicates a discontinuous phase transition.

    2.5. Global indexes of eigen microstate

    To get an overview ofuI,we define the collective motion index as

    2.6. Spatial distribution of eigen microstate

    We have applied the eigen microstate approach(EMA)to study successfully the ferromagnetic phase transitions of Ising models in equilibrium.[22]Here the EMA is used to investigate the emergent phases and their phase transitions of nonequilibrium living systems.

    3. Results and discussion

    3.1. SVM[19]

    In a two-dimensional SVM, there areN=L×Lpointwise particles labeled as 1,2,...,Nand placed randomly on a two-dimensional domain with sizeLand periodic boundary conditions. They move synchronously at discrete time steps by a fixed distancev0?t, wherev0is the velocity defined as the length of displacement per time step ?t=1. Each particleiis endowed with an angleθithat determines the direction of the movement during the next time step,and its update is determined by the orientations of its neighbors(defined as particles within a unit circle centered around particlei,including itself).The influence of the neighbors is through an average angle

    where Θ[v]represents the angle of vectorvanddijis the distance between particlesiandj. The evolution is

    Here the key ingredient is the competition between the tendency towards local alignment and the angular noiseξi(t)that might come from external perturbations and/or from uncertainties in individual’s perception, chosen from a uniform distribution within the interval[?1/2,1/2]. The amplitude of noiseηhas a maximum valueηmax=2π. In the absence of noise withη=0,all particles tend to align perfectly.

    For SVM,v=v0, ˉvi,x=cosθi,and ˉvi,y=sinθi. Our simulations are started with all particles distributed randomly in the domain. To overcome the dependence on the initial conditions,the first 2×105microstates are neglected. The subsequent microstates are chosen at an interval of 40 steps to keep independence. We takeM=2×104microstates to get an ensemble matrixA.Its eigenvalues and eigen microstates can be calculated afterwards.

    Fig.2.Log–log plot ofWEI versus L around transition points.(a)WE1 with η1c=3.95 and β1/ν1=?0.0000(5).(b)WE2 with η2c=3.69 and β2/ν2=0.94(1).(c)WE3 with η3c=3.69 and β3/ν3=0.94(2).

    The probabilities of the eigen microstates are presented in Fig. 1. Under strong noises, no eigen microstate is dominant and the system is in disorder. With the decrease ofη,σ1becomes finite and a phaseu1emerges at first. Further,two degenerate eigen microstatesu2andu3appear simultaneously.

    Fig.1. Probabilities WEI of eigen microstates in SVM with ρ =2,v0=0.5.(a) Different probabilities at L=32. (b)WE1 at different sizes. (c)WE2 at different sizes. (d)WE3 at different sizes. The phase transition point of u1 is indicated by the black arrow and that of u2,3 by the red arrow.

    To identify the phase transition point and type of phase transition, we investigate the size dependence ofWEI(η,L).According to Eq.(12),we have

    There is a linear dependence of lnWEIon lnLath=0.This can be used to determine the transition point and critical exponent ratioβ/νat the same time.

    It has been manifested in Fig.2(a)thatWE1has a jump atη1c=3.95, which indicates a discontinuous phase transition ofu1. In Figs.2(b)and 2(c),a continuous phase transition ofu2andu3atη2c=3.69 is identified. It has the ratio of critical exponentβ/ν=0.94.

    To characterize the physical character of the phase transitions above,we calculate the collective motion index and density fluctuation index of eigen microstate and present them in Fig.3. In the eigen microstates,velocity and density are correlated. This is similar to the magnetic lattice gas,[28]where the orientation and density of the particle are correlated.

    Fig. 3. Collective motion index ΦI and density fluctuation index δnI of SVM with size L=64. (a)I=1. (b)I=2,3.

    Atη1c,u1has zero collective motion indexΦand nonzero density fluctuation indexδn. Therefore,u1has a discontinuous transition of density. Atη2c,bothu2andu3have nonzeroΦand zeroδn. Here there is a continuous transition of velocity.

    The spatial distributions of eigen microstates are shown in Figs.4 and 5 foru1andu2,respectively. In Fig.6,the velocities and density fluctuations of eigen microstatesu3are shown for different noises. The velocity direction ofu3is orthogonal to that ofu2.

    Fig.4. Spatial distributions of velocity(a), (c), (e)and neighborhood density fluctuation(b),(d),(f)for u1 under noises η =6,η1c=3.95,and 0.25 respectively.

    Fig. 5. Spatial distribution of velocity (a), (c), (e) and neighborhood density fluctuation(b),(d),(f)for u2 under noises η =6,η2c=3.69,and 0.25 respectively.

    Fig.6. Spatial distribution of velocity(a),(b),(c)and neighborhood density fluctuation(d),(e),(f)for u3 of SVM under noises η =6, η3c =3.69 and 0.25. The velocity direction of u3 is orthogonal to that of u2.

    Fig.7. Average particle densityn as a function of noise.

    To investigate the density dependence of the phase transitions,we study also the SVM at densitiesρ=1,3 in addition.There are also discontinuous phase transitions of density at first and then continuous phase transitions of velocity in these systems. With the increase of density,the discontinuous transition of density appears at larger noise. We have obtainedη1c=3.18 atρ=1,η1c=3.95 atρ=2, andη1c=4.3 atρ=3. As shown in Figs. 2, 9, and 10, the jump of orderparameter decreases with increasing density.

    Fig.9. Log–log plot of WEI versus L for SVM with ρ =1. (a)WE1 with η1c=3.18 and β1/ν1=?0.0001(7). (b)WE2 with η2c=3.06 and β2/ν2=0.94(3).(c)WE3 with η3c=3.06 and β3/ν3=0.93(9).

    Correspondingly, the continuous transition pointsη2c,3cincrease with increasing density.We getη2c,3c=3.06 atρ=1,η2c,3c=3.65 atρ=2, andη2c,3c=4.0 atρ=3. The same ratio of critical exponentβ/νhas been obtained for the different continuous phase transitions,which belong to the same universality class.

    Fig.8. Probabilities of the first four eigen microstates for SVM with L=32 and densities (a) ρ =1, (b) ρ =3 (b). The phase transition point of u1 is indicated by the black arrow and that of u2,3 by the red arrow.

    Fig.10. Log–log plot of WEI versus L for SVM with ρ =3. (a)WE1 with η1c=4.3 and β1/ν1=0.0001(7). (b)WE2 with η2c=4.01 and β2/ν2=0.94(3).(c)WE3 with η3c=4.01 and β3/ν3=0.94(1).

    Fig. 11. Collective motion ΦI and density fluctuation δnI of SVM with L=32 and ρ =1.

    Fig. 12. Collective motion ΦI and density fluctuation δnI of SVM with L=32 and ρ =3.

    To explore the generality of the phase transitions found in SVM, we study the hierarchical Vicsek model (HVM),[30]which is a generalized version of SVM.

    3.2. HVM

    In the HVM,all particles are ordered by their hierarchical rankjwithj=1 being the highest andj=Nthe lowest. For particlei, the influence of a lower-ranked particlej ≤iis reduced by a factorα<1. Instead of Eq.(10),the average angle here is

    SVM is recovered byα=1.

    We have studied the HVMs atα=1/9,1/36. In Fig.13,the probabilities of the first four eigen microstates are presented forα=1/9 in (a) andα=1/36 in (b). Their transition points are determined in Figs. 14 and 15 and indicated by arrows. With the decrease ofα,the peaks ofWE1andWE2,3increase.

    Fig.13. Probabilities of HVM with L=32,ρ =2 and hierarchical factors:(a)α =1/9,(b)α =1/36. The transition points are indicated by arrows.

    Fig. 14. Log–log plot of WEI versus L for the HVM with α =1/9. (a) WE1 with η1c =3.54 and β1/ν1 =?0.0000(1). (b) WE2 with η2c =3.17 and β2/ν2=0.94(4). (c)WE3 with η3c=3.17 and β3/ν3=0.93(8).

    Fig. 15. Log–log plot of WEI versus L for the HVM with α =1/36. (a) WE1 with η1c =3.23 and β1/ν1 =?0.0000(3). (b) WE2 with η2c =2.3 and β2/ν2=0.94(2). (c)WE3 with η3c=2.3 and β3/ν3=0.94(1).

    Because of the hierarchical rank in HVM, the discontinuous phase transition ofu1is delayed by the hierarchical factorαso thatη1c= 3.95 forα= 1,η1c= 3.54 forα= 1/9, andη1c= 3.23 forα= 1/36. Correspondingly,the jump at the discontinuous transition of density increases asWE1(η1c,L)=0.035 atα=1,WE1(η1c,L)=0.043 atα=1/9,andWE1(η1c,L)=0.060 atα=1/36.

    The continuous phase transitions of HVM are also delayed so thatη2c,3c=3.65 atα=1,η2c,3c=3.17 atα=1/9,andη2c,3c=2.3 atα=1/36. The ratiosβ/νat differentαare the same. So the continuous phase transitions of SVM and HVM belong to the same universality class. We summarize the results obtained above in Table 1.

    Table 1. Summary of transition points and ratios of critical exponents.

    Our studies above show that particles in the living systems with strong noise have random positions and velocities.With the decrease of noise,the interactions between the particles make them get closer and the average density ˉnbecomes larger, as shown in Fig. 7. These interactions result in a gasliquid like transition of density,which is discontinuous. With further decrease of noise, particles stay further closer to each other and the average density ˉnbecomes larger. The even stronger interactions between particles make the directions of velocity become ordered and there is a phase transition of collective motion,which is continuous.

    4. Conclusions

    We propose a method for investigating phase emergence and transitions in living systems under the framework of eigen microstate. From the velocity and position sequences of particles in a living system,we define a normalized ensemble matrixAwith columns and rows corresponding to microstates and time sequences of the particles.Acan be decomposed as the sum of eigen microstateuImultiplied by its time sequencevIand eigen valueσI, where ∑I σ2I=1. A finiteσIin the thermodynamic limit reveals the emergence ofuI. Near transition pointh= 0,σIfollows a finite-size scaling formσI(h,L)=L?β/ν fI(hL1/ν),withβ>0 andβ=0 for continuous and discontinuous phase transitions,respectively.

    The phase emergence and transitions of both SVM[19]and HVM[30]have been investigated. With the decrease of noise,we find at first phase emergence of density withβ=0. So the corresponding phase transitions are discontinuous. At even smaller noises, there is the phase emergence of velocity withβ/ν=0.94 and the phase transitions are continuous and belong to the same universality class.

    Our results demonstrate that the eigen microstate approach works for nonequilibrium systems. Our approach can be applied not only to living systems but also to other complex systems,such as climate systems,[23,31]ecosystems,[32]et al.

    Acknowledgment

    We thank Profs. Li Chen and Xiaqing Shi for helpful discussions.

    猜你喜歡
    李輝
    Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft
    高流量呼吸濕化治療儀在喉癌術(shù)后患者氣道濕化中的應(yīng)用
    Mechanism of microweld formation and breakage during Cu–Cu wire bonding investigated by molecular dynamics simulation
    Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer*
    Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma
    司機(jī)倒車未發(fā)生碰撞 旁邊老人摔倒而亡該擔(dān)責(zé)嗎
    樂活老年(2018年5期)2018-06-30 03:18:22
    李輝廢塑料加工設(shè)備技術(shù)升級(jí)產(chǎn)量高更賺錢
    眼線
    故事林(2017年7期)2017-04-25 09:18:55
    特殊任務(wù)
    Design,analysis and control for an antarctic modular manipulator
    一个人看的www免费观看视频| 亚洲av一区综合| 亚洲国产精品成人综合色| 精品熟女少妇八av免费久了| 观看免费一级毛片| 一个人看的www免费观看视频| 久久人人精品亚洲av| 哪里可以看免费的av片| 高清毛片免费观看视频网站| 国产高清videossex| 9191精品国产免费久久| 日韩人妻高清精品专区| 国产黄a三级三级三级人| 十八禁人妻一区二区| 亚洲avbb在线观看| 搞女人的毛片| 欧美日本视频| 国产乱人视频| 国产一区二区三区在线臀色熟女| 一级黄片播放器| 一级毛片女人18水好多| 国产高清视频在线播放一区| 黄片小视频在线播放| 欧美激情在线99| 最新在线观看一区二区三区| 国产成+人综合+亚洲专区| 中文字幕av成人在线电影| www.999成人在线观看| 在线观看午夜福利视频| 最近最新中文字幕大全电影3| 亚洲国产精品合色在线| 国产高清激情床上av| 搡老妇女老女人老熟妇| 成年免费大片在线观看| 亚洲午夜理论影院| 神马国产精品三级电影在线观看| 九九热线精品视视频播放| 最近在线观看免费完整版| 国产av一区在线观看免费| 国产毛片a区久久久久| 亚洲精品一区av在线观看| 久久香蕉国产精品| 国产中年淑女户外野战色| 国产精品电影一区二区三区| 亚洲精品在线美女| 久久中文看片网| 国产精品 国内视频| 蜜桃亚洲精品一区二区三区| 亚洲午夜理论影院| 此物有八面人人有两片| 听说在线观看完整版免费高清| 在线观看日韩欧美| 欧美高清成人免费视频www| 精品电影一区二区在线| 国产精品爽爽va在线观看网站| 可以在线观看的亚洲视频| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 99精品欧美一区二区三区四区| 日韩高清综合在线| 久久国产精品人妻蜜桃| 色哟哟哟哟哟哟| 国产成年人精品一区二区| 一个人观看的视频www高清免费观看| 中出人妻视频一区二区| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 日韩高清综合在线| 精品国内亚洲2022精品成人| 又粗又爽又猛毛片免费看| 床上黄色一级片| 99精品久久久久人妻精品| 啦啦啦韩国在线观看视频| 麻豆久久精品国产亚洲av| 深夜精品福利| 欧美日韩福利视频一区二区| 在线播放无遮挡| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| 狂野欧美激情性xxxx| 国产探花极品一区二区| 精品国产三级普通话版| 黄片大片在线免费观看| 99久久精品一区二区三区| 成人av一区二区三区在线看| 亚洲熟妇熟女久久| 欧美日韩福利视频一区二区| 特级一级黄色大片| 久久精品夜夜夜夜夜久久蜜豆| 丝袜美腿在线中文| 国产高清videossex| 日本成人三级电影网站| 五月玫瑰六月丁香| 亚洲人与动物交配视频| 99热精品在线国产| 男女午夜视频在线观看| 日韩av在线大香蕉| 天堂影院成人在线观看| 国产毛片a区久久久久| 国产精品综合久久久久久久免费| 97碰自拍视频| 91麻豆精品激情在线观看国产| 乱人视频在线观看| 午夜老司机福利剧场| 99在线视频只有这里精品首页| 欧美国产日韩亚洲一区| 国产精品亚洲美女久久久| 日韩免费av在线播放| 国产一区在线观看成人免费| 色综合亚洲欧美另类图片| 国产国拍精品亚洲av在线观看 | 精品免费久久久久久久清纯| 俺也久久电影网| 亚洲欧美激情综合另类| 日本在线视频免费播放| 成人一区二区视频在线观看| 又黄又粗又硬又大视频| 国产精品99久久99久久久不卡| av在线蜜桃| 亚洲成人中文字幕在线播放| 黄色视频,在线免费观看| 国产淫片久久久久久久久 | 亚洲精品成人久久久久久| 91久久精品电影网| 一进一出好大好爽视频| 超碰av人人做人人爽久久 | 亚洲一区二区三区色噜噜| 长腿黑丝高跟| 最新在线观看一区二区三区| 国产视频一区二区在线看| 丰满的人妻完整版| 国产成人aa在线观看| 亚洲午夜理论影院| 久久婷婷人人爽人人干人人爱| 日韩欧美精品免费久久 | 精品一区二区三区视频在线观看免费| 欧美性猛交黑人性爽| 国产视频内射| 国产老妇女一区| 亚洲精品美女久久久久99蜜臀| 午夜精品久久久久久毛片777| 中文字幕av在线有码专区| 最好的美女福利视频网| 成年女人永久免费观看视频| 欧美极品一区二区三区四区| 精品一区二区三区视频在线观看免费| 超碰av人人做人人爽久久 | 村上凉子中文字幕在线| www.www免费av| 99热精品在线国产| 97人妻精品一区二区三区麻豆| 欧美黑人巨大hd| 国产aⅴ精品一区二区三区波| 精品一区二区三区人妻视频| 91在线精品国自产拍蜜月 | 国产一区二区在线av高清观看| 免费在线观看亚洲国产| 老熟妇乱子伦视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲成a人片在线一区二区| www日本在线高清视频| 国内揄拍国产精品人妻在线| 亚洲人与动物交配视频| 黄色日韩在线| 欧美性猛交黑人性爽| 久久草成人影院| 小说图片视频综合网站| 亚洲狠狠婷婷综合久久图片| 丰满人妻熟妇乱又伦精品不卡| 日本黄色视频三级网站网址| 亚洲av一区综合| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| 狠狠狠狠99中文字幕| 尤物成人国产欧美一区二区三区| 嫩草影视91久久| 最近最新中文字幕大全免费视频| 脱女人内裤的视频| 欧美bdsm另类| 欧美色视频一区免费| 91九色精品人成在线观看| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产 | 欧美高清成人免费视频www| eeuss影院久久| 嫁个100分男人电影在线观看| 看片在线看免费视频| 午夜福利18| 啪啪无遮挡十八禁网站| 精品久久久久久久人妻蜜臀av| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 99精品在免费线老司机午夜| 国产高清激情床上av| 99在线视频只有这里精品首页| 国产熟女xx| 黄色女人牲交| 99久久精品国产亚洲精品| 婷婷精品国产亚洲av| 十八禁网站免费在线| aaaaa片日本免费| 激情在线观看视频在线高清| 精品久久久久久久毛片微露脸| 亚洲精品456在线播放app | 日韩精品中文字幕看吧| 亚洲无线在线观看| 最新美女视频免费是黄的| 99国产极品粉嫩在线观看| 欧美黑人巨大hd| 国产av麻豆久久久久久久| 搡老岳熟女国产| 美女cb高潮喷水在线观看| 久久精品国产综合久久久| 国产高清激情床上av| 精品熟女少妇八av免费久了| 欧美最新免费一区二区三区 | 日日干狠狠操夜夜爽| 日韩大尺度精品在线看网址| 日韩 欧美 亚洲 中文字幕| 1024手机看黄色片| 欧美激情久久久久久爽电影| 久久精品影院6| 狂野欧美激情性xxxx| 日本黄色视频三级网站网址| 色播亚洲综合网| 美女被艹到高潮喷水动态| 97人妻精品一区二区三区麻豆| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 老汉色av国产亚洲站长工具| 法律面前人人平等表现在哪些方面| 国产爱豆传媒在线观看| 免费看十八禁软件| 成人高潮视频无遮挡免费网站| 日韩欧美三级三区| 国产69精品久久久久777片| 国产亚洲精品久久久久久毛片| 九九热线精品视视频播放| 在线播放国产精品三级| 人人妻人人澡欧美一区二区| 国产精品嫩草影院av在线观看 | 色综合欧美亚洲国产小说| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 免费观看精品视频网站| 国产精品久久久久久精品电影| 亚洲人与动物交配视频| 欧美日韩综合久久久久久 | 免费看a级黄色片| 18禁裸乳无遮挡免费网站照片| 久久精品国产综合久久久| 国产精品,欧美在线| 又爽又黄无遮挡网站| 动漫黄色视频在线观看| 久久亚洲真实| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区国产精品久久精品| xxx96com| 亚洲片人在线观看| 美女高潮的动态| 午夜福利在线观看免费完整高清在 | 一二三四社区在线视频社区8| 精品日产1卡2卡| 日韩人妻高清精品专区| 国产精华一区二区三区| 内射极品少妇av片p| 免费高清视频大片| 午夜久久久久精精品| 亚洲真实伦在线观看| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 黄色视频,在线免费观看| 中文字幕久久专区| 国产私拍福利视频在线观看| 欧美中文综合在线视频| 丁香欧美五月| 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 欧美激情在线99| 中文字幕av在线有码专区| 久久中文看片网| 少妇的丰满在线观看| 国产免费一级a男人的天堂| 夜夜爽天天搞| 国产免费男女视频| 午夜福利免费观看在线| 可以在线观看毛片的网站| 久久久成人免费电影| 国产日本99.免费观看| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 日韩欧美 国产精品| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 亚洲精品色激情综合| 特大巨黑吊av在线直播| 此物有八面人人有两片| 十八禁人妻一区二区| 欧美精品啪啪一区二区三区| 日韩欧美免费精品| 欧美高清成人免费视频www| 男女床上黄色一级片免费看| 国产精品永久免费网站| 少妇丰满av| aaaaa片日本免费| 每晚都被弄得嗷嗷叫到高潮| 日本 欧美在线| 欧美+日韩+精品| 床上黄色一级片| 亚洲天堂国产精品一区在线| 热99在线观看视频| 欧美一级毛片孕妇| 午夜影院日韩av| 18禁黄网站禁片午夜丰满| 欧美日韩综合久久久久久 | avwww免费| 桃色一区二区三区在线观看| 欧美+亚洲+日韩+国产| 亚洲成av人片免费观看| 日本黄色视频三级网站网址| 国产精品 国内视频| 免费看光身美女| 国产精品自产拍在线观看55亚洲| 成人精品一区二区免费| 国产黄a三级三级三级人| 观看免费一级毛片| 国内揄拍国产精品人妻在线| 亚洲av不卡在线观看| 午夜福利在线在线| 国内精品久久久久久久电影| 亚洲成人久久性| 亚洲精品久久国产高清桃花| 免费av不卡在线播放| 天美传媒精品一区二区| 欧美绝顶高潮抽搐喷水| 18禁美女被吸乳视频| 99久久99久久久精品蜜桃| 19禁男女啪啪无遮挡网站| 国产综合懂色| 99热只有精品国产| 国产av一区在线观看免费| 啦啦啦免费观看视频1| 国产97色在线日韩免费| 亚洲精品在线观看二区| 99热6这里只有精品| 精品电影一区二区在线| 亚洲人与动物交配视频| 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 中文亚洲av片在线观看爽| 亚洲欧美日韩卡通动漫| 又黄又粗又硬又大视频| 我要搜黄色片| 熟妇人妻久久中文字幕3abv| 欧美性感艳星| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 日本熟妇午夜| 51午夜福利影视在线观看| 99久久99久久久精品蜜桃| 久久久久久国产a免费观看| 日日夜夜操网爽| 深夜精品福利| 日韩大尺度精品在线看网址| 亚洲18禁久久av| 午夜久久久久精精品| 久久久成人免费电影| 法律面前人人平等表现在哪些方面| 午夜福利欧美成人| 人妻久久中文字幕网| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| 在线视频色国产色| 少妇的丰满在线观看| 久久人人精品亚洲av| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av在线| bbb黄色大片| 成人av一区二区三区在线看| 亚洲国产色片| 国产乱人视频| 国产日本99.免费观看| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 久久久久久人人人人人| 午夜激情福利司机影院| 欧美+亚洲+日韩+国产| 黄色片一级片一级黄色片| 在线观看av片永久免费下载| 老司机午夜十八禁免费视频| 神马国产精品三级电影在线观看| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 日本在线视频免费播放| 99精品欧美一区二区三区四区| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区久久| 午夜精品一区二区三区免费看| 十八禁网站免费在线| 国产激情欧美一区二区| 久久久久久大精品| 久久精品亚洲精品国产色婷小说| 亚洲av第一区精品v没综合| www日本在线高清视频| 久久久久久久精品吃奶| 黄色日韩在线| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 亚洲国产色片| 久久欧美精品欧美久久欧美| 色视频www国产| 日韩成人在线观看一区二区三区| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 欧美午夜高清在线| 久久久久久久亚洲中文字幕 | 亚洲欧美日韩高清专用| 国产高潮美女av| 亚洲人成电影免费在线| av中文乱码字幕在线| av片东京热男人的天堂| 亚洲精品成人久久久久久| 亚洲avbb在线观看| 香蕉av资源在线| 淫妇啪啪啪对白视频| 长腿黑丝高跟| 午夜免费男女啪啪视频观看 | 九九在线视频观看精品| 久久午夜亚洲精品久久| 久久久久亚洲av毛片大全| 久久久国产成人精品二区| www日本黄色视频网| 色尼玛亚洲综合影院| 欧美黑人巨大hd| 小说图片视频综合网站| av女优亚洲男人天堂| 国产三级中文精品| 精品午夜福利视频在线观看一区| 高清日韩中文字幕在线| 看片在线看免费视频| 超碰av人人做人人爽久久 | 超碰av人人做人人爽久久 | 午夜亚洲福利在线播放| 久久国产精品影院| 欧美色视频一区免费| 欧美又色又爽又黄视频| 午夜福利成人在线免费观看| 亚洲激情在线av| 一级毛片女人18水好多| 国内毛片毛片毛片毛片毛片| 亚洲色图av天堂| 欧美成狂野欧美在线观看| 国内少妇人妻偷人精品xxx网站| av片东京热男人的天堂| 婷婷六月久久综合丁香| 国产精品电影一区二区三区| 国产伦人伦偷精品视频| 99视频精品全部免费 在线| 一本一本综合久久| 人人妻,人人澡人人爽秒播| 亚洲av不卡在线观看| 18禁国产床啪视频网站| 人人妻人人看人人澡| а√天堂www在线а√下载| 亚洲专区国产一区二区| 啪啪无遮挡十八禁网站| 国产精品98久久久久久宅男小说| 国产欧美日韩精品亚洲av| av专区在线播放| 欧美性感艳星| 国产精品99久久久久久久久| 久久亚洲真实| 99久久九九国产精品国产免费| 日本一二三区视频观看| 又紧又爽又黄一区二区| 一进一出抽搐动态| 国产爱豆传媒在线观看| 欧美黄色淫秽网站| 午夜免费激情av| 欧美+亚洲+日韩+国产| 特大巨黑吊av在线直播| 3wmmmm亚洲av在线观看| 国产 一区 欧美 日韩| 丰满的人妻完整版| 亚洲av中文字字幕乱码综合| 女生性感内裤真人,穿戴方法视频| 搞女人的毛片| 一个人免费在线观看的高清视频| 亚洲av中文字字幕乱码综合| 3wmmmm亚洲av在线观看| 真人一进一出gif抽搐免费| 国产极品精品免费视频能看的| 99热6这里只有精品| 中文字幕av成人在线电影| 亚洲av不卡在线观看| 久久精品国产自在天天线| 久久久精品大字幕| 国产主播在线观看一区二区| 一级黄片播放器| 最好的美女福利视频网| 很黄的视频免费| 最新中文字幕久久久久| x7x7x7水蜜桃| 亚洲美女黄片视频| 欧美黄色淫秽网站| 18禁国产床啪视频网站| svipshipincom国产片| 国产一区二区激情短视频| 人妻丰满熟妇av一区二区三区| 超碰av人人做人人爽久久 | 亚洲av免费在线观看| 日韩欧美国产在线观看| 欧美性猛交╳xxx乱大交人| 9191精品国产免费久久| 日韩欧美精品免费久久 | 国产精品久久久久久久电影 | 国产高清视频在线播放一区| 日本一二三区视频观看| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站 | 在线观看免费视频日本深夜| 俺也久久电影网| 亚洲精品一区av在线观看| 少妇的丰满在线观看| 欧美黑人欧美精品刺激| 日日摸夜夜添夜夜添小说| 亚洲国产精品成人综合色| av天堂中文字幕网| 一进一出抽搐动态| 国产野战对白在线观看| 欧美大码av| 宅男免费午夜| 国产亚洲精品一区二区www| 国产伦人伦偷精品视频| 国产极品精品免费视频能看的| 久久久色成人| 五月伊人婷婷丁香| 欧美中文综合在线视频| 欧美性猛交黑人性爽| 国产亚洲精品一区二区www| 亚洲五月婷婷丁香| 国产精品综合久久久久久久免费| 亚洲男人的天堂狠狠| 久久久久久久久大av| 91九色精品人成在线观看| 欧美成人性av电影在线观看| 久久久久久人人人人人| 国产亚洲欧美98| 岛国视频午夜一区免费看| 国产伦精品一区二区三区四那| 欧美激情在线99| 九九在线视频观看精品| 美女高潮的动态| 国产一区二区在线观看日韩 | av天堂中文字幕网| x7x7x7水蜜桃| 亚洲欧美日韩无卡精品| 欧美日韩亚洲国产一区二区在线观看| 国产主播在线观看一区二区| 亚洲在线自拍视频| 99国产精品一区二区蜜桃av| 欧美日韩综合久久久久久 | 全区人妻精品视频| 一本久久中文字幕| av在线蜜桃| 国产精品久久电影中文字幕| 欧美黑人欧美精品刺激| 成人国产综合亚洲| 高清毛片免费观看视频网站| 亚洲精品日韩av片在线观看 | 波多野结衣高清无吗| 午夜激情福利司机影院| 国产精品免费一区二区三区在线| 中文字幕久久专区| 中亚洲国语对白在线视频| 人妻夜夜爽99麻豆av| 欧美中文综合在线视频| 精品乱码久久久久久99久播| 国产探花极品一区二区| 啪啪无遮挡十八禁网站| 国产男靠女视频免费网站| 狂野欧美激情性xxxx| 19禁男女啪啪无遮挡网站| 又黄又粗又硬又大视频| 欧美日韩一级在线毛片| 人人妻,人人澡人人爽秒播| 久久久久久久亚洲中文字幕 | 女人十人毛片免费观看3o分钟| 12—13女人毛片做爰片一| 成人性生交大片免费视频hd| 国产伦精品一区二区三区视频9 | 不卡一级毛片| 午夜激情欧美在线| 亚洲av美国av| 一本精品99久久精品77| 久久久久久大精品| 欧美日韩精品网址| 亚洲无线在线观看| 欧美日韩精品网址| 国产69精品久久久久777片| 男女做爰动态图高潮gif福利片| 国产亚洲精品一区二区www| 女人十人毛片免费观看3o分钟| 波多野结衣高清无吗| 少妇的丰满在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩国产亚洲二区| 在线观看日韩欧美| 国产三级在线视频| 人妻丰满熟妇av一区二区三区| 哪里可以看免费的av片| 三级男女做爰猛烈吃奶摸视频|