• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discontinuous and continuous transitions of collective behaviors in living systems?

    2021-12-22 06:41:04XuLi李旭TingtingXue薛婷婷YuSun孫宇JingfangFan樊京芳HuiLi李輝MaoxinLiu劉卯鑫ZhangangHan韓戰(zhàn)鋼ZengruDi狄增如andXiaosongChen陳曉松
    Chinese Physics B 2021年12期
    關(guān)鍵詞:李輝

    Xu Li(李旭) Tingting Xue(薛婷婷) Yu Sun(孫宇) Jingfang Fan(樊京芳) Hui Li(李輝)Maoxin Liu(劉卯鑫) Zhangang Han(韓戰(zhàn)鋼) Zengru Di(狄增如) and Xiaosong Chen(陳曉松)

    1School of Systems Science,Beijing Normal University,Beijing 100878,China

    2Institute of Nonequilibrium Systems,Beijing Normal University,Beijing 100878,China 3School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

    Keywords: living systems,phase emergence,phase transitions,eigen mircostate

    1. Introduction

    Collective behaviors are the most important properties of systems consisting of many individuals. Collective motion of large groups of individuals is a truly fascinating collective behavior in living systems and was observed in starlings,[1–3]bacterial communities,[4,5]ant colonies,[6,7]locusts,[8]midges,[9,10]sheep,[11]etc. While detailed case studies are preferred in general by biologists,[8,12,13]physicists usually seek for universal features behind seemingly diverse observations and the models sufficient to capture the fundamental features[14]to find the fundamental principles of collective motion.

    It is the mission of statistical physics to connect the microscopic properties of individual with the macroscopic behavior using the probability theory and statistics.[15–17]In addition, the studies of phase transitions and critical phenomena[18]need to identify order-parameters in advance.

    As a prototype model of collective motion in living systems,the standard Viscek model(SVM)[19]was introduced.In the original work of SVM,it was claimed that phase transition of collective motion is continuous. But this was challenged later by Chat′eet al.[20,21]They showed that the continuous nature observed is actually due to finite-size effects and the phase transition is discontinuous. Since the precise order-parameter of collective motion is unknown and no systematic analysis of finite-size scaling has been made, these results about the nature of phase transitions until now are not conclusive.

    In an eigen microstate approach developed recently,[22,23]collective behaviors of systems are indicated by the condensation of eigen microstate in statistical ensemble,[24]which is analogous to the Bose–Einstein condensation of Bose gases.[25]The approach has been applied successfully to study the phase transitions of Ising models.[22,23]Here we use this approach to investigate collective behaviors of living systems and identify order-parameters and the nature of phase transitions precisely.

    2. Eigen microstates and phase transitions

    2.1. Microstates

    For a particleiof a living system,its state is characterized by velocityvi(t)and positionxi(t).It is more relevant to introduce neighborhood density ofiasni(t)=Ni(t)/(2r)2, whereris the interaction distance andNi(t)is the number of the particles aroundiwithin a square with side length 2r. From states ofNcomponents att=1,2,...,M,we can obtain the average velocity and neighborhood density as

    2.2. Eigen microstates[22]

    UsingMmicrostates of the living system, a statistical ensemble[24]can be composed and characterized by anNT×MmatrixAwithNT=3Nand elements[22]

    2.3. Phase emergence

    If a probability amplitudeσI →no-zero at the limitsM →∞andN →∞, there is a condensation of the eigen microstateuIin the statistical ensemble. This condensation of eigen microstate is analogous to the Bose–Einstein condensation of Bose gases,[25]in which a finite part of total bosons simultaneously occupy the ground state. This condensation of eigen microstate implies an emergent phase described byuI.More than one emergent phase can exist in a system.

    2.4. Phase transition and finite-size scaling

    With changes of external conditions or internal conditions of living systems, a probability amplitudeσImay increase from zero to finite. Now there is a phase transition with orderparameter described byσIand new phase characterized byuI.

    With external conditions characterized by a parameterη,we haveη=ηcat the phase transition point. The distance from the phase transition point ish= (η ?ηc)/ηc. In the asymptotic region with|h|?1,we proposed a finite-size scaling form ofσIas[22]

    whereLis the system size,βis the critical exponent of order parameter,andνis the critical exponent of correlation length.

    Forβ> 0, we haveσI(η,∞) = 0 atη>ηcandσI(η,∞)∝(ηc?η)βforη<ηc. This is a continuous phase transition.

    Whenβ=0,there is a jump fromσI(η,∞)=0 atη>ηctoσI(ηc,L)=fI(0)/=0 atηc. This indicates a discontinuous phase transition.

    2.5. Global indexes of eigen microstate

    To get an overview ofuI,we define the collective motion index as

    2.6. Spatial distribution of eigen microstate

    We have applied the eigen microstate approach(EMA)to study successfully the ferromagnetic phase transitions of Ising models in equilibrium.[22]Here the EMA is used to investigate the emergent phases and their phase transitions of nonequilibrium living systems.

    3. Results and discussion

    3.1. SVM[19]

    In a two-dimensional SVM, there areN=L×Lpointwise particles labeled as 1,2,...,Nand placed randomly on a two-dimensional domain with sizeLand periodic boundary conditions. They move synchronously at discrete time steps by a fixed distancev0?t, wherev0is the velocity defined as the length of displacement per time step ?t=1. Each particleiis endowed with an angleθithat determines the direction of the movement during the next time step,and its update is determined by the orientations of its neighbors(defined as particles within a unit circle centered around particlei,including itself).The influence of the neighbors is through an average angle

    where Θ[v]represents the angle of vectorvanddijis the distance between particlesiandj. The evolution is

    Here the key ingredient is the competition between the tendency towards local alignment and the angular noiseξi(t)that might come from external perturbations and/or from uncertainties in individual’s perception, chosen from a uniform distribution within the interval[?1/2,1/2]. The amplitude of noiseηhas a maximum valueηmax=2π. In the absence of noise withη=0,all particles tend to align perfectly.

    For SVM,v=v0, ˉvi,x=cosθi,and ˉvi,y=sinθi. Our simulations are started with all particles distributed randomly in the domain. To overcome the dependence on the initial conditions,the first 2×105microstates are neglected. The subsequent microstates are chosen at an interval of 40 steps to keep independence. We takeM=2×104microstates to get an ensemble matrixA.Its eigenvalues and eigen microstates can be calculated afterwards.

    Fig.2.Log–log plot ofWEI versus L around transition points.(a)WE1 with η1c=3.95 and β1/ν1=?0.0000(5).(b)WE2 with η2c=3.69 and β2/ν2=0.94(1).(c)WE3 with η3c=3.69 and β3/ν3=0.94(2).

    The probabilities of the eigen microstates are presented in Fig. 1. Under strong noises, no eigen microstate is dominant and the system is in disorder. With the decrease ofη,σ1becomes finite and a phaseu1emerges at first. Further,two degenerate eigen microstatesu2andu3appear simultaneously.

    Fig.1. Probabilities WEI of eigen microstates in SVM with ρ =2,v0=0.5.(a) Different probabilities at L=32. (b)WE1 at different sizes. (c)WE2 at different sizes. (d)WE3 at different sizes. The phase transition point of u1 is indicated by the black arrow and that of u2,3 by the red arrow.

    To identify the phase transition point and type of phase transition, we investigate the size dependence ofWEI(η,L).According to Eq.(12),we have

    There is a linear dependence of lnWEIon lnLath=0.This can be used to determine the transition point and critical exponent ratioβ/νat the same time.

    It has been manifested in Fig.2(a)thatWE1has a jump atη1c=3.95, which indicates a discontinuous phase transition ofu1. In Figs.2(b)and 2(c),a continuous phase transition ofu2andu3atη2c=3.69 is identified. It has the ratio of critical exponentβ/ν=0.94.

    To characterize the physical character of the phase transitions above,we calculate the collective motion index and density fluctuation index of eigen microstate and present them in Fig.3. In the eigen microstates,velocity and density are correlated. This is similar to the magnetic lattice gas,[28]where the orientation and density of the particle are correlated.

    Fig. 3. Collective motion index ΦI and density fluctuation index δnI of SVM with size L=64. (a)I=1. (b)I=2,3.

    Atη1c,u1has zero collective motion indexΦand nonzero density fluctuation indexδn. Therefore,u1has a discontinuous transition of density. Atη2c,bothu2andu3have nonzeroΦand zeroδn. Here there is a continuous transition of velocity.

    The spatial distributions of eigen microstates are shown in Figs.4 and 5 foru1andu2,respectively. In Fig.6,the velocities and density fluctuations of eigen microstatesu3are shown for different noises. The velocity direction ofu3is orthogonal to that ofu2.

    Fig.4. Spatial distributions of velocity(a), (c), (e)and neighborhood density fluctuation(b),(d),(f)for u1 under noises η =6,η1c=3.95,and 0.25 respectively.

    Fig. 5. Spatial distribution of velocity (a), (c), (e) and neighborhood density fluctuation(b),(d),(f)for u2 under noises η =6,η2c=3.69,and 0.25 respectively.

    Fig.6. Spatial distribution of velocity(a),(b),(c)and neighborhood density fluctuation(d),(e),(f)for u3 of SVM under noises η =6, η3c =3.69 and 0.25. The velocity direction of u3 is orthogonal to that of u2.

    Fig.7. Average particle densityn as a function of noise.

    To investigate the density dependence of the phase transitions,we study also the SVM at densitiesρ=1,3 in addition.There are also discontinuous phase transitions of density at first and then continuous phase transitions of velocity in these systems. With the increase of density,the discontinuous transition of density appears at larger noise. We have obtainedη1c=3.18 atρ=1,η1c=3.95 atρ=2, andη1c=4.3 atρ=3. As shown in Figs. 2, 9, and 10, the jump of orderparameter decreases with increasing density.

    Fig.9. Log–log plot of WEI versus L for SVM with ρ =1. (a)WE1 with η1c=3.18 and β1/ν1=?0.0001(7). (b)WE2 with η2c=3.06 and β2/ν2=0.94(3).(c)WE3 with η3c=3.06 and β3/ν3=0.93(9).

    Correspondingly, the continuous transition pointsη2c,3cincrease with increasing density.We getη2c,3c=3.06 atρ=1,η2c,3c=3.65 atρ=2, andη2c,3c=4.0 atρ=3. The same ratio of critical exponentβ/νhas been obtained for the different continuous phase transitions,which belong to the same universality class.

    Fig.8. Probabilities of the first four eigen microstates for SVM with L=32 and densities (a) ρ =1, (b) ρ =3 (b). The phase transition point of u1 is indicated by the black arrow and that of u2,3 by the red arrow.

    Fig.10. Log–log plot of WEI versus L for SVM with ρ =3. (a)WE1 with η1c=4.3 and β1/ν1=0.0001(7). (b)WE2 with η2c=4.01 and β2/ν2=0.94(3).(c)WE3 with η3c=4.01 and β3/ν3=0.94(1).

    Fig. 11. Collective motion ΦI and density fluctuation δnI of SVM with L=32 and ρ =1.

    Fig. 12. Collective motion ΦI and density fluctuation δnI of SVM with L=32 and ρ =3.

    To explore the generality of the phase transitions found in SVM, we study the hierarchical Vicsek model (HVM),[30]which is a generalized version of SVM.

    3.2. HVM

    In the HVM,all particles are ordered by their hierarchical rankjwithj=1 being the highest andj=Nthe lowest. For particlei, the influence of a lower-ranked particlej ≤iis reduced by a factorα<1. Instead of Eq.(10),the average angle here is

    SVM is recovered byα=1.

    We have studied the HVMs atα=1/9,1/36. In Fig.13,the probabilities of the first four eigen microstates are presented forα=1/9 in (a) andα=1/36 in (b). Their transition points are determined in Figs. 14 and 15 and indicated by arrows. With the decrease ofα,the peaks ofWE1andWE2,3increase.

    Fig.13. Probabilities of HVM with L=32,ρ =2 and hierarchical factors:(a)α =1/9,(b)α =1/36. The transition points are indicated by arrows.

    Fig. 14. Log–log plot of WEI versus L for the HVM with α =1/9. (a) WE1 with η1c =3.54 and β1/ν1 =?0.0000(1). (b) WE2 with η2c =3.17 and β2/ν2=0.94(4). (c)WE3 with η3c=3.17 and β3/ν3=0.93(8).

    Fig. 15. Log–log plot of WEI versus L for the HVM with α =1/36. (a) WE1 with η1c =3.23 and β1/ν1 =?0.0000(3). (b) WE2 with η2c =2.3 and β2/ν2=0.94(2). (c)WE3 with η3c=2.3 and β3/ν3=0.94(1).

    Because of the hierarchical rank in HVM, the discontinuous phase transition ofu1is delayed by the hierarchical factorαso thatη1c= 3.95 forα= 1,η1c= 3.54 forα= 1/9, andη1c= 3.23 forα= 1/36. Correspondingly,the jump at the discontinuous transition of density increases asWE1(η1c,L)=0.035 atα=1,WE1(η1c,L)=0.043 atα=1/9,andWE1(η1c,L)=0.060 atα=1/36.

    The continuous phase transitions of HVM are also delayed so thatη2c,3c=3.65 atα=1,η2c,3c=3.17 atα=1/9,andη2c,3c=2.3 atα=1/36. The ratiosβ/νat differentαare the same. So the continuous phase transitions of SVM and HVM belong to the same universality class. We summarize the results obtained above in Table 1.

    Table 1. Summary of transition points and ratios of critical exponents.

    Our studies above show that particles in the living systems with strong noise have random positions and velocities.With the decrease of noise,the interactions between the particles make them get closer and the average density ˉnbecomes larger, as shown in Fig. 7. These interactions result in a gasliquid like transition of density,which is discontinuous. With further decrease of noise, particles stay further closer to each other and the average density ˉnbecomes larger. The even stronger interactions between particles make the directions of velocity become ordered and there is a phase transition of collective motion,which is continuous.

    4. Conclusions

    We propose a method for investigating phase emergence and transitions in living systems under the framework of eigen microstate. From the velocity and position sequences of particles in a living system,we define a normalized ensemble matrixAwith columns and rows corresponding to microstates and time sequences of the particles.Acan be decomposed as the sum of eigen microstateuImultiplied by its time sequencevIand eigen valueσI, where ∑I σ2I=1. A finiteσIin the thermodynamic limit reveals the emergence ofuI. Near transition pointh= 0,σIfollows a finite-size scaling formσI(h,L)=L?β/ν fI(hL1/ν),withβ>0 andβ=0 for continuous and discontinuous phase transitions,respectively.

    The phase emergence and transitions of both SVM[19]and HVM[30]have been investigated. With the decrease of noise,we find at first phase emergence of density withβ=0. So the corresponding phase transitions are discontinuous. At even smaller noises, there is the phase emergence of velocity withβ/ν=0.94 and the phase transitions are continuous and belong to the same universality class.

    Our results demonstrate that the eigen microstate approach works for nonequilibrium systems. Our approach can be applied not only to living systems but also to other complex systems,such as climate systems,[23,31]ecosystems,[32]et al.

    Acknowledgment

    We thank Profs. Li Chen and Xiaqing Shi for helpful discussions.

    猜你喜歡
    李輝
    Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft
    高流量呼吸濕化治療儀在喉癌術(shù)后患者氣道濕化中的應(yīng)用
    Mechanism of microweld formation and breakage during Cu–Cu wire bonding investigated by molecular dynamics simulation
    Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer*
    Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma
    司機(jī)倒車未發(fā)生碰撞 旁邊老人摔倒而亡該擔(dān)責(zé)嗎
    樂活老年(2018年5期)2018-06-30 03:18:22
    李輝廢塑料加工設(shè)備技術(shù)升級(jí)產(chǎn)量高更賺錢
    眼線
    故事林(2017年7期)2017-04-25 09:18:55
    特殊任務(wù)
    Design,analysis and control for an antarctic modular manipulator
    一a级毛片在线观看| 精品久久久久久,| 精品国产超薄肉色丝袜足j| 免费av不卡在线播放| 手机成人av网站| 激情在线观看视频在线高清| 亚洲欧美日韩东京热| 亚洲专区字幕在线| 超碰成人久久| 香蕉久久夜色| 成人永久免费在线观看视频| 欧美乱色亚洲激情| 一个人看视频在线观看www免费 | 久久久久久久久免费视频了| 校园春色视频在线观看| 精品99又大又爽又粗少妇毛片 | 免费一级毛片在线播放高清视频| www.精华液| 久久精品国产99精品国产亚洲性色| 可以在线观看的亚洲视频| 亚洲人与动物交配视频| 国产淫片久久久久久久久 | 国产午夜精品论理片| 搡老熟女国产l中国老女人| 久久久久久久久中文| 国产精品电影一区二区三区| 美女被艹到高潮喷水动态| 国产激情偷乱视频一区二区| 可以在线观看毛片的网站| 黑人操中国人逼视频| 国产熟女xx| 亚洲专区字幕在线| 老司机在亚洲福利影院| 国产精品乱码一区二三区的特点| 国产精品乱码一区二三区的特点| 一二三四在线观看免费中文在| 精品国产超薄肉色丝袜足j| 国内精品美女久久久久久| 欧美+亚洲+日韩+国产| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人成人乱码亚洲影| 国产高清激情床上av| 99热只有精品国产| 国产亚洲欧美在线一区二区| 国产精品爽爽va在线观看网站| 天天添夜夜摸| 免费观看人在逋| 亚洲黑人精品在线| 亚洲五月天丁香| 最近最新免费中文字幕在线| 欧美成狂野欧美在线观看| 精品久久久久久久末码| 亚洲av第一区精品v没综合| 亚洲国产精品成人综合色| 精品国产乱码久久久久久男人| 精品久久久久久久毛片微露脸| 九九热线精品视视频播放| 淫秽高清视频在线观看| 亚洲九九香蕉| 搡老妇女老女人老熟妇| av视频在线观看入口| 午夜福利在线观看吧| 这个男人来自地球电影免费观看| 成人无遮挡网站| 欧美日韩一级在线毛片| 99久久精品国产亚洲精品| 亚洲精品乱码久久久v下载方式 | 日韩欧美在线二视频| 欧美大码av| 啦啦啦韩国在线观看视频| 国产亚洲精品综合一区在线观看| 欧美日韩国产亚洲二区| 成人国产综合亚洲| 变态另类成人亚洲欧美熟女| 夜夜看夜夜爽夜夜摸| 麻豆久久精品国产亚洲av| 婷婷精品国产亚洲av在线| 2021天堂中文幕一二区在线观| 日本与韩国留学比较| 国产一区二区在线观看日韩 | 欧美日韩黄片免| 99国产极品粉嫩在线观看| 中文字幕人成人乱码亚洲影| 在线免费观看的www视频| 亚洲性夜色夜夜综合| a级毛片在线看网站| tocl精华| aaaaa片日本免费| 国产单亲对白刺激| 高清在线国产一区| 亚洲天堂国产精品一区在线| 国产熟女xx| 网址你懂的国产日韩在线| 亚洲专区国产一区二区| 日韩中文字幕欧美一区二区| 好男人电影高清在线观看| 亚洲av成人不卡在线观看播放网| 黄片小视频在线播放| 91av网站免费观看| 午夜精品久久久久久毛片777| 欧美中文综合在线视频| 99热这里只有是精品50| 国产免费男女视频| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 变态另类丝袜制服| 淫秽高清视频在线观看| 亚洲国产欧美一区二区综合| 在线观看日韩欧美| 亚洲第一欧美日韩一区二区三区| 夜夜躁狠狠躁天天躁| 国产毛片a区久久久久| 欧美日韩黄片免| 久久99热这里只有精品18| 免费观看人在逋| 真人一进一出gif抽搐免费| 午夜福利成人在线免费观看| 久久久久久久久免费视频了| 老司机在亚洲福利影院| av天堂在线播放| 国产av不卡久久| 亚洲五月婷婷丁香| 免费在线观看成人毛片| 免费在线观看日本一区| 亚洲欧美精品综合一区二区三区| 97碰自拍视频| 香蕉av资源在线| 亚洲欧美日韩卡通动漫| 亚洲欧美激情综合另类| 久久国产精品人妻蜜桃| 免费在线观看视频国产中文字幕亚洲| av天堂中文字幕网| www日本黄色视频网| 97超视频在线观看视频| av在线天堂中文字幕| 好男人在线观看高清免费视频| 在线播放国产精品三级| 真人做人爱边吃奶动态| 国产精品乱码一区二三区的特点| 日韩人妻高清精品专区| 少妇丰满av| 亚洲性夜色夜夜综合| 亚洲成av人片免费观看| 很黄的视频免费| xxx96com| 国产精品98久久久久久宅男小说| 国产爱豆传媒在线观看| 国产三级中文精品| 美女高潮喷水抽搐中文字幕| 免费人成视频x8x8入口观看| 桃色一区二区三区在线观看| 99热这里只有是精品50| 免费看光身美女| 精品电影一区二区在线| 天堂动漫精品| 亚洲五月婷婷丁香| 人妻久久中文字幕网| 午夜日韩欧美国产| 夜夜看夜夜爽夜夜摸| 亚洲成人精品中文字幕电影| 久久久久久久午夜电影| 日本a在线网址| 国产精品爽爽va在线观看网站| 亚洲av第一区精品v没综合| 亚洲精品国产精品久久久不卡| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看| 99久国产av精品| 国产精品野战在线观看| 黄色成人免费大全| 日本免费一区二区三区高清不卡| 久久天堂一区二区三区四区| 69av精品久久久久久| 亚洲成a人片在线一区二区| svipshipincom国产片| 国产亚洲精品综合一区在线观看| 麻豆久久精品国产亚洲av| 午夜福利欧美成人| 日韩欧美免费精品| 欧美日韩一级在线毛片| 国产精品久久电影中文字幕| 国产精品亚洲美女久久久| 人妻夜夜爽99麻豆av| 九九久久精品国产亚洲av麻豆 | av女优亚洲男人天堂 | 国产av不卡久久| 国产精华一区二区三区| 国产av一区在线观看免费| 老司机深夜福利视频在线观看| 精品国产超薄肉色丝袜足j| 久久精品人妻少妇| 亚洲国产精品999在线| 国产亚洲欧美在线一区二区| 国模一区二区三区四区视频 | av中文乱码字幕在线| 欧美黑人欧美精品刺激| 免费看十八禁软件| 国产精品亚洲av一区麻豆| 国产综合懂色| 国内精品一区二区在线观看| 午夜免费成人在线视频| 亚洲国产欧美人成| 久久久国产成人免费| www.精华液| 熟妇人妻久久中文字幕3abv| 伊人久久大香线蕉亚洲五| 97超视频在线观看视频| 久久天躁狠狠躁夜夜2o2o| 国产v大片淫在线免费观看| 99久久99久久久精品蜜桃| 精品国产亚洲在线| 精品国产三级普通话版| 亚洲av熟女| 在线看三级毛片| 亚洲人成网站高清观看| 女同久久另类99精品国产91| 最新中文字幕久久久久 | 久久草成人影院| 91九色精品人成在线观看| 日韩欧美 国产精品| 久久久久久久久久黄片| 国产成人影院久久av| 法律面前人人平等表现在哪些方面| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣高清无吗| 国产成人福利小说| 青草久久国产| 制服人妻中文乱码| 婷婷亚洲欧美| 91av网一区二区| 国产精品爽爽va在线观看网站| 成人av在线播放网站| 91老司机精品| 成人国产综合亚洲| 丁香欧美五月| 欧美性猛交╳xxx乱大交人| 非洲黑人性xxxx精品又粗又长| 两个人看的免费小视频| 久久国产精品影院| 婷婷六月久久综合丁香| a级毛片a级免费在线| 欧美日韩福利视频一区二区| 老汉色∧v一级毛片| 在线a可以看的网站| 国产一区在线观看成人免费| 国产成年人精品一区二区| 欧美黑人巨大hd| 精品久久蜜臀av无| 国产欧美日韩精品一区二区| 在线a可以看的网站| 国产精品久久久av美女十八| 亚洲av美国av| 亚洲五月天丁香| 日本黄色片子视频| 人妻丰满熟妇av一区二区三区| 老司机深夜福利视频在线观看| 三级国产精品欧美在线观看 | 18禁黄网站禁片午夜丰满| 午夜久久久久精精品| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网| 90打野战视频偷拍视频| 无人区码免费观看不卡| 亚洲无线观看免费| 午夜福利18| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲av嫩草精品影院| 久久久久久久久免费视频了| 99视频精品全部免费 在线 | 国产v大片淫在线免费观看| 不卡av一区二区三区| 国产精品久久久av美女十八| 欧美xxxx黑人xx丫x性爽| 国产精品久久电影中文字幕| av福利片在线观看| 国产蜜桃级精品一区二区三区| 亚洲精品中文字幕一二三四区| 99在线视频只有这里精品首页| 熟女少妇亚洲综合色aaa.| 日韩国内少妇激情av| 97超级碰碰碰精品色视频在线观看| 两个人看的免费小视频| 欧美日韩综合久久久久久 | 久久精品人妻少妇| 18禁国产床啪视频网站| 久久久久九九精品影院| 欧美大码av| 精品国产亚洲在线| 国产高清激情床上av| 高清毛片免费观看视频网站| 伦理电影免费视频| 欧美三级亚洲精品| 成人性生交大片免费视频hd| 亚洲欧美日韩高清在线视频| 精品国产超薄肉色丝袜足j| 成人特级av手机在线观看| 精品日产1卡2卡| 久久国产精品影院| 午夜免费观看网址| 一本一本综合久久| 亚洲中文日韩欧美视频| 91av网一区二区| tocl精华| 国产熟女xx| 国产三级在线视频| 中国美女看黄片| 国产综合懂色| 国内少妇人妻偷人精品xxx网站 | 九色国产91popny在线| av天堂中文字幕网| 在线永久观看黄色视频| 嫁个100分男人电影在线观看| 国产成人av激情在线播放| 午夜视频精品福利| 哪里可以看免费的av片| 在线观看免费午夜福利视频| 国产成+人综合+亚洲专区| av国产免费在线观看| 成人无遮挡网站| 中文字幕最新亚洲高清| 成人国产综合亚洲| 免费av毛片视频| 午夜精品在线福利| 中文字幕av在线有码专区| 日本与韩国留学比较| 欧美成人一区二区免费高清观看 | 神马国产精品三级电影在线观看| 国产精品一区二区三区四区久久| 久久九九热精品免费| 色综合婷婷激情| 97人妻精品一区二区三区麻豆| 欧美激情在线99| 亚洲第一电影网av| 成人av一区二区三区在线看| 国产精品日韩av在线免费观看| 精品一区二区三区四区五区乱码| 亚洲国产日韩欧美精品在线观看 | av国产免费在线观看| 青草久久国产| 中文字幕高清在线视频| 亚洲成人精品中文字幕电影| 桃红色精品国产亚洲av| 久久久精品大字幕| 亚洲一区二区三区色噜噜| 听说在线观看完整版免费高清| 成年女人毛片免费观看观看9| 久久香蕉精品热| 亚洲熟妇熟女久久| 国产成人欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线观看网站| 成人性生交大片免费视频hd| 搞女人的毛片| 宅男免费午夜| 中亚洲国语对白在线视频| 国产成人av激情在线播放| 免费看a级黄色片| 亚洲av熟女| 国产精品一区二区免费欧美| 午夜福利在线在线| 母亲3免费完整高清在线观看| 日韩欧美国产在线观看| 日韩欧美国产一区二区入口| 九九热线精品视视频播放| 亚洲国产精品久久男人天堂| 亚洲色图av天堂| 老汉色av国产亚洲站长工具| aaaaa片日本免费| 在线a可以看的网站| 成在线人永久免费视频| 亚洲av电影不卡..在线观看| 国产一区二区三区视频了| 国产高清有码在线观看视频| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| 久9热在线精品视频| 亚洲国产精品合色在线| 亚洲国产欧洲综合997久久,| 欧美成人免费av一区二区三区| 日本黄大片高清| 亚洲av第一区精品v没综合| 国产探花在线观看一区二区| 国产一区二区在线观看日韩 | 亚洲无线在线观看| 国产高清三级在线| 18禁黄网站禁片免费观看直播| 1024手机看黄色片| 国产精品1区2区在线观看.| 少妇裸体淫交视频免费看高清| 天堂网av新在线| 男女做爰动态图高潮gif福利片| 最新在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 久久中文字幕人妻熟女| 日韩欧美国产在线观看| 最好的美女福利视频网| 后天国语完整版免费观看| 成人高潮视频无遮挡免费网站| 国产高清视频在线观看网站| www国产在线视频色| 1000部很黄的大片| 99久久无色码亚洲精品果冻| 九色国产91popny在线| 久久国产乱子伦精品免费另类| 最近最新中文字幕大全电影3| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美在线一区二区| 天堂影院成人在线观看| 久久久久久人人人人人| 少妇裸体淫交视频免费看高清| 精品日产1卡2卡| 波多野结衣高清无吗| 人人妻人人看人人澡| av中文乱码字幕在线| 欧美成狂野欧美在线观看| 超碰成人久久| 亚洲狠狠婷婷综合久久图片| 观看免费一级毛片| 无遮挡黄片免费观看| 99在线视频只有这里精品首页| 欧美日韩综合久久久久久| 亚洲av电影在线观看一区二区三区 | 国产日韩欧美在线精品| 在线观看av片永久免费下载| 亚洲欧美日韩卡通动漫| 欧美潮喷喷水| 精品一区二区免费观看| 久久久久性生活片| 成人毛片a级毛片在线播放| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频 | h日本视频在线播放| 变态另类丝袜制服| 亚洲不卡免费看| 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 欧美最新免费一区二区三区| 有码 亚洲区| 久久人妻av系列| 少妇丰满av| 国产精品伦人一区二区| 91久久精品电影网| 午夜老司机福利剧场| 一个人看视频在线观看www免费| 国产精品日韩av在线免费观看| 水蜜桃什么品种好| 久久久久性生活片| 中文字幕制服av| 国产v大片淫在线免费观看| 非洲黑人性xxxx精品又粗又长| 久久国内精品自在自线图片| 亚洲精品国产av成人精品| 亚洲精品成人久久久久久| 色播亚洲综合网| 特级一级黄色大片| 深爱激情五月婷婷| 亚洲av中文字字幕乱码综合| 最近最新中文字幕免费大全7| 极品教师在线视频| 亚洲av中文av极速乱| 麻豆成人午夜福利视频| 黄色日韩在线| 欧美一区二区亚洲| 国产精品野战在线观看| 爱豆传媒免费全集在线观看| 亚洲国产精品久久男人天堂| 国产精品无大码| 午夜爱爱视频在线播放| 在线天堂最新版资源| 亚洲精品影视一区二区三区av| 欧美人与善性xxx| 青春草亚洲视频在线观看| 国产欧美日韩精品一区二区| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品专区久久| 成人性生交大片免费视频hd| 麻豆久久精品国产亚洲av| 日韩高清综合在线| 网址你懂的国产日韩在线| 日日干狠狠操夜夜爽| 国产又色又爽无遮挡免| 亚洲内射少妇av| 中文字幕久久专区| 色吧在线观看| 亚洲不卡免费看| 男女下面进入的视频免费午夜| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 久久久色成人| 午夜福利在线观看免费完整高清在| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 国产视频首页在线观看| 亚洲av中文字字幕乱码综合| 美女国产视频在线观看| 老司机福利观看| 精品人妻视频免费看| 免费看日本二区| 精品人妻视频免费看| 99热这里只有是精品在线观看| 麻豆久久精品国产亚洲av| 午夜福利在线观看吧| 欧美最新免费一区二区三区| 欧美成人a在线观看| h日本视频在线播放| 五月玫瑰六月丁香| 久久人妻av系列| 亚洲伊人久久精品综合 | 国产精品一区二区三区四区免费观看| 国产视频首页在线观看| 亚洲av中文字字幕乱码综合| 国产精品三级大全| 天堂av国产一区二区熟女人妻| АⅤ资源中文在线天堂| 黄色欧美视频在线观看| 国产一区亚洲一区在线观看| 日本一本二区三区精品| av免费在线看不卡| 国产大屁股一区二区在线视频| 亚洲av成人精品一二三区| av黄色大香蕉| 亚洲av免费在线观看| 又黄又爽又刺激的免费视频.| 国产私拍福利视频在线观看| 直男gayav资源| 久久99热这里只有精品18| 内地一区二区视频在线| 亚洲成人中文字幕在线播放| 麻豆乱淫一区二区| 自拍偷自拍亚洲精品老妇| 桃色一区二区三区在线观看| 日韩欧美精品v在线| 啦啦啦啦在线视频资源| 美女大奶头视频| 亚洲av不卡在线观看| 国产精品av视频在线免费观看| 欧美高清性xxxxhd video| 最新中文字幕久久久久| 九九爱精品视频在线观看| 99久久精品热视频| 亚洲天堂国产精品一区在线| 色吧在线观看| 国产综合懂色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线观看66精品国产| 男女视频在线观看网站免费| av福利片在线观看| 春色校园在线视频观看| 国产精品一区二区性色av| 日韩 亚洲 欧美在线| 又粗又爽又猛毛片免费看| 久久精品国产亚洲网站| 黄片无遮挡物在线观看| 国产精品蜜桃在线观看| 久久亚洲精品不卡| 又爽又黄a免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品国产一区二区三区久久久樱花 | 汤姆久久久久久久影院中文字幕 | 别揉我奶头 嗯啊视频| 久久婷婷人人爽人人干人人爱| 日本三级黄在线观看| 色综合亚洲欧美另类图片| 国产大屁股一区二区在线视频| 国产精品人妻久久久影院| 久久这里有精品视频免费| 日韩强制内射视频| 天天一区二区日本电影三级| 性插视频无遮挡在线免费观看| 国产精品久久久久久久电影| 午夜爱爱视频在线播放| 只有这里有精品99| 欧美极品一区二区三区四区| 国产成人91sexporn| 成人综合一区亚洲| 狂野欧美激情性xxxx在线观看| 国产伦在线观看视频一区| 欧美激情在线99| 成人亚洲欧美一区二区av| 亚洲av免费高清在线观看| 亚洲精品亚洲一区二区| 麻豆乱淫一区二区| 3wmmmm亚洲av在线观看| 尤物成人国产欧美一区二区三区| 精品午夜福利在线看| 欧美变态另类bdsm刘玥| 在线观看美女被高潮喷水网站| 白带黄色成豆腐渣| 国产在视频线精品| 中文天堂在线官网| 婷婷色av中文字幕| 久久婷婷人人爽人人干人人爱| 国产色爽女视频免费观看| 国产精品日韩av在线免费观看| 日韩国内少妇激情av| 日韩高清综合在线| 中文字幕av成人在线电影| 久久久国产成人精品二区| 国产伦精品一区二区三区视频9| 午夜精品一区二区三区免费看| or卡值多少钱| 国产精品一区二区三区四区免费观看| 日韩欧美精品免费久久| 午夜福利高清视频| 国产一级毛片在线| 99热网站在线观看| 免费一级毛片在线播放高清视频| 亚洲av一区综合| 成人亚洲欧美一区二区av| 午夜爱爱视频在线播放| av播播在线观看一区| 国产精品久久电影中文字幕| 国产一区亚洲一区在线观看| 欧美变态另类bdsm刘玥|